1
|
Chen G, Zhang W, Chen Q, Dong M, Liu M, Liu G. Geniposide exerts the antidepressant effect by affecting inflammation and glucose metabolism in a mouse model of depression. Chem Biol Interact 2024; 400:111182. [PMID: 39098740 DOI: 10.1016/j.cbi.2024.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Depression is a severe mental illness affecting patient's physical and mental health. However, long-term effects of existing therapeutic modalities for depression are not satisfactory. Geniposide is an iridoid compound highly expressed in gardenia jasminoides for removing annoyance. The activity of geniposide against depression has been widely studied while most studies concentrated on the expression levels of gene and protein. Herein, the aim of the present study was to employ non-target metabolomic platform of serum to investigate metabolic changes of depression mice and further verify in hippocampus for analyzing the antidepressant mechanism of geniposide. Then we discovered that 9 metabolites of serum were significantly increased in depressive group (prostaglandin E2, leukotriene C4, arachidonic acid, phosphatidylcholine (PC, 16:0/16:0), LysoPC (18:1 (9Z)/0:0), phosphatidylethanolamine (14:0/16:0), creatine, oleamide and aminomalonic acid) and 6 metabolites were decreased (indoxylsulfuric acid, testosterone, lactic acid, glucose 6-phosphate, leucine and valine). The levels of arachidonic acid, LysoPC, lactic acid and glucose 6-phosphate in hippocampus were consistent change with serum in depression mice. Most of them showed significant tendencies to be normal by geniposide treatment. Metabolic pathway analysis indicated that arachidonic acid metabolism and glucose metabolism were the main pathogenesis for the antidepressant effect of geniposide. In addition, the levels of serum tumor necrosis factor-α and interleukin-1 were increased in depressive mice and reversed after geniposide treatment. This study revealed that abnormal metabolism of inflammatory response and glucose metabolism of the serum and hippocampus involved in the occurrence of depressive disorder and antidepressant effect of geniposide.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, China.
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Miao Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Hou Z, Sun L, Jiang Z, Zeng T, Wu P, Huang J, Liu H, Xiao P. Neuropharmacological insights into Gardenia jasminoides Ellis: Harnessing therapeutic potential for central nervous system disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155374. [PMID: 38301302 DOI: 10.1016/j.phymed.2024.155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND In China, Gardenia jasminoides Ellis (GJE) has a longstanding history of application. The Ministry of Health has listed it as one of the first pharmaceutical or food resources. In ethnic, traditional, and folk medicine, GJE has been used to treat fever and cold and relieve nervous anxiety. Recent studies have confirmed the significant efficacy of GJE for treating central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, and major depressive disorder; however, GJE has not been systematically evaluated. PURPOSE This research systematically summarizes global studies on the use of GJE for treating CNS disorders and explores the potential applications and underlying mechanisms via intestinal flora analysis and network pharmacology, aiming to establish a scientific basis for innovative CNS disorder treatment with GJE. METHODS The PRISMA guidelines were used, and electronic databases such as the Web of Science, PubMed, and China National Knowledge Infrastructure were searched using the following search terms: "Gardenia jasminoides Ellis" with "central nervous system disease," "neuroprotection," "Alzheimer's disease," "Parkinson's disease," "ischemic stroke," "Epilepsy," and "major depressive disorder." The published literature up to September 2023 was searched to obtain relevant information on the application of GJE for treating CNS disorders. RESULTS There has been an increase in research on the material formulation and mechanisms of action of GJE for treating CNS disorders, with marked effects on CNS disorder treatment in different countries and regions. We summarized the research results related to the role of GJE in vitro and in vivo via multitargeted interventions in response to the complex mechanisms of action of CNS disorders. CONCLUSION We systematically reviewed the research progress on traditional treatment for GJE and preclinical mechanisms of CNS disorders and explored the potential of optimizing network pharmacology strategies and intestinal flora analysis to elucidate the mechanisms of action of GJE. The remarkable therapeutic efficacy of GJE, an important resource in traditional medicine, has been well documented in the literature, highlighting its significant medicinal potential.
Collapse
Affiliation(s)
- Ziyu Hou
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Le Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Zheyu Jiang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Tiexin Zeng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Peiling Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jiali Huang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Haibo Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Peigen Xiao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
3
|
Hao DL, Xie R, Zhong YL, Li JM, Zhao QH, Huo HR, Xiong XJ, Sui F, Wang PQ. Jasminoidin and ursodeoxycholic acid exert synergistic effect against cerebral ischemia-reperfusion injury via Dectin-1-induced NF-κB activation pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154817. [PMID: 37121061 DOI: 10.1016/j.phymed.2023.154817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Jasminoidin (JA) and ursodeoxycholic acid (UA) were shown to act synergistically against ischemic stroke (IS) in our previous studies. PURPOSE To investigate the holistic synergistic mechanism of JA and UA on cerebral ischemia. METHODS Middle cerebral artery obstruction reperfusion (MCAO/R) mice were used to evaluate the efficacy of JA, UA, and JA combined with UA (JU) using neurological function testing and infarct volume examination. High-throughput RNA-seq combined with computational prediction and function-integrated analysis was conducted to gain insight into the comprehensive mechanism of synergy. The core mechanism was validated using western blotting. RESULTS JA and UA synergistically reduced cerebral infarct volume and alleviated neurological deficits and pathological changes in MCAO/R mice. A total of 1437, 396, 1080, and 987 differentially expressed genes were identified in the vehicle, JA, UA, and JU groups, respectively. A strong synergistic effect between JA and UA was predicted using chemical similarity analysis, target profile comparison, and semantic similarity analysis. As the 'long-tail' drugs, the top 20 gene ontology (GO) biological processes of JA, UA, and JU groups primarily reflected inflammatory response and regulation of cytokine production, with specific GO terms of JU revealing enhanced regulation on immune response and tumor necrosis factor superfamily cytokine production. Comparably, the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling of common targets of JA, UA, and JU focused on extracellular matrix organization and signaling by interleukins, immune system, phagosomes, and lysosomes, which interlock and interweave to produce the synergistic effects of JU. The characteristic signaling pathway identified for JU highlighted the crosstalk between autophagy activation and inflammatory pathways, especially the Dectin-1-induced NF-κB activation pathway, which was validated by in vivo experiments. CONCLUSIONS JA and UA can synergistically protect cerebral ischemia-reperfusion injury by attenuating Dectin-1-induced NF-κB activation. The strategy integrating high throughput data with computational models enables ever-finer mapping of 'long-tail' drugs to dynamic variations in condition-specific omics to clarify synergistic mechanisms.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi-Lin Zhong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing-He Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Tao W, Yao G, Yue Q, Xu C, Hu Y, Cheng X, Zhao T, Qi M, Chen G, Zhao M, Yu Y. 14-3-3ζ Plays a key role in the modulation of neuroplasticity underlying the antidepressant-like effects of Zhi-Zi-Chi-Tang. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154888. [PMID: 37257329 DOI: 10.1016/j.phymed.2023.154888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Zhi-Zi-Chi-Tang (ZZCT) is an effective traditional Chinese medicinal formula. ZZCT has been used for the treatment of depression for centuries. Its clinical efficacy in relieving depression has been confirmed. However, the molecular mechanisms of ZZCT regarding neuroplasticity in the pathogenesis of depression have not yet been elucidated. PURPOSE The present study aimed to examine the effects of ZZCT on neuroplasticity in mice exposed to chronic unpredictable mild stress (CUMS), and to explore the underlying molecular mechanisms. METHODS For this purpose, a murine model of depression was established using the CUMS procedure. Following the intragastric administration of ZZCT or fluoxetine, classic behavioral experiments were performed to observe the efficacy of ZZCT as an antidepressant. Immunofluorescence was used to label and quantify microtubule-associated protein (MAP2) and postsynaptic density protein (PSD95) in the hippocampus. Golgi staining was applied to visualize the dendritic spine density of neurons in the hippocampi. Isolated hippocampal slices were prepared to induce long-term potentiation (LTP) in the CA1 area. The hippocampal protein expression levels of glycogen synthase kinase-3β (GSK-3β), p-GSK-3β (Ser9), cAMP response element binding protein (CREB), p-CREB (Ser133), brain-derived neurotrophic factor (BDNF) and 14-3-3ζ were detected using western blot analysis. The interaction of 14-3-3ζ and p-GSK-3β (Ser9) was examined using co-immunoprecipitation. LV-shRNA was used to knockdown 14-3-3ζ by an intracerebroventricular injection. RESULTS ZZCT (6 g/kg) and fluoxetine (20 mg/kg) alleviated depressive-like behavior, restored hippocampal MAP2+ PSD95+ intensity, and reversed the dendritic spine density of hippocampal neurons and LTP in the CA1 region of mice exposed to CUMS. Both low and high doses of ZZCT (3 and 6 g/kg) significantly promoted the binding of 14-3-3ζ to p-GSK-3β (Ser9) in the hippocampus, and ZZCT (6 g/kg) significantly promoted the phosphorylation of GSK-3β Ser9 and CREB Ser133 in the hippocampus. ZZCT (3 and 6 g/kg) upregulated hippocampal BDNF expression in mice exposed to CUMS. LV-sh14-3-3ξ reduced the antidepressant effects of ZZCT. CONCLUSION ZZCT exerted antidepressant effects against CUMS-stimulated depressive-like behavior mice. The knockdown of 14-3-3ζ using lentivirus confirmed that 14-3-3ζ was involved in the ZZCT-mediated antidepressant effects through GSK-3β/CREB/BDNF signaling. On the whole, these results suggest that the antidepressant effects of ZZCT are attributed to restoring damage by neuroplasticity enhancement via the 14-3-3ζ/GSK-3β/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Neurology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Guangda Yao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiyu Yue
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Xu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - XiaoLan Cheng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingming Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, and Research Center for Formula and Patterns, Jinan University, Guangzhou, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Yu
- Neurology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China.
| |
Collapse
|
5
|
Kou Y, Li Z, Yang T, Shen X, Wang X, Li H, Zhou K, Li L, Xia Z, Zheng X, Zhao Y. Therapeutic potential of plant iridoids in depression: a review. PHARMACEUTICAL BIOLOGY 2022; 60:2167-2181. [PMID: 36300881 PMCID: PMC9621214 DOI: 10.1080/13880209.2022.2136206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 09/25/2022] [Indexed: 05/29/2023]
Abstract
CONTEXT Depression is a mental disorder characterized by low mood, reduced interest, impaired cognitive function, and vegetative symptoms such as sleep disturbances or poor appetite. Iridoids are the active constituents in several Chinese classical antidepressant formulae such as Yueju Pill, Zhi-Zi-Hou-Po Decoction, Zhi-Zi-Chi Decoction, and Baihe Dihuang Decoction. Parallel to their wide usages, iridoids are considered potential lead compounds for the treatment of neurological diseases. OBJECTIVE The review summarizes the therapeutic potential and molecular mechanisms of iridoids in the prevention or treatment of depression and contributes to identifying research gaps in iridoids as potential antidepressant medication. METHODS The following key phrases were sought in PubMed, Google Scholar, Web of Science, and China National Knowledge Internet (CNKI) without time limitation to search all relevant articles with in vivo or in vitro experimental studies as comprehensively as possible: ('iridoid' or 'seciridoid' or 'depression'). This review extracted the experimental data on the therapeutic potential and molecular mechanism of plant-derived iridoids for depression. RESULTS Plant iridoids (i.e., catalpol, geniposide, loganin), and secoiridoids (i.e., morroniside, gentiopicroside, oleuropein, swertiamarin), all showed significant improvement effects on depression. DISCUSSION AND CONCLUSIONS Iridoids exert antidepressant effects by elevating monoamine neurotransmitters, reducing pro-inflammatory factors, inhibiting hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, increasing brain-derived neurotrophic factor (BDNF) and its receptors, and elevating intestinal microbial abundance. Further detailed studies on the pharmacokinetics, bioavailability, and key molecular targets of iridoids are also required in future research, ultimately to provide improvements to current antidepressant medications.
Collapse
Affiliation(s)
- Yaoyao Kou
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Zhihao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Tong Yang
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Xue Shen
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Xin Wang
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Haopeng Li
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Kun Zhou
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Luyao Li
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Zhaodi Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Ye Zhao
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| |
Collapse
|
6
|
Wu C, Wang H, Liu Z, Xu B, Li Z, Song P, Chao Z. Untargeted Metabolomics Coupled with Chemometrics for Leaves and Stem Barks of Dioecious Morus alba L. Metabolites 2022; 12:metabo12020106. [PMID: 35208181 PMCID: PMC8874686 DOI: 10.3390/metabo12020106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The differences in metabolites in male and female individuals of dioecious Morus alba L. (Moraceae) are usually ignored and lack study. In the present study, 58 leaves and 61 stem barks from male and female individuals were analyzed by untargeted metabolomics via headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) coupled with chemometrics, including principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). A total of 66 and 44 metabolites were identified from leaves and stem barks, respectively. Four and eight differential metabolites among candidate metabolites in leaves and stem barks from male and female individuals were identified. Moreover, females possessed stronger antioxidant activity than males. This is the first report where untargeted metabolomics coupled with chemometrics was used to analyze the different metabolites and to discriminate the gender of leaves and stem barks of dioecious M. alba. It provided the basis for further study of M. alba and reference value for researching dioecious plants.
Collapse
|
7
|
GAO HM, CHEN J, YU P, JIANG CP, LI XT, WANG BR, ZHANG QH. Pharmacokinetic comparisons of five different combinations of Zhi-zi-chi Decoction among rats: Competing mechanisms between geniposide and genistein>. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Xia B, Huang X, Sun G, Tao W. Iridoids from Gardeniae fructus ameliorates depression by enhancing synaptic plasticity via AMPA receptor-mTOR signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113665. [PMID: 33307051 DOI: 10.1016/j.jep.2020.113665] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardeniae fructus is a traditional Chinese herb which exerts antidepressant effect. However, its effective constituent and potential mechanism are still unknown. AIM OF THE STUDY To examine whether iridoids, a type of monoterpenoids from Gardeniae fructus (IGF), exerts antidepressant effect by enhancing synaptic plasticity via AMPA receptor-mTOR signaling. MATERIALS AND METHODS The antidepressant effect of IGF (15 mg/kg; 30 mg/kg; 45 mg/kg) was investigated in spatial restraint stress (SRS)-induced mice. The expression levels of AMPA receptor-mTOR signaling and synaptic proteins were measured by Western blot, dendritic spine density was observed in Golgi staining. AMPA receptor (AMPAR) inhibitor NBQX and mTOR inhibitor Rapamycin were employed to determine the roles of AMPAR and mTOR signaling in IGF-induced antidepressant effects. RESULTS After IGF administration, the expression of the AMPA glutamate receptor Glutamate Receptor 1 (GluA1) was inhibited in SRS mice. We also observed a trend toward the up-regulation of the mammalian target of Rapamycin (mTOR) protein kinase, p70 ribosomal protein S6K (P70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1). The protein levels of Synapsin-1 and PSD-95 were decreased after SRS challenge, along with declined dendritic spine density, which were all reversed with IGF treatment. Furthermore, the treatment efficacy of IGF were blocked with AMPA receptor inhibitor NBQX or mTOR inhibitor Rapamycin. CONCLUSION IGF exerted antidepressive-like effects by stimulating AMPAR-mTOR signaling regulated synaptic plasticity enhancement. This work provided an important basis for developing IGF and Gardeniae fructus as potential anti-depressants.
Collapse
Affiliation(s)
- Baomei Xia
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, 210023, China
| | - Xiaoyan Huang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guangda Sun
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Tao
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Chai C, Jin B, Yan Y, Yuan Q, Wen H, Tao W, Cui X, Shan C, Yu S. Anti-depressant effect of Zhi-zi-chi decoction on CUMS mice and elucidation of its signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113283. [PMID: 32827659 DOI: 10.1016/j.jep.2020.113283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-zi-chi decoction (ZZCD) is used for treating depression as an effectively traditional Chinese medicine. Until now, studies on pharmacological research of ZZCD have mostly been centered in pharmacokinetic level. Little was known about its pharmacological mechanism of relieving depression. AIM OF THE STUDY This study was to evaluate the effect of ZZCD on relieving depression via behavioral tests, serum metabolomics and signaling target expression analysis on chronic unpredictable mild stress (CUMS) model mice. MATERIALS AND METHODS The CUMS exposure lasted 7 consecutive weeks. The mice were administrated with ZZCD for the last 3 weeks. Behavioral tests were applied and a serum metabolomics method based on UFLC/Q-TOF-MS with multivariate statistical and global metabolic network analysis was performed to identify relevant metabolites and pathways. Finally, the protein expressions in mouse hippocampi were determined by western blot to verify the metabolomics deduction. RESULTS Behavioral parameters were visibly changed after modeling, while high and medium dosage groups showed status improvement compared to the model group. Seventy six metabolites were identified as potential biomarkers from the metabolomics profiles in C18 and HILIC systems. In addition, 9 significant pathways related to changed biomarkers were conducted. The pathways were closely connected by some key targets, which were significantly reduced in the model group compared with those in control group, while ZZCD treated groups showed corrections after 3-week administration. The results revealed that the anti-depression efficacy of ZZCD might be associated with PKA-CREB-BDNF-TrkB-PSD-95 pathway influenced by metabolic changes, verifying the pathway annotation speculation. CONCLUSION This study demonstrated that ZZCD had a positive treatment effect on CUMS depression model mice. Metabolomics results revealed the holistic and interconnected metabolic changes of ZZCD in CUMS mice. The metabolic pathway annotation suggested that the anti-depression mechanism of ZZCD might be related to signaling pathway in brain. PKA-CREB-BDNF-TrkB-PSD-95 signaling expression was a verification and complement to the metabolomics results.
Collapse
Affiliation(s)
- Chuan Chai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Bo Jin
- China Mobile Group Jiangsu Co., Ltd., Nanjing, 210029, Jiangsu, China
| | - Yinyu Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qi Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Jiangsu, China
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Sheng Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
10
|
Zhang Y, Luo Y, Zhang D, Pang B, Wen J, Zhou T. Predicting a Potential Link to Antidepressant Effect: Neuroprotection of Zhi-zi-chi Decoction on Glutamate-induced Cytotoxicity in PC12 Cells. Front Pharmacol 2021; 11:625108. [PMID: 33569009 PMCID: PMC7868552 DOI: 10.3389/fphar.2020.625108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
Zhi-zi-chi Decoction (ZZCD), composed of Fructus Gardeniae (Zhizi in Chinese, ZZ in brief) and Semen sojae praeparatum (Dandouchi in Chinese, DDC in brief), has been used as a drug therapy for depression for thousands of years in China. However, the antidepressant mechanism of ZZCD still remains unknown. This study was aimed at exploring antidepressant effects of ZZCD from the aspect of neuroprotection based on herb compatibility. Glutamate-treated PC12 cells and chronic unpredictable mild stress (CUMS)-induced rats were established as models of depression in vitro and in vivo respectively. Cell viability, lactate dehydrogenase (LDH), apoptosis rate, reactive oxygen species (ROS), glutathione reductase (GR) and superoxide dismutase (SOD), and the expressions of Bax, Bcl-2 and cyclic adenosine monophosphate-response element binding protein (CREB) were measured to compare neuroprotection among single herbs and the formula in vitro. Behavior tests were conducted to validate antidepressant effects of ZZCD in vivo. Results showed that the compatibility of ZZ and DDC increased cell viability and activities of GR and SOD, and decreased the levels of LDH, apoptosis cells and ROS. Besides, the expressions of Bcl-2 and CREB were up-regulated while that of Bax was down-regulated by ZZCD. Furthermore, the compatibility of ZZ and DDC reversed abnormal behaviors in CUMS-induced rats and displayed higher efficacy than any of the single herbs. This study revealed that the antidepressant effects of ZZCD were closely associated with neuroprotection and elucidated synergistic effects of the compatibility of ZZ and DDC based on it.
Collapse
Affiliation(s)
- Yin Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Dongqi Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Bo Pang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Yang X, Sun A, Boadi EO, Li J, He J, Gao XM, Chang YX. A Rapid High Throughput Vibration and Vortex-Assisted Matrix Solid Phase Dispersion for Simultaneous Extraction of Four Isoflavones for Quality Evaluation of Semen Sojae Praeparatum. Front Pharmacol 2020; 11:590587. [PMID: 33214793 PMCID: PMC7665882 DOI: 10.3389/fphar.2020.590587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Isoflavones (daidzein, daidzin, genistein and genistin) were main chemical components and usually selected as markers for quality control of Traditional Chinese Medicine semen sojae praeparatum (SSP). High throughput vibration and vortex-assisted matrix solid phase dispersion and high performance liquid chromatography with diode array detection were developed to simultaneously extract and quantify four isoflavones in SSP. Some parameters influencing extraction efficiency of isoflavones by vortex-assisted matrix solid phase dispersion such as sorbent type, ratio of sample to sorbent, crushing time, vibration frequency, methanol concentration, eluting solvent volume and vortex time were optimized. It was found that the best extraction yields of four isoflavones were obtained when the sample (20 mg) and SBA-3 (40 mg) was crushed by ball mill machine for 2 min at vibration frequency of 800 times per minute. Methanol/water (1.5 ml, 8:2, v/v) solution was dropped into the treated sample and vortexed for 3 min. The recoveries of the four isoflavones ranged from 86.1 to 94.8% and all relative standard deviations were less than 5%. A good linearity (r > 0.9994) was achieved within the range 0.5-125 μg/ml. It was concluded that the high throughput vibration and vortex-assisted matrix solid-phase dispersion coupled with high performance liquid chromatography was user-friendly extraction and quantification method of multiple isoflavones for quality evaluation of SSP.
Collapse
Affiliation(s)
- Xuejing Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Ali Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Evans Owusu Boadi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiu-mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Efficacy and Safety of Jiawei Suanzaoren Decoction Combined with Lorazepam for Chronic Insomnia: A Parallel-Group Randomized Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3450989. [PMID: 32089719 PMCID: PMC7031716 DOI: 10.1155/2020/3450989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
Background Chronic insomnia is a major public health problem, but there are limited effective therapies. Jiawei Suanzaoren Decoction (JW-SZRD) has been used as an alternative option for treating insomnia. This study aimed to investigate the long-term efficacy and safety of JW-SZRD in combination with lorazepam for chronic insomnia. Methods A total of 207 participants were analyzed in this study. The treatment group (TG) received JW-SZRD and lorazepam orally, and the control group (CG) received lorazepam alone. The Insomnia Severity Index (ISI), the Self-Rating Depression Scale (SDS), the Self-Rating Anxiety Scale (SAS), and the Somatic Self-rating Scale (SSS) were evaluated at baseline, weeks 4, 8, and 12. The MOS 36-item Short Form Health Survey (SF-36) was assessed at baseline and week 12. Adverse effects (AEs) were evaluated by the Treatment Emergent Symptom Scale (TESS). Results Both TG and CG showed obvious improvements in the sleep onset latency (SOL) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (d = 1.28). The ISI reduction rate in TG was higher than that in CG at weeks 4, 8, and 12 (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) (P=0.001 and 0.005) and total sleep time (TST) ( Conclusion The combination of JW-SZRD with lorazepam can significantly improve sleep quality with fewer AEs. It is an effective treatment and superior to lorazepam alone for chronic insomnia.
Collapse
|
13
|
Wang C, Gong X, Bo A, Zhang L, Zhang M, Zang E, Zhang C, Li M. Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics. Molecules 2020; 25:E287. [PMID: 31936853 PMCID: PMC7024201 DOI: 10.3390/molecules25020287] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/28/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Iridoids are a class of active compounds that widely exist in the plant kingdom. In recent years, with advances in phytochemical research, many compounds with novel structure and outstanding activity have been identified. Iridoid compounds have been confirmed to mainly exist as the prototype and aglycone and Ι and II metabolites, by biological transformation. These metabolites have been shown to have neuroprotective, hepatoprotective, anti-inflammatory, antitumor, hypoglycemic, and hypolipidemic activities. This review summarizes the new structures and activities of iridoids identified locally and globally, and explains their pharmacokinetics from the aspects of absorption, distribution, metabolism, and excretion according to the differences in their structures, thus providing a theoretical basis for further rational development and utilization of iridoids and their metabolites.
Collapse
Affiliation(s)
- Congcong Wang
- Baotou Medical College, Baotou 014060, Inner Mongolia, China; (C.W.); (X.G.); (A.B.); (M.Z.); (E.Z.)
| | - Xue Gong
- Baotou Medical College, Baotou 014060, Inner Mongolia, China; (C.W.); (X.G.); (A.B.); (M.Z.); (E.Z.)
| | - Agula Bo
- Baotou Medical College, Baotou 014060, Inner Mongolia, China; (C.W.); (X.G.); (A.B.); (M.Z.); (E.Z.)
| | - Lei Zhang
- Faculty of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China;
| | - Mingxu Zhang
- Baotou Medical College, Baotou 014060, Inner Mongolia, China; (C.W.); (X.G.); (A.B.); (M.Z.); (E.Z.)
| | - Erhuan Zang
- Baotou Medical College, Baotou 014060, Inner Mongolia, China; (C.W.); (X.G.); (A.B.); (M.Z.); (E.Z.)
| | - Chunhong Zhang
- Baotou Medical College, Baotou 014060, Inner Mongolia, China; (C.W.); (X.G.); (A.B.); (M.Z.); (E.Z.)
- Inner Mongolia Key Laboratory of Traditional Chinese Medicine Resources, Baotou Medical College, Baotou 014060, Inner Mongolia, China
| | - Minhui Li
- Baotou Medical College, Baotou 014060, Inner Mongolia, China; (C.W.); (X.G.); (A.B.); (M.Z.); (E.Z.)
- Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, Inner Mongolia, China
| |
Collapse
|
14
|
Xing H, Zhang X, Xing N, Qu H, Zhang K. Uncovering pharmacological mechanisms of Zhi-Zi-Hou-Po decoction in chronic unpredictable mild stress induced rats through pharmacokinetics, monoamine neurotransmitter and neurogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112079. [PMID: 31302206 DOI: 10.1016/j.jep.2019.112079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-Zi-Hou-Po decoction (ZZHPD), a classical Chinese prescription, has been reported to improve depressive behaviors in clinic. However, definite pharmacological effects and mechanisms of ZZHPD on monoaminergic system and hippocampal neurogenesis are ambiguous. It need to be further illuminated. AIM OF THE STUDY Our study is designed to reveal pharmacological mechanisms of ZZHPD on depression through pharmacokinetics, monoamine neurotransmitters and neurogenesis. MATERIALS AND METHODS Chronic unpredictable mild stress (CUMS) is used to establish rats model of depression. Then, the antidepressant effects of ZZHPD are evaluated by detecting body weight, sucrose preference and forced swimming test. The regulatory functions of ZZHPD on monoaminergic system are assessed by measuring monoamine neurotransmitters, neurotransmitter precursor substances, synthesized rate-limiting enzymes and transporters. Finally, potential molecular mechanism of ZZHPD on hippocampal neurogenesis is evaluated by investigating newborn immature neuron and newborn mature neuron. RESULTS Our results show that ZZHPD remarkably normalizes CUMS-induced decline in weight gain, decrease of sucrose consumption rate in sucrose preference test and increase of immobility time in forced swimming test. Moreover, ZZHPD significantly reverses CUMS-induced reduction of 5-hydroxytryptamine (5-HT), dopamine (DA), tryptophan (Trp), tyrosine (Tyr), tryptophan hydroxylase2 (TPH2) and tyrosine hydroxylase (TH), whereas decreases level of serotonin transporter (SERT) in CUMS-induced rats. Finally, ZZHPD obviously improves CUMS-induced decrease of newborn immature neuron and newborn mature neuron in dentate gyrus of hippocampus. CONCLUSION This study demonstrates that ZZHPD can alleviate CUMS-induced depression-like behaviors. It is probably attributed to the fact that ZZHPD could enhance monoaminergic system and hippocampal neurogenesis. Our findings provide the new perspectives on molecular targets of ZZHPD, and it will facilitate its clinical application.
Collapse
Affiliation(s)
- Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoxu Zhang
- 13 Ward of General Surgery Department, Da Qing Long Nan Hospital, Daqing, China
| | - Nannan Xing
- Department of Pharmacy, Harbin Traditional Chinese Medicine Hospital, Harbin, China
| | | | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
15
|
Chai C, Cui X, Shan C, Yu S, Wang X, Wen H. Simultaneous Characterization and Quantification of Varied Ingredients from Sojae semen praeparatum in Fermentation Using UFLC⁻TripleTOF MS. Molecules 2019; 24:E1864. [PMID: 31096583 PMCID: PMC6571576 DOI: 10.3390/molecules24101864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
Systematic comparison of active ingredients in Sojae semen praeparatum (SSP) during fermentation was performed using ultra-fast liquid chromatography (UFLC)-TripleTOF MS and principal component analysis (PCA). By using this strategy, a total of 25 varied compounds from various biosynthetic groups were assigned and relatively quantified in the positive or negative ion mode, including two oligosaccharides, twelve isoflavones, eight fatty acids, N-(3-Indolylacetyl)-dl-aspartic acid, methylarginine, and sorbitol. Additionally, as the representative constituents, six targeted isoflavones were sought in a targeted manner and accurately quantified using extracted ion chromatograms (XIC) manager (AB SCIEX, Los Angeles, CA, USA) combined with MultiQuant software (AB SCIEX, Los Angeles, CA, USA). During the fermentation process, the relative contents of oligoses decreased gradually, while the fatty acids increased. Furthermore, the accurate contents of isoflavone glycosides decreased, while aglycones increased and reached a maximum in eight days, which indicated that the ingredients converted obviously and regularly throughout the SSP fermentation. In combination with the morphological changes, which meet the requirements of China Pharmacopoeia, this work suggested that eight days is the optimal time for fermentation of SSP from the aspects of morphology and content.
Collapse
Affiliation(s)
- Chuan Chai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Sheng Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
16
|
Diverse Pharmacological Activities and Potential Medicinal Benefits of Geniposide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4925682. [PMID: 31118959 PMCID: PMC6500620 DOI: 10.1155/2019/4925682] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Geniposide is a well-known iridoid glycoside compound and is an essential component of a wide variety of traditional phytomedicines, for example, Gardenia jasminoides Elli (Zhizi in Chinese), Eucommia ulmoides Oliv. (Duzhong in Chinese), Rehmannia glutinosa Libosch. (Dihuang in Chinese), and Achyranthes bidentata Bl. (Niuxi in Chinese). It is also the main bioactive component of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides Ellis. Increasing pharmacological evidence supports multiple medicinal properties of geniposide including neuroprotective, antidiabetic, hepatoprotective, anti-inflammatory, analgesic, antidepressant-like, cardioprotective, antioxidant, immune-regulatory, antithrombotic, and antitumoral effects. It has been proposed that geniposide may be a drug or lead compound for the prophylaxis and treatment of several diseases, such as Alzheimer's disease, Parkinson's disease, diabetes and diabetic complications, ischemia and reperfusion injury, and hepatic disorders. The aim of the present review is to give a comprehensive summary and analysis of the pharmacological properties of geniposide, supporting its use as a medicinal agent.
Collapse
|
17
|
Neuropharmacological and acute toxicological evaluation of ethanolic extract of Allamanda cathartica L. flowers and plumieride. Regul Toxicol Pharmacol 2017; 91:9-19. [DOI: 10.1016/j.yrtph.2017.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 11/24/2022]
|
18
|
Shi F, Pan H, Li Y, Huang L, Wu Q, Lu Y. A sensitive LC-MS/MS method for simultaneous quantification of geniposide and its active metabolite genipin in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Fuguo Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education; Zunyi Medical University; Zunyi China
| | - Hong Pan
- Department of clinical pharmacy; Zunyi Medical University; Zunyi China
| | - Yi Li
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education; Zunyi Medical University; Zunyi China
| | - Linyan Huang
- Department of clinical pharmacy; Zunyi Medical University; Zunyi China
| | - Qin Wu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education; Zunyi Medical University; Zunyi China
| | - Yuanfu Lu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education; Zunyi Medical University; Zunyi China
| |
Collapse
|
19
|
Online microdialysis-ultra performance liquid chromatography–mass spectrometry method for comparative pharmacokinetic investigation on iridoids from Gardenia jasminoides Ellis in rats with different progressions of type 2 diabetic complications. J Pharm Biomed Anal 2017; 140:146-154. [DOI: 10.1016/j.jpba.2017.03.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/15/2023]
|
20
|
Feng W, Dong Q, Liu M, Li S, Liu T, Wang X, Niu L. Screening and identification of multiple constituents and their metabolites of Zhi-zi-chi decoction in rat urine and bile by ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/03/2017] [Accepted: 03/19/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Wei Feng
- Hebei TCM Formula Granule Engineering & Technology Research Center; Hebei University of Chinese Medicine; Shijiazhuang China
| | - Qiuju Dong
- Hebei TCM Formula Granule Engineering & Technology Research Center; Hebei University of Chinese Medicine; Shijiazhuang China
| | - Minyan Liu
- Shijiazhuang Yiling Pharmaceutical Co., Ltd.; Shijiazhuang China
| | - Si Li
- Hebei TCM Formula Granule Engineering & Technology Research Center; Hebei University of Chinese Medicine; Shijiazhuang China
| | - Ting Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd.; China
| | - Xinguo Wang
- Hebei TCM Formula Granule Engineering & Technology Research Center; Hebei University of Chinese Medicine; Shijiazhuang China
| | - Liying Niu
- Hebei TCM Formula Granule Engineering & Technology Research Center; Hebei University of Chinese Medicine; Shijiazhuang China
| |
Collapse
|
21
|
Wang J, Duan P, Cui Y, Li Q, Shi Y. Geniposide alleviates depression-like behavior via enhancing BDNF expression in hippocampus of streptozotocin-evoked mice. Metab Brain Dis 2016; 31:1113-22. [PMID: 27311609 DOI: 10.1007/s11011-016-9856-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 01/15/2023]
Abstract
Clinical and preclinical data suggest that diabetes is often psychological complications such as depression. Geniposide (GP), a major compound in Gardenia jasminoides Ellis with both medicinal and nutritional values, has been previously confirmed to exert anti-diabetic and anti-depressive activities. The present study attempted to observe anti-depressive mechanisms of GP in streptozotocin (STZ) evoked diabetic mice by involving brain-derived neurotrophic factor (BDNF), for the first time. Mice were given GP daily (50, and 100 mg/kg, ig) or reference drugs FHMH [fluoxetine hydrochloride (FH, 10 mg/kg, ig) combined with metformin hydrochloride (MH, 100 mg/kg, ig)] for 3 weeks. The forced swimming test (FST) was performed to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analyses. STZ induced excessively increased blood sugar and immobility time in FST, in a manner attenuated by GP and FHMH administration. GP administration further elevated BDNF levels, and up-regulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB) in hippocampus of diabetic mice. In addition, STZ induced the excessive level of serum corticosterone (CORT), while GP did not influence on it in diabetic mice. Taken together, these findings indicate that GP can alleviate depression-like behavior in STZ-evoked diabetic mice, and suggest its mechanisms may partially be ascribed to up-regulating BDNF expression in brain.
Collapse
Affiliation(s)
- Junming Wang
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China.
- College of Pharmacy, Henan University of Traditional Chinese Medicine, East Jinshui Road & Boxue Road, Zhengzhou, 450046, China.
| | - Peili Duan
- College of Pharmacy, Henan University of Traditional Chinese Medicine, East Jinshui Road & Boxue Road, Zhengzhou, 450046, China
| | - Ying Cui
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
- College of Pharmacy, Henan University of Traditional Chinese Medicine, East Jinshui Road & Boxue Road, Zhengzhou, 450046, China
| | - Qing Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, East Jinshui Road & Boxue Road, Zhengzhou, 450046, China
| | - Yanran Shi
- College of Pharmacy, Henan University of Traditional Chinese Medicine, East Jinshui Road & Boxue Road, Zhengzhou, 450046, China
| |
Collapse
|
22
|
Abstract
Central neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are one of the biggest health problems worldwide. Currently, there is no cure for these diseases. The Gardenia jasminoides fruit is a common herbal medicine in traditional Chinese medicine (TCM), and a variety of preparations are used as treatments for central nervous system (CNS) diseases. Pharmacokinetic studies suggest genipin is one of the main effective ingredients of G. jasminoides fruit extract (GFE). Accumulated research data show that genipin possesses a range of key pharmacological properties, such as anti-inflammatory, neuroprotective, neurogenic, antidiabetic, and antidepressant effects. Thus, genipin shows therapeutic potential for central neurodegenerative diseases. We review the pharmacological actions of genipin for the treatment of neurodegenerative diseases of the CNS. We also describe the potential mechanisms underlying these effects.
Collapse
|
23
|
Jiang P, Ma Y, Gao Y, Li Z, Lian S, Xu Z, Jiang W, Tian X, Huang C. Comprehensive Evaluation of the Metabolism of Genipin-1-β-d-gentiobioside in Vitro and in Vivo by Using HPLC-Q-TOF. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5490-5498. [PMID: 27302600 DOI: 10.1021/acs.jafc.6b01835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To examine the metabolism of genipin-1-β-d-gentiobioside (GG), its distribution and biotransformation in vivo and in vitro were investigated. Urine, plasma, feces, and various organs were collected after oral administration of GG to normal rats and pseudo-germ-free rats to evaluate GG metabolism in vivo. GG was incubated with intestinal flora and primary hepatocytes in vitro to investigate microbial and hepatic metabolism. Using HPLC-Q-TOF-LC/MS, 11 metabolites of GG were absolutely or tentatively identified in terms possible elemental compositions, retention times, and characteristics of fragmentation patterns corresponding to eight biotransformations: deglycosylation, hydroxylation, sulfate conjugation, glucuronidation, hydrogenation, demethylation, glycosylation, and dehydration. Fewer metabolites were detected in pseudo-germ-free rats than in conventional rats. Moreover, geniposide and genipin were generated by the deglycoslation of intestinal bacteria. Geniposidic acid was detected in rat primary-hepatocyte incubation. This study first explores the metabolism of GG in vivo and in vitro. The results can aid the elucidation of PK profiles and clinical usage of gardenia fruit.
Collapse
Affiliation(s)
- Pei Jiang
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of Commerce , Harbin 150076, China
| | - Yuanjie Ma
- School of Pharmacy, Harbin University of Commerce , Harbin 150076, China
- Shanghai Institute of Materia Media, Chinese Academy of Sciences , Shanghai 201203, China
| | - Yu Gao
- Shanghai Institute of Materia Media, Chinese Academy of Sciences , Shanghai 201203, China
| | - Zhixiong Li
- Shanghai Institute of Materia Media, Chinese Academy of Sciences , Shanghai 201203, China
| | - Shan Lian
- School of Pharmacy, Harbin University of Commerce , Harbin 150076, China
- Shanghai Institute of Materia Media, Chinese Academy of Sciences , Shanghai 201203, China
| | - Zhou Xu
- Shanghai Institute of Materia Media, Chinese Academy of Sciences , Shanghai 201203, China
| | - Weixin Jiang
- School of Pharmacy, Harbin University of Commerce , Harbin 150076, China
| | - Xiaoting Tian
- Shanghai Institute of Materia Media, Chinese Academy of Sciences , Shanghai 201203, China
| | - Chenggang Huang
- Shanghai Institute of Materia Media, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|