1
|
Li Y, Wang X, Sa Y, Li L, Wang W, Yang L, Ding S, Wilson G, Yang Y, Zhang Y, Ma X. A comparative UHPLC-QTOF-MS/MS-based metabolomics approach reveals the metabolite profiling of wolfberry sourced from different geographical origins. Food Chem X 2024; 21:101221. [PMID: 38379804 PMCID: PMC10877177 DOI: 10.1016/j.fochx.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Wolfberry, known as Goji berry, is the fruit of Lycium barbarum L. (LB). As a famous functional food and TCM, the cost and efficacy of LB are closely linked to its geographical origin. The present study aimed to establish an effective method for distinguishing LB from different geographical origins. By employing UHPLC-QTOF-MS/MS combined with multivariate analysis, the metabolite profiling of LB (199 batches) obtained from Ningxia, Gansu, Qinghai, and Xinjiang, was evaluated. The results demonstrated that the method effectively distinguished LB from the four regions, with a total of 148 different metabolites being detected. Subsequent assessment using heat maps, Venn analysis, receiver operating characteristics curves and dot plots revealed 21 of these metabolites exhibited exceptional sensitivity and specificity, with under-curve values approaching 1, thus indicating their potential as biomarkers for LB. These findings strongly support the suitability of UHPLC-QTOF-MS/MS-based metabolomics as an effective approach to identify the source of LB.
Collapse
Affiliation(s)
| | | | | | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China
| |
Collapse
|
2
|
Liu H, Nie J, Liu Y, Wadood SA, Rogers KM, Yuan Y, Gan RY. A review of recent compound-specific isotope analysis studies applied to food authentication. Food Chem 2023; 415:135791. [PMID: 36868070 DOI: 10.1016/j.foodchem.2023.135791] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Compound-specific stable isotope analysis (CSIA) of food products is a relatively new and novel technique used to authenticate food and detect adulteration. This paper provides a review of recent on-line and off-line CSIA applications of plant and animal origin foods, essential oils and plant extracts. Different food discrimination techniques, applications, scope, and recent studies are discussed. CSIA δ13C values are widely used to verify geographical origin, organic production, and adulteration. The δ15N values of individual amino acids and nitrate fertilizers have proven effective to authenticate organic foods, while δ2H and δ18O values are useful to link food products with local precipitation for geographical origin verification. Most CSIA techniques focus on fatty acids, amino acids, monosaccharides, disaccharides, organic acids, and volatile compounds enabling more selective and detailed origin and authentication information than bulk isotope analyses.. In conclusion, CSIA has a stronger analytical advantage for the authentication of food compared to bulk stable isotope analysis, especially for honey, beverages, essential oils, and processed foods.
Collapse
Affiliation(s)
- Hongyan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China.
| | - Jing Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Syed Abdul Wadood
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Karyne M Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Isotope Centre, GNS Science, Lower Hutt 5040, New Zealand
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore.
| |
Collapse
|
3
|
Effect of lactic acid fermentation and in vitro digestion on the bioactive compounds in Chinese wolfberry (Lycium barbarum) pulp. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Liu J, Shi X, Lin H, He C, Li Q, Shen G, Feng J. Geographical origin identification and quality comparison of Ningxia goji berries (Lycium barbarum L.) by NMR-based techniques. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
5
|
Zhi L, Xianmei G, Jian Y, Duoyong Z, Bin L, Zihong Z, Piao C, Dongguang W. Quality evaluation and origin traceability of the imported and domestic saffron spice (Crocus sativus L.) products in China market using chemical composition and stable isotope analysis. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Wang YY, Yang F, Chen J, Li YJ, Zhou J, Qing X, Yan D, Lu X, Zhou P, Zhang L. Multidimensional isotope analysis of carbon, hydrogen, and oxygen as a tool for traceability of lactose in drug products. J Pharm Biomed Anal 2023; 226:115270. [PMID: 36716528 DOI: 10.1016/j.jpba.2023.115270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Lactose is one of the most commonly used pharmaceutical excipients. Depending on manufactures, the properties of lactose are very different, which could impact the pharmacokinetic behavior of drug products. Therefore, it is very important to trace the origin of pharmaceutical lactose in drug products which is valuable for prescription analysis. In this study, the carbon, hydrogen and oxygen isotope ratios (δ13C, δ2H and δ18O) of thirty-four lactose from seven manufacturers were analyzed by elemental analysis-stable isotope ratio mass spectrometry (EA-IRMS). One-way analysis of variance (ANOVA) and Duncan's test indicated significant differences in isotope ratios of lactose from different origins. To identify the lactose manufacturer, a discrimination model was generated through linear discriminant analysis (LDA). Based on this model, the manufacturers of lactose used in three drug products were successfully identified. Our results suggested that the multidimensional analysis of δ13C, δ2H and δ18O of lactose provided a fast and effective method to trace the lactose manufacturer. In conclusion, this method can be used to analyze the prescription of the drug product quickly, which could speed up the development of generic drug product.
Collapse
Affiliation(s)
- Yu-Ye Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fan Yang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jian Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying-Jian Li
- Department of Formulation Development, Boehringer Ingelheim Animal Health, North Brunswick, NJ, 08902 USA
| | - Jia Zhou
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xia Qing
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dong Yan
- Dasan Pharmaceutical Technology Co. Ltd., 860-1, Shangshengou, Shenyang 110179, China
| | - Xin Lu
- Research & Development department, Shanghai Anbison Lab Co., Ltd., No.889 YiShan Road, Shanghai 200233, China
| | - Peng Zhou
- DAOMO (Shanghai) Industrial Co.,Ltd, 7577 Hunan Road, Shanghai 201314, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Ji Q, Li C, Fu X, Liao J, Hong X, Yu X, Ye Z, Zhang M, Qiu Y. Protected Geographical Indication Discrimination of Zhejiang and Non-Zhejiang Ophiopogonis japonicus by Near-Infrared (NIR) Spectroscopy Combined with Chemometrics: The Influence of Different Stoichiometric and Spectrogram Pretreatment Methods. Molecules 2023; 28:molecules28062803. [PMID: 36985775 PMCID: PMC10057985 DOI: 10.3390/molecules28062803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
This paper presents a method for the protected geographical indication discrimination of Ophiopogon japonicus from Zhejiang and elsewhere using near-infrared (NIR) spectroscopy combined with chemometrics. A total of 3657 Ophiopogon japonicus samples from five major production areas in China were analyzed by NIR spectroscopy, and divided into 2127 from Zhejiang and 1530 from other areas ('non-Zhejiang'). Principal component analysis (PCA) was selected to screen outliers and eliminate them. Monte Carlo cross validation (MCCV) was introduced to divide the training set and test set according to a ratio of 3:7. The raw spectra were preprocessed by nine single and partial combination methods such as the standard normal variable (SNV) and derivative, and then modeled by partial least squares regression (PLSR), a support vector machine (SVM), and soft independent modeling of class analogies (SIMCA). The effects of different pretreatment and chemometrics methods on the model are discussed. The results showed that the three pattern recognition methods were effective in geographical origin tracing, and selecting the appropriate preprocessing method could improve the traceability accuracy. The accuracy of PLSR after the standard normal variable was better, with R2 reaching 0.9979, while that of the second derivative was the lowest with an R2 of 0.9656. After the SNV pretreatment, the accuracy of the training set and test set of SVM reached the highest values, which were 99.73% and 98.40%, respectively. The accuracy of SIMCA pretreated with SNV and MSC was the highest for the origin traceability of Ophiopogon japonicus, which could reach 100%. The distance between the two classification models of SIMCA-SNV and SIMCA-MSC is greater than 3, indicating that the SIMCA model has good performance.
Collapse
Affiliation(s)
- Qingge Ji
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Chaofeng Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xianshu Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jinyan Liao
- Business and Trade Branch, Zhejiang Yuying College of Vocational Technology, Hangzhou 310018, China
| | - Xuezhen Hong
- College of Quality & Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yulou Qiu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
8
|
Zhao H, Wang L, Yu Y, Yang J, Zhang X, Zhao Z, Ma F, Hu M, Wang X. Comparison of Lycium barbarum fruits polysaccharide from different regions of China by acidic hydrolysate fingerprinting-based HILIC-ELSD-ESI-TOF-MS combined with chemometrics analysis. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:186-197. [PMID: 36450654 DOI: 10.1002/pca.3192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Lycium barbarum is an edible fruit widely used in herbal medicines and as a functional food. Polysaccharide is one of the most important active ingredients. Only L. barbarum grown in the Ningxia region of China are officially recognised as suitable for use in traditional Chinese medicine, but the systematic comparison of L. barbarum polysaccharide between Ningxia and the other growing regions of China has been rarely reported. OBJECTIVE To compare the difference of L. barbarum polysaccharide from different grown regions of China. METHODS A chemical fingerprint of L. barbarum polysaccharide hydrolysates was established based on controlled acidolysis combined with hydrophilic interaction liquid chromatography-evaporative light scattering detection-electrospray ionisation-time-of-flight-mass spectrometry (HILIC-ELSD-ESI-TOF-MS). Then, it was employed for the comparison of L. barbarum samples from different geographical origins of China combined with chemometrics analysis. RESULTS Six monosaccharides [rhamnose (Rha), xylose (Xyl), arabinose (Ara), mannose (Man), glucose (Glu), galactose (Gal)] were qualitatively and quantitatively determined and four glycoconjugates were preliminarily identified from the hydrolysates. Content determination for the polysaccharide and monosaccharide indicated obvious geographical features. The HILIC-ELSD fingerprint combined with partial least squares-discriminant analysis (PLS-DA) was able to differentiate L. barbarum samples from Ningxia, Xinjiang, Gansu and Qinghai regions with 89.19% classification accuracy. Orthogonal projection to latent structure discriminant analysis (OPLS-DA) was able to differentiate between samples from Ningxia and those from the other three growing regions, polysaccharide and Ara were the potential chemical markers. CONCLUSIONS These findings form the basis of a reliable method to trace the region of origin of L. barbarum sample and thereby, improve the quality control of L. barbarum therapeutic polysaccharides.
Collapse
Affiliation(s)
- Hengqiang Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Ling Wang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Yi Yu
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Jian Yang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Xiaobo Zhang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, P. R. China
| | - Zhiguo Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Fangli Ma
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Minghua Hu
- Infinitus (China) Company Ltd., Guangzhou, P.R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- School of Pharmaceutical Sciences, Qilu University Of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
9
|
Cao Y, Liu H, Hu J, Wang Z, Zhu M, Liu X, Yang K, Gan H, Liu W. Evaluating the accuracy and reliability of compound-specific carbon isotopic analysis using gas chromatography-combustion-isotope ratio mass spectrometry with the addition of a reduction furnace. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9450. [PMID: 36478616 DOI: 10.1002/rcm.9450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) is widely used for compound-specific carbon isotopic analysis. However, current isotopic analysis systems utilize the GC IsoLink combustion reactor, and independent reduction furnaces are not implemented. Therefore, whether this limitation in furnace use affects the precision of compound-specific carbon isotopic analysis needs to be evaluated. METHODS We attempted to add a separate reduction furnace to the GC IsoLink interface and compared the δ13 C values of n-alkanes (including C and H elements), fatty acid methyl ester (including C, H, and O elements), caffeine (USGS61 and USGS62, including C, H, O, and N elements), and 9-ethylcarbazole (including C, H, and N elements) before and after the addition of the reduction furnace using the GC IsoLink combustion reactor. RESULTS For n-alkanes and fatty acid methyl esters, the δ13 C differences between the measured values and their standard values were basically falling within 0.5‰ whether or not an independent reduction furnace was added. However, for the nitrogen-containing compounds (caffeine and 9-ethylcarbazole), the δ13 C differences between the measured values and their standard values were much larger without an independent reduction furnace (1.0-3.71‰ for USGS61, 1.78-2.19‰ for USGS62, and 0.39-1.13‰ for 9-ethylcarbazole) than with a reduction furnace (-0.31-0.68‰ for USGS61, -0.44-0.06‰ for USGS62, and -0.04-0.25‰ for 9-ethylcarbazole). CONCLUSIONS The addition of an independent reduction furnace had no significant effect on the δ13 C of n-alkanes and fatty acid methyl esters, but it had a significant effect on the δ13 C of nitrogen-containing compounds. It is suggested that GC IsoLink needs an independent reduction furnace to effectively eliminate the interference of NOx on CO2 isotopic determination to improve the accuracy of δ13 C for nitrogen-containing compounds.
Collapse
Affiliation(s)
- Yunning Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
| | - Hu Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
- Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Jing Hu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
| | - Zheng Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
| | - Mengshu Zhu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Xu Liu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Kaili Yang
- Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Haijiao Gan
- Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Weiguo Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Lu W, Chen J, Li X, Qi Y, Jiang R. Flavor components detection and discrimination of isomers in Huaguo tea using headspace-gas chromatography-ion mobility spectrometry and multivariate statistical analysis. Anal Chim Acta 2023; 1243:340842. [PMID: 36697178 DOI: 10.1016/j.aca.2023.340842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Aroma components are one of the crucial factors in dynamic processes analysis, quality control, and origin traceability. Various categories of Huaguo Tea possessed different taste due to the generation of aroma. In this study, a comprehensive analysis of volatiles was conducted for five popular Huaguo Tea samples (Lemon Slices, Bitter Gourd Slices, Citri Reticulatae Pericarpium, Red Lycium Barbarum, and Black Lycium Barbarum) via gas chromatography-ion mobility spectrometry (GC-IMS) combining with multivariate statistical strategies. Comparison analysis was achieved with the properties of visually and intuitively by drawing of topography plots. A total of one hundred and eighty volatiles were distinguished. Aliphatic isomers were identified simultaneously by fingerprint spectra. Alcohols, aldehydes, esters, and ketones were the most abundant volatiles in Huaguo Tea samples. To characterize the Huaguo Tea precisely and establish an analysis model for their classification, multivariate statistical analysis was applied to distinguish different Huaguo Tea. Satisfied discrimination was obtained by principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) based on the HS-GC-IMS results with the robustness parameter (R2Y) of 99.4%, and prediction ability parameter (Q2) of 98.6%, respectively. The results provide a theoretical basis for aroma discrimination, isomer identification, and categories analysis of Huaguo Tea.
Collapse
Affiliation(s)
- Wenhui Lu
- Key Laboratory of Forensic Science, Ministry of Justice (Academy of Forensic Science), PR China; Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, Shandong Province, PR China
| | - Jing Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong Province, PR China
| | - Xuebo Li
- Key Laboratory of Forensic Science, Ministry of Justice (Academy of Forensic Science), PR China; Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, Shandong Province, PR China.
| | - Yinghua Qi
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, Shandong Province, PR China
| | - Rui Jiang
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, Shandong Province, PR China
| |
Collapse
|
11
|
Li Y, Zou N, Liang X, Zhou X, Guo S, Wang Y, Qin X, Tian Y, Lin J. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. Front Microbiol 2023; 13:1070817. [PMID: 36704567 PMCID: PMC9871820 DOI: 10.3389/fmicb.2022.1070817] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Lycium barbarum L., goji berry, is a precious traditional Chinese medicine and it is homology of medicine and food. Its growth is heavily dependent on nitrogen. The use of chemical fertilizers has significantly promoted the yield of goji berry and the development of the L. barbarum L. industry. However, crop plants are inefficient in the acquisition and utilization of applied nitrogen, it often leads to excessive application of nitrogen fertilizers by producers, which cause negatively impact to the environment ultimately. The exploration of an interaction model which deals with crops, chemical fertilizers, and rhizosphere microbes to improve nitrogen use efficiency, is, therefore, an important research objective to achieve sustainable development of agriculture greatly. In our study, we explored the effects of nitrogen input on soil microbial community structure, soil nitrogen cycling, and the contents of nutrients in L. barbarum fruits. The structure and composition of the bacterial community in the rhizosphere soil of L. barbarum were significantly different under different nitrogen supply conditions, and high nitrogen addition inhibited the diversity and stability of bacterial communities. Low nitrogen input stimulated the relative abundance of ammonia-oxidizing bacteria (AOB), such as Nitrosospira, catalyzing the first step of the ammonia oxidation process. The results of the GLMM model showed that the level of nitrogen fertilizer (urea) input, the relative abundance of AOB, the relative abundance of Bradyrhizobium, and their combinations had significant effects on the soil nitrogen cycling and contents of nutrients in L. barbarum fruits. Therefore, we believe that moderately reducing the use of urea and other nitrogen fertilizers is more conducive to improving soil nitrogen use efficiency and Goji berry fruit quality by increasing the nitrogen cycling potential of soil microorganisms.
Collapse
Affiliation(s)
- Yuekun Li
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China,*Correspondence: Yuekun Li, ✉
| | - Nan Zou
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xuan Zhou
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shuhan Guo
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xiaoya Qin
- National Wolfberry Engineering Research Center, Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yehan Tian
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, China,Jin Lin, ✉
| |
Collapse
|
12
|
Miguel MDG. Chemical and Biological Properties of Three Poorly Studied Species of Lycium Genus-Short Review. Metabolites 2022; 12:1265. [PMID: 36557303 PMCID: PMC9788301 DOI: 10.3390/metabo12121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The genus Lycium belongs to the Solanaceae family and comprises more than 90 species distributed by diverse continents. Lycium barbarum is by far the most studied and has been advertised as a “superfood” with healthy properties. In contrast, there are some Lycium species which have been poorly studied, although used by native populations. L. europaeum, L. intricatum and L. schweinfurthii, found particularly in the Mediterranean region, are examples of scarcely investigated species. The chemical composition and the biological properties of these species were reviewed. The biological properties of L. barbarum fruits are mainly attributed to polysaccharides, particularly complex glycoproteins with different compositions. Studies regarding these metabolites are practically absent in L. europaeum, L. intricatum and L. schweinfurthii. The metabolites isolated and identified belong mainly to polyphenols, fatty acids, polysaccharides, carotenoids, sterols, terpenoids, tocopherols, and alkaloids (L. europaeum); phenolic acids, lignans, flavonoids, polyketides, glycosides, terpenoids, tyramine derivatives among other few compounds (L. schweinfurthii), and esters of phenolic acids, glycosides, fatty acids, terpenoids/phytosterols, among other few compounds (L. intricatum). The biological properties (antioxidant, anti-inflammatory and cytotoxic against some cancer cell lines) found for these species were attributed to some metabolites belonging to those compound groups. Results of the study concluded that investigations concerning L. europaeum, L. intricatum and L. schweinfurthii are scarce, in contrast to L. barbarum.
Collapse
Affiliation(s)
- Maria da Graça Miguel
- Departamento de Química e Farmácia, Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
13
|
Zeng B, Zhou Q, Ye Q, Zhou T, Yuan M, Liu Y, Zeng D, Li J, Chen K, Guo Y, Guo L. Identification and Quality Evaluation of Velvet Antler by DNA Barcoding and Stable Isotope Techniques Combined with Chemometrics. ACS OMEGA 2022; 7:39206-39213. [PMID: 36340145 PMCID: PMC9631900 DOI: 10.1021/acsomega.2c05173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to identify Velvet antler and its counterfeits and to further evaluate their quality. Mitochondrial cytochrome b (Cytb) was used as a target gene to identify Velvet antler samples, and a DNA barcoding method was established for species origin identification in Velvet antlers. After identification, the stable isotope contents and ratios were adopted to evaluate the quality of different specifications of authentic Velvet antler in combination with chemometrics. Two stable isotope contents (C % and N %) and ratios (δ13C and δ15N) in three kinds of Velvet antler slices of different specifications, namely, wax slices, powder slices, and bone slices, were determined. Nine Velvet antler samples sold in the market were identified for label conformity. Only two samples were consistent with the labeled species, and the others were counterfeits. The three slices of Velvet antler of different specifications were clearly distinguished by principal component analysis and hierarchical cluster analysis. Then, the discriminant model of partial least squares discriminant analysis was established, and 100% discrimination accuracy was observed in this model. All the Velvet antler slice samples of different specification samples were grouped clearly according to their sources. In summary, it is feasible for the identification and quality grade evaluation of Velvet antler by DNA barcoding based on mitochondrial Cytb and stable isotope techniques combined with chemometric analysis. The establishment of this method also provided a reference for the evaluation of other animal-derived medicinal materials.
Collapse
Affiliation(s)
- Bin Zeng
- State
Key Laboratory of Southwestern Chinese Medicine Resources, Department
of Pharmacology, Chengdu University of Traditional
Chinese Medicine, Chengdu611137, China
- Department
of Pharmacology, Sichuan College of Traditional
Chinese Medicine, Mianyang621000, China
| | - Qiang Zhou
- State
Key Laboratory of Southwestern Chinese Medicine Resources, Department
of Pharmacology, Chengdu University of Traditional
Chinese Medicine, Chengdu611137, China
| | - Qiang Ye
- State
Key Laboratory of Southwestern Chinese Medicine Resources, Department
of Pharmacology, Chengdu University of Traditional
Chinese Medicine, Chengdu611137, China
| | - Tao Zhou
- State
Key Laboratory of Southwestern Chinese Medicine Resources, Department
of Pharmacology, Chengdu University of Traditional
Chinese Medicine, Chengdu611137, China
| | - Minghao Yuan
- State
Key Laboratory of Southwestern Chinese Medicine Resources, Department
of Pharmacology, Chengdu University of Traditional
Chinese Medicine, Chengdu611137, China
| | - Yushi Liu
- State
Key Laboratory of Southwestern Chinese Medicine Resources, Department
of Pharmacology, Chengdu University of Traditional
Chinese Medicine, Chengdu611137, China
| | - Dafu Zeng
- Chengdu
Jingbo Biotechnology Co., Ltd, Chengdu610095, China
| | - Jiangang Li
- Chengdu
Jingbo Biotechnology Co., Ltd, Chengdu610095, China
| | - Kai Chen
- Department
of Pharmacology, Sichuan College of Traditional
Chinese Medicine, Mianyang621000, China
| | - Yiping Guo
- State
Key Laboratory of Southwestern Chinese Medicine Resources, Department
of Pharmacology, Chengdu University of Traditional
Chinese Medicine, Chengdu611137, China
| | - Li Guo
- State
Key Laboratory of Southwestern Chinese Medicine Resources, Department
of Pharmacology, Chengdu University of Traditional
Chinese Medicine, Chengdu611137, China
| |
Collapse
|
14
|
Combined hyperspectral imaging technology with 2D convolutional neural network for near geographical origins identification of wolfberry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Stable isotope and multi-element profiling of Cassiae Semen tea combined with chemometrics for geographical discrimination. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Gong H, Rehman F, Li Z, Liu J, Yang T, Liu J, Li H, Hu Z, Ma Q, Wu Z, A B, Yang M, Gao H, Zhi H, Qu H, Di D, Wang Y. Discrimination of Geographical Origins of Wolfberry ( Lycium barbarum L.) Fruits Using Stable Isotopes, Earth Elements, Free Amino Acids, and Saccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2984-2997. [PMID: 35179024 DOI: 10.1021/acs.jafc.1c06207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To develop sophisticated approaches for distinguishing goji origins, 325 wolfberry fruit samples of a certain cultivar, plant age, drying method, and collection season were gathered from 26 producing areas across Northwest China in 2017 and 2018. We employed 49 indices, including stable isotopes, earth elements, soluble amino acids, and saccharides, to identify the regions of origin of these goji fruits. Analysis of variance (ANOVA) and heritability analysis were used to assess the effects of the environment (producing areas), cultivar, plant age, drying process, and collection season. Samples from the same place can be classified and partially discriminated using principal component analysis (PCA). We were able to distinguish fruits produced in Zhongning County from those produced in the other five producing provinces using orthogonal projection to latent structure-discriminant analysis (OPLS-DA). Calcium (Ca), manganese (Mn), ornithine (Orn), cystine (Cys-Cys), glutamate (Glu), phenylalanine (Phe), phosphoserine (Ps), serine (Ser), lysine (Lys), taurine (Tau), proline (Pro), and tyrosine (Tyr) indices were chosen using S-plots and heritability analysis, and their repeatability was established with samples collected in 2018. The indices selected in this study can distinguish goji berries produced in Zhongning County from fruits originating from five other Provinces with high repeatability, which was validated with various cultivars, drying methods, harvest seasons, and plant ages and with heritability analysis.
Collapse
Affiliation(s)
- Haiguang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Fazal Rehman
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Zhong Li
- Bairuiyuan Company, Yinchuan 750000, P. R. China
| | - Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Tianshun Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Juan Liu
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Haoran Li
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Zhongqing Hu
- Zhongning County Goji Industry Development Service Bureau, Zhongwei 755100, Ningxia, P. R. China
| | - Qihu Ma
- Beijing TongRenTang Health-Pharmaceutical (Ningxia) Co., Ltd., Yinchuan 750000, Ningxia, P. R. China
| | - Zhigeng Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Biao A
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Meizhen Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, P. R. China
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Hongxia Qu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- Center of Resource Chemical and New Material, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao 266100, P. R. China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
- Gannan Normal University, Ganzhou, Jinagxi 341000, P. R. China
| |
Collapse
|
17
|
Uwaremwe C, Yue L, Wang Y, Tian Y, Zhao X, Liu Y, Zhou Q, Zhang Y, Wang R. An Endophytic Strain of Bacillus amyloliquefaciens Suppresses Fusarium oxysporum Infection of Chinese Wolfberry by Altering Its Rhizosphere Bacterial Community. Front Microbiol 2022; 12:782523. [PMID: 35069484 PMCID: PMC8767019 DOI: 10.3389/fmicb.2021.782523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Root rot disease is a serious infection leading to production loss of Chinese wolfberry (Lycium barbarum). This study tested the potential for two bacterial biological control agents, Bacillus amyloliquefaciens HSB1 and FZB42, against five fungal pathogens that frequently cause root rot in Chinese wolfberry. Both HSB1 and FZB42 were found to inhibit fungal mycelial growth, in vitro and in planta, as well as to promote the growth of wolfberry seedlings. In fact, a biocontrol experiment showed efficiency of 100% with at least one treatment involving each biocontrol strain against Fusarium oxysporum. Metagenomic sequencing was used to assess bacterial community shifts in the wolfberry rhizosphere upon introduction of each biocontrol strain. Results showed that HSB1 and FZB42 differentially altered the abundances of different taxa present and positively influenced various functions of inherent wolfberry rhizosphere bacteria. This study highlights the application of biocontrol method in the suppression of fungal pathogens that cause root rot disease in wolfberry, which is useful for agricultural extension agents and commercial growers.
Collapse
Affiliation(s)
- Constantine Uwaremwe
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences (CAS), Mengla, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yue
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Yuan Tian
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qin Zhou
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yubao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruoyu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
ZHANG T, LI S, WANG Y, HU Q, WANG C, YANG H, XU N. Research progress in the application of stable isotope and mineral element analysis in tracing the geographical origin of Chinese medicinal materials. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Sen LI
- Guizhou Normal University, China
| | - Yuanhao WANG
- Southern University of Science and Technology, China; Beijing Huanding Environmental Big Data Institute, China
| | - Qing HU
- Southern University of Science and Technology, China; Beijing Huanding Environmental Big Data Institute, China
| | - Chao WANG
- Southern University of Science and Technology, China
| | - Hua YANG
- Guizhou Normal University, China
| | | |
Collapse
|
19
|
Recent techniques for the authentication of the geographical origin of tea leaves from camellia sinensis: A review. Food Chem 2021; 374:131713. [PMID: 34920400 DOI: 10.1016/j.foodchem.2021.131713] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023]
Abstract
Tea is one of the most important beverages worldwide, is produced in several distinct geographical regions, and is traded on the global market. The ability to determine the geographical origin of tea products helps to ensure authenticity and traceability. This paper reviews the recent research on authentication of tea using a combination of instrumental and chemometric methods. To determine the production region of a tea sample, instrumental methods based on analyzing isotope and mineral element contents are suitable because they are less affected by tea variety and processing methods. Chemometric analysis has proven to be a valuable method to identify tea. Principal component analysis (PCA) and linear discriminant analysis (LDA) are the most preferred methods for processing large amounts of data obtained through instrumental component analysis.
Collapse
|
20
|
Aparecida Plastina Cardoso M, Windson Isidoro Haminiuk C, Pedro AC, de Andrade Arruda Fernandes Fernandes I, Akemi Casagrande Yamato M, Maciel GM, Do Prado IN. Biological Effects of Goji Berry and the Association with New Industrial Applications: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2007261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Alessandra Cristina Pedro
- Programa de Pós-Graduação Em Engenharia de Alimentos (Ppgeal), Cep (81531–980), Universidade Federal Do Paraná (UFPR), Curitiba, Brasil
| | | | | | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal Do Paraná (UTFPR), Cep (81280–340), Curitiba, Brasil
| | - Ivanor Nunes Do Prado
- Programa de Pós-Graduação Em Ciência de Alimentos (Ppc), Cep (87020–900), Universidade Estadual de Maringá (UEM), Maringá, Brasil
| |
Collapse
|
21
|
Salo HM, Nguyen N, Alakärppä E, Klavins L, Hykkerud AL, Karppinen K, Jaakola L, Klavins M, Häggman H. Authentication of berries and berry-based food products. Compr Rev Food Sci Food Saf 2021; 20:5197-5225. [PMID: 34337851 DOI: 10.1111/1541-4337.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Berries represent one of the most important and high-valued group of modern-day health-beneficial "superfoods" whose dietary consumption has been recognized to be beneficial for human health for a long time. In addition to being delicious, berries are rich in nutrients, vitamins, and several bioactive compounds, including carotenoids, flavonoids, phenolic acids, and hydrolysable tannins. However, due to their high value, berries and berry-based products are often subject to fraudulent adulteration, commonly for economical gain, but also unintentionally due to misidentification of species. Deliberate adulteration often comprises the substitution of high-value berries with lower value counterparts and mislabeling of product contents. As adulteration is deceptive toward customers and presents a risk for public health, food authentication through different methods is applied as a countermeasure. Although many authentication methods have been developed in terms of fast, sensitive, reliable, and low-cost analysis and have been applied in the authentication of a myriad of food products and species, their application on berries and berry-based products is still limited. The present review provides an overview of the development and application of analytical chemistry methods, such as isotope ratio analysis, liquid and gas chromatography, spectroscopy, as well as DNA-based methods and electronic sensors, for the authentication of berries and berry-based food products. We provide an overview of the earlier use and recent advances of these methods, as well as discuss the advances and drawbacks related to their application.
Collapse
Affiliation(s)
- Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Nga Nguyen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Linards Klavins
- The Natural Resource Research Centre, University of Latvia, Riga, Latvia
| | - Anne Linn Hykkerud
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Katja Karppinen
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Laura Jaakola
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maris Klavins
- The Natural Resource Research Centre, University of Latvia, Riga, Latvia
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
22
|
Authentication of American ginseng (Panax quinquefolius L.) from different origins by linear discriminant analysis of multi-elements. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03816-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Strojnik L, Hladnik J, Weber NC, Koron D, Stopar M, Zlatić E, Kokalj D, Strojnik M, Ogrinc N. Construction of IsoVoc Database for the Authentication of Natural Flavours. Foods 2021; 10:foods10071550. [PMID: 34359420 PMCID: PMC8306145 DOI: 10.3390/foods10071550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
Flavour is an important quality trait of food and beverages. As the demand for natural aromas increases and the cost of raw materials go up, so does the potential for economically motivated adulteration. In this study, gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) analysis of volatile fruit compounds, sampled using headspace-solid phase microextraction (HS-SPME), is used as a tool to differentiate between synthetic and naturally produced volatile aroma compounds (VOCs). The result is an extensive stable isotope database (IsoVoc—Isotope Volatile organic compounds) consisting of 39 authentic flavour compounds with well-defined origin: apple (148), strawberry (33), raspberry (12), pear (9), blueberry (7), and sour cherry (4) samples. Synthetically derived VOCs (48) were also characterised. Comparing isotope ratios of volatile compounds between distillates and fresh apples and strawberries proved the suitability of using fresh samples to create a database covering the natural variability in δ13C values and range of VOCs. In total, 25 aroma compounds were identified and used to test 33 flavoured commercial products to evaluate the usefulness of the IsoVoc database for fruit flavour authenticity studies. The results revealed the possible falsification for several fruit aroma compounds.
Collapse
Affiliation(s)
- Lidija Strojnik
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Jože Hladnik
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.H.); (N.C.W.); (D.K.); (M.S.)
| | - Nika Cvelbar Weber
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.H.); (N.C.W.); (D.K.); (M.S.)
| | - Darinka Koron
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.H.); (N.C.W.); (D.K.); (M.S.)
| | - Matej Stopar
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.H.); (N.C.W.); (D.K.); (M.S.)
| | - Emil Zlatić
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.Z.); (D.K.)
| | - Doris Kokalj
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.Z.); (D.K.)
| | | | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
24
|
Wang J, Zhang T, Ge Y. C/N/H/O stable isotope analysis for determining the geographical origin of American ginseng (Panax quinquefolius). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Mu Q, Kang Z, Guo Y, Chen L, Wang S, Zhao Y. Hyperspectral image classification of wolfberry with different geographical origins based on three-dimensional convolutional neural network. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1987457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qingshuang Mu
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| | - Zhilong Kang
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| | - Yanju Guo
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| | - Lei Chen
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Shenyi Wang
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| | - Yuchen Zhao
- School of Electronic Information Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
26
|
Kang X, Zhao Y, Shang D, Zhai Y, Ning J, Ding H, Sheng X. Identification of the geographical origins of sea cucumbers in China: The application of stable isotope ratios and compositions of C, N, O and H. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Lucini L, Rocchetti G, Trevisan M. Extending the concept of terroir from grapes to other agricultural commodities: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Wang X, Rogers KM, Li Y, Yang S, Chen L, Zhou J. Untargeted and Targeted Discrimination of Honey Collected by Apis cerana and Apis mellifera Based on Volatiles Using HS-GC-IMS and HS-SPME-GC-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12144-12152. [PMID: 31587558 DOI: 10.1021/acs.jafc.9b04438] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fraudulent acts regarding honey authenticity that use Apis mellifera honey as a substitute for Apis cerana honey have garnered considerable concern in China and triggered a trust crisis from consumers. In this study, untargeted metabolomics analysis was carried out based on volatile fractions in honey from A. cerana and A. mellifera using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Honey from A. cerana and A. mellifera was discriminated by HS-GC-IMS profiling, principal component analysis, and orthogonal partial least-squares discrimination analysis. Tentative markers were identified from p-values and the variable importance in projection analysis and confirmed using the retention index, mass fragments, and reference standards by gas chromatography-mass spectrometry (GC-MS). A targeted method was established using the headspace solid phase coupled with microextraction GC-MS (HS-SPME-GC-MS) to quantitate the markers. The results demonstrated that the developed untargeted and targeted metabolomics approach performed well when discriminating honey from A. cerana and A. mellifera.
Collapse
Affiliation(s)
- Xinran Wang
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Karyne M Rogers
- National Isotope Centre , GNS Science , 30 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Yi Li
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Shupeng Yang
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Lanzhen Chen
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Jinhui Zhou
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| |
Collapse
|
29
|
Perilla frutescens Britton: A Comprehensive Study on Flavor/Taste and Chemical Properties During the Roasting Process. Molecules 2019; 24:molecules24071374. [PMID: 30965657 PMCID: PMC6479574 DOI: 10.3390/molecules24071374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022] Open
Abstract
This study investigated changes of volatile compounds, sniffing test-assisted sensory properties, taste associated-constituent and free amino acid compositions, taste description by electronic-tongue, and chemical characteristics in Perilla frutescens Britton var. acuta Kudo after roasting at 150 °C for 0–8 min. A total of 142 volatile compounds were identified, among which methyl benzoate and limonene were predominant, regardless of roasting time, and these were also detected as the major compounds in the sniffing test by GC-olfactometry. For constituent amino acids analyzed by the acid hydrolysis method using hydrochloric acid (HCl), the concentration of glutamic acid, aspartic acid, and leucine showed an increase pattern with increased roasting time, which results in umami taste, sour taste, and bitter taste, respectively. For free amino acids, valine and hydroxylysine eliciting bitter and bitter and sweet tastes, respectively, also tend to increase by roasting. The pattern of amino acid concentration by roasting was readily matched to the taste description by electronic-tongue but that of sweetness and sourness by electronic-tongue did not coincide with the amino acid composition. For the chemical properties, total phenolic content, antioxidative capacity, and browning intensity tend to increase with roasting but decreased by 8 min. The results of this study provide fundamental information on perilla in both the food industry and cooking environment for the sake of increasing the utilization of perilla as a food source and ingredient.
Collapse
|
30
|
Yang Z, Wang Z, Yuan W, Li C, Jing X, Han H. Classification of wolfberry from different geographical origins by using electronic tongue and deep learning algorithm. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ifacol.2019.12.592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|