1
|
Arkhipov VP, Arkhipov RV, Filippov A. The efficiency of micellar solubilization of naphthalene from aqueous solutions using rhamnolipid as a biological surfactant according to NMR diffusometry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:712-717. [PMID: 38816348 DOI: 10.1002/mrc.5468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
The micellar solubilization of naphthalene from its saturated aqueous solutions using the biosurfactant rhamnolipid was studied. Using the NMR diffusion method, selective measurements of the self-diffusion coefficients of molecules of all components of the solution-naphthalene, rhamnolipid, and water-were carried out at various rhamnolipid concentrations from 0.06 to 100 g/L. Based on the results of diffusometry, the distribution of naphthalene molecules between the states free in solution and states bound by micelles was found. With an increase in the concentration of rhamnolipids, the proportion of bound naphthalene molecules increases from 50% at CRL = 2 g/L to 100% at CRL ≥ 50 g/L. The micelle-water partition coefficient Km and the molar solubilization ratio MSR were calculated.
Collapse
Affiliation(s)
- Victor P Arkhipov
- Department of Physics, Kazan National Research Technological University, Kazan, Russian Federation
| | - Ruslan V Arkhipov
- Institute of Physics, Kazan Federal University, Kazan, Russian Federation
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
2
|
Motta AM, Mariani P, Itri R, Spinozzi F. Self-assembling properties of mono and di-rhamnolipids characterized using small-angle X-ray scattering. Colloids Surf B Biointerfaces 2024; 241:114038. [PMID: 38905813 DOI: 10.1016/j.colsurfb.2024.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Rhamnolipids are glycolipid surfactants composed by a hydrophilic head of either one (mono-RL) or two (di-RL) rhamnose moieties coupled to hydroxyaliphatic chains that can be of different lengths. In spite of their importance in different fields of applications, as bioremediation processes for instance, self-aggregation physico-chemical properties of RLs are not unique. This because a variety of aggregates morphologies (shape and size) can either exist or coexist in aqueous dispersion due to mono-RL:di-RL molar ratio, hydrophobic tails length, pH and the presence of co-surfactants and additives. Recently, a theorethical approach reported the self-assembling morphologies of either pure mono or di-RL in aqueous environment, predicting the formation of spherical to ellipsoidal micelles to worm-like and disk-like aggregates depending on RL concentration and fatty acid chain length. In order to add new information to those previously available, the present work investigated the self-assembling properties of mono-RL-C10-C10 and di-RL-C10-C10 separately in aqueous dispersion by small angle X-Ray scattering (SAXS). A novel approach was applied to the data analysis coupling the scattering length density profiles of the RLs chemical groups and Monte Carlo simulations. Such an approach allowed us to infer about the preferred mono-RL and di-RL conformations that fit better in the self-assembling morphologies. In this way, we show that mono-RL-C10-C10 self-assembles into lamella-like aggregates coexisting with 30 % of multi-lamella aggregates (circa of 5 closed stacked lamella) from a concentration ranging from 10 to 50 mM, with hydrophobic thickness of about 12 Å, a hydrated polar head thickness of 10 Å, and an area per glycolipid of 76 Å2. On the other hand, di-RL prefers to self-associate into flexible cylinder-like aggregates, from 70 mM to 110 mM concentration, with hydrophobic radius on the order of 7.5 Å, a hydrated polar shell of 21.5 Å, with hydropobic/polar interface of 110 Å2 per glycolipid. Interestingly, the parameters obtained from the best fitting to the experimental data associated to the volume fraction distribution of the chemical groups within the aggregates revealed that the hydrophobic chains are more disordered in mono-RL planar aggregates than in di-RL worm-like aggregates, as well as the hydration properties. Further, the addition of 100 mM NaCl in di-RL aqueous dispersion leads to the formation of longer worm-like aggregates. Taking together, this work opens a new avenue regarding characterization of biosurfactants self-assembling properties by using SAXS, also contributing to prepare more efficient biosurfactant dispersions depending on the desired applications in industrial sectors and bioremediation.
Collapse
Affiliation(s)
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Italy
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.
| | - Francesco Spinozzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Italy.
| |
Collapse
|
3
|
Arkhipov V, Arkhipov R, Filippov A. Rhamnolipid Biosurfactant: Use for the Removal of Phenol from Aqueous Solutions by Micellar Solubilization. ACS OMEGA 2023; 8:30646-30654. [PMID: 37636955 PMCID: PMC10448651 DOI: 10.1021/acsomega.3c04367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Selective measurements of the self-diffusion coefficients of molecules of the biological surfactant rhamnolipid (RL) in individual aqueous solutions and in solutions with phenol as a solubilizate were carried out by nuclear magnetic resonance (NMR) diffusometry. Based on the obtained results, the solubilization characteristics of RLs were calculated. They are the fraction of solubilized phenol molecules, the phenol micelle-water distribution coefficient, the molar solubilization coefficient, the hydrodynamic radii of RL monomers and micelles, the aggregation numbers of micelles, and the solubilization capacity of micelles. Fraction of the solubilized phenol molecules increases and approaches 80-90% with increasing RL concentration. The solubilization capacity of the micelles increases from several units to 102 with an increase in both the concentration of RLs and the concentration of phenol in solution.
Collapse
Affiliation(s)
- Victor
P. Arkhipov
- Department
of Physics, Kazan National Research Technological
University, Kazan 420015, Russian Federation
| | - Ruslan Arkhipov
- Institute
of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Andrei Filippov
- Chemistry
of Interfaces, Luleå University of
Technology, 971 87 Luleå, Sweden
| |
Collapse
|
4
|
Baccile N, Poirier A, Perez J, Pernot P, Hermida-Merino D, Le Griel P, Blesken CC, Müller C, Blank LM, Tiso T. Self-Assembly of Rhamnolipid Bioamphiphiles: Understanding the Structure-Property Relationship Using Small-Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37379248 DOI: 10.1021/acs.langmuir.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The structure-property relationship of rhamnolipids, RLs, well-known microbial bioamphiphiles (biosurfactants), is explored in detail by coupling cryogenic transmission electron microscopy (cryo-TEM) and both ex situ and in situ small-angle X-ray scattering (SAXS). The self-assembly of three RLs with reasoned variation of their molecular structure (RhaC10, RhaC10C10, and RhaRhaC10C10) and a rhamnose-free C10C10 fatty acid is studied in water as a function of pH. It is found that RhaC10 and RhaRhaC10C10 form micelles in a broad pH range and RhaC10C10 undergoes a micelle-to-vesicle transition from basic to acid pH occurring at pH 6.5. Modeling coupled to fitting SAXS data allows a good estimation of the hydrophobic core radius (or length), the hydrophilic shell thickness, the aggregation number, and the surface area per RL. The essentially micellar morphology found for RhaC10 and RhaRhaC10C10 and the micelle-to-vesicle transition found for RhaC10C10 are reasonably well explained by employing the packing parameter (PP) model, provided a good estimation of the surface area per RL. On the contrary, the PP model fails to explain the lamellar phase found for the protonated RhaRhaC10C10 at acidic pH. The lamellar phase can only be explained by values of the surface area per RL being counterintuitively small for a di-rhamnose group and folding of the C10C10 chain. These structural features are only possible for a change in the conformation of the di-rhamnose group between the alkaline and acidic pH.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette 91190, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Daniel Hermida-Merino
- Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF BP CS40220, 38043 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Christian C Blesken
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Conrad Müller
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Lars M Blank
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Till Tiso
- iAMB - Institute ofApplied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
5
|
Arkhipov VP, Arkhipov RV, Petrova EV, Filippov A. Micellar and solubilizing properties of rhamnolipids. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:345-355. [PMID: 36840535 DOI: 10.1002/mrc.5337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 05/11/2023]
Abstract
We studied the micellar and solubilizing properties of aqueous solutions of unfractionated rhamnolipids produced by Pseudomonas aeruginosa. We used nuclear magnetic resonance (NMR) diffusometry, dynamic light scattering, and conductometry to measure the critical micelle concentration (CMC) of rhamnolipid solutions and determined the effective hydrodynamic radii of rhamnolipid monomers and micelles. Based on selective measurements of the self-diffusion coefficients of molecules, performed by NMR diffusometry, the solubilizing properties of rhamnolipids were studied depending on their concentration in solution; aromatic hydrocarbons, benzene, toluene, ethylbenzene, and para-xylene were taken as solubilizates. On the basis of the measurement results, we estimated the distribution coefficient of the solubilizate between the micellar (solubilized) and free (in the aqueous phase) states and the solubilizing capacity of rhamnolipid micelles.
Collapse
Affiliation(s)
- Victor P Arkhipov
- Department of Physics, Kazan National Research Technological University, Kazan, 420015, Russian Federation
| | - Ruslan V Arkhipov
- Institute of Physics, Kazan Federal University, Kazan, 420008, Russian Federation
| | - Ekaterina V Petrova
- Department of Analytical Chemistry, Kazan National Research Technological University, Kazan, 420015, Russian Federation
| | - Andrei Filippov
- Chemistry of Interfaces, Luleå University of Technology, Luleå, SE-97187, Sweden
| |
Collapse
|
6
|
Rhamnolipid Self-Aggregation in Aqueous Media: A Long Journey toward the Definition of Structure–Property Relationships. Int J Mol Sci 2023; 24:ijms24065395. [PMID: 36982468 PMCID: PMC10048978 DOI: 10.3390/ijms24065395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
The need to protect human and environmental health and avoid the widespread use of substances obtained from nonrenewable sources is steering research toward the discovery and development of new molecules characterized by high biocompatibility and biodegradability. Due to their very widespread use, a class of substances for which this need is particularly urgent is that of surfactants. In this respect, an attractive and promising alternative to commonly used synthetic surfactants is represented by so-called biosurfactants, amphiphiles naturally derived from microorganisms. One of the best-known families of biosurfactants is that of rhamnolipids, which are glycolipids with a headgroup formed by one or two rhamnose units. Great scientific and technological effort has been devoted to optimization of their production processes, as well as their physicochemical characterization. However, a conclusive structure–function relationship is far from being defined. In this review, we aim to move a step forward in this direction, by presenting a comprehensive and unified discussion of physicochemical properties of rhamnolipids as a function of solution conditions and rhamnolipid structure. We also discuss still unresolved issues that deserve further investigation in the future, to allow the replacement of conventional surfactants with rhamnolipids.
Collapse
|
7
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
8
|
Czaplicka N, Konopacka-Łyskawa D, Nowotnik A, Mielewczyk-Gryń A, Łapiński M, Bray R. Precipitation of calcium carbonate in the presence of rhamnolipids in alginate hydrogels as a model of biomineralization. Colloids Surf B Biointerfaces 2022; 218:112749. [PMID: 35932556 DOI: 10.1016/j.colsurfb.2022.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
This paper reports the effects of rhamnolipids presence in the alginate hydrogel and CO32- solution, on the precipitation of CaCO3 in the Ca2+ loaded alginate hydrogel. Characteristics of the formed particles are discussed. Model conditions containing alginate hydrogel and rhamnolipids were used in order to mimic the natural environment of biomineralization in biofilms. It has been shown that rhamnolipids affect the characteristics of precipitated calcium carbonate effect of using these biosurfactants depends on their concentration as well as whether they are directly present in the hydrogel matrix or the carbonate solution surrounding the hydrogel. The greatest effect compared to the control samples was found for the rhamnolipids in the form of micelles directly present in the hydrogel with the CaCl2 cross-linked solution at concentration of 0.05 M. These conditions result in the highest increase in vaterite content, specific surface area, and pore volume. The mechanism of CaCO3 precipitation in alginate hydrogel containing rhamnolipids has been proposed.
Collapse
Affiliation(s)
- Natalia Czaplicka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Donata Konopacka-Łyskawa
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agata Nowotnik
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marcin Łapiński
- Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Rafał Bray
- Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
9
|
A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydr Res 2022; 516:108556. [DOI: 10.1016/j.carres.2022.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
10
|
Yang X, Liu G, Huo L, Dong H, Zhong H. Alkane solubilization by surfactants: Aggregate view and size analysis based on cryo-TEM. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Carbohydrate-carbohydrate interaction drives the preferential insertion of dirhamnolipid into glycosphingolipid enriched membranes. J Colloid Interface Sci 2022; 616:739-748. [PMID: 35247812 DOI: 10.1016/j.jcis.2022.02.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Rhamnolipids (RLs) are among the most important biosurfactants produced by microorganisms, and have been widely investigated because of their multiple biological activities. Their action appears to depend on their structural interference with lipid membranes, therefore several studies have been performed to investigate this aspect. We studied by X-ray scattering, neutron reflectometry and molecular dynamic simulations the insertion of dirhamnolipid (diRL), the most abundant RL, in model cellular membranes made of phospholipids and glycosphingolipids. In our model systems the affinity of diRL to the membrane is highly promoted by the presence of the glycosphingolipids and molecular dynamics simulations unveil that this evidence is related to sugar-sugar attractive interactions at the membrane surface. Our results improve the understanding of the plethora of activities associated with RLs, also opening new perspectives in their selective use for pharmaceutical and cosmetics formulations. Additionally, they shed light on the still debated role of carbohydrate-carbohydrate interactions as driving force for molecular contacts at membrane surface.
Collapse
|
12
|
Chen IC, Lee MT. Rhamnolipid Biosurfactants for Oil Recovery: Salt Effects on the Structural Properties Investigated by Mesoscale Simulations. ACS OMEGA 2022; 7:6223-6237. [PMID: 35224385 PMCID: PMC8867548 DOI: 10.1021/acsomega.1c06741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Rhamnolipids (RLs) are biosurfactants produced by Pseudomonas. The biodegradability and the variety of their functionality make them suitable for environmental remediation and oil recovery. We use dissipative particle dynamics simulations to investigate the aggregation behaviors of ionic RL congeners with nonane in various operating conditions. Under zero-salinity conditions, all RL congeners studied here form small ellipsoidal clusters with detectable free surfactants. When salt ions are present, the electrostatic repulsion between the ionized heads is overcome, resulting in the formation of larger aggregates of unique structures. RLs with C10-alkyl tails tend to form elongated wormlike micelles, while RLs with C16-alkyl tails tend to form clusters in spherical symmetry, including vesicles. Di-rhamnolipids (dRLs) require stronger solvation than monorhamnolipids (mRLs) to form clusters, and the resulting size of micelles is decreased. The morphology of the mixed dRL/mRL/oil systems is controlled based on the type of the congeners and the oil contents. In addition, the divalent calcium ions are found to be influential to the structure of the micelles through different mechanisms. For 5 wt % salinity, the ionic RLs can form oil-swollen micelles up to a 1:1 surfactant-to-oil ratio, suggesting that ionic RLs are superb to act as cleaning agents for petroleum hydrocarbons in the marine area. These key findings may guide the design for RL-based washing techniques in enhanced oil recovery.
Collapse
Affiliation(s)
- I-Chin Chen
- Department of Chemical Engineering
and Biotechnology, National Taipei University
of Technology, Taipei 10608, Taiwan
| | - Ming-Tsung Lee
- Department of Chemical Engineering
and Biotechnology, National Taipei University
of Technology, Taipei 10608, Taiwan
| |
Collapse
|
13
|
Sałek K, Euston SR, Janek T. Phase Behaviour, Functionality, and Physicochemical Characteristics of Glycolipid Surfactants of Microbial Origin. Front Bioeng Biotechnol 2022; 10:816613. [PMID: 35155390 PMCID: PMC8830654 DOI: 10.3389/fbioe.2022.816613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
Growing demand for biosurfactants as environmentally friendly counterparts of chemically derived surfactants enhances the extensive search for surface-active compounds of biological (microbial) origin. The understanding of the physicochemical properties of biosurfactants such as surface tension reduction, dispersion, emulsifying, foaming or micelle formation is essential for the successful application of biosurfactants in many branches of industry. Glycolipids, which belong to the class of low molecular weight surfactants are currently gaining a lot of interest for industrial applications. For this reason, we focus mainly on this class of biosurfactants with particular emphasis on rhamnolipids and sophorolipids, the most studied of the glycolipids.
Collapse
Affiliation(s)
- Karina Sałek
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
- *Correspondence: Karina Sałek,
| | - Stephen R. Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
14
|
Marangon CA, Vigilato Rodrigues MÁ, Vicente Bertolo MR, Amaro Martins VDC, Guzzi Plepis AM, Nitschke M. The effects of ionic strength and
pH
on antibacterial activity of hybrid biosurfactant‐biopolymer nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.51437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Crisiane A. Marangon
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC) University of São Paulo São Carlos SP Brazil
| | | | | | | | - Ana Maria Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC) University of São Paulo São Carlos SP Brazil
| | - Marcia Nitschke
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC) University of São Paulo São Carlos SP Brazil
- São Carlos Institute of Chemistry (IQSC) University of São Paulo São Carlos SP Brazil
| |
Collapse
|
15
|
Legawiec KJ, Kruszelnicki M, Bastrzyk A, Polowczyk I. Rhamnolipids as Effective Green Agents in the Destabilisation of Dolomite Suspension. Int J Mol Sci 2021; 22:10591. [PMID: 34638932 PMCID: PMC8508988 DOI: 10.3390/ijms221910591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we describe an application of mono- and dirhamnolipid homologue mixtures of a biosurfactant as a green agent for destabilisation of a dolomite suspension. Properties of the biosurfactant solution were characterised using surface tension and aggregate measurements to prove aggregation of rhamnolipids at concentrations much lower than the critical micelle concentration. Based on this information, the adsorption process of biosurfactant molecules on the surface of the carbonate mineral dolomite was investigated, and the adsorption mechanism was proposed. The stability of the dolomite suspension after rhamnolipid adsorption was investigated by turbidimetry. The critical concentration of rhamnolipid at which destabilisation of the suspension occurred most effectively was found to be 50 mg·dm-3. By analysing backscattering profiles, solid-phase migration velocities were calculated. With different amounts of biomolecules, this parameter can be modified from 6.66 to 20.29 mm·h-1. Our study indicates that the dolomite suspension is destabilised by hydrophobic coagulation, which was proved by examining the wetting angle of the mineral surface using the captive bubble technique. The relatively low amount of biosurfactant used to destabilise the system indicates the potential application of this technology for water treatment or modification of the hydrophobicity of mineral surfaces in mineral engineering.
Collapse
Affiliation(s)
- Krzysztof Jan Legawiec
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego St. 27, 50-370 Wrocław, Poland; (M.K.); (A.B.); (I.P.)
| | | | | | | |
Collapse
|
16
|
Rehman R, Ali MI, Ali N, Badshah M, Iqbal M, Jamal A, Huang Z. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126276. [PMID: 34119978 DOI: 10.1016/j.jhazmat.2021.126276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the potential of crude oil degrading capabilities of biosurfactant-producing strains of Pseudomonas aeruginosa MF069166 and Meyerozyma sp. MF138126. P. aeruginosa produced mono-/di-rhamnolipids congeners whereas, Meyerozyma sp. produced acidic and lactonic forms of sophorolipids with crude oil. The values of critical micelle concentrations of rhamnolipids and sophorolipids were 40 mg/L and 50 mg/L with reductions in surface tension of water to 29 mN/m and 33 mN/m. Dynamic light scattering revealed that the average diameter of micellar aggregates of rhamnolipids ranged between 300 and 350 nm and the average size of sophorolipids micelles was 309 nm and 380 nm. Biosurfactants from P. aeruginosa and Meyerozyma sp. exhibited emulsification activities of 87% and 84% in crude oil. Cell surface hydrophobicity of both strains was higher in the presence of hydrophobic contaminants. The biosurfactants showed stability under varying pH, NaCl concentrations and temperatures. Gravimetric and GC-MS analyses demonstrated that P. aeruginosa degraded 91% of the petroleum hydrocarbons while Meyerozyma sp. showed 87% biodegradation efficiency. P. aeruginosa and Meyerozyma sp. have also been found to degrade halogen-containing compounds and showed excellent crude oil degradation efficiency. It is concluded that both strains have high potential of applications in the bioremediation of hydrocarbons-contaminated sites.
Collapse
Affiliation(s)
- Ramla Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asif Jamal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Zaixing Huang
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China; Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
17
|
Ito M, Sugai Y. Nanobubbles activate anaerobic growth and metabolism of Pseudomonas aeruginosa. Sci Rep 2021; 11:16858. [PMID: 34413439 PMCID: PMC8376943 DOI: 10.1038/s41598-021-96503-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
The effect of nanobubbles on anaerobic growth and metabolism of Pseudomonas aeruginosa was investigated. P. aeruginosa grew earlier in the culture medium containing nanobubbles and the bacterial cell concentration in that culture medium was increased a few times higher compared to the medium without nanobubbles under anaerobic condition. Both gas and protein, which are the metabolites of P. aeruginosa, were remarkably produced in the culture medium containing nanobubbles whereas those metabolites were little detected in the medium without nanobubbles, indicating nanobubbles activated anaerobic growth and metabolism of P. aeruginosa. The carbon dioxide nanobubbles came to be positively charged by adsorbing cations and delivered ferrous ions, one of the trace essential elements for bacterial growth, to the microbial cells, which activated the growth and metabolism of P. aeruginosa. The oxygen nanobubbles activated the activities of P. aeruginosa as an oxygen source.
Collapse
Affiliation(s)
- Miu Ito
- Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka, 8190395, Japan
| | - Yuichi Sugai
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka, 8190395, Japan.
| |
Collapse
|
18
|
Kumar S, Dheeman S, Dubey RC, Maheshwari DK, Baliyan N. Cyclic siloxane biosurfactant-producing Bacillus cereus BS14 biocontrols charcoal rot pathogen Macrophomina phaseolina and induces growth promotion in Vigna mungo L. Arch Microbiol 2021; 203:5043-5054. [PMID: 34292347 DOI: 10.1007/s00203-021-02492-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022]
Abstract
Rhizobacteria are vital component of soil-plant interfaces which helps in plant growth responses and disease management. Precisely, the role of biosurfactant production by rhizobacteria in biocontrol mechanisms is underscored. The current study explores the destructive effect of a biosurfactant-producing bacterium Bacillus cereus BS14 on fungal growth under in vitro experiments and showed in vivo reduction of disease severity in pulse crop Vigna mungo. In this study, B. cereus BS14 was observed as plant growth-promoting rhizobacterium (PGPR) based on abilities of production of phytohormone and HCN, phosphate solubilization and biocontrol of Macrophomina phaseolina. The purified biosurfactant from BS14 inhibited the fungal growth by arresting radially growing mycelia. Scanning electron microscope (SEM) study revealed deformities at cellular level in the mycelia of M. phaseolina. The biosurfactant of Bacillus BS14 was identified as cyclic siloxane in GC-MS spectroscopy and FT-IR spectroscopy analyses. In the pot trial studies, B. cereus BS14 proved its efficiency for the growth promotion of Vigna mungo and significantly reduced disease severity index. The present study concludes that biosurfactant of rhizobacterial origin and rhizobacteria can serve for biological control, improvement in crop production and agricultural sustainability. In future, it can be developed as biological control and biofertilizer formulations for legume crops, and commercialized for routine farming practices.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249 404, Uttarakhand, India
| | - Shrivardhan Dheeman
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249 404, Uttarakhand, India.
- Laboratory of Rhizosphere Microbiology, Department of Microbiology, School of Life Science, Sardar Bhagwan Singh University, Dehradun, 248 161, Uttarakhand, India.
| | - Ramesh C Dubey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249 404, Uttarakhand, India.
| | - Dinesh K Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249 404, Uttarakhand, India
| | - Nitin Baliyan
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, 249 404, Uttarakhand, India
| |
Collapse
|
19
|
Salazar-Bryam AM, Yoshimura I, Santos LP, Moura CC, Santos CC, Silva VL, Lovaglio RB, Costa Marques RF, Jafelicci Junior M, Contiero J. Silver nanoparticles stabilized by ramnolipids: Effect of pH. Colloids Surf B Biointerfaces 2021; 205:111883. [PMID: 34102528 DOI: 10.1016/j.colsurfb.2021.111883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Rhamnolipids are glycolipid biosurfactants that have remarkable physicochemical characteristics, such as the capacity for self-assembly, which makes these biomolecules a promising option for application in nanobiotechnology. Rhamnolipids produced from a low-cost carbon source (glycerol) were used to stabilize silver nanoparticles. Silver nanoparticles (AgNPs) have been the subject of studies due to their physical chemical as well as biological properties, which corroborate their catalytic and antimicrobial activity. We compared nanoparticles obtained with three different pH values during synthesis (5, 7 and 9) in the presence of rhamnolipids. Dynamic light scattering showed that larger particles were formed at pH 5 (78-190 nm) compared to pH 7 (6.5-43 nm) and 9 (5.6-28.1 nm). Moreover, nanoparticle stability (analyzed based on the zeta potential) was enhanced with the increase in pH from 5 to 9 (-29.86 ± 1.04, -37.83 ± 0.90 and -40.33 ± 0.57 mV, respectively). Field emission gun scanning electron microscopy confirmed the round morphology of the silver nanoparticles. The LSPR spectra of AgNP for the pHs studied are conserved. In conclusion, different pH values in the presence of rhamnolipids used in the synthesis of silver nanoparticles directly affect nanoparticle size and stability.
Collapse
Affiliation(s)
| | - Ingrid Yoshimura
- São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Larissa Provasi Santos
- São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Cinthia Cristine Moura
- São Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, São Paulo, Brazil
| | - Caio Carvalho Santos
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Vinicius Luiz Silva
- São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | | | | | | | - Jonas Contiero
- São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil; São Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
20
|
Sun H, Wang L, Nie H, Diwu Z, Nie M, Zhang B. Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon. Biotechnol Prog 2021; 37:e3155. [PMID: 33871921 DOI: 10.1002/btpr.3155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/06/2022]
Abstract
Yield and cost are two major factors limiting the widespread use of rhamnolipids (RLs). In the present study, waste frying oil (WFO) was used as the sole carbon source to produce environmentally friendly RLs by Pseudomonas aeruginosa NY3. The Plackett-Burman design (PBD) and Box-Behnken design (BBD) methods were used to maximize the production yield of RL. The PBD results showed that the concentrations of NaNO3 , Na2 HPO4 , and trace elements were the key factors affecting the yield of RL. Furthermore, the BBD results showed that at NaNO3 , Na2 HPO4 , and trace elements concentrations were 4.95, 0.66, and 0.64 mL/L, respectively, the average RL yield reached 9.15 ± 0.52 g/L, 1.58-fold higher than that observed before optimization. Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-ion trap-time of flight mass spectrometry (LCMS-IT-TOF) were used to elucidate the diversity of RL congeners. The results showed that, after optimization, the RL congener diversity increased, and the major RL constituent was converted from di-RLs (64.04%) to mono-RLs (60.44%). These results suggested that the concentrations of the components contained in the culture medium of P. aeruginosa NY3 influenced not only the yield of RL, but also its congener distribution.
Collapse
Affiliation(s)
- Han Sun
- College of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an, China
| | - Hongyun Nie
- College of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Zhenjun Diwu
- Shaanxi Key Laboratory of Membrane Separation, Xi'an, China
| | - Maiqian Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an, China
| | - Bo Zhang
- College of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
21
|
Rodrigues AI, Gudiña EJ, Abrunhosa L, Malheiro AR, Fernandes R, Teixeira JA, Rodrigues LR. Rhamnolipids inhibit aflatoxins production in Aspergillus flavus by causing structural damages in the fungal hyphae and down-regulating the expression of their biosynthetic genes. Int J Food Microbiol 2021; 348:109207. [PMID: 33930837 DOI: 10.1016/j.ijfoodmicro.2021.109207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Aflatoxins are hepatotoxic and carcinogenic fungal secondary metabolites that usually contaminate crops and represent a serious health hazard for humans and animals worldwide. In this work, the effect of rhamnolipids (RLs) produced by Pseudomonas aeruginosa #112 on the growth and aflatoxins production by Aspergillus flavus MUM 17.14 was studied in vitro. At concentrations between 45 and 1500 mg/L, RLs reduced the mycelial growth of A. flavus by 23-40% and the production of aflatoxins by 93.9-99.5%. Purified mono-RLs and di-RLs exhibited a similar inhibitory activity on fungal growth. However, the RL mixture had a stronger inhibitory effect on aflatoxins production at concentrations up to 190 mg/L, probably due to a synergistic effect resulting from the combination of both congeners. Using transmission electron microscopy, it was demonstrated that RLs damaged the cell wall and the cytoplasmic membrane of the fungus, leading to the loss of intracellular content. This disruptive phenomenon explains the growth inhibition observed. Furthermore, RLs down-regulated the expression of genes aflC, aflE, aflP and aflQ involved in the aflatoxins biosynthetic pathway (6.4, 44.3, 38.1 and 2.0-fold, respectively), which is in agreement with the almost complete inhibition of aflatoxins production. Overall, the results herein gathered demonstrate for the first time that RLs could be used against aflatoxigenic fungi to attenuate the production of aflatoxins, and unraveled some of their mechanisms of action.
Collapse
Affiliation(s)
- Ana I Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Luís Abrunhosa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ana R Malheiro
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Fernandes
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Ortiz J, Oliva A, Teruel JA, Aranda FJ, Ortiz A. Effect of pH and temperature on the aggregation behaviour of dirhamnolipid biosurfactant. An experimental and molecular dynamics study. J Colloid Interface Sci 2021; 597:160-170. [PMID: 33872875 DOI: 10.1016/j.jcis.2021.03.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Pseudomonas aeruginosa dirhamnolipid (diRL) has been shown to form aggregates of different size and structure, under various conditions. Due to the presence of a carboxyl group in the molecule, it is expected that pH would strongly affect this aggregation behaviour. In addition, preliminary observations of temperature-induced changes in the states of aggregation of diRL supported the need of further investigation. EXPERIMENTS A systematic experimental study, using differential scanning calorimetry (DSC), small-angle Xray diffraction (SAXD), and Fourier-transform infrared spectroscopy (FTIR), has been carried out to characterize pH and temperature driven changes in the aggregation behavior of diRL biosurfactant. Molecular dynamics (MD) simulations, supported by the experimental results, allowed depicting molecular details on formation of diRL membranes and other aggregated structures under various physicochemical conditions. FINDINGS DiRL could adopt fairly organized multilayered structures (membranes) at low pH and temperature, which became highly disordered upon increasing either of these parameters. The effect of pH on the gauche/all-trans conformer ratio of the diRL acyl chains was not of significance, whereas temperature-induced effects were observed. For the first time it is described that diRL underwent an endothermic thermotropic transition with Tc = 34 °C as observed by DSC, at pH 4.5 (protonated diRL), but not at pH 7.4 (unprotonated diRL). FTIR confirmed these findings, showing a significant additional disordering of the all-trans acyl chains upon increasing temperature around that same value in the protonated form, an effect not observed for the dissociated form of the biosurfactant. In addition, at pH 7.4, changing temperature did not modify the hydration state of the polar moiety of diRL, whereas at pH 4.5 a significant decrease in the hydration state around 34 °C took place. SAXD data showed that protonated diRL formed multilayered structures at 20 °C, which converted into poorly correlated layers at 50 °C. MD simulations supported these findings, showing that the membrane-like structures formed by protonated diRL at 20 °C became unstable at higher temperatures, tending to form other structures, which could be micelles or other type of layered structures, whereas the negatively charged form of diRL organized in micelle-type aggregates in the whole range of temperature under study.
Collapse
Affiliation(s)
- Julia Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Alfonso Oliva
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
23
|
Interaction of a dirhamnolipid biosurfactant with sarcoplasmic reticulum calcium ATPase (SERCA1a). Arch Biochem Biophys 2021; 699:108764. [PMID: 33460582 DOI: 10.1016/j.abb.2021.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 01/10/2021] [Indexed: 11/21/2022]
Abstract
The interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with calcium ATPase from sarcoplasmic reticulum (SR) was studied by means of different approaches, such as enzyme activity, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and molecular docking simulations. The ATP hydrolysis activity was fully inhibited by incubation with dirhamnolipid (diRL) up to 0.1 mM concentration, corresponding to a surfactant concentration below membrane solubilization threshold. Surfactant-protein interaction induced conformational changes in the protein observed by an increase in the accessibility of tryptophan residues to the aqueous phase and by changes in the secondary structure of the protein as seen by fluorescence and FTIR spectroscopy. As a consequence, the protein become more unstable and denatured at lower temperatures, as seen by enzyme activity and DSC studies. Finally, these results were explained at molecular level throughout molecular docking simulations. It is concluded that there is a specific dirhamnolipid-protein interaction not related to the surface activity of the surfactant but to the particular physicochemical properties of the biosurfactant molecule.
Collapse
|
24
|
Rhamnolipid the Glycolipid Biosurfactant: Emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb Cell Fact 2021; 20:1. [PMID: 33397389 PMCID: PMC7784359 DOI: 10.1186/s12934-020-01497-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Rhamnolipids (RLs) are surface-active compounds and belong to the class of glycolipid biosurfactants, mainly produced from Pseudomonas aeruginosa. Due to their non-toxicity, high biodegradability, low surface tension and minimum inhibitory concentration values, they have gained attention in various sectors like food, healthcare, pharmaceutical and petrochemicals. The ecofriendly biological properties of rhamnolipids make them potent materials to be used in therapeutic applications. RLs are also known to induce apoptosis and thus, able to inhibit proliferation of cancer cells. RLs can also act as immunomodulators to regulate the humoral and cellular immune systems. Regarding their antimicrobial property, they lower the surface hydrophobicity, destruct the cytoplasmic membrane and lower the critical micelle concentration to kill the bacterial cells either alone or in combination with nisin possibly due to their role in modulating outer membrane protein. RLs are also involved in the synthesis of nanoparticles for in vivo drug delivery. In relation to economic benefits, the post-harvest decay of food can be decreased by RLs because they prevent the mycelium growth, spore germination of fungi and inhibit the emergence of biofilm formation on food. The present review focuses on the potential uses of RLs in cosmetic, pharmaceutical, food and health-care industries as the potent therapeutic agents.
Collapse
|
25
|
Come B, Donato M, Potenza LF, Mariani P, Itri R, Spinozzi F. The intriguing role of rhamnolipids on plasma membrane remodelling: From lipid rafts to membrane budding. J Colloid Interface Sci 2021; 582:669-677. [DOI: 10.1016/j.jcis.2020.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 01/26/2023]
|
26
|
Zhang H, Zhang Y, Jia Z, Zhou Z. Application of power law in conductivity of binary mixed rhamnolipid surfactant systems. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Ma Y, Chen S, Liao W, Zhang L, Liu J, Gao Y. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7103-7111. [PMID: 32559379 DOI: 10.1021/acs.jafc.0c01326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of the present work was to fabricate the curcumin-loaded rhamnolipid nanoparticles using the pH-driven method to enhance the physicochemical stability and redispersibility of curcumin. The mixture of curcumin and rhamnolipid could be spontaneously assembled into the curcumin-loaded rhamnolipid nanoparticles with a small size (107 nm) and negative charge (-45.5 mV). Curcumin molecules could bind to rhamnolipid molecules through hydrophobic effects and hydrogen bonds. The effect of different mass ratios of rhamnolipid and curcumin (1:2, 1:1, 2:1, 4:1, 6:1, and 8:1) on the functional property of the curcumin-loaded rhamnolipid nanoparticles was investigated. With the rise of rhamnolipid and curcumin mass ratio, the encapsulation efficiency of curcumin in the nanoparticles was increased from 44.59% to 81.12% and the loading capacity of curcumin was elevated from 10.14% to 31.67%. When the mass ratio of rhamnolipid and curcumin was 4:1, the curcumin-loaded rhamnolipid nanoparticles exhibited better physical stability, pH stability, and redispersibility. Moreover, the nanoparticles could effectively protect curcumin against the photodegradation and thermal degradation. Therefore, the rhamnolipid nanoparticles have the potential to be applied as a nanodelivery system for bioactive molecules in functional foods.
Collapse
Affiliation(s)
- Yichao Ma
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuai Chen
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenyan Liao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfang Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
28
|
Zhou C, Sha R, Long X, Meng Q. Extraction Separation of Rhamnolipids by
n
‐Hexane
via
Forming Reverse Micelles. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaojun Zhou
- Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Ruyi Sha
- Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Xuwei Long
- Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Qin Meng
- Key Laboratory of Biomass Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| |
Collapse
|
29
|
Rodríguez-López L, Rincón-Fontán M, Vecino X, Cruz JM, Moldes AB. Study of biosurfactant extract from corn steep water as a potential ingredient in antiacne formulations. J DERMATOL TREAT 2020; 33:393-400. [PMID: 32297562 DOI: 10.1080/09546634.2020.1757016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: This is a novel work that includes the use of a biosurfactant extract obtained from corn milling industry (named BS-CSW), with antimicrobial activity, as ingredient in formulations to treat acne vulgaris. Methodology: With this purpose, it was established an incomplete experimental design with 3 independent variables, based on the concentration of non-nano zinc oxide (ZnO) (0-2%), BS-CSW (0-5%) and salicylic acid (0-2%). Results: This design allowed to obtain a theoretical model that calculates the inhibitory effect on Cutibacterium acnes (also named Propionibacterium acnes) for any formulation carried with the ingredients appointed before. It was observed a clear synergetic effect on the inhibition of C. acnes between ZnO and BS-CSW, in absence of salicylic acid. This fact allowed to reduce the concentration of ZnO, giving more ecofriendly and biocompatible formulations. Conclusions: It was observed that the biosurfactant extract, in formulations with intermediate concentration of ZnO (1%), possess an inhibitory effect on C. acnes considerably higher than ZnO alone and similar to ZnO (1%) with salicylic acid (1%). This fact demonstrates the enormous potential of this bioactive extract in antiacne formulations.
Collapse
Affiliation(s)
- Lorena Rodríguez-López
- Chemical Engineering Department, School of Industrial Engineering - Módulo Tecnológico Industrial (MTI), University of Vigo, Vigo, Spain
| | - Myriam Rincón-Fontán
- Chemical Engineering Department, School of Industrial Engineering - Módulo Tecnológico Industrial (MTI), University of Vigo, Vigo, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia (UPC)-Barcelona TECH, Barcelona, Spain
| | - José M Cruz
- Chemical Engineering Department, School of Industrial Engineering - Módulo Tecnológico Industrial (MTI), University of Vigo, Vigo, Spain
| | - Ana B Moldes
- Chemical Engineering Department, School of Industrial Engineering - Módulo Tecnológico Industrial (MTI), University of Vigo, Vigo, Spain
| |
Collapse
|
30
|
Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv Colloid Interface Sci 2020; 275:102061. [PMID: 31767119 DOI: 10.1016/j.cis.2019.102061] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin. These are environmentally safe and biodegradable, making them attractive candidates for applications spanning cosmetics to oil recovery. Biosurfactants spontaneously adsorb at various interfaces and self-assemble in aqueous solution, resulting in useful physicochemical properties such as decreased surface and interfacial tension, low critical micellization concentrations (CMCs), and ability to solubilize hydrophobic compounds. This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior. It also describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurfactant-containing solutions and dispersions. Comparison between biosurfactants and their synthetic counterparts are drawn to illustrate differences in their structure-property relationships and potential benefits. Knowledge of biosurfactant properties organized along these lines is useful for those seeking to formulate so-called green or natural products with novel and useful properties.
Collapse
|
31
|
Zhou J, Xue R, Liu S, Xu N, Xin F, Zhang W, Jiang M, Dong W. High Di-rhamnolipid Production Using Pseudomonas aeruginosa KT1115, Separation of Mono/Di-rhamnolipids, and Evaluation of Their Properties. Front Bioeng Biotechnol 2019; 7:245. [PMID: 31696112 PMCID: PMC6817604 DOI: 10.3389/fbioe.2019.00245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023] Open
Abstract
Rhamnolipids (RLs) are important bioproducts that are regarded as promising biosurfactant for applications in oil exploitation, cosmetics, and food industry. In this study, the newly isolated Pseudomonas aeruginosa KT1115 showed high production of di-RLs. The highest yield of RLs by P. aeruginosa KT1115, reaching 44.39 g/L after 8 days of fermentation in a 5 L bioreactor, was obtained from rapeseed oil-nitrate medium after process optimization. Furthermore, we established a new separation process that achieved up to 91.82% RLs recovery with a purity of 89% and further obtained mono/di-rhamnolipids. Finally, ESI-MS analysis showed that the RLs produced by strain KT1115 have a high proportion of di-RLs (mono-RLs: di-RLs = 11.47: 88.53), which have a lower critical micelle-forming concentration (8 mN/m) and better emulsification ability with kerosene (52.1% EI24) than mono-RLs (167 mN/m and 41.4% EI24, respectively). These results demonstrated that P. aeruginosa KT1115 is a potential industrial producer of di-RLs, which have improved applicability and offer significant commercial benefits.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Rui Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shixun Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
32
|
Wu LM, Lai L, Lu Q, Mei P, Wang YQ, Cheng L, Liu Y. Comparative studies on the surface/interface properties and aggregation behavior of mono-rhamnolipid and di-rhamnolipid. Colloids Surf B Biointerfaces 2019; 181:593-601. [DOI: 10.1016/j.colsurfb.2019.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/12/2019] [Accepted: 06/06/2019] [Indexed: 11/26/2022]
|
33
|
Ma Y, Li Y, Huang C, Tian Y, Hao Z. RETRACTED ARTICLE: Rhamnolipid biosurfactants: functional properties and potential contributions for bioremediation. Biodegradation 2019; 30:363. [PMID: 30357536 DOI: 10.1007/s10532-018-9862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China.
| | - Yanpeng Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Chao Huang
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Yuexin Tian
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Zhidan Hao
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| |
Collapse
|
34
|
Sen S, Borah SN, Kandimalla R, Bora A, Deka S. Efficacy of a rhamnolipid biosurfactant to inhibit
Trichophyton rubrum
in vitro and in a mice model of dermatophytosis. Exp Dermatol 2019; 28:601-608. [DOI: 10.1111/exd.13921] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Suparna Sen
- Environmental Biotechnology Laboratory, Resource Management and Environment Section Life Sciences Division Institute of Advanced Study in Science and Technology Guwahati Assam India
| | - Siddhartha Narayan Borah
- Environmental Biotechnology Laboratory, Resource Management and Environment Section Life Sciences Division Institute of Advanced Study in Science and Technology Guwahati Assam India
| | - Raghuram Kandimalla
- Drug Discovery Laboratory Life Sciences Division Institute of Advanced Study in Science and Technology Guwahati Assam India
| | - Arijit Bora
- Department of Bioengineering and Technology Institute of Science and Technology Gauhati University Guwahati Assam India
| | - Suresh Deka
- Environmental Biotechnology Laboratory, Resource Management and Environment Section Life Sciences Division Institute of Advanced Study in Science and Technology Guwahati Assam India
| |
Collapse
|
35
|
Rodríguez-López L, Shokry DS, Cruz JM, Moldes AB, Waters LJ. The effect of the presence of biosurfactant on the permeation of pharmaceutical compounds through silicone membrane. Colloids Surf B Biointerfaces 2019; 176:456-461. [PMID: 30682618 DOI: 10.1016/j.colsurfb.2018.12.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
The permeation of ten model drugs through silicone membrane was analysed to investigate the effect of the presence of a biosurfactant obtained from corn steep liquor. The ten selected pharmaceutical compounds were chosen to include a diverse range of physicochemical properties, such as variable hydrophobicities, pKa's, molecular masses and degrees of ionisation. When compared with compound permeation alone, the additional inclusion of biosurfactant in the donor phase altered the rate and extent of permeation. It significantly enhanced permeation for five of the compounds, whereas it decreased permeation for four of the compounds and remained approximately the same for the tenth compound. These effects were observed at both biosurfactant concentrations considered, namely 0.005 mg/mL, i.e. below the critical micellar concentration (CMC) and 0.500 mg/mL, i.e. above the CMC of the biosurfactant. Upon analysing permeation change with respect to physicochemical properties of the compounds, it was determined that compounds with a relative molecular mass below 200 resulted in an increase in permeation with biosurfactant present, and those above 200 resulted in a decrease in permeation with biosurfactant present. This effect was therefore attributed to the formation of a drug-biosurfactant interaction that enhanced permeation of smaller compounds, yet retarded permeation for those with a higher molecular mass. These in vitro findings can be considered an indication of potential novel formulation options that incorporate biosurfactant to create transdermal products that have bespoke permeation profiles.
Collapse
Affiliation(s)
- Lorena Rodríguez-López
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK; School of Industrial Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo-Pontevedra, Spain
| | - Dina S Shokry
- Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent, ME4 4TB, UK
| | - Jose M Cruz
- School of Industrial Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo-Pontevedra, Spain
| | - Ana B Moldes
- School of Industrial Engineering, University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo-Pontevedra, Spain
| | - Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
36
|
Brocca P, Rondelli V, Corti M, Del Favero E, Deleu M, Cantù L. Interferometric investigation of the gas-state monolayer of mono-rhamnolipid adsorbing at an oil/water interface. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Monnier N, Furlan A, Botcazon C, Dahi A, Mongelard G, Cordelier S, Clément C, Dorey S, Sarazin C, Rippa S. Rhamnolipids From Pseudomonas aeruginosa Are Elicitors Triggering Brassica napus Protection Against Botrytis cinerea Without Physiological Disorders. FRONTIERS IN PLANT SCIENCE 2018; 9:1170. [PMID: 30135699 PMCID: PMC6092566 DOI: 10.3389/fpls.2018.01170] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 05/05/2023]
Abstract
Rhamnolipids (RLs) are amphiphilic molecules naturally produced by some bacteria with a large range of biological activities. Although some studies report their potential interest in plant protection, evaluation of their effects and efficiency on annual crops of worldwide agronomic interest is lacking. The main objective of this work was to investigate their elicitor and protective activities on rapeseed crop species while evaluating their physiological effects. Here we report that RLs from Pseudomonas aeruginosa secretome trigger an effective protection of Brassicanapus foliar tissues toward the fungus Botrytis cinerea involving the combination of plant defense activation and direct antimicrobial properties. We demonstrated their ability to activate canonical B.napus defense responses including reactive oxygen species production, expression of defense genes, along with callose deposits and stomatal closure as efficient physical protections. In addition, microscopic cell death observations and electrolyte leakage measurements indicated that RLs trigger a hypersensitive response-like defense in this plant. We also showed that foliar spray applications of RLs do not induce deleterious physiological consequences on plant growth or chlorophyll content and that RL protective properties are efficient on several grown cultivars of rapeseed. To our knowledge, this is the first report of RLs as an elicitor that suppresses fungal disease on tissues of an annual crop species under greenhouse conditions. Our results highlight the dual mode of action of these molecules exhibiting plant protection activation and antifungal activities and demonstrate their potential for crop cultures as environmental-friendly biocontrol solution.
Collapse
Affiliation(s)
- Noadya Monnier
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, SFR Condorcet FR CNRS 3417, Université de Picardie Jules Verne, Amiens, France
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, SFR Condorcet FR CNRS 3417, Université de Technologie de Compiègne, Sorbonne Universités, Compiègne, France
| | - Aurélien Furlan
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, SFR Condorcet FR CNRS 3417, Université de Picardie Jules Verne, Amiens, France
| | - Camille Botcazon
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, SFR Condorcet FR CNRS 3417, Université de Technologie de Compiègne, Sorbonne Universités, Compiègne, France
| | - Abdellatif Dahi
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, SFR Condorcet FR CNRS 3417, Université de Technologie de Compiègne, Sorbonne Universités, Compiègne, France
| | - Gaëlle Mongelard
- Centre de Ressources Régional en Biologie Moléculaire, SFR Condorcet FR CNRS 3417, Université de Picardie Jules Verne, Amiens, France
| | - Sylvain Cordelier
- Unité RIBP-EA 2069, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Christophe Clément
- Unité RIBP-EA 2069, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Stéphan Dorey
- Unité RIBP-EA 2069, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, SFR Condorcet FR CNRS 3417, Université de Picardie Jules Verne, Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, SFR Condorcet FR CNRS 3417, Université de Technologie de Compiègne, Sorbonne Universités, Compiègne, France
| |
Collapse
|
38
|
Cieśla J, Koczańska M, Bieganowski A. An Interaction of Rhamnolipids with Cu 2+ Ions. Molecules 2018; 23:molecules23020488. [PMID: 29473852 PMCID: PMC6017734 DOI: 10.3390/molecules23020488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022] Open
Abstract
This study was focused on the description of interaction between Cu2+ ions and the 1:1 mono- and dirhamnolipid mixtures in the premicellar and aggregated state in water and 20 mM KCl solution at pH 5.5 and 6.0. The critical micelle concentration of biosurfactants was determined conductometrically and by the pH measurements. Hydrodynamic diameter and electrophoretic mobility were determined in micellar solutions using dynamic light scattering and laser Doppler electrophoresis, respectively. The copper immobilization by rhamnolipids, methylglycinediacetic acid (MGDA), and ethylenediaminetetraacetic acid (EDTA) was estimated potentiometrically for the Cu2+ to chelating agent molar ratio from 16:100 to 200:100. The degree of ion binding and the complex stability constant were calculated at a 1:1 metal to chelant molar ratio. The aggregates of rhamnolipids (diameter of 43-89 nm) were negatively charged. Biosurfactants revealed the best chelating activities in premicellar solutions. For all chelants studied the degree of metal binding decreased with the increasing concentration of the systems. The presence of K⁺ lowered Cu2+ binding by rhamnolipids, but did not modify the complex stability significantly. Immobilization of Cu2+ by biosurfactants did not cause such an increase of acidification as that observed in MGDA and EDTA solutions. Rhamnolipids, even in the aggregated form, can be an alternative for the classic chelating agents.
Collapse
Affiliation(s)
- Jolanta Cieśla
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Magdalena Koczańska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
39
|
Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z. Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. Biotechnol Bioeng 2018; 115:796-814. [PMID: 29240227 DOI: 10.1002/bit.26517] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/05/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022]
Abstract
The objective of this review is to provide a comprehensive overview of the advances in the applications of rhamnolipids biosurfactants in soil and ground water remediation for removal of petroleum hydrocarbon and heavy metal contaminants. The properties of rhamnolipids associated with the contaminant removal, that is, solubilization, emulsification, dispersion, foaming, wetting, complexation, and the ability to modify bacterial cell surface properties, were reviewed in the first place. Then current remediation technologies with integration of rhamnolipid were summarized, and the effects and mechanisms for rhamnolipid to facilitate contaminant removal for these technologies were discussed. Finally rhamnolipid-based methods for remediation of the sites co-contaminated by petroleum hydrocarbons and heavy metals were presented and discussed. The review is expected to enhance our understanding on environmental aspects of rhamnolipid and provide some important information to guide the extending use of this fascinating chemical in remediation applications.
Collapse
Affiliation(s)
- Guansheng Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China.,School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, Hubei, China
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China.,School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, Hubei, China
| | - Xin Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
40
|
Xu J, Sun S, Wang Z, Peng S, Hu S, Zhang L. pH-Induced evolution of surface patterns in micelles assembled from dirhamnolipids: dissipative particle dynamics simulation. Phys Chem Chem Phys 2018; 20:9460-9470. [DOI: 10.1039/c8cp00751a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dissipative particle dynamics (DPD) simulation is used to study the effect of pH on the morphological transition in micelles assembled from dirhamnolipids (diRLs), and analyze the pH-driven mechanism and influence factors of micellar surface patterns.
Collapse
Affiliation(s)
- Jianchang Xu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Shuangqing Sun
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Zhikun Wang
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Shiyuan Peng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Songqing Hu
- College of Science
- China University of Petroleum (East China)
- Qingdao 266580
- China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
41
|
Liley JR, Thomas RK, Penfold J, Tucker IM, Petkov JT, Stevenson PS, Banat IM, Marchant R, Rudden M, Webster JRP. Adsorption at the Air-Water Interface in Biosurfactant-Surfactant Mixtures: Quantitative Analysis of Adsorption in a Five-Component Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13027-13039. [PMID: 29043809 DOI: 10.1021/acs.langmuir.7b03187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The composition of the air-water adsorbed layer of a quinary mixture consisting of three conventional surfactants, octaethylene glycol monododecyl ether (C12E8), dodecane-6-p-sodium benzene sulfonate (LAS6), and diethylene glycol monododecyl ether sodium sulfate (SLE2S), mixed with two biosurfactants, the rhamnolipids l-rhamnosyl-l-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoyl, R2, and l-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoyl, R1, has been measured over a range of compositions above the mixed critical micelle concentration. Additional measurements on some of the subsets of ternary and binary mixtures have also been measured by NR. The results have been analyzed using the pseudophase approximation (PPA) in conjunction with an excess free energy, GE, that depends on the quadratic and cubic terms in the composition. The compositions of the binary, ternary, and quinary mixtures could all be fitted to two sets of interaction parameters between the pairs of surfactants, one for micelles and one for adsorption. No ternary interactions or ternary corrections were required. Because the system contains two strongly anionic surfactants, the PPA can be extended, in practice, to ionic surfactants, contrary to the prevailing view. The values of the interaction parameters show that the quinary mixture, SLE2S-LAS6-C12E8-R1-R2, which is known to be a highly effective surfactant system, is characterized by a sequence of strong surface but weak micellar interactions. About half of the minima in GE for the strong surface interactions occur well away from the regular solution value of 0.5.
Collapse
Affiliation(s)
- Jessica R Liley
- Physical and Theoretical Chemistry Laboratory , South Parks Road, Oxford OX1 3QZ, U.K
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory , South Parks Road, Oxford OX1 3QZ, U.K
| | - Jeffrey Penfold
- STFC, Rutherford-Appleton Laboratory , Chilton, Didcot, Oxfordshire OX11 0QX, U.K
- Physical and Theoretical Chemistry Laboratory , South Parks Road, Oxford OX1 3QZ, U.K
| | - Ian M Tucker
- Unilever Research and Development Laboratory , Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, U.K
| | - Jordan T Petkov
- Unilever Research and Development Laboratory , Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, U.K
| | - Paul S Stevenson
- Unilever Research and Development Laboratory , Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, U.K
| | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster , Coleraine BT52 1SA, Northern Ireland
| | - Roger Marchant
- School of Biomedical Sciences, University of Ulster , Coleraine BT52 1SA, Northern Ireland
| | - M Rudden
- School of Biomedical Sciences, University of Ulster , Coleraine BT52 1SA, Northern Ireland
| | - John R P Webster
- STFC, Rutherford-Appleton Laboratory , Chilton, Didcot, Oxfordshire OX11 0QX, U.K
| |
Collapse
|
42
|
Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Sci Rep 2017; 7:12907. [PMID: 29018256 PMCID: PMC5635025 DOI: 10.1038/s41598-017-13424-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
In this work, the antifungal activity of rhamnolipids produced by Pseudomonas aeruginosa #112 was evaluated against Aspergillus niger MUM 92.13 and Aspergillus carbonarius MUM 05.18. It was demonstrated that the di-rhamnolipid congeners were responsible for the antifungal activity exhibited by the crude rhamnolipid mixture, whereas mono-rhamnolipids showed a weak inhibitory activity. Furthermore, in the presence of NaCl (from 375 mM to 875 mM), the antifungal activity of the crude rhamnolipid mixture and the purified di-rhamnolipids was considerably increased. Dynamic Light Scattering studies showed that the size of the structures formed by the rhamnolipids increased as the NaCl concentration increased, being this effect more pronounced in the case of di-rhamnolipids. These results were confirmed by Confocal Scanning Laser Microscopy, which revealed the formation of giant vesicle-like structures (in the µm range) by self-assembling of the crude rhamnolipid mixture in the presence of 875 mM NaCl. In the case of the purified mono- and di-rhamnolipids, spherical structures (also in the µm range) were observed at the same conditions. The results herein obtained demonstrated a direct relationship between the rhamnolipids antifungal activity and their aggregation behaviour, opening the possibility to improve their biological activities for application in different fields.
Collapse
|
43
|
Accelerating anodic biofilms formation and electron transfer in microbial fuel cells: Role of anionic biosurfactants and mechanism. Bioelectrochemistry 2017. [DOI: 10.1016/j.bioelechem.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Surface adsorption and spontaneous aggregation of rhamnolipid mixtures in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Bagheri Lotfabad T, Ebadipour N, Roostaazad R, Partovi M, Bahmaei M. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol–gel immobilized cells. Colloids Surf B Biointerfaces 2017; 152:159-168. [DOI: 10.1016/j.colsurfb.2017.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/04/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
|
46
|
Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipd biosurfactants. J Colloid Interface Sci 2017; 487:493-503. [DOI: 10.1016/j.jcis.2016.10.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022]
|
47
|
Liu Z, Yu M, Zeng G, Li M, Zhang J, Zhong H, Liu Y, Shao B, Li Z, Wang Z, Liu G, Yang X. Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1230-1240. [PMID: 27770324 DOI: 10.1007/s11356-016-7851-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Micellar-enhanced ultrafiltration (MEUF) processes of resorcinol, phenol, and 1-Naphthol with rhamnolipid as an anionic biosurfactant were investigated using polysulfone membrane. The effects of retentate/permeate concentration of phenolic pollutants (C R/C P), distribution coefficient of phenolic pollutions (D), concentration ratios of phenolic pollutions (α P) and rhamnolipids (α R) and adsorption capacity of the membrane (N m) were studied by operating pressure, pH condition, feed surfactant, and phenolic pollution concentrations. Results showed that C R (with pH) increased and ranked in the following order: resorcinol > phenol > 1-Naphthol, which is same with C R (with pressure), C R (with surfactant), C R/C P (with pollution), α,P and D, while C P (with pH), C P (with pressure), and C P (with surfactant) ranked in the reverse order. The operating pressure increased the solubility of phenolic from 0 to 0.1 MPa and then decreased slowly above 0.1 MPa. The concentration ratio of rhamnolipid was nearly at 2.0 and that of phenolic pollution was slightly above 1.0. D of phenolic pollutants reached the maximum at phenolic pollution concentration of 0.1 mM and the feed rhamnolipid concentration at 1 CMC. Moreover, zeta potential in feed stream and retentate stream and membrane adsorption of phenolic pollutions were firstly investigated in this article; the magnitudes of zeta potential with the feed stream of three phenolic pollutions were nearly the same and slightly lower than those with the retentate stream. The adsorption capacity of the membrane (N m) was calculated and compared to the former research, which showed that rhamnolipid significantly decreases the membrane adsorption of phenolic pollutions at a relatively lower concentration. It was implied that rhamnolipid can be substituted for chemical surfactants.
Collapse
Affiliation(s)
- Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Mingda Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Min Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Hua Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Zhigang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zhiquan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Guansheng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xin Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| |
Collapse
|
48
|
Kłosowska-Chomiczewska IE, Mędrzycka K, Hallmann E, Karpenko E, Pokynbroda T, Macierzanka A, Jungnickel C. Rhamnolipid CMC prediction. J Colloid Interface Sci 2016; 488:10-19. [PMID: 27816634 DOI: 10.1016/j.jcis.2016.10.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022]
Abstract
Relationships between the purity, pH, hydrophobicity (logKow) of the carbon substrate, and the critical micelle concentration (CMC) of rhamnolipid type biosurfactants (RL) were investigated using a quantitative structure-property relationship (QSPR) approach and are presented here for the first time. Measured and literature CMC values of 97 RLs, representing biosurfactants at different stages of purification, were considered. An arbitrary scale for RLs purity was proposed and used in the modelling. A modified evolutionary algorithm was used to create clusters of equations to optimally describe the relationship between CMC and logKow, pH and purity (the optimal equation had an R2 of 0.8366). It was found that hydrophobicity of the carbon substrate used for the biosynthesis of the RL had the most significant influence on the final CMC of the RL. Purity of the RLs was also found to have a significant impact, where generally the less pure the RL the higher the CMC. These results were in accordance with our experimental data. Therefore, our model equation may be used for controlling the biosynthesis of biosurfactants with properties targeted for specific applications.
Collapse
Affiliation(s)
- I E Kłosowska-Chomiczewska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - K Mędrzycka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - E Hallmann
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - E Karpenko
- Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine, 3a Naukova St., Lviv 79053, Ukraine
| | - T Pokynbroda
- Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine, 3a Naukova St., Lviv 79053, Ukraine
| | - A Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - C Jungnickel
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
49
|
Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4310-4320. [PMID: 27098847 DOI: 10.1002/jsfa.7759] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Rhamnolipids, trehalolipids, mannosylerythritol lipids and cellobiose lipids are among the most popular glycolipids. They have received much practical attention as biopesticides for controlling plant diseases and protecting stored products. As a result of their antifungal activity towards phytopathogenic fungi and larvicidal and mosquitocidal potencies, glycolipid biosurfactants permit the preservation of plants and plant crops from pest invasion. Also, as a result of their emulsifying and antibacterial activities, glycolipids have great potential as food additives and food preservatives. Furthermore, the valorization of food byproducts via the production of glycolipid biosurfactant has received much attention because it permits the bioconversion of byproducts on valuable compounds and decreases the cost of production. Generally, the use of glycolipids in many fields requires their retention from fermentation media. Accordingly, different strategies have been developed to extract and purify glycolipids. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Inès Mnif
- Unit Enzymes and Bioconversion, National School of Engineers, University of Sfax, Sfax, Tunisia
| | - Dhouha Ghribi
- Unit Enzymes and Bioconversion, National School of Engineers, University of Sfax, Sfax, Tunisia
- Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
50
|
Singh P, Tiwary BN. Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0119-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|