1
|
Wang X, Zhao S, Wang C, Du W, Sun H, Sun W, Jin Y, Zuo G, Tong S. Orthogonality in the selection of biphasic solvent systems for off-line two-dimensional countercurrent chromatography from Polygonum cuspidatum Sieb. et Zucc. J Chromatogr A 2020; 1634:461666. [PMID: 33197846 DOI: 10.1016/j.chroma.2020.461666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
Off-line two-dimensional countercurrent chromatography has been widely applied to the isolation of complex samples, but little research on the investigation of orthogonality in the selection of biphasic solvent systems is available. In the present work, the orthogonality in the selection of a biphasic solvent system for liquid-liquid chromatographic separation of aqueous extract and ether extract from the traditional Chinese medicinal plant Polygonum cuspidatum Sieb. et Zucc was evaluated by the correlation coefficient and space occupancy rate. In total, 25 different biphasic solvent systems were tested, and 313 system combinations were analysed. A convex hull methodology was used to determine the separation space and to optimize separation conditions. The correlation coefficient matrix was transformed into dendrograms and a colour map to visualize the dissimilarity between, and orthogonality for, all solvent systems. The aqueous extracts from Polygonum cuspidatum were separated using selected biphasic solvent systems with high orthogonality: ethyl acetate-ethanol-water (70:1:70, v/v) and petroleum ether-ethyl acetate-water (1:5:5, v/v). The ether extracts from Polygonum cuspidatum were also separated using selected biphasic solvent systems with high orthogonality: petroleum-ethyl acetate-methanol-aqueous 0.25 M NH3•H2O (5:5:5:5, v/v) and petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v). Thirteen compounds were successfully obtained. The experimental results demonstrated that the evaluation of orthogonality provided an alternative strategy to select an applicable solvent system for the separation of complex samples using off-line two-dimensional countercurrent chromatography.
Collapse
Affiliation(s)
- Xiang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shanshan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chaoyue Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hengmian Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenyu Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yang Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, 24252, Republic of Korea
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Gong Y, Huang XY, Pei D, Duan WD, Zhang X, Sun X, Di DL. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J Chromatogr A 2020; 1623:461150. [PMID: 32505270 DOI: 10.1016/j.chroma.2020.461150] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 01/10/2023]
Abstract
Antioxidants play an essential role in human health, as they have been found to be capable of lowering the incidence of many diseases, such as cancer and angiocardiopathy. Currently, more attention is paid to natural antioxidants because of the possible insecurity of synthetic antioxidants. Thus, the development of efficient techniques or methods to separate antioxidants from natural sources is requested urgently. High-speed counter current chromatography (HSCCC) is a unique support-free liquid-liquid chromatographic technique and has been widely applied in the field of separation of natural products. In this review, we summarize and analyze the related researches on the application of HSCCC in the separation of various natural antioxidants so far. The purpose of the article is to provide a certain theoretical support for the separation of natural antioxidants by HSCCC, and to make full use of advantages of HSCCC in the separation of bioactive components. In particular, some key problems associated with the separation strategies, the structural categories of natural antioxidants, solvent system choices, and the application of different elution modes in HSCCC separation, are summarized and commented. We expect that the content reviewed can offer more evidence for the development of the field of natural antioxidants separation, so as to achieve large-scale preparation of natural antioxidants.
Collapse
Affiliation(s)
- Yuan Gong
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China.
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; Center of Resource Chemical and New Material, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Wen-Da Duan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiao Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P.R. China.
| |
Collapse
|
3
|
Wang X, Zhao S, Wang C, Sun W, Jin Y, Gong X, Tong S. Off‐line comprehensive two‐dimensional reversed‐phase countercurrent chromatography with high‐performance liquid chromatography: Orthogonality in separation of
Polygonum cuspidatum
Sieb. et Zucc. J Sep Sci 2019; 43:561-568. [DOI: 10.1002/jssc.201900877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/06/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Xiang Wang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Shanshan Zhao
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Chaoyue Wang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Wenyu Sun
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Yang Jin
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical SciencesZhejiang University Hangzhou 310023 P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310032 P. R. China
| |
Collapse
|
4
|
Wang C, Sun W, Wang X, Jin Y, Zhao S, Luo M, Tong S. Large-scale separation of baicalin and wogonoside from Scutellaria baicalensis Georgi by the combination of pH-zone-refining and conventional counter-current chromatography. J Chromatogr A 2019; 1601:266-273. [DOI: 10.1016/j.chroma.2019.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
|
5
|
Wang Q, Zhou J, Xiang Z, Tong Q, Pan J, Wan L, Chen J. Anti-diabetic and renoprotective effects of Cassiae Semen extract in the streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111904. [PMID: 31022564 DOI: 10.1016/j.jep.2019.111904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/08/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cassiae Semen, the dried seed of Cassia obtusifolia L. (Leguminosae), is a traditional Chinese medicine. It has long been used as the treatment of diabetic hyperlipidemia and diabetic constipation in Traditional Chinese Medicine formulae. AIM OF THE STUDY The present study was designed to investigate the anti-diabetic and renoprotective effects of Cassiae Semen extract (CSE) in streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Quality control of CSE was performed using HPLC. CSE were orally administered at 27, 54 and 81 mg/kg dose to high-sucrose-high-fat (HSHF) diet and STZ-induced diabetic rats for 60 days. Body weight, glucose metabolism and lipid metabolism profiles were measured to assess the anti-diabetic effect of CSE. Oxidative stress markers and inflammatory factors were determined using commercial kits. Renal function related parameters were also measured. Histopathological examination of kidney was conducted for the validation of pathological changes in the diabetic rats. Immunohistochemical examination of kidney was measured to investigate the expression of RAGE in renal tissues. RESULTS Five compounds, including two anthraquinones and three naphtopyrones were simultaneously determined in CSE. Compared with diabetic control, groups treated with CSE exhibited an anti-diabetic effect, including a significant amelioration in body weight, glycemic control, oral glucose tolerance and lipid metabolism (P < 0.01). Moreover, oxidative stress and inflammatory responses decreased after oral administration of CSE (P < 0.01). CSE also showed protective effects on renal functions, decreasing the ratio of kidney/body weight, 24 h urine volume, 24 h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) (P < 0.01). Additionally, renal protective effect was also observed in histopathological examination. Immunohistochemical analysis showed that CSE downregulated the expression of RAGE. CONCLUSIONS It turned out that CSE had both anti-diabetic and renoprotective effects in diabetic rats. CSE can be a potential agent in the treatment of type 2 diabetes mellitus (T2DM) and its complications.
Collapse
Affiliation(s)
- Qiuyan Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Jiewen Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhinan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Qilin Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Jun Pan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Luosheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, College of Pharmacy, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
6
|
Huang X, Liu M, Liu X, Liu Q, Chen X. Polyethyleneimine Functionalized Multi-walled Carbon Nanotubes-Based Solid Phase Extraction for Selective Screening of Carboxylic Acid Compounds in Natural Products. Chromatographia 2019. [DOI: 10.1007/s10337-019-03737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Preparative Separation and Purification of Four Glycosides from Gentianae radix by High-Speed Counter-Current Chromatography and Comparison of Their Anti-NO Production Effects. Molecules 2017; 22:molecules22112002. [PMID: 29149084 PMCID: PMC6150402 DOI: 10.3390/molecules22112002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Secoiridoid and iridoid glycosides are the main active components of Gentianae radix. In this work, one iridoid and three secoiridoid glycosides from Gentianae radix have been purified by high-speed counter-current chromatography in two runs using different solvent systems. Ethyl acetate–n-butanol–water (2:1:3, v/v/v) was the optimum solvent system to purify ca. 4.36 mg of loganic acid, 3.05 mg of swertiamarin, and 35.66 mg of gentiopicroside with 98.1%, 97.2% and 98.6% purities, respectively, while 31.15 mg of trifloroside with 98.9% purity was separated using hexane–ethyl acetate–methanol–water (1:3:1:3, v/v/v/v). The structures of the glycosides were identified by mass spectrometry and NMR. After separation, the anti-nitric oxide production effects of the compounds on lipopolysaccharide-induced BV-2 murine microglial cells were also evaluated. All of the compounds inhibited the production of nitric oxide in lipopolysaccharide-induced BV-2 cells with high cell viabilities in a concentration-dependent manner, which demonstrated that were able to be used as a nitric oxide inhibitor.
Collapse
|
8
|
Guo R, Wu H, Yu X, Xu M, Zhang X, Tang L, Wang Z. Simultaneous Determination of Seven Anthraquinone Aglycones of Crude and Processed Semen Cassiae Extracts in Rat Plasma by UPLC-MS/MS and Its Application to a Comparative Pharmacokinetic Study. Molecules 2017; 22:molecules22111803. [PMID: 29143757 PMCID: PMC6150312 DOI: 10.3390/molecules22111803] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 11/16/2022] Open
Abstract
Semen cassiae is the ripe seed of Cassia obtusifolia L. or Cassia tora L. of the family Leguminosae. In traditional Chinese medicine, the two forms of Semen cassiae are raw Semen cassiae (R-SC) and parched Semen cassiae (P-SC). To clarify the processing mechanism of Semen cassiae, the pharmacokinetics of R-SC and P-SC extracts were examined. A simple, rapid, sensitive ultra-high-performance liquid chromatography–tandem mass spectroscopy (UPLC-MS/MS) method was developed and validated for the simultaneous determination of seven anthraquinone aglycones of Semen cassiae (aurantio-obtusin, obtusifolin, questin, 2-hydroxyemodin-1-methyl-ether, rhein, emodin, 1,2,7-trimethoxyl-6,8-dihydroxy-3-methylanthraquinone) to compare the pharmacokinetics of raw and parched Semen cassiae in rat plasma. Compared with the R-SC group, Cmax and AUC0-12 tended to be higher in the P-SC group. In particular, Cmax values for aurantio-obtusin, obtusifolin, questin, 2-hydroxyemodin-1-methyl-ether and rhein were significantly higher in the P-SC group (p < 0.05). Meanwhile, Tmax and MRT0-12 tended to be lower in the P-SC group. Specifically, Tmax for aurantio-obtusin and 2-hydroxyemodin-1-methyl-ether and MRT0-12 for obtusifolin and rhein were significantly higher in the P-SC group (p < 0.05).
Collapse
Affiliation(s)
- Rixin Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| | - Xiankuo Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| | - Mengying Xu
- School of Medicine, Henan University of Chinese Medicine, No. 156 Jinshuidong Ave., Zhengzhou 450046, China.
| | - Xiao Zhang
- School of Medicine, Henan University of Chinese Medicine, No. 156 Jinshuidong Ave., Zhengzhou 450046, China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| | - Zhuju Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing 100700, China.
| |
Collapse
|
9
|
Bu Z, Lv L, Li X, Chu C, Tong S. pH-zone-refining elution-extrusion countercurrent chromatography: Separation of hydroxyanthraquinones from Cassiae semen. J Sep Sci 2017; 40:4281-4288. [DOI: 10.1002/jssc.201700809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/28/2017] [Accepted: 08/20/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Zhisi Bu
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou China
| | - Liqiong Lv
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou China
| | - Xingnuo Li
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou China
| | - Chu Chu
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou China
| | - Shengqiang Tong
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou China
| |
Collapse
|
10
|
Dong X, Fu J, Yin X, Yang C, Zhang X, Wang W, Du X, Wang Q, Ni J. Cassiae semen: A review of its phytochemistry and pharmacology (Review). Mol Med Rep 2017; 16:2331-2346. [PMID: 28677746 PMCID: PMC5547955 DOI: 10.3892/mmr.2017.6880] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Cassiae semen (Leguminosae), a well-known traditional Chinese medicine, has been used for a number of centuries in areas of Southeast Asia, including Korea, Japan and China. The present review aims to provide updated and comprehensive information, on the botany, phytochemistry and pharmacology of Cassiae semen. The available information on Cassiae semen was collected using several different resources, including classic books on Chinese herbal medicine and a number of scientific databases, including the China Academic Journals full-text database, PubMed, SciFinder, the Web of Science and Science Direct. To date >70 chemical compounds have been isolated from Cassiae semen, and the major components have been determined to be anthraquinones, naphthopyrones and volatile oil. The crude extracts and pure compounds of Cassiae semen have been used as effective agents in preclinical and clinical practice due to their beneficial activities, including antihyperlipidemic, antidiabetic, neuroprotective, hepatoprotective, antibacterial, antioxidant and hypotensive activities. With the body of reported data, it has been suggested that Cassiae semen has convincing medicinal potential. However, the pharmacological mechanisms of the main bioactive compounds and the association between structure and activity require further investigation.
Collapse
Affiliation(s)
- Xiaoxv Dong
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Jing Fu
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Xingbin Yin
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Chunjing Yang
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Xin Zhang
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Wenping Wang
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Xueying Du
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Qingling Wang
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| | - Jian Ni
- Department of Chinese Medicine Pharmaceuticals, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, P.R. China
| |
Collapse
|
11
|
Preparative two dimensional separations involving liquid–liquid chromatography. J Chromatogr A 2017; 1494:1-17. [DOI: 10.1016/j.chroma.2017.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/17/2023]
|
12
|
Kim SB, Hwang SH, Suh HW, Lim SS. Phytochemical Analysis of Agrimonia pilosa Ledeb, Its Antioxidant Activity and Aldose Reductase Inhibitory Potential. Int J Mol Sci 2017; 18:ijms18020379. [PMID: 28208627 PMCID: PMC5343914 DOI: 10.3390/ijms18020379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to determine aldose reductase (AR) inhibitory activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of compounds from Agrimonia pilosa Ledeb (AP). We isolated agrimoniin (AM), four flavonoid glucosides and two flavonoid glucuronides from the n-butanol fraction of AP 50% methanol extract. In addition to isolated compounds, the AR-inhibitory activity and the DPPH free radical scavenging activity of catechin, 5-flavonoids, and 4-flavonoid glucosides (known components of AP) against rat lens AR (RLAR) and DPPH assay were measured. AM showed IC50 values of 1.6 and 13.0 μM against RLAR and DPPH scavenging activity, respectively. Additionally, AM, luteolin-7-O-glucuronide (LGN), quercitrin (QU), luteolin (LT) and afzelin (AZ) showed high inhibitory activity against AR and were first observed to decrease sorbitol accumulation in the rat lens under high-sorbitol conditions ex vivo with inhibitory values of 47.6%, 91.8%, 76.9%, 91.8% and 93.2%, respectively. Inhibition of recombinant human AR by AM, LGN and AZ exhibited a noncompetitive inhibition pattern. Based on our results, AP and its constituents may play partial roles in RLAR and oxidative radical inhibition. Our results suggest that AM, LGN, QU, LT and AZ may potentially be used as natural drugs for treating diabetic complications.
Collapse
Affiliation(s)
- Set Byeol Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
| | - Seung Hwan Hwang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
| | - Hong-Won Suh
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
- Institute of Natural Medicine, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Korea.
| |
Collapse
|
13
|
Target-guided isolation of polar antioxidants fromAbelmoschus esculentus(L). Moench by high-speed counter-current chromatography method coupled with wavelength switching and extrusion elution mode. J Sep Sci 2016; 39:3983-3989. [DOI: 10.1002/jssc.201600617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/07/2022]
|
14
|
Zeng H, Liu Q, Yu J, Wang M, Chen M, Wang R, He X, Gao M, Chen X. Separation of α-amylase inhibitors fromAbelmoschus esculentus(L).Moench by on-line two-dimensional high-speed counter-current chromatography target-guided by ultrafiltration-HPLC. J Sep Sci 2015; 38:3897-3904. [DOI: 10.1002/jssc.201500824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Hualiang Zeng
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Qi Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
- China Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai China
| | - Jingang Yu
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Meiling Wang
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Miao Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Ranhao Wang
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Xi He
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Menghuan Gao
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
- Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization; Changsha China
| |
Collapse
|
15
|
Zeng H, Liu Q, Yu J, Jiang X, Wu Z, Wang M, Chen M, Chen X. One-step separation of nine structural analogues from Poria cocos (Schw.) Wolf. via tandem high-speed counter-current chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1004:10-6. [PMID: 26435185 DOI: 10.1016/j.jchromb.2015.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
A novel one-step separation strategy-tandem high-speed counter-current chromatography (HSCCC) was developed with a six-port valve serving as the switch interface. Nine structural analogues including three isomers were successfully isolated from Poria cocos (Schw.) Wolf. by one step. Compared with conventional HSCCC, peak resolution of target compounds was effectively improved in tandem one. Purities of isolated compounds were all over 90% as determined by HPLC. Their structures were then identified via UV, MS and (1)H NMR, and eventually assigned as poricoic acid B (1), poricoic acid A (2), 3β,16α-dihydroxylanosta-7, 9(11), 24-trien-21-oic acid (3), dehydrotumulosic acid (4), polyporenic acid C (5), 3-epi-dehydrotumulosic acid (6), 3-o-acetyl-16α-hydroxydehydrotrametenolic acid (7), dehydropachymic acid (8) and dehydrotrametenolic acid (9) respectively. The results indicated that tandem HSCCC can effectively improve peak resolution of target compounds, and can be a good candidate for HSCCC separation of structural analogues.
Collapse
Affiliation(s)
- Hualiang Zeng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; China Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jingang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xinyu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhiliang Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Meiling Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Miao Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha 410083, China.
| |
Collapse
|