1
|
Liu T, Duan X. Enantiomerization and enantioselective bioaccumulation of diclofop-methyl in tubifex worms. Chirality 2024; 36:e23618. [PMID: 37718908 DOI: 10.1002/chir.23618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023]
Abstract
In this study, the hydrolysis of diclofop-methyl (DM) in aqueous system and the bioaccumulation of its main metabolite, Diclofop (DA), in the tubifex worms were investigated using enantioselective high-performance liquid chromatography. With the addition of tubifex, rapid hydrolysis was observed for DM. It is revealed that the hydrolysis of DM in the water and the accumulation of DA in the worms were both enantioselective. Meanwhile, either the hydrolysis amount or the levels of enantioselectivity were influenced by the tubifex. After incubated for 24 h, about 94.6% of the DM was hydrolyzed and the enantiomer fraction of metabolite (DA) deviated from 0.5 with R-DA significantly higher than S-DA. The enantiopure S-DM and R-DM and S-DA and R-DA were incubated, and enantiomerizations were detected between the two DM enantiomers with S-form inversing into R-form and vice versa. It was found that the S-DM exhibited a higher tendency to invert than the R-DM.
Collapse
Affiliation(s)
- Tiantian Liu
- College of Science, Beijing Forestry University, Beijing, China
| | - Xinhong Duan
- College of Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Barbetta MFS, Perovani IS, Duarte LO, de Oliveira ARM. Enantioselective in vitro metabolism of the herbicide diclofop-methyl: Prediction of toxicokinetic parameters and reaction phenotyping. J Pharm Biomed Anal 2023; 235:115639. [PMID: 37619294 DOI: 10.1016/j.jpba.2023.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Human exposure to contaminants of emerging concern, like pesticides, has increased in the past decades. Diclofop-methyl (DFM) is a chiral herbicide that is employed as a racemic mixture (rac-DFM) in soybean and other crops against wild oats. Studies have shown that DFM has enantioselective action (higher for R-DFM), degradation (faster for S-DFM), and metabolism, producing diclofop (DF) which is also a pesticide. Although toxic effects have been reported for DFM, information regarding how DFM affects humans is lacking, especially when its chirality is concerned. In this study, the in vitro metabolism of rac-DFM and its isolated enantiomers was assessed by using a human model based on human liver microsomes. The kinetic model and parameters were obtained, and the hepatic clearance (CLH) and hepatic extraction ratio (EH) were estimated. Enzyme phenotyping was carried out by employing carboxylesterase isoforms (CES 1 and CES 2). DFM was metabolized through positive homotropic cooperativity with slight preference for (-)-DFM metabolism to (-)-DF. CLH and EH were above 19.60 mL min-1 kg-1 and 98 % for all the monitored reactions, respectively, and CES 1 was the main enzyme underlying the metabolism. These findings point out that liver contributes to DFM metabolism, which is fast, resulting in nearly complete conversion to DF after exposition to DFM.
Collapse
Affiliation(s)
- Maike Felipe Santos Barbetta
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Icaro Salgado Perovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Leandro Oka Duarte
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Sun X, Ye Y, Sun J, Tang L, Yang X, Sun X. Advances in the study of liver microsomes in the in vitro metabolism and toxicity evaluation of foodborne contaminants. Crit Rev Food Sci Nutr 2022; 64:3264-3278. [PMID: 36226776 DOI: 10.1080/10408398.2022.2131728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Foodborne contaminants are closely related to anthropologic activities and represent an important food safety hazard. The study of metabolic transformation and toxic side effects of foodborne contaminants in the body is important for their safety assessment. Liver microsomes contain a variety of enzymes related to substance metabolism and biotransformation. An in vitro model simulating liver metabolic transformation is associated with a significant advantage in the study of the metabolic transformation mechanisms of contaminants. This review summarizes the recent progress in the application of liver microsomes in metabolic transformation and toxicity evaluation of various foodborne pollutants based on metabolic kinetics, molecular docking and enzyme inhibition studies. The purpose of this review is to distinguish the existing studies involving liver microsomes and provide strategies for their application in the future. Finally, the prospects and challenges of the liver microsomal model are discussed.
Collapse
Affiliation(s)
- Xinyu Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Li Y, Liang H, Qiu L. Enantioselective Bioaccumulation of the Chiral Insecticide Indoxacarb in Zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1007-1016. [PMID: 33238038 DOI: 10.1002/etc.4943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/08/2020] [Accepted: 11/21/2020] [Indexed: 06/11/2023]
Abstract
Indoxacarb is a typical chiral insecticide widely used in agricultural pest control. In the present study, zebrafish was used as a model animal to explore the enantioselective bioaccumulation behavior of indoxacarb to nontarget species in aquatic environments. Zebrafish were exposed to 0.025 and 0.1 mg/L rac-indoxacarb solution for 12 d under the semistatic method, and the bioconcentration factor (BCF) and enantiomeric fraction of zebrafish were investigated. The results showed that the (-)-R-indoxacarb preferentially accumulated in zebrafish. The BCF values at 0.025 mg/L exposure levels were 1079.8 and 83.4 L/kg for (-)-R-indoxacarb and (+)-S-indoxacarb after 12 d, respectively. The BCF values at 0.1 mg/L exposure levels were 1752.1 and 137.0 L/kg for (-)-R-indoxacarb and (+)-S-indoxacarb after 10 d, respectively. The half-life values of (-)-R-indoxacarb and (+)-S-indoxacarb were 3.47 and 2.05 d for 0.025 mg/L concentration exposure and 4.95 and 2.66 d for 0.1 mg/L concentration exposure, respectively. The enantiomeric fraction values were in the range of 0.48 to 0.55 and 0.89 to 1.00 for water and zebrafish samples, respectively. Studies on the enantioselective bioaccumulation behavior of indoxacarb will provide data for assessing the environmental fate and potential toxic effects of indoxacarb on aquatic organisms. Environ Toxicol Chem 2021;40:1007-1016. © 2020 SETAC.
Collapse
Affiliation(s)
- Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lihong Qiu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Jiang X, Song B, Wang S, Ran L, Lu P, Hu D. Oxidative Stress and Enantioselective Degradation of Dufulin on Tubifex. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2136-2146. [PMID: 33464618 DOI: 10.1002/etc.4834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 06/12/2023]
Abstract
Dufulin is a new type of chiral antiplant virus agent independently developed in China. The present study was conducted to determine the effects of different concentrations of rac-dufulin and dufulin enantiomers (1, 5, and 10 mg/L) on oxidative stress in Tubifex after exposure for 3, 7, and 14 d. Results showed that rac-dufulin and individual enantiomers had no significant effects on total protein content and glutathione reductase activities. Increased superoxide dismutase demonstrated the generation of superoxide anion radical. The increase in glutathione S-transferase may be due to detoxification mechanisms. The different changes in catalase activities could be due to oxidative stress. The increase in malondialdehyde may be due to the accumulation and toxicity of contaminations. The degradation behavior of dufulin enantiomers was studied through spiked-water and spiked-soil tests. The degradation rate of S-(+)-dufulin was faster than that of R-(-)-dufulin. The present study demonstrated the occurrence of enantioselectivity in the degradation and oxidative stress of dufulin to Tubifex. In spiked soil, the concentrations of dufulin enantiomers in underlying soil were significantly higher than those in overlying water; but after 5 d of degradation, the bioturbation of Tubifex could facilitate part of dufulin diffusing from the underlying soil into the overlying water and altered the partitioning of dufulin. The present study provided a basis for conducting environmental safety risk assessments and rationally using dufulin as a chiral pesticide. Environ Toxicol Chem 2020;39:2136-2146. © 2020 SETAC.
Collapse
Affiliation(s)
- Xiaoxia Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Bangyan Song
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Shouyi Wang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Lulu Ran
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Ping Lu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Deyu Hu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
6
|
Gao J, Wang F, Jiang W, Han J, Liu D, Zhou Z, Wang P. Tissue Distribution, Accumulation, and Metabolism of Chiral Flufiprole in Loach ( Misgurnus anguillicaudatus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14019-14026. [PMID: 31725274 DOI: 10.1021/acs.jafc.9b05083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flufiprole is an insecticide used in the rice field and may pose a potential threat to aquatic organisms including loach. To investigate the transformation products of flufiprole in loach, the accumulation, elimination, and tissue distribution in vivo as well as the metabolism in vitro at the enantiomeric level were studied. Flufiprole enantiomers rapidly accumulated and were metabolized to flufiprole sulfone, fipronil, and flufiprole amide in the tissues. Enantiomeric fractions showed the preferential accumulation and degradation of S-flufiprole. The residue of the chiral metabolite flufiprole amide was also enantioselective. The individual enantiomer treatment indicated that S-flufiprole was preferentially metabolized to flufiprole sulfone and R-flufiprole to fipronil. The metabolites were more persistent than flufiprole with longer half-lives. The metabolism in liver microsomes also reached consistent conclusions. The dietary risk assessment indicated that flufiprole would not cause unacceptable threats to human health. However, the metabolites of flufiprole should be considered in the risk evaluation.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| | - Fang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , P. R. China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| | - Jiajun Han
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto M5S 3H6 , Ontario , Canada
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry , China Agricultural University , No. 2 West Yuanmingyuan Road , Beijing 100193 , P. R. China
| |
Collapse
|
7
|
Nie J, Yaro P, He K, Hu H, Zeng S. Excretion stereoselectivity of triticonazole in rat urine and faeces. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:175-183. [PMID: 31631749 DOI: 10.1080/03601234.2019.1675406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to study the excretion stereoselectivity of triticonazole enantiomers in rat urine and faeces. Six male Sprague-Dawley (SD) rats were administrated 50 mg/kg rac-triticonazole. Rats urine and faeces were separately and quantitatively collected at the following intervals: 0-3, 3-6, 6-9, 9-12, 12-24, 24-36 and 36-48 h. The faeces samples were homogenized in an aqueous solution containing 0.2% DMSO at the ratio of 1 g: 40 mL. An aliquot of 100 μL rats urine or faeces homogenate was spiked and mixed with 6.0 μL of 1.00 μg/mL flusilazole as an internal standard. The triticonazole enantiomers in urine and faeces were determined by using an HPLC/MS-MS after samples preparation. The excreted amounts of enantiomers in the urine showed a significant difference (P < 0.05) except for 3-6 h. The cumulative excretion rate (Xu0→24) in urine was 26.43 ± 0.08% and 37.58 ± 0.11% for R-(-)- and S-(+)-triticonazole, respectively, indicating high enantioselectivity (P < 0.001). The cumulative excretion rate (Xu0→72) in faeces was 6.93 ± 0.03% and 6.77 ± 0.03% for R-(-)- and S-(+)-triticonazole, respectively, without a difference. The results showed that the total cumulative percentage of triticonazole enantiomers accounted for in urine and faeces was 64.00 ± 0.13% and 13.70 ± 0.32%, the urinary excretion of R-(-)- and S-(+)-triticonazole were significantly different and S-(+)-triticonazole was preferentially excreted. However, the faecal excretion of the enantiomers showed no difference.
Collapse
Affiliation(s)
- Jing Nie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Peter Yaro
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Kaifeng He
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Xu C, Lin X, Yin S, Zhao L, Liu Y, Liu K, Li F, Yang F, Liu W. Enantioselectivity in biotransformation and bioaccumulation processes of typical chiral contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1274-1286. [PMID: 30268979 DOI: 10.1016/j.envpol.2018.09.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Chirality is a critical topic in the medicinal and agrochemical fields. One quarter of all agrochemicals was chiral in 1996, and this proportion has increased remarkably with the introduction of new compounds over time. Despite scientists have made great efforts to probe the enantiomeric selectivity of chiral chemicals in the environment since early 1990s, the different behaviours of individual enantiomers in biologically mediated processes are still unclear. In the present review, we highlight state-of-the-knowledge on the stereoselective biotransformation and accumulation of chiral contaminants in organisms ranging from invertebrates to humans. Chiral insecticides, fungicides, and herbicides, polychlorinated biphenyls (PCBs), pharmaceuticals, flame retardants hexabromocyclododecane (HBCD), and perfluorooctane sulfonate (PFOS) are all included in the target compounds. Key findings included: a) Changes in the enantiomeric fractions in vitro and in vivo models revealed that enantioselectivity commonly occurs in biotransformation and bioaccumulation. b) Emerging contaminants have become more important in the field of enantioselectivity together with their metabolites in biological transformation process. c) Chiral signatures have also been regarded as powerful tools for tracking pollution sources when the contribution of precursor is unknown. Future studies are needed in order to understand not only preliminary enrichment results but also detailed molecular mechanisms in diverse models to comprehensively understand the behaviours of chiral compounds.
Collapse
Affiliation(s)
- Chenye Xu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinmeng Lin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Yin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zhao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kai Liu
- Department of Environmental Science and Engineering, W. M. Keck Laboratories, California Institute of Technology, 1200 East California Blvd., Pasadena, CA, 91125, USA
| | - Fang Li
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fangxing Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Padró JM, Keunchkarian S. State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Metabolism studies of chiral pesticides: A critical review. J Pharm Biomed Anal 2018; 147:89-109. [DOI: 10.1016/j.jpba.2017.08.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 01/24/2023]
|
11
|
Applicability of the Rayleigh equation for enantioselective metabolism of chiral xenobiotics by microsomes, hepatocytes and in-vivo retention in rabbit tissues. Sci Rep 2016; 6:23715. [PMID: 27021918 PMCID: PMC4810358 DOI: 10.1038/srep23715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023] Open
Abstract
In this study we propose a new approach for analyzing the enantioselective biodegradation of some antidepressant drugs mediated by human and rat liver microsomes by using the Rayleigh equation to describe the enantiomeric enrichment−conversion dependencies. Analysis of reported degradation data of additional six pesticides, an alpha blocker and a flame retardant by microsomes or hepatocytes in vitro reaffirmed the universality of the approach. In all the in vitro studied cases that involved enantioselective degradation, a Rayleigh dependence of the enantiomeric enrichment was observed. Published data regarding in vivo retention of myclobutanil in liver, kidney, muscle and brain tissues of rabbits following injection of the racemate were remodeled showing prevalence of the Rayleigh law for the chiral enrichment of the fungicide in the various tissues. This approach will revolutionize data organization in metabolic pathway research of target xenobiotics by either liver microsomes, hepatocytes or their organ-specific in vivo retention. The fact that the enantiomeric enrichment as a function of the conversion can be described by a single quantifier, will pave the road for the use of structure activity predictors of the enantiomeric enrichment and for mechanistic discrimination based on parametric dependence of the quantifier.
Collapse
|
12
|
Zhang Q, Gao B, Tian M, Shi H, Hua X, Wang M. Enantioseparation and determination of triticonazole enantiomers in fruits, vegetables, and soil using efficient extraction and clean-up methods. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010:130-7. [DOI: 10.1016/j.jchromb.2015.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
|
13
|
Peluso P, Mamane V, Cossu S. Liquid Chromatography Enantioseparations of Halogenated Compounds on Polysaccharide-Based Chiral Stationary Phases: Role of Halogen Substituents in Molecular Recognition. Chirality 2015; 27:667-84. [DOI: 10.1002/chir.22485] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare; ICB CNR - UOS di Sassari; Sassari Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg; UMR 7177; Equipe LASYROC Strasbourg France
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca’ Foscari di Venezia; Venezia Italy
| |
Collapse
|