1
|
Benedetti B, Tronconi A, Turrini F, Di Carro M, Donno D, Beccaro GL, Boggia R, Magi E. Determination of polycyclic aromatic hydrocarbons in bud-derived supplements by magnetic molecular imprinted microparticles and GC-MS: D-optimal design for a fast method optimization. Sci Rep 2023; 13:17544. [PMID: 37845244 PMCID: PMC10579315 DOI: 10.1038/s41598-023-44398-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
Within the world of natural food supplements, organic extracts deriving from young plant meristematic tissue (bud-derivatives) are becoming attractive, thanks to their richness in bioactive molecules. This natural source is scarce, but every year, tons of plant material, including buds, come from city pruning. If this sustainable source is rather promising from a circular economy point of view, the safety of the obtained supplements must be assessed. In fact, anthropic microcontaminants, such as polycyclic aromatic hydrocarbons (PAHs), could adsorb onto the urban buds, leading to a possible contamination of the bud-derivatives. In this study, we developed a magnetic dispersive solid phase extraction (m-dSPE) based on molecularly imprinted microparticles, combined with GC-MS, to quantify the 16 priority PAHs in such extracts. The D-optimal experimental design was implemented to maximize analytes' recovery with the smallest set of experiments. The optimized method was characterized by great selectivity thanks to the molecular imprinted polymer and ease of use provided by m-dSPE. Moreover, it complies with green principles, thanks to the minimum consumption of organic solvent (1.5 mL of acetone per sample). The recoveries ranged from 76 to 100% and procedural precision was below 10% for most PAHs. Despite the matrix complexity, low quantification limits (0.7-12.6 μg kg-1) were reached. This guaranteed the PAHs' quantitation at levels below those indicated as safe by a European Community regulation on food supplements. None of the analyzed samples, coming from different anthropically impacted areas, showed concerning PAHs levels.
Collapse
Affiliation(s)
- Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Arianna Tronconi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen, 5303, Switzerland
| | - Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Dario Donno
- Department of Agriculture, Forestry and Food Science, University of Turin, Largo Braccini 2, 10095, Grugliasco (TO), Italy
| | - Gabriele Loris Beccaro
- Department of Agriculture, Forestry and Food Science, University of Turin, Largo Braccini 2, 10095, Grugliasco (TO), Italy
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy.
| |
Collapse
|
2
|
Hierarchically porous adsorbent alginate beads incorporating poly(3, 4-ethylenedioxythiophene) for dispersive liquid-solid phase extraction of five polycyclic aromatic hydrocarbons. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Temerdashev ZA, Musorina TN, Chervonnaya TA, Arutyunyan ZV. Possibilities and Limitations of Solid-Phase and Liquid Extraction for the Determination of Polycyclic Aromatic Hydrocarbons in Environmental Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821120133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Feng L, Liang X, Mao X, Wan H, Wu Y, Han Q. Study on the preparation of molecular imprinted polymer for analysis of N-phenylglycine in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122918. [PMID: 34537499 DOI: 10.1016/j.jchromb.2021.122918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/15/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
N-phenylglycine (NPG) in human urine could be an important biomarker for predicting cancers, but its detection has difficulty due to its low abundance in urine. Herein, we report a molecular imprinted polymer (MIP) method to efficiently recognize NPG in urine. The MIP was prepared by precipitation polymerization, adopting NPG as the template, acrylamide (AM) as functional monomer, trimethylpropane triacrylate (TRIM) as crosslinking agent, and acetonitrile as porogen. The specificity and selectivity of MIP towards NPG in human urine were determined by comparing MIP's adsorption to the NPG and N-crotonylglycine (NTG) under the same conditions. The result β = QMIP-NPG/QMIP-NTG = 4.7 indicated the satisfactory specificity and selectivity. Parameters affecting the extraction efficiency were further optimized. Under the optimum conditions, the linear range, limit of detection, and limit of quantification of NPG were 0.5-100 mg∙L-1, 1.6 × 10-2 mg∙L-1, and 5.5 × 10-2 mg∙L-1, respectively. Recoveries of NPG in human urine were in the range of 84.7-100.0% with RSDS of 3.8-10.8%. The developed method demonstrated superior selectivity to the target analyte, which can be applied to separate and enrich the NPG from urine samples.
Collapse
Affiliation(s)
- Lei Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xianyu Liang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Hao Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yan Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
5
|
Progress in Application of Dual/Multi-Template Molecularly Imprinted Polymers. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60118-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Janczura M, Luliński P, Sobiech M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. MATERIALS 2021; 14:ma14081850. [PMID: 33917896 PMCID: PMC8068262 DOI: 10.3390/ma14081850] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
In the last 10 years, we have witnessed an extensive development of instrumental techniques in analytical methods for determination of various molecules and ions at very low concentrations. Nevertheless, the presence of interfering components of complex samples hampered the applicability of new analytical strategies. Thus, additional sample pre-treatment steps were proposed to overcome the problem. Solid sorbents were used for clean-up samples but insufficient selectivity of commercial materials limited their utility. Here, the application of molecularly imprinted polymers (MIPs) or ion-imprinted polymers (IIPs) in the separation processes have recently attracted attention due to their many advantages, such as high selectivity, robustness, and low costs of the fabrication process. Bulk or monoliths, microspheres and core-shell materials, magnetically susceptible and stir-bar imprinted materials are applicable to different modes of solid-phase extraction to determine target analytes and ions in a very complex environment such as blood, urine, soil, or food. The capability to perform a specific separation of enantiomers is a substantial advantage in clinical analysis. The ion-imprinted sorbents gained interest in trace analysis of pollutants in environmental samples. In this review, the current synthetic approaches for the preparation of MIPs and IIPs are comprehensively discussed together with a detailed characterization of respective materials. Furthermore, the use of sorbents in environmental, food, and biomedical analyses will be emphasized to point out current limits and highlight the future prospects for further development in the field.
Collapse
|
7
|
Sibeko MA, Adeniji AO, Okoh OO, Hlangothi SP. Trends in the management of waste tyres and recent experimental approaches in the analysis of polycyclic aromatic hydrocarbons (PAHs) from rubber crumbs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43553-43568. [PMID: 32902752 DOI: 10.1007/s11356-020-09703-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/11/2020] [Indexed: 05/26/2023]
Abstract
The health and environmental consciousness of waste tires has increased tremendously over the years. This has motivated efforts to develop secondary applications that will utilize tire when they reach the end of their life cycle and limit their disposal in landfills. Among the applications of waste tires which are discussed in this review, the use of rubber crumbs in artificial turf fields has gained worldwide attention and is increasing annually. However, there are serious concerns regarding chemicals that are used in the manufacturing process of tires, which ultimately end up in rubber crumbs. Chemicals such as polycyclic aromatic hydrocarbons (PAH) and heavy metals which are found in rubber crumbs have been identified as harmful to human health and the environment. This review paper is intended to highlight some of the methods which have been used to manage waste tire; it also looks at chemicals/materials used in tire compounding which are identified as possible carcinogenic.
Collapse
Affiliation(s)
- Motshabi Alinah Sibeko
- Department of Chemistry, Faculty of Science, Nelson Mandela University, PO Box 1600, Port Elizabeth, 6031, South Africa.
| | - Abiodun Olagoke Adeniji
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Omobola Oluranti Okoh
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Shanganyane Percy Hlangothi
- Department of Chemistry, Faculty of Science, Nelson Mandela University, PO Box 1600, Port Elizabeth, 6031, South Africa
| |
Collapse
|
8
|
Sajid M, Nazal MK, Ihsanullah I. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Anal Chim Acta 2020; 1141:246-262. [PMID: 33248658 DOI: 10.1016/j.aca.2020.07.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons are hazardous environmental pollutants that possess mutagenic and carcinogenic properties. Generally, the concentrations of PAHs in environmental water samples are very low, and it is challenging to detect such levels directly by the analytical instrumentation. Thus, the extraction of PAHs using suitable extraction methodology is required for sample cleanup and analyte enrichment. Dispersive solid-phase extraction has several advantages over conventional approaches for the extraction of PAHs from environmental water samples. In this article, we critically evaluate the role of different nano and micro sorbent materials employed in the extraction of PAHs. Carbon-based nanomaterials, metal-organic frameworks, polymeric nanocomposites, ionic-liquid based composites, and silica-based materials are explicitly covered. This review also provides insight on functional components of all types of sorbents and their way of interaction with PAHs. The factors affecting the dispersive (micro) solid phase extraction of PAHs such as the design of the sorbent, the ratio of functional material to magnetic core, sample volume, amount of sorbent, extraction and desorption times, desorption solvent and its volume, salt addition, and sample pH are critically appraised. Finally, a brief account on the accomplishments, limitations, and challenges associated with such methods is provided.
Collapse
Affiliation(s)
- Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mazen Khaled Nazal
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
9
|
Manousi N, Zachariadis GA. Recent Advances in the Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Molecules 2020; 25:E2182. [PMID: 32392764 PMCID: PMC7249015 DOI: 10.3390/molecules25092182] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise a group of chemical compounds consisting of two or more fused benzene rings. PAHs exhibit hydrophobicity and low water solubility, while some of their members are toxic substances resistant to degradation. Due to their low levels in environmental matrices, a preconcentration step is usually required for their determination. Nowadays, there is a wide variety of sample preparation techniques, including micro-extraction techniques (e.g., solid-phase microextraction and liquid phase microextraction) and miniaturized extraction techniques (e.g., dispersive solid-phase extraction, magnetic solid-phase extraction, stir bar sorptive extraction, fabric phase sorptive extraction etc.). Compared to the conventional sample preparation techniques, these novel techniques show some benefits, including reduced organic solvent consumption, while they are time and cost efficient. A plethora of adsorbents, such as metal-organic frameworks, carbon-based materials and molecularly imprinted polymers, have been successfully coupled with a wide variety of extraction techniques. This review focuses on the recent advances in the extraction techniques of PAHs from environmental matrices, utilizing novel sample preparation approaches and adsorbents.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Castro-Grijalba A, Montes-García V, Cordero-Ferradás MJ, Coronado E, Pérez-Juste J, Pastoriza-Santos I. SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. ACS Sens 2020; 5:693-702. [PMID: 32134254 DOI: 10.1021/acssensors.9b01882] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel hybrid plasmonic platform based on the synergetic combination of a molecularly imprinted polymer (MIP) thin film with Au nanoparticle (NPs) assemblies, noted as Au@MIP, was developed for surface-enhanced Raman scattering (SERS) spectroscopy recognition of polycyclic aromatic hydrocarbons (PAHs). While the MIP trapped the PAH close to the Au surface, the plasmonic NPs enhanced the molecule's Raman signal. The Au@MIP fabrication comprises a two-step procedure, first, the layer-by-layer deposition of Au NPs on glass and their further coating with a uniform MIP thin film. Profilometry analysis demonstrated that the thickness and homogeneity of the MIP film could be finely tailored by tuning different parameters such as prepolymerization time or spin-coating rate. Two different PAH molecules, pyrene or fluoranthene, were used as templates for the fabrication of pyrene- or fluoranthene-based Au@MIP substrates. The use of pyrene or fluoranthene, as the template molecule to fabricate the Au@MIP thin films, enabled its ultradetection in the nM regime with a 100-fold improvement compared with the nonimprinted plasmonic sensors (Au@NIPs). The SERS data analysis allowed to estimate the binding constant of the template molecule to the MIP. The selectivity of both pyrene- and fluoranthene-based Au@MIPs was analyzed against three PAHs of different sizes. The results displayed the important role of the template molecule used for the Au@MIPs fabrication in the selectivity of the system. Finally, the practical applicability of pyrene-based Au@MIPs was shown by performing the detection of pyrene in two real samples: creek water and seawater. The design and optimization of this type of plasmonic platform will pave the way for the detection of other relevant (bio)molecules in a broad range of fields such as environmental control, food safety, or biomedicine.
Collapse
Affiliation(s)
- Alexander Castro-Grijalba
- Centro Singular de Investigaciones Biomédicas (CINBIO) y Departamento de Quı́mica Fı́sica, Universidade de Vigo, 36310 Vigo, Spain
- INFIQC, Centro Láser de Ciencias Moleculares, Departamento de Fisicoquı́mica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Verónica Montes-García
- Centro Singular de Investigaciones Biomédicas (CINBIO) y Departamento de Quı́mica Fı́sica, Universidade de Vigo, 36310 Vigo, Spain
| | - María José Cordero-Ferradás
- Centro Singular de Investigaciones Biomédicas (CINBIO) y Departamento de Quı́mica Fı́sica, Universidade de Vigo, 36310 Vigo, Spain
| | - Eduardo Coronado
- INFIQC, Centro Láser de Ciencias Moleculares, Departamento de Fisicoquı́mica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Jorge Pérez-Juste
- Centro Singular de Investigaciones Biomédicas (CINBIO) y Departamento de Quı́mica Fı́sica, Universidade de Vigo, 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- Centro Singular de Investigaciones Biomédicas (CINBIO) y Departamento de Quı́mica Fı́sica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
11
|
Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 2020; 1614:460603. [DOI: 10.1016/j.chroma.2019.460603] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/05/2023]
|
12
|
Han S, Teng F, Wang Y, Su L, Leng Q, Jiang H. Drug-loaded dual targeting graphene oxide-based molecularly imprinted composite and recognition of carcino-embryonic antigen. RSC Adv 2020; 10:10980-10988. [PMID: 35495356 PMCID: PMC9050445 DOI: 10.1039/d0ra00574f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/01/2020] [Indexed: 12/29/2022] Open
Abstract
Despite extensive research on functional graphene oxide for anticancer drug delivery, the sensitivity of traditional protein targeting ligands to the environment limits the practical applications of targeted drug delivery. A unique molecularly imprinted magnetic graphene oxide was used as a novel drug delivery system for the treatment of tumors. Molecularly imprinted polymers (MIPs) synthesized by molecular imprinting technology have the advantages of good stability against chemical and enzymatic attacks, high specificity for a target template, and resistance to harsh environments. In our work, the MIP was used for specificity to tumor cells with carcino-embryonic (CEA) tumor markers as the template, and dopamine as the functional monomer was grafted on boronic acid-functionalized magnetic graphene oxide. The structure of the nanoparticles was optimized and characterized in detail by vibrating sample magnetometry, X-ray diffraction analysis, UV-vis spectroscopy, and flow cytometry. The prepared polymer has magnetic properties, specific recognition to CEA, biocompatibility and pH sensitivity for drug delivery. Cell culture research was carried out on the tumor cells and normal cells. The composites exhibited dual targeting properties that not only magnetically target but also specifically increase the drug cytotoxicity to the tumor cells by selectively binding to CEA. On the basis of these results, this study developed a novel approach for targeting tumor cells for drug delivery without needing to modify the protein ligand. In the research we designed a CEA-molecularly imprinted polymers using molecular imprinting technique with CEA tumor marker as template, boronic acid functionalized MGO as substrate for dual targeted delivery of drug to tumor cells.![]()
Collapse
Affiliation(s)
- Shuang Han
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Fu Teng
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Yuan Wang
- Heilongjiang Province Qiqihar Ecological Environment Monitoring Center
- Qiqihar 161005
- China
| | - Liqiang Su
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Qiuxue Leng
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| | - Haiyan Jiang
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar 161006
- China
| |
Collapse
|
13
|
Azizi A, Shahhoseini F, Bottaro CS. Magnetic molecularly imprinted polymers prepared by reversible addition fragmentation chain transfer polymerization for dispersive solid phase extraction of polycyclic aromatic hydrocarbons in water. J Chromatogr A 2020; 1610:460534. [DOI: 10.1016/j.chroma.2019.460534] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023]
|
14
|
Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J Chromatogr A 2019; 1607:460442. [DOI: 10.1016/j.chroma.2019.460442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022]
|
15
|
Simple and effective dispersive micro-solid phase extraction procedure for simultaneous determination of polycyclic aromatic compounds in fresh and marine waters. Talanta 2019; 204:776-791. [DOI: 10.1016/j.talanta.2019.06.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022]
|
16
|
Choi JR, Yong KW, Choi JY, Cowie AC. Progress in Molecularly Imprinted Polymers for Biomedical Applications. Comb Chem High Throughput Screen 2019; 22:78-88. [DOI: 10.2174/1386207322666190325115526] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
Background:
Molecularly Imprinted Polymers (MIPs), a type of biomimetic materials
have attracted considerable interest owing to their cost-effectiveness, good physiochemical
stability, favorable specificity and selectivity for target analytes, and long shelf life. These
materials are able to mimic natural recognition entities, including biological receptors and
antibodies, providing a versatile platform to achieve the desirable functionality for various
biomedical applications.
Objective:
In this review article, we introduce the most recent development of MIPs to date. We
first highlight the advantages of using MIPs for a broad range of biomedical applications. We then
review their various methods of synthesis along with their latest progress in biomedical
applications, including biosensing, drug delivery, cell imaging and drug discovery. Lastly, the
existing challenges and future perspectives of MIPs for biomedical applications are briefly
discussed.
Conclusion:
We envision that MIPs may be used as potential materials for diverse biomedical
applications in the near future.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054–6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Kar Wey Yong
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alistair C. Cowie
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
17
|
Benedetti B, Di Carro M, Magi E. Multivariate optimization of an extraction procedure based on magnetic molecular imprinted polymer for the determination of polycyclic aromatic hydrocarbons in sea water. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Ma Y, Wang H, Guo M. Stainless Steel Wire Mesh Supported Molecularly Imprinted Composite Membranes for Selective Separation of Ebracteolata Compound B from Euphorbia fischeriana. Molecules 2019; 24:E565. [PMID: 30720731 PMCID: PMC6384690 DOI: 10.3390/molecules24030565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Stainless steel wire mesh supported molecularly imprinted composite membranes for selective separation of Ebracteolata Compound B (ECB) were prepared based on surface polymerization using ECB separated from Euphorbia fischeriana as a template, acrylamide as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, azodiisobutyronitrile as an initiator, and stainless steel wire mesh as support. Structure and purity of ECB were characterized by nuclear magenetic resonance (¹H-NMR, 13C-NMR) and ultra high performance liquid chromatography (UHPLC). The molecularly imprinted composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The membrane adsorbed on the ECB reached equilibrium about 30 min later, with a maximum adsorption amount of 3.39 μmol/cm². Adsorption behavior between ECB and the molecularly imprinted composite membranes followed pseudo-second-order kinetics equation and Freundlich isotherm model. The molecularly imprinted composite membranes that could selectively identify and transport ECB in similar structures have a permeation rate of 38.71% to ECB. The ECB content in the permeation solution derived from the extract of Euphorbia fischeriana through the imprinted membrane was 87%. Overall, the obtained results demonstrated that an efficient approach with the molecularly imprinted composite membranes for selective separation of ECB from Euphorbia fischeriana.
Collapse
Affiliation(s)
- Yukun Ma
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Mengyan Guo
- Department of National Immunization Program, Qiqihar Center for Disease Control and Prevention, Qiqihar 161006, China.
| |
Collapse
|
19
|
Solid phase extraction technique as a general field of application of molecularly imprinted polymer materials. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Geiss O, Senaldi C, Bianchi I, Lucena A, Tirendi S, Barrero-Moreno J. A fast and selective method for the determination of 8 carcinogenic polycyclic aromatic hydrocarbons in rubber and plastic materials. J Chromatogr A 2018; 1566:13-22. [DOI: 10.1016/j.chroma.2018.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
|
21
|
QbD approach by computer aided design and response surface methodology for molecularly imprinted polymer based on magnetic halloysite nanotubes for extraction of norfloxacin from real samples. Talanta 2018; 184:266-276. [DOI: 10.1016/j.talanta.2018.02.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
|
22
|
Hydrophobic Deep Eutectic Solvents in Developing Microextraction Methods Based on Solidification of Floating Drop: Application to the Trace HPLC/FLD Determination of PAHs. Chromatographia 2018. [DOI: 10.1007/s10337-018-3548-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Ncube S, Madikizela L, Cukrowska E, Chimuka L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Marć M, Kupka T, Wieczorek PP, Namieśnik J. Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Applications of Magnetic Molecularly Imprinted Polymers (MMIPs) in the Separation and Purification Fields. Chromatographia 2017. [DOI: 10.1007/s10337-017-3407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Li YH, Li HB, Xu XY, Xiao SY, Wang SQ. Distributions, sources and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in subsurface water of urban old industrial relocation areas: A case study in Shenyang, China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:971-978. [PMID: 28541771 DOI: 10.1080/10934529.2017.1324709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During a 12-month study period, the levels, distributions, sources and ecological risk of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in subsurface water of Shenyang (the largest urban industrial relocation base in China). The results showed that ΣPAH concentration ranged from 0.21 to 1.07 µg/L, in descending order as follows, summer, autumn, spring and winter. Comparing with the situations before relocation, there was a significant decrease in Fluorene, Phenanthrene and Anthracene levels. The content of Banzo[a]pyrene was in high level. Relatively high 16 EPA-PAHs concentrations were observed at downstream sites suggesting that after the industrial relocation, residual 16 EPA-PAHs in soil and sediments could be desorbed and resuspended in water. From a global perspective, contamination of subsurface water PAHs can be categorized as moderate level. Source analysis suggested that without industrial waste input, pyrogenic soureces were the major contributors for PAHs pollution in winter. Petrogenic and pyrogenic inputs were equally important sources for PAHs pollution in other seasons. Due to incomplete combustion of wood and coal, ecological risk of Banzo[a]pyrene was high in the winter, indicating that to alleviate 16 EPA-PAH contamination, segmented remediation and energy structure adjustment would be equally important in urban industrial relocation areas.
Collapse
Affiliation(s)
- Ying-Hua Li
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| | - Hai-Bo Li
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| | - Xin-Yang Xu
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| | - Si-Yao Xiao
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| | - Si-Qi Wang
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| |
Collapse
|