1
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Kazura W, Michalczyk K, Stygar D. The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans. Nutrients 2023; 15:3082. [PMID: 37513500 PMCID: PMC10385089 DOI: 10.3390/nu15143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The relationship between gut microbiota and obesity is well documented in humans and animal models. Dietary factors can change the intestinal microbiota composition and influence obesity development. However, knowledge of how diet, metabolism, and intestinal microbiota interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies show a link between consuming dietary proteins and fats from specific sources and obesity. Animal studies confirm that proteins and fats of different origins differ in their ability to prevent or induce obesity. Protein sources, such as meat, dairy products, vegetables, pulses, and seafood, vary in their amino acid composition. In addition, the type and level of other factors, such as fatty acids or persistent organic pollutants, vary depending on the source of dietary protein. All these factors can modulate the intestinal microbiota composition and, thus, may influence obesity development. This review summarizes selected evidence of how proteins and fats of different origins affect energy efficiency, obesity development, and intestinal microbiota, linking protein and fat-dependent changes in the intestinal microbiota with obesity.
Collapse
Affiliation(s)
- Wojciech Kazura
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Liu B, Zhang L, Yang H, Zheng H, Liao X. Microbiota: A potential orchestrator of antidiabetic therapy. Front Endocrinol (Lausanne) 2023; 14:973624. [PMID: 36777348 PMCID: PMC9911464 DOI: 10.3389/fendo.2023.973624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
The gut microbiota, as a 'new organ' of humans, has been identified to affect many biological processes, including immunity, inflammatory response, gut-brain neural circuits, and energy metabolism. Profound dysbiosis of the gut microbiome could change the metabolic pattern, aggravate systemic inflammation and insulin resistance, and exacerbate metabolic disturbance and the progression of type 2 diabetes (T2D). The aim of this review is to focus on the potential roles and functional mechanisms of gut microbiota in the antidiabetic therapy. In general, antidiabetic drugs (α-glucosidase inhibitor, biguanides, incretin-based agents, and traditional Chinese medicine) induce the alteration of microbial diversity and composition, and the levels of bacterial component and derived metabolites, such as lipopolysaccharide (LPS), short chain fatty acids (SCFAs), bile acids and indoles. The altered microbial metabolites are involved in the regulation of gut barrier, inflammation response, insulin resistance and glucose homeostasis. Furthermore, we summarize the new strategies for antidiabetic treatment based on microbial regulation, such as pro/prebiotics administration and fecal microbiota transplantation, and discuss the need for more basic and clinical researches to evaluate the feasibility and efficacy of the new therapies for diabetes.
Collapse
Affiliation(s)
| | | | | | - Hongting Zheng
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoyu Liao
- Department of Endocrinology, Chongqing Education Commission Key Laboratory of Diabetic Translational Research, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Liu Z, Li N, Zheng Z, Zhang C, Liu Z, Song C, Yan J, Mu S. Influence of Lonicera japonica and Radix Puerariae Crude Extracts on the Fecal Microbiome and Nutrient Apparent Digestibility of Finishing Pigs. Animals (Basel) 2022; 12:ani12162109. [PMID: 36009699 PMCID: PMC9404931 DOI: 10.3390/ani12162109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to investigate the influence of adding Lonicera japonica (L. japonica) and Radix Puerariae crude extracts and their mixture to the diet of finishing pigs on their fecal microbes and nutrient apparent digestibility. A total of 72 healthy Duroc × Landrace × Yorkshire crossbred barrows without significant differences in body weight (93 ± 2 kg) were selected and randomly divided into four groups (18 in each group). Three replicate pens per group (six pigs per pen) were used, and two pigs were evaluated for each pen. The groups were fed the following diets: control group (CON), basic diet; chlorogenic acid group (CGA group), basic diet + 1 kg/ton L. japonica crude extract; Pueraria flavonoid group (PF group), basic diet + 1 kg/ton Radix Puerariae crude extract; and mix group (Mix group), basic diet + 0.5 kg/ton L. japonica crude extract + 0.5 kg/ton Radix Puerariae crude extract. The following results were obtained: (1) At the phylum level, Bacteroidetes, Firmicutes, Spirochaetes, Proteobacteria, Fibrobaeteres, and Kiritimatiellaeota were the main components of the fecal microbiota (top 5); the relative abundance of bacteria from phyla Firmicutes significantly increased in the Mix group than in the CON group (p < 0.05). At the genus level, Treponema_2, Rikenellaceae_RC9_gut_group, uncultured_bacterium_f_Lachnospiraceae, uncultured_bacterium_f_Prevotellaceae, and Prevotellaceae_NK3B31_group were the main components of the fecal microbiota (top 5); the relative abundance of bacteria from genus Lactobacillus significantly increased in the Mix group than in the CON group (p < 0.05). Chao1 and Ace counts were significantly higher in group CGA than in the CON group and group Mix (p < 0.05). The alpha and beta diversities and the relative abundance of fecal microbes were higher in all test groups than in the CON group. (2) The protein digestibility was significantly higher in the CGA and PF groups than in the CON group, and the TP digestibility was significantly higher in the CGA than in the CON and Mix groups (p < 0.05). In conclusion, Lonicera japonica and Radix Puerariae crude extract supplementation in the diet significantly changed fecal microbiota and improved the protein and TP digestibility of finishing pigs.
Collapse
Affiliation(s)
- Zhonghao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ning Li
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zi Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Chunhua Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhengqun Liu
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Chunling Song
- Beijing Tianfulai Biological Technology Co., Ltd., Beijing 102206, China
| | - Jun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (J.Y.); (S.M.)
| | - Shuqin Mu
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (J.Y.); (S.M.)
| |
Collapse
|
6
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Dadgostar E, Moghanlou M, Parvaresh M, Mohammadi S, Khandan M, Aschner M, Mirzaei H, Tamtaji OR. Can Berberine Serve as a New Therapy for Parkinson's Disease? Neurotox Res 2022; 40:1096-1102. [PMID: 35666433 DOI: 10.1007/s12640-022-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurodegeneration and deposition of alpha-synuclein. Mechanisms associated with PD etiology include oxidative stress, apoptosis, autophagy, and abnormalities in neurotransmission, to name a few. Drugs used to treat PD have shown significant limitations in their efficacy. Therefore, recent focus has been placed on the potential of active plant ingredients as alternative, complementary, and efficient treatments. Berberine is an isoquinoline alkaloid that has shown promise as a pharmacological treatment in PD, given its ability to modulate several molecular pathway associated with the disease. Here, we review contemporary knowledge supporting the need to further characterize berberine as a potential treatment for PD.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Salimeh Mohammadi
- Anatomical Science Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadali Khandan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran. .,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
8
|
Influence and Mechanism of Polar Solvents on the Retention Time of Short-Chain Fatty Acids in Gas Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9050124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Short-chain fatty acids (SCFAs), produced by microbes when dietary fiber ferments in the colon, are one of the most studied microbial products despite their volatility and complex matrices, which make analysis challenging. In the current study, we sought to address research gaps by exploring the commonalities and differences between the retention time changes for SCFAs in polar solvents. In one such solvent, dimethyl sulfoxide (DMSO), the retention time of the SCFA acetic acid shows a linear positive correlation with the equal volume increase in the DMSO solvent. We used gas chromatography–mass spectrometry to analyze the retention times of mixed solutions of formic acid, acetic acid, butyric acid, valeric acid, and toluene in the solvents DMSO and water and found that only the retention times of formic acid and acetic acid changed. We further compared the effect of three solvents with similar polarities, DMSO, N-methylpyrrolidone (NMP), and dimethylformamide (DMF), on the retention time of acetic acid and found that it increased in the DMSO–water solution more than in the NMP–water solution and remained unchanged in the DMF–water solution. This finding is consistent with quantum chemical calculations showing that the strength of the hydrogen bond between DMSO and acetic acid is greater than between NMP and acetic acid. Taken together, the chromatographic results and quantum chemical calculations indicate that, in all three solvents, the portion of the molecule with the smallest negative electrostatic potential (red) has high electron density and can easily donate electrons, forming a hydrogen bond with acetic acid. However, the portion with the largest positive electrostatic potential (blue) forms a bond with polyethylene glycol, a column stationary solution with a strong dipole moment, and is adsorbed on the stationary solution in the direction of the dipole moment. Therefore, the retention times of formic acid and acetic acid change under the combined influence of a series of complex intermolecular forces. In the chromatographic column, the outflow rate of DMF is higher than that of acetic acid, and the force of the hydrogen bond between DMF and acetic acid cannot overcome the outflow resistance of acetic acid, so the retention time of the acetic acid in the DMF–water solution does not change. The retention times of butyric acid and valeric acid are unchanged in aprotic polar solvents for the same reason.
Collapse
|
9
|
Cheng L, Shi L, He C, Wang C, Lv Y, Li H, An Y, Dai H, Duan Y, Zhang H, Huang Y, Fu W, Meng Y, Zhao B. Rutin-activated adipose tissue thermogenesis is correlated with increased intestinal short-chain fatty acid levels. Phytother Res 2022; 36:2495-2510. [PMID: 35445769 DOI: 10.1002/ptr.7462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The activation of thermogenic programs in brown adipose tissue (BAT) and white adipose tissue (WAT) provides a promising approach to increasing energy expenditure during obesity and diabetes treatment. Although evidence has been found that rutin activates BAT against obesity and type 2 diabetes mellitus (T2DM), its potential mechanism is not completely understood. In this study, we focused on the potential modulating effect of rutin on short-chain fatty acids (SCFAs) and the thermogenesis of BAT and WAT, aiming to elucidate the molecular mechanism of rutin in the treatment of obesity and T2DM. The results showed that rutin could significantly reduce the body weight and fasting blood glucose, inhibit fat accumulation, relieve hepatic steatosis and ameliorate the disorder of glycolipid metabolism in db/db mice. Moreover, rutin also increased the expression of uncoupling protein 1 (Ucp1) and other thermogenic genes and proteins in BAT and inguinal WAT (IWAT), indicating that rutin activated BAT and induced browning of IWAT. Importantly, rutin markedly enhanced the concentration of SCFAs (acetate, propionate and butyrate) and SCFA-producing enzymes (acetate kinase (ACK), methylmalonyl-CoA decarboxylase (MMD) and butyryl-CoA (BUT)) in feces of db/db mice. In addition, rutin significantly increased the mRNA expression of monocarboxylate transporter 1 (Mct1), catabolic enzyme acyl-CoA medium-chain synthetase 3 (Acsm3), carnitine palmitoyl transferase 1α (Cpt-1α) and Cpt-1β genes in BAT and IWAT of db/db mice, which is conducive to inducing adipocyte thermogenesis. In summary, our findings revealed that rutin played a variety of regulatory roles in improving glucose and lipid metabolism disorders, reducing hepatic steatosis, inducing browning of IWAT and activating BAT, which has potential therapeutic significance for the treatment of obesity and T2DM. Mechanistically, rutin activates the thermogenesis of BAT and IWAT, which may be associated with increasing the concentration of SCFAs.
Collapse
Affiliation(s)
- Long Cheng
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Changhao He
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huilin Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Meng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zhou H, Zhao J, Liu C, Zhang Z, Zhang Y, Meng D. Xanthoceraside exerts anti-Alzheimer's disease effect by remodeling gut microbiota and modulating microbial-derived metabolites level in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153937. [PMID: 35104764 DOI: 10.1016/j.phymed.2022.153937] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Microbial-derived metabolites play important roles in Alzheimer's disease (AD) pathology, yet how intestinal microbes influence AD progression remains uncertain. Xanthoceraside (XAN), a triterpenoid saponin with anti-AD activity, was extracted from the husks of Xanthoceras sorbifolia Bunge. However, it is still unclear that how XAN modulates the gut microbiota community to regulate AD progression through changing the levels of microbial-derived metabolites. PURPOSE In this study, we investigated the mechanism underlying the anti-AD effect of XAN. METHODS The current combination studies of multiple-targeted metabolomics, natural product chemistry and pharmacology revealed that oral XAN mediated intestinal microbiota to ameliorate Aβ1-42-induced learning and memory deficits in rats, which were confirmed through antibiotic treatments and fecal microbiota transplantation. RESULTS As a poor water solubility and low permeability compound that hardly be absorbed into blood-brain barrier, XAN significantly regulated Aβ1-42-induced metabolism disorders directly or indirectly in gut, including neurotransmitters, amino acids, bile acids and SCFAs metabolism that were detected by UHPLC-MS/MS and GC-MS/MS. In particularly, the in vitro evaluation of XAN on SCFAs production not only found a striking increase in the production of SCFAs after fermentation, but revealed the inner relationship among XAN, gut microbiota and SCFAs in vivo. All results demonstrated that XAN could improve AD rats' learning and memory deficits by modulating the community of gut microbiota which was connected through 16S rRNA sequencing and CCA analyses. CONCLUSIONS Our study provided a novel mechanism for developing XAN as a potential anti-AD drug and revealed that the gut microbiota might be a potential target for AD treatment .
Collapse
Affiliation(s)
- Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jiaming Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Caihong Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Zhengfeng Zhang
- Chongqing Institute for Food and Drug Control, Chunlan Road 2, Chongqing 401121, China
| | - Yi Zhang
- Chongqing Institute for Food and Drug Control, Chunlan Road 2, Chongqing 401121, China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
11
|
Li W, Zhang L, Xu Q, Yang W, Zhao J, Ren Y, Yu Z, Ma L. Taxifolin Alleviates DSS-Induced Ulcerative Colitis by Acting on Gut Microbiome to Produce Butyric Acid. Nutrients 2022; 14:nu14051069. [PMID: 35268045 PMCID: PMC8912346 DOI: 10.3390/nu14051069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Taxifolin is a bioflavonoid which has been used to treat Inflammatory Bowel Disease. However, taxifolin on DSS-induced colitis and gut health is still unclear. Here, we studied the effect of taxifolin on DSS-induced intestinal mucositis in mice. We measured the degree of intestinal mucosal injury and inflammatory response in DSS treated mice with or without taxifolin administration and studied the changes of fecal metabolites and intestinal microflora using 16S rRNA. The mechanism was further explored by fecal microbiota transplantation. The results showed that the weight loss and diarrhea score of the mice treated with taxifolin decreased in DSS-induced mice and longer colon length was displayed after taxifolin supplementation. Meanwhile, the expression of GPR41 and GPR43 in the colon was significantly increased by taxifolin treatment. Moreover, the expression of TNF-α, IL-1β, and IL-6 in colon tissue was inhibited by taxifolin treatment. The fecal metabolism pattern changed significantly after DSS treatment, which was reversed by taxifolin treatment. Importantly, taxifolin significantly increased the levels of butyric acid and isobutyric acid in the feces of DSS-treated mice. In terms of gut flora, taxifolin reversed the changes of Akkermansia, and further decreased uncultured_bacterium_f_Muribaculaceae. Fecal transplantation from taxifolin-treated mice showed a lower diarrhea score, reduced inflammatory response in the colon, and reduced intestinal mucosal damage, which may be related to the increased level of butyric acid in fecal metabolites. In conclusion, this study provides evidence that taxifolin can ameliorate DSS-induced colitis by altering gut microbiota to increase the production of SCFAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Libao Ma
- Correspondence: ; Tel.: +86-13317192322
| |
Collapse
|
12
|
Huan P, Wang L, He Z, He J. The Role of Gut Microbiota in the Progression of Parkinson's Disease and the Mechanism of Intervention by Traditional Chinese Medicine. Neuropsychiatr Dis Treat 2022; 18:1507-1520. [PMID: 35923300 PMCID: PMC9341349 DOI: 10.2147/ndt.s367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative disease of the nervous system that seriously affects the quality of life of the patients. The pathogenesis of PD is not yet fully clear. Previous studies have confirmed that patients with PD exhibit obvious gut microbiota imbalance, while intervention of PD by regulating the gut microbiota has become an important approach to the prevention and treatment of this disease. Traditional Chinese medicine (TCM) has been shown to be safe and effective in treating PD. It has the advantages of affecting multiple targets. Studies have shown TCM can regulate gut microbiota. However, the specific mechanism of action is still unclear. Therefore, this article will mainly discuss the association of the alteration of the gut microbiota and the incidence of PD, the advantages of TCM in treating PD, and the mechanism of regulating gut microbiota by TCM to treat PD. It will clarify the target and mechanism of TCM treating PD by acting gut microbiota and provided a novel methodology for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Pengfei Huan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhuqing He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiancheng He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
13
|
Zhuang Y, Huang H, Liu S, Liu F, Tu Q, Yin Y, He S. Resveratrol Improves Growth Performance, Intestinal Morphology, and Microbiota Composition and Metabolism in Mice. Front Microbiol 2021; 12:726878. [PMID: 34539617 PMCID: PMC8446547 DOI: 10.3389/fmicb.2021.726878] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background Resveratrol (RSV) plays a vital role in alleviating various stresses and improving intestinal health. The current study was conducted to explore whether RSV alleviates weaning stress through improving gut health in a weaning mouse model. Forty 21-day-old weaned mice were randomly assigned to a control group without RSV treatment and three treatment groups with 10, 20, and 50 mg/kg RSV for 28 days. Results The results showed that RSV at a dose of 20 mg/kg improved total body weight, intestinal morphology (villus length and the ratio of villus length to crypt depth), and the levels of intestinal barrier proteins (claudin-1 and occludin), but had little effect on the food intake, crypt depth, and serum free amino acids of mice. Compared with the control group, mice supplemented with RSV had decreased mRNA expression of genes related to inflammatory cytokines (IL-6 and IL-1β), but increased mRNA expression of genes related to host defense peptides (Defa3, Defa5, Defa20, and Lyz) and short-chain fatty acids (SCFAs) production (propionic acid, isobutyric acid, butyric acid, and isovaleric acid). In addition, 16S rRNA sequencing results showed that RSV supplementation increased the richness indices of intestinal microbiota (Chao, ACE) and shaped the composition of intestinal microbiota (e.g., increased β-diversity of intestinal microbiota community). Meanwhile, RSV supplementation increased genes of Butyricicoccus, Ruminococcus_1, and Roseburia, which are producers of SCFAs. Furthermore, RSV supplementation significantly influenced the metabolism of intestinal microbiota, namely, amino acids metabolism, lipid metabolism, and defense mechanisms. Conclusion RSV can improve growth performance and intestinal morphology in weaning mice, possibly through improving gut immune response and microbiota function.
Collapse
Affiliation(s)
- Yu Zhuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China.,Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huijun Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Shuang Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Feng Liu
- Yucheng Baolikang Biological Feed Co., Ltd., Dezhou, China
| | - Qiang Tu
- Yucheng Baolikang Biological Feed Co., Ltd., Dezhou, China
| | - Yulong Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| | - Shanping He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha, China
| |
Collapse
|
14
|
Yang S, Li D, Yu Z, Li Y, Wu M. Multi-Pharmacology of Berberine in Atherosclerosis and Metabolic Diseases: Potential Contribution of Gut Microbiota. Front Pharmacol 2021; 12:709629. [PMID: 34305616 PMCID: PMC8299362 DOI: 10.3389/fphar.2021.709629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS), especially atherosclerotic cardiovascular diseases (ASCVDs), and metabolic diseases (such as diabetes, obesity, dyslipidemia, and nonalcoholic fatty liver disease) are major public health issues worldwide that seriously threaten human health. Exploring effective natural product-based drugs is a promising strategy for the treatment of AS and metabolic diseases. Berberine (BBR), an important isoquinoline alkaloid found in various medicinal plants, has been shown to have multiple pharmacological effects and therapeutic applications. In view of its low bioavailability, increasing evidence indicates that the gut microbiota may serve as a target for the multifunctional effects of BBR. Under the pathological conditions of AS and metabolic diseases, BBR improves intestinal barrier function and reduces inflammation induced by gut microbiota-derived lipopolysaccharide (LPS). Moreover, BBR reverses or induces structural and compositional alterations in the gut microbiota and regulates gut microbe-dependent metabolites as well as related downstream pathways; this improves glucose and lipid metabolism and energy homeostasis. These findings at least partly explain the effect of BBR on AS and metabolic diseases. In this review, we elaborate on the research progress of BBR and its mechanisms of action in the treatment of AS and metabolic diseases from the perspective of gut microbiota, to reveal the potential contribution of gut microbiota to the multifunctional biological effects of BBR.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
16
|
Sun X, Cui Y, Su Y, Gao Z, Diao X, Li J, Zhu X, Li D, Li Z, Wang C, Shi Y. Dietary Fiber Ameliorates Lipopolysaccharide-Induced Intestinal Barrier Function Damage in Piglets by Modulation of Intestinal Microbiome. mSystems 2021; 6:e01374-20. [PMID: 33824201 PMCID: PMC8547013 DOI: 10.1128/msystems.01374-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Weaning of piglets is accompanied by intestinal inflammation, impaired intestinal barrier function, and intestinal microflora disorder. Regulating intestinal microflora structure can directly or indirectly affect intestinal health and host growth and development. However, whether dietary fiber (DF) affects the inflammatory response and barrier function by affecting the intestinal microflora and its metabolites is unclear. In this study, we investigated the role of intestinal microflora in relieving immune stress and maintaining homeostasis using piglets with lipopolysaccharide (LPS)-induced intestinal injury as a model. DF improved intestinal morphology and barrier function, inhibited the expression of inflammatory signal pathways (Toll-like receptor 2 [TLR2], TLR4, and NF-κB) and proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]), and upregulated the expression of barrier-related genes (encoding claudin-1, occludin, and ZO-1). The contents of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and the activity of diamine oxidase in plasma were decreased. Meanwhile, DF had a strong effect on the composition and function of intestinal microflora at different taxonomic levels, the relative abundances of cellulolytic bacteria and anti-inflammatory bacteria were increased, and the concentrations of propionate, butyrate, and total short-chain fatty acids (SCFAs) in intestinal contents were increased. In addition, the correlation analysis also revealed the potential relationship between metabolites and certain intestinal microflora, as well as the relationship between metabolites and intestinal morphology, intestinal gene expression, and plasma cytokine levels. These results indicate that DF improves intestinal barrier function, in part, by altering intestinal microbiota composition and increasing the synthesis of SCFAs, which subsequently alleviate local and systemic inflammation.IMPORTANCE Adding DF to the diet of LPS-challenged piglets alleviated intestinal and systemic inflammation, improved intestinal barrier function, and ultimately alleviated the growth retardation of piglets. In addition, the addition of DF significantly increased the relative abundance of SCFA-producing bacteria and the production of SCFAs. We believe that the improvement of growth performance of piglets with LPS-induced injury can be attributed to the beneficial effects of DF on intestinal microflora and SCFAs, which reduced the inflammatory response in piglets, improving intestinal barrier function and enhancing body health. These research results provide a theoretical basis and guidance for the use of specific fiber sources in the diet to improve intestinal health and growth performance of piglets and thus alleviate weaning stress. Our data also provide insights for studying the role of DF in regulating gastrointestinal function in human infants.
Collapse
Affiliation(s)
- Xiao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Yingying Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zimin Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinying Diao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Xinzheng, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Zhentian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Chengzhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| |
Collapse
|
17
|
Zhao JD, Li Y, Sun M, Yu CJ, Li JY, Wang SH, Yang D, Guo CL, Du X, Zhang WJ, Cheng RD, Diao XC, Fang ZH. Effect of berberine on hyperglycaemia and gut microbiota composition in type 2 diabetic Goto-Kakizaki rats. World J Gastroenterol 2021; 27:708-724. [PMID: 33716449 PMCID: PMC7934002 DOI: 10.3748/wjg.v27.i8.708] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A recent investigation showed that the prevalence of type 2 diabetes mellitus (T2DM) is 12.8% among individuals of Han ethnicity. Gut microbiota has been reported to play a central role in T2DM. Goto-Kakizaki (GK) rats show differences in gut microbiota compared to non-diabetic rats. Previous studies have indicated that berberine could be successfully used to manage T2DM. We sought to understand its hypoglycaemic effect and role in the regulation of the gut microbiota.
AIM To determine whether berberine can regulate glucose metabolism in GK rats via the gut microbiota.
METHODS GK rats were acclimatized for 1 wk. The GK rats were randomly divided into three groups and administered saline (Mo), metformin (Me), or berberine (Be). The observation time was 8 wk, and weight, fasting blood glucose (FBG), insulin, and glucagon-like peptide-1 (GLP-1) were measured. Pancreatic tissue was observed for pathological changes. Additionally, we sequenced the 16S rRNA V3-V4 region of the gut microbiota and analysed the structure.
RESULTS Compared with the Mo group, the Me and Be groups displayed significant differences in FBG (P < 0.01) and GLP-1 (P < 0.05). A significant decrease in weight and homeostatic model assessment-insulin resistance was noted in the Be group compared with those in the Me group (P < 0.01). The pancreatic islets of the Me- and Be-treated rats showed improvement in number, shape, and necrosis compared with those of Mo-treated rats. A total of 580 operational taxonomic units were obtained in the three groups. Compared to the Mo group, the Me and Be groups showed a shift in the structure of the gut microbiota. Correlation analysis indicated that FBG was strongly positively correlated with Clostridia_UCG-014 (P < 0.01) and negatively correlated with Allobaculum (P < 0.01). Body weight showed a positive correlation with Desulfovibrionaceae (P < 0.01) and a negative correlation with Akkermansia (P < 0.01). Importantly, our results demonstrated that Me and Be could significantly decrease Bacteroidetes (P < 0.01) and the Bacteroidetes/Firmicutes ratio (P < 0.01). Furthermore, Muribaculaceae (P < 0.01; P < 0.05) was significantly decreased in the Me and Be groups, and Allobaculum (P < 0.01) was significantly increased.
CONCLUSION Berberine has a substantial effect in improving metabolic parameters and modulating the gut microbiota composition in T2DM rats.
Collapse
Affiliation(s)
- Jin-Dong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Yan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Min Sun
- School of Life Sciences, Anhui University, Hefei 230039, Anhui Province, China
| | - Chan-Juan Yu
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Jia-Yun Li
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Si-Hai Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Di Yang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Cheng-Lin Guo
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Xue Du
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Wen-Jin Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Ruo-Dong Cheng
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Xiao-Chuan Diao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Zhao-Hui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, Anhui Province, China
| |
Collapse
|
18
|
Zhang L, Wu X, Yang R, Chen F, Liao Y, Zhu Z, Wu Z, Sun X, Wang L. Effects of Berberine on the Gastrointestinal Microbiota. Front Cell Infect Microbiol 2021; 10:588517. [PMID: 33680978 PMCID: PMC7933196 DOI: 10.3389/fcimb.2020.588517] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
The gastrointestinal microbiota is a multi-faceted system that is unraveling novel contributors to the development and progression of several diseases. Berberine has been used to treat obesity, diabetes mellitus, atherosclerosis, and metabolic diseases in China. There are also clinical trials regarding berberine use in cardiovascular, gastrointestinal, and endocrine diseases. Berberine elicits clinical benefits at standard doses and has low toxicity. The mechanism underlying the role of berberine in lipid‐lowering and insulin resistance is incompletely understood, but one of the possible mechanisms is related to its effect on the gastrointestinal microbiota. An extensive search in electronic databases (PubMed, Scopus, Embase, Web of Sciences, Science Direct) was used to identify the role of the gastrointestinal microbiota in the berberine treatment. The aim of this review was to summarize the pharmacologic effects of berberine on animals and humans by regulation of the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruibing Yang
- Medical Department, Xizang Minzu University, Xianyang, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
19
|
Zhu C, Huang K, Bai Y, Feng X, Gong L, Wei C, Huang H, Zhang H. Dietary supplementation with berberine improves growth performance and modulates the composition and function of cecal microbiota in yellow-feathered broilers. Poult Sci 2020; 100:1034-1048. [PMID: 33518062 PMCID: PMC7858044 DOI: 10.1016/j.psj.2020.10.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
This study investigated the effect of berberine (BBR) on growth performance and composition and function of cecal microbiota in yellow-feathered broilers. A total of 360 1-day-old female broilers were assigned to 3 dietary treatments, each with 6 replicates of 20 birds. The dietary treatments consisted of a basal diet as negative control (NC), basal plus 200 mg/kg oxytetracycline calcium and 250 mg/kg nasiheptide as an antibiotic positive control (PC), and basal plus 250 mg/kg BBR. On day 21, 42, and 63, one chicken from each replicate was randomly selected for blood collection and cecal sampling. The 16S rRNA sequencing technology was used to analyze the community composition and function of cecal microbiota. Dietary supplementation with antibiotics or BBR increased the final body weight (BW) at day 63 and the average daily gain (ADG) during 1 to 21 d compared with the NC (P < 0.05). Supplementation with BBR improved the average daily feed intake (ADFI) at 22 to 42 d, 43 to 63 d, and 1 to 63 d (P < 0.05). Feed efficiency, indicated by feed to gain ratio (F/G), increased with PC during day 1 to 21 compared with NC (P < 0.05). The plasma concentrations of total protein at 42 d and uric acid at 21 d were increased, whereas creatine concentration at 63 d was decreased by BBR treatment (P < 0.05). The Chao 1 and Shannon index representing microbial α-diversity was reduced by BBR treatment (P < 0.05). The abundances of phylum Firmicutes and genera Lachnospiraceae, Lachnoclostridium, Clostridiales, and Intestinimonas were decreased, whereas the abundances of phylum Bacteroidetes and genus Bacteroides were increased with BBR treatment. Functional prediction of microbiota revealed that BBR treatment enriched pathways related to metabolism, organismal systems, and genetic information processing, especially DNA replication. The abundance of phylum Bacteroidetes, and genera Bacteroides and Lactobacillus in cecal contents were positively correlated with broiler growth performance. These results demonstrated dietary BBR supplementation improved the growth performance of yellow-feathered broilers, and was closely related to the significant changes in cecal microbiota composition.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Kaiyong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Li Gong
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Chuangxin Wei
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hanze Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
20
|
The effects of cigarettes and alcohol on intestinal microbiota in healthy men. J Microbiol 2020; 58:926-937. [DOI: 10.1007/s12275-020-0006-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
|
21
|
Man AW, Zhou Y, Xia N, Li H. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients 2020; 12:E3054. [PMID: 33036205 PMCID: PMC7601750 DOI: 10.3390/nu12103054] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Immunological and metabolic processes are inextricably linked and important for maintaining tissue and organismal health. Manipulation of cellular metabolism could be beneficial to immunity and prevent metabolic and degenerative diseases including obesity, diabetes, and cancer. Maintenance of a normal metabolism depends on symbiotic consortium of gut microbes. Gut microbiota contributes to certain xenobiotic metabolisms and bioactive metabolites production. Gut microbiota-derived metabolites have been shown to be involved in inflammatory activation of macrophages and contribute to metabolic diseases. Recent studies have focused on how nutrients affect immunometabolism. Polyphenols, the secondary metabolites of plants, are presented in many foods and beverages. Several studies have demonstrated the antioxidant and anti-inflammatory properties of polyphenols. Many clinical trials and epidemiological studies have also shown that long-term consumption of polyphenol-rich diet protects against chronic metabolic diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with the immunometabolism. In the present article, we review the mechanisms of gut microbiota and its metabolites on immunometabolism, summarize recent findings on how the interaction between microbiota and polyphenol modulates host immunometabolism, and discuss future research directions.
Collapse
Affiliation(s)
| | | | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; (A.W.C.M.); (Y.Z.); (N.X.)
| |
Collapse
|
22
|
Xue J, Ajuwon KM, Fang R. Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. ACTA ACUST UNITED AC 2020; 6:421-428. [PMID: 33364458 PMCID: PMC7750791 DOI: 10.1016/j.aninu.2020.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
The intestinal tract is a host to 100 trillion of microbes that have co-evolved with mammals over the millennia. These commensal organisms are critical to the host survival. The roles that symbiotic microorganisms play in the digestion, absorption, and metabolism of nutrients have been clearly demonstrated. Additionally, commensals are indispensable in regulating host immunity. This is evidenced by the poorly developed gut immune system of germ-free mice, which can be corrected by transplantation of specific commensal bacteria. Recent advances in our understanding of the mechanism of host–microbial interaction have provided the basis for this interaction. This paper reviews some of these key studies, with a specific focus on the effect of the microbiome on the immune organ development, nonspecific immunity, specific immunity, and inflammation.
Collapse
Affiliation(s)
- Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907-2054, United States
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| |
Collapse
|
23
|
Wang CY, Chen YW, Tain YL, Chang SKC, Huang LT, Hsieh CW, Hou CY. Fast quantification of short-chain fatty acids in rat plasma by gas chromatography. J Food Sci 2020; 85:1932-1938. [PMID: 32449963 DOI: 10.1111/1750-3841.15172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites of the intestinal flora and play an important role in the interaction between the intestinal flora and host metabolism. Therefore, reliable methods are needed to accurately measure SCFAs concentrations. SCFAs are commonly analyzed by gas chromatography-mass spectrometry (GC-MS), which requires lengthy sample treatments and a long run time. This study aimed to develop a fast GC method with formic acid pretreatment for SCFAs quantification in the plasma of rat. Baseline chromatographic resolution was achieved for three SCFAs (acetic, propionic, and butyric) within an analysis time of 10.5 min. The method exhibited good recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and interday precision (<10%). We used our method to measure SCFAs levels in plasma samples from rats fed with a high fructose diet (HFD) to test the accuracy of the developed method. It was shown that SCFAs are indeed affected negatively by a HFD (60% fructose). This method was successfully employed to accurately determine SCFAs in the rat plasma with minimum sample preparation. Results showed potential damage of HFD, which produced lower SCFAs. PRACTICAL APPLICATION: Increasingly, microbiota and gut health research are being conducted by many food scientists to elucidate the relationships among the factors of food components, particularly the nondigestible carbohydrates, food processing conditions, and potential health impact. This research provides a useful, rapid, and accurate method that can save time in the analysis of short-chain fatty acids, which are commonly analyzed in gut health research.
Collapse
Affiliation(s)
- Chung-Yi Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 811, ROC
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkou, Taiwan, 333, ROC
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC
| | - Sam K C Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Mississippi, MS, 39567, USA.,Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi, MS, 39762, USA
| | - Li-Tung Huang
- Department of Medicine, Chang Gung University, Linkou, Taiwan, 333, ROC.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, 833, ROC
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, Taiwan, 402, ROC.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, 404, ROC
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, 811, ROC
| |
Collapse
|
24
|
Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed Pharmacother 2020; 125:109914. [PMID: 32035395 DOI: 10.1016/j.biopha.2020.109914] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUD/AIM Previous studies have found that probiotic fermented camel milk has anti-diabetic effect by inducing (glucagon-like peptide-1) GLP-1 secretion. Probiotics are valuable in prevention and treatment of diabetes. As a result, our team islolated 14 probiotics from fermented camel milk. These probiotics have beneficial characteristics, but the possible anti-diabetic mechanisms remains unclear. The present study aimed to explore the possoble anti-diabetic mechanisms of 14 probiotics. METHODS C57BL/Ks mice were normal group. The db/db mice were randomized into five groups: model group, metformin group, liraglutide group, low-dose and high-dose probiotic group. Biochemical parameters were determined by the respective assay kits. The levels of the short-chain fatty acids (SCFAs) and microbiota were respectively determined by gas chromatography and qRT-PCR. HE staining and immunofluorescence were used for histomorphological observation. Quantitative PCR and western-blot were determined the gene and protein expression of Bax, Bcl-2, Caspase-3 and PI3K/AKT. RESULTS Probiotics significantly improved blood glucose and blood lipid parameters, as well as the morphological changes of pancreas, liver and kidney. Probiotics improved the gut barrier function through increasing the levels of SCFA-producing bacteria and SCFAs as well as the expression of claudin-1 and mucin-2, and decreasing Escherichia coli and LPS level. In additon, probiotics enhanced insulin secretion through glucose-triggered GLP-1 secretion by upregulating G protein-coupled receptor 43/41 (GPR43/41), proglucagon and proconvertase 1/3 activity. Forthermore, probiotics protected pancreas against apoptosis, which may be dependent on the upregulation of PI3K/AKT pathway. CONCLUSIONS The anti-diabetic effect of 14 probiotics in db/db mice seem to be related to an increase of SCFA-producing bacteria, the improvement of intestinal barrier function and the upregulation of GLP-1 production, and indicate these probiotics might be a good candidate to prevent and treat diabetes.
Collapse
|
25
|
Kong WJ, Vernieri C, Foiani M, Jiang JD. Berberine in the treatment of metabolism-related chronic diseases: A drug cloud (dCloud) effect to target multifactorial disorders. Pharmacol Ther 2020; 209:107496. [PMID: 32001311 DOI: 10.1016/j.pharmthera.2020.107496] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022]
Abstract
Berberine (BBR) is a multi-target drug (MTD) that has proven effective in the treatment of metabolism-related chronic diseases (CDs). However, the mode of action (MOA) of BBR remains to be clarified. At a cellular level, the inhibitory effect of BBR on mitochondrial enzymes is probably responsible for many of its biological activities, including the activation of low-density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK) and insulin receptor (InsR); these biological activities contribute to ameliorate peripheral blood metabolic profiles, e.g. by reducing plasma lipids and glucose levels, thus improving signs and symptoms of metabolic disorders. In this perspective, BBR acts as a targeted therapy. However, it also exerts pleiotropic systemic activities on some root causes of CDs that include antioxidant / anti-inflammatory effects and modifications of gut microbiota composition and metabolism, which may also contribute to its disease-modifying effects. After reviewing the different MOA of BBR, here we propose that BBR acts through a drug-cloud (dCloud) mechanism, as different to a drug-target effect. The dCloud here is defined as a group of terminal molecular events induced by the drug (or/and related metabolites), as well as the network connections among them. In this scenario, the therapeutic efficacy of BBR is the result of its dCloud effect acting on symptoms/signs as well as on root causes of the diseases. The dCloud concept is applicable to other established MTDs, such as aspirin, metformin, statins as well as to nutrient starvation, thus providing a novel instrument for the design of effective therapies against multifactorial metabolism-related CDs.
Collapse
Affiliation(s)
- Wei-Jia Kong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China
| | - Claudio Vernieri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; University of Milan, Italy.
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China; State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
26
|
Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota. Biomed Pharmacother 2020; 124:109829. [PMID: 31958765 DOI: 10.1016/j.biopha.2020.109829] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid, which has been used in the treatment of intestinal mucositis. However, BBR on chemotherapy-induced mucositis in cancer patients remains largely unknown. Here, we investigated the effect of BBR on intestinal mucositis induced by 5-fluorouracil (5-Fu) using rat model. We detected the degree of intestinal mucosal damage and inflammatory response in 5-Fu treated rats with or without BBR administration, and investigated the changes of fecal metabolites and gut microbiota using 1H NMR spectroscopy and 16S rRNA. The mechanism was further explored by fecal microbiota transplantation (FMT). Results showed that BBR treated rats displayed less weight loss, lower diarrhea score and longer colon length in 5-Fu treated rats. Meanwhile, BBR treatment significantly increased the expression of Occludin in ileum and decreased the d-lactate content in serum. Moreover, the expression of IL-1β, IL-6 and TNF-α in ileum were suppressed by BBR treatment. The pattern of fecal metabolism changed obviously after treated with 5-Fu, which was reversed by BBR. Importantly, BBR significantly increased the levels of butyrate and glutamine in feces from 5-Fu treated rats. In terms of gut microbiota, BBR enriched the relative abundance of Firmicutes and decreased Proteobacteria at the phylum level. Meanwhile, BBR increased the propotion of unclassified_f_ Porphyromonadaceae, unclassified_f_ Lachnospiraceae, Lactobacillus, unclassified_o_ Clostridiales, Ruminococcus, Prevotella, Clostridium IV, and decreased Escherichia/Shigella at the genera level. Furthermore, principal component analysis (PCA) showed that fecal transplantation led to changes in fecal metabolites. Fecal transplantation from BBR treated rats had low diarrhea score, reduced inflammatory response in ileum, and relieved intestinal mucosal injury, which may be caused by the increased of butyrate level in fecal metabolites. In conclusion, our study provides evidence that BBR regulates fecal metabolites to ameliorate 5-Fu induced intestinal mucositis by modifying gut microbiota.
Collapse
|
27
|
Xiao S, Jiang S, Qian D, Duan J. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Appl Microbiol Biotechnol 2019; 104:589-601. [PMID: 31865438 DOI: 10.1007/s00253-019-10312-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
A diverse range of symbiotic gut bacteria codevelops with the host and is considered a metabolic "organ" that not only facilitates harvesting of nutrients from the dietary components but also produces a class of metabolites. Many metabolites of gut microbes have an important impact on host health. For example, an inventory of metabolic intermediates derived from bacterial protein fermentation may affect host physiology and pathophysiology. Additionally, gut microbiota can convert cholesterol to bile acids and further into secondary bile acids which can conversely modulate microbial community. Moreover, new research identifies that microbes synthesize vitamins for us in the colon. Here, we will review data implicating a major class of bacterial metabolites through breaking down dietary fiber we cannot process, short-chain fatty acids (SCFAs), as crucial executors of alteration of immune mechanisms, regulation of metabolic homeostasis, and neuroprotective effects to combat disease and improve health.
Collapse
Affiliation(s)
- Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
28
|
Xiao S, Zhang Z, Chen M, Zou J, Jiang S, Qian D, Duan J. Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112032. [PMID: 31220598 DOI: 10.1016/j.jep.2019.112032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal medicine has been taken as a new and effective approach to treat many chronic diseases. Xiexin Tang (XXT), a compound recipe composed of Dahuang (Rheum palmatum L.), Huangqin (Scutellaria baicalensis Georgi) and Huanglian (Coptis chinensis Franch.), has been reported to have hypoglycemic and hypolipidemic effects, but its mechanism remains unclear. Our previous study found that Xiexin Tang markedly ameliorated the composition of the gut microbiota, especially for some short chain fatty acids (SCFAs) producing bacteria, and then notably increased SCFAs production. However, the mechanism of XXT on the fermentation of gut bacteria and further improvement of obesity is not yet clear. AIM OF THE STUDY This study aimed to unravel the molecular mechanism of XXT on the amelioration of obesity. MATERIALS AND METHODS Here, high-fat diet-induced obese rat model was established to investigate the intervention efficacy following oral administration of XXT. Additionally, the expressions of key enzymes of gut microbe-derived SCFAs biosynthesis and key targets in the signaling pathway of energy metabolism were investigated by ELISA and qPCR analysis. RESULTS Results showed that XXT could notably correct lipid metabolism disorders, alleviate systematic inflammation, improve insulin sensitivity and reduce fat accumulation. Additionally, XXT could increase gut microbiota-derived SCFAs-producing capacity by enhancing mRNA levels and activities of SCFA-synthetic key enzymes such as acetate kinase (ACK), methylmalonyl-CoA decarboxylase (MMD), butyryl-CoA: acetate CoA transferase (BUT) and butyrate kinase (BUK), which markedly decreased the adenosine triphosphate (ATP) contents, elevated adenosine diphosphate (ADP) and adenosine monophosphate (AMP) levels and further lowered the energy charge (EC) in obese rats via activating peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/uncoupling protein-2 (UCP-2) signaling pathway. What's more, XXT could notably ameliorate dyslipidemia via increasing the gene expression of 5'-AMP-activated protein kinase (AMPK) and blocking mammalian target of rapamycin (mTOR) signaling pathway. CONCLUSIONS Taken together, our data provided a novel insight into the role of XXT in losing weight from energy metabolism regulation, which unraveled the molecular mechanism of XXT on the alleviation of dyslipidemia and fat heterotopic accumulation. The study provided useful information for XXT in clinical application to treat obesity.
Collapse
Affiliation(s)
- Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Zhimiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Mengjun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Junfeng Zou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
29
|
Fiori J, Turroni S, Candela M, Gotti R. Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. J Pharm Biomed Anal 2019; 177:112867. [PMID: 31614303 DOI: 10.1016/j.jpba.2019.112867] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the specific microbial community of the gastrointestinal tract, by means of the production of microbial metabolites provides the host with several functions affecting metabolic and immunological homeostasis. Insights into the intricate relationships between gut microbiota and the host require not only the understanding of its structure and function but also the measurement of effector molecules acting along the gut microbiota axis. This article reviews the literature on targeted chromatographic approaches in analysis of gut microbiota specific metabolites in feces as the most accessible biological matrix which can directly probe the connection between intestinal bacteria and the (patho)physiology of the holobiont. Together with a discussion on sample collection and preparation, the chromatographic methods targeted to determination of some classes of microbiota-derived metabolites (e.g., short-chain fatty acids, bile acids, low molecular masses amines and polyamines, vitamins, neurotransmitters and related compounds) are discussed and their main characteristics, summarized in Tables.
Collapse
Affiliation(s)
- Jessica Fiori
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
30
|
Wang M, Chen G, Chen D, Ye H, Sun Y, Zeng X, Liu Z. Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro. Int J Biol Macromol 2019; 140:858-870. [PMID: 31446105 DOI: 10.1016/j.ijbiomac.2019.08.187] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
One purified fraction from crude Fuzhuan brick tea polysaccharides (FBTPS), FBTPS-3, was obtained through column chromatography of DEAE Sepharose Fast Flow. The chemical properties and probiotic effects of FBTPS-3 were evaluated by fermentation in vitro. Moreover, the effects of FBTPS-3 on the function and metabolic pathway of gut microbiota were investigated by metagenomic sequencing. The results showed that FBTPS-3 was an heteropolysaccharide with molecular weight of 741 kDa, which was mainly composed of Man, Rha, GalA, Gal and Ara in molar ratio of 8.7:15.5:42.2:19.7:13.9. The contents of carbohydrates and uronic acid in FBTPS-3 were 44.78 ± 2.85% and 40.4 ± 2.11%, respectively. After fermentation, the molecular weight of FBTPS-3 and content of carbohydrates were significantly decreased, indicating that FBTPS-3 could be utilized by gut microbiota. Furthermore, the relative abundances of Bacteroides, Megasphaera and Prevotella were significantly increased by FBTPS-3. FBTPS-3 also significantly promoted the production of acetic, propionic and n-butyric acids. Based on the metagenomic sequencing, it was found that FBTPS-3 significantly enriched the metabolic pathway of starch and sucrose. All the results suggest that FBTPS-3 is expected to be developed as functional ingredients or foods to improve the host health through regulating the gut microbiota and physiological metabolic functions.
Collapse
Affiliation(s)
- Mingjia Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
31
|
Yue M, Tao Y, Fang Y, Lian X, Zhang Q, Xia Y, Wei Z, Dai Y. The gut microbiota modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply. FASEB J 2019; 33:12311-12323. [PMID: 31425655 DOI: 10.1096/fj.201900425rr] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The commensal microbiota is one of the environmental triggers of rheumatoid arthritis (RA). Recent studies have identified the characteristics of the gut microbiota in patients with RA. However, it is still unclear how the microbiota can be modulated to slow down disease progression. In the present study, berberine, a modulator of gut microbiota with substantial anti-RA effect, was chosen to explore the mechanisms by which the microbiota modulators ameliorate RA. The results showed that oral administration of berberine alleviated collagen-induced arthritis (CIA) in rats in a gut microbiota-dependent manner. Berberine down-regulated the diversity and richness of the gut bacteria, reduced the abundance of Prevotella, and elevated the abundance of butyrate-producing bacteria in CIA rats as determined by the 16S rRNA gene sequence, which might function through limiting the generation of nitrate and stabilizing the physiologic hypoxia in the intestine. Moreover, berberine treatment significantly increased the intestinal butyrate level and promoted the expression and activity of butyryl-CoA:acetate-CoA transferase (BUT). The coadministration of a BUT inhibitor largely diminished the adjustment of intestinal environment and the antiarthritic effect of berberine. In conclusion, modulators of the gut microbiota might serve as therapeutic agents for RA by inducing the butyrate generation through promoting the expression and activity of BUT.-Yue, M., Tao, Y., Fang, Y., Lian, X., Zhang, Q., Xia, Y., Wei, Z., Dai, Y. The gut microbiota modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply.
Collapse
Affiliation(s)
- Mengfan Yue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Tao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulai Fang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xingpan Lian
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Modified apple polysaccharide regulates microbial dysbiosis to suppress high-fat diet-induced obesity in C57BL/6J mice. Eur J Nutr 2019; 59:2025-2037. [PMID: 31312904 DOI: 10.1007/s00394-019-02051-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Obesity, substantially increasing the risk of diseases such as metabolic diseases, becomes a major health challenge. In this study, we, therefore, investigated the effect of modified apple polysaccharide (MAP) on obesity. METHODS Twelve male C57BL/6J mice were given a 45% high-fat diet (HFD) for 12 weeks to replicate an obesity model and six mice were given normal diet as control. Then, 1 g/kg MAP was administrated to six mice by gavage for 15 days. Illumina Miseq PE300 sequencing platform was used to analyze the microbial diversity of fecal samples. Flow cytometry was employed to investigate the effects of MAP on immune cells in adipose tissue. Bacterial culture and qPCR were used to assess the effects of MAP on the growth of whole fecal bacteria and representative microbiota in vitro. RESULTS MAP could alleviate HFD-induced obesity and decrease body weight of mice effectively. The results of α diversity showed that Shannon index in HFD group was significantly lower than that in control group; Shannon index in MAP group was higher than that in HFD group. The results of β diversity showed that the microbiota of MAP group was more similar to that of control group. HFD increased the number of T cells and macrophages in adipocytes; while MAP decreased the number of T cells and macrophages. MAP could promote the growth of fecal bacteria, and demonstrated a facilitated effect on the proliferation of Bacteroidetes, Bacteroides, Lactobacillus, and an inhibitory effect on Fusobacterium. CONCLUSIONS MAP could reduce HFD-induced obesity of mice effectively. The possible mechanisms are that MAP restored HFD-induced intestinal microbiota disorder, downregulated the number of T cells and macrophages in adipose tissue.
Collapse
|
33
|
The Chinese Herbal Formula Shenzhu Tiaopi Granule Results in Metabolic Improvement in Type 2 Diabetic Rats by Modulating the Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6976394. [PMID: 31275416 PMCID: PMC6582833 DOI: 10.1155/2019/6976394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/27/2019] [Indexed: 01/03/2023]
Abstract
Objective The aim of this study is to investigate the implication of the Chinese herbal formula (CHF) Shenzhu tiaopi Granule (STG) in type 2 diabetes mellitus (T2DM) and discuss the mechanisms by which STG regulates the gut microbiota. Method Goto-Kakizaki (GK) rats and age-matched Wistar (W) rats were acclimatized for 1 week. The GK rats were randomly divided into 3 groups and orally gavaged with saline (model group, M), acarbose (acarbose group, A), and STG (granule of CHF group, G; the component of this formula includes Codonopsis pilosula, Rhizoma Atractylodis, Pinellia, Poria cocos, Pericarpium Citri Reticulatae, Coptis chinensis Franch, and Pueraria). The W rats were orally gavaged with saline (control group, C). The observation time was 8 weeks. The weight, fasting blood glucose (FBG) level, and blood lipid levels were tested. The 16S rRNA genes in the V3-V4 region were sequenced, and the structure of the gut microbiota was analysed. Results Compared to C, M displayed significant differences in blood glucose, gut microbiota, etc. (P<0.05; P<0.01). Compared to M, A and G showed a similar reduction in the FBG gain and a shift in the structure of the gut microbiota (P<0.05; P<0.01). Compared with A, G exhibited a significant decrease in weight, FBG level, and total cholesterol (P<0.05). The gut microbiota, Bacteroidetes, the Firmicutes/Bacteroidetes ratio, Allobaculum, and Desulfovibrionaceae were significantly decreased in response to the STG treatment, while Lactobacillus was significantly enriched (P<0.05; P<0.01). The community composition also differed at the phylum and genus levels based on the linear discriminant analysis effect size and heat map. Conclusion Our findings suggest that the composition of the gut microbiota was significantly changed in the diabetic GK rats compared with that in the normal W rats. STG treatment can improve glucose and lipid levels and modulate the gut microbiota in T2DM rats.
Collapse
|
34
|
Ma SR, Tong Q, Zhao ZX, Cong L, Yu JB, Fu J, Han P, Pan LB, Gu R, Peng R, Zhang ZW, Wang Y, Jiang JD. Determination of berberine-upregulated endogenous short-chain fatty acids through derivatization by 2-bromoacetophenone. Anal Bioanal Chem 2019; 411:3191-3207. [DOI: 10.1007/s00216-019-01793-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Accepted: 03/19/2019] [Indexed: 12/30/2022]
|
35
|
Wang H, Ren P, Mang L, Shen N, Chen J, Zhang Y. In vitro fermentation of novel microwave-synthesized non-digestible oligosaccharides and their impact on the composition and metabolites of human gut microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
36
|
Lazar V, Ditu LM, Pircalabioru GG, Picu A, Petcu L, Cucu N, Chifiriuc MC. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front Nutr 2019; 6:21. [PMID: 30931309 PMCID: PMC6424913 DOI: 10.3389/fnut.2019.00021] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract with its microbiota is a complex, open, and integrated ecosystem with a high environmental exposure. It is widely accepted that the healthy gut microbiotais essential for host homeostasis and immunostasis, harboring an enormous number and variety of microorganisms and genes tailored by hundreds of exogenous and intrinsic host factors. The occurrence of dysbiosis may contribute to host vulnerability and progression to a large spectrum of infectious and non-communicable diseases, including diabetes and obesity, two metabolic disorders that are showing an endemic trend nowadays. There is an urgent need to develop efficient strategies to prevent and treat metabolic disorders such as diabetes and obesity which are often associated with serious complications. In this paper, we give an overview on the implications of gut microbiota in diabesity, with a focus on the triangle gut microbiota—diet-host metabolism and on the way to manipulate the gut microbial ecosystem toward achieving novel diagnosis and predictive biomarkers with the final goal of reestablishing the healthy metabolic condition. The current research data regarding the precision/personalized nutrition suggest that dietary interventions, including administration of pre-, pro-, and syn-biotics, as well as antibiotic treatment should be individually tailored to prevent chronic diseases based on the genetic background, food and beverage consumption, nutrient intake, microbiome, metabolome, and other omic profiles.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Gratiela G Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Natalia Cucu
- Fundeni Clinical Institute, Bucharest, Romania.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| |
Collapse
|
37
|
Hu XM, Li RT, Zhang MM, Wu KY, Li HH, Huang NH, Sun B, Chen JX. Phenanthroline-linked berberine dimer and fluorophore-tagged DNA conjugate for the selective detection of microRNA-185: Experimental and molecular docking studies. Anal Chim Acta 2019; 1051:153-159. [DOI: 10.1016/j.aca.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/06/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
38
|
Feng W, Ao H, Peng C. Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines. Front Pharmacol 2018; 9:1354. [PMID: 30532706 PMCID: PMC6265305 DOI: 10.3389/fphar.2018.01354] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
As an important source for traditional medical systems such as Ayurvedic medicine and traditional Chinese medicine, herbal medicines have received widespread attentions from all over the world, especially in developing countries. Over the past decade, studies on gut microbiota have generated rich information for understanding how gut microbiota shape the functioning of our body system. In view of the importance of gut microbiota, the researchers engaged in studying herbal medicines have paid more and more attention to gut microbiota and gut microbiota metabolites. Among a variety of gut microbiota metabolites, short-chain fatty acids (SCFAs) have received most attention because of their important role in maintaining the hemostasis of hosts and recovery of diseases. Herbal medicines, as an important resource provider for production of SCFAs, have been demonstrated to be able to modulate gut microbiota composition and regulate SCFAs production. In this mini-review, we summarize current knowledge about SCFAs origination, the role of SCFAs in health and disease, the influence of herbal medicine on SCFAs production and the corresponding mechanisms. At the end of this review, the strategies and suggestions for further research of SCFAs and herbal medicines are also discussed.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
|
40
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|