1
|
Jiang K, Wen X, Pettersson T, Crouzier T. Engineering Surfaces with Immune Modulating Properties of Mucin Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39727-39735. [PMID: 36000701 PMCID: PMC9460428 DOI: 10.1021/acsami.1c19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels of cross-linked mucin glycoproteins (Muc-gel) have shown strong immune-modulating properties toward macrophages in vitro, which are translated in vivo by the dampening of the foreign body response to implantation in mice. Beyond mucin hydrogels, other biomaterials such as sensors, electrodes, and other long-term implants would also benefit from such immune-modulating properties. In this work, we aimed to transfer the bioactivity observed for three-dimensional Muc-gels to the surface of two model materials by immobilizing mucin into thin films (Muc-film) using covalent layer-by-layer assembly. We tested how the surface immobilization of mucins affects macrophage responses compared to Muc-gels. We showed that Muc-films on soft polyacrylamide gels mimic Muc-gel in their modulation of macrophage responses with activated gene expression of inflammatory cytokines on day 1 and then dampening them on day 3. Also, the markers of polarized macrophages, M1 and M2, were expressed at the same level for macrophages on Muc-film-coated soft polyacrylamide gels and Muc-gel. In contrast, Muc-film-coated hard polystyrene led to a different macrophage response compared to Muc-gel, having no activated expression of inflammatory cytokines and a different M1 marker expression. This suggested that the substrate mechanical properties and mucin molecular configuration determined by substrate-mucin interactions affect mucin immune-modulating properties. We conclude that mucin immune-modulating properties can be transferred to materials by mucin surface immobilization but will be dependent on the substrate chemical and mechanical properties.
Collapse
Affiliation(s)
- Kun Jiang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
- AIMES
- Center for the Advancement of Integrated Medical and Engineering
Sciences at Karolinska Institutet and KTH
Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Xueyu Wen
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
| | - Torbjörn Pettersson
- Division
of Fibre Technology, Department of Fibre and Polymer Technology, School
of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Thomas Crouzier
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden
- AIMES
- Center for the Advancement of Integrated Medical and Engineering
Sciences at Karolinska Institutet and KTH
Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
2
|
Mucoadhesive Marine Polysaccharides. Mar Drugs 2022; 20:md20080522. [PMID: 36005525 PMCID: PMC9409912 DOI: 10.3390/md20080522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers are of growing interest in the field of drug delivery due to their ability to interact with the body’s mucosa and increase the effectiveness of the drug. Excellent mucoadhesive performance is typically observed for polymers possessing charged groups or non-ionic functional groups capable of forming hydrogen bonds and electrostatic interactions with mucosal surfaces. Among mucoadhesive polymers, marine carbohydrate biopolymers have been attracting attention due to their biocompatibility and biodegradability, sample functional groups, strong water absorption and favorable physiochemical properties. Despite the large number of works devoted to mucoadhesive polymers, there are very few systematic studies on the influence of structural features of marine polysaccharides on mucoadhesive interactions. The purpose of this review is to characterize the mucoadhesive properties of marine carbohydrates with a focus on chitosan, carrageenan, alginate and their use in designing drug delivery systems. A wide variety of methods which have been used to characterize mucoadhesive properties of marine polysaccharides are presented in this review. Mucoadhesive drug delivery systems based on such polysaccharides are characterized by simplicity and ease of use in the form of tablets, gels and films through oral, buccal, transbuccal and local routes of administration.
Collapse
|
3
|
Liu X, Claesson PM. Bioinspired Bottlebrush Polymers for Aqueous Boundary Lubrication. Polymers (Basel) 2022; 14:2724. [PMID: 35808769 PMCID: PMC9269121 DOI: 10.3390/polym14132724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/30/2023] Open
Abstract
An extremely efficient lubrication system is achieved in synovial joints by means of bio-lubricants and sophisticated nanostructured surfaces that work together. Molecular bottlebrush structures play crucial roles for this superior tribosystem. For example, lubricin is an important bio-lubricant, and aggrecan associated with hyaluronan is important for the mechanical response of cartilage. Inspired by nature, synthetic bottlebrush polymers have been developed and excellent aqueous boundary lubrication has been achieved. In this review, we summarize recent experimental investigations of the interfacial lubrication properties of surfaces coated with bottlebrush bio-lubricants and bioinspired bottlebrush polymers. We also discuss recent advances in understanding intermolecular synergy in aqueous lubrication including natural and synthetic polymers. Finally, opportunities and challenges in developing efficient aqueous boundary lubrication systems are outlined.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Per M. Claesson
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden;
| |
Collapse
|
4
|
Gonzalez-Martinez JF, Boyd H, Gutfreund P, Welbourn RJ, Robertsson C, Wickström C, Arnebrant T, Richardson RM, Prescott SW, Barker R, Sotres J. MUC5B mucin films under mechanical confinement: A combined neutron reflectometry and atomic force microscopy study. J Colloid Interface Sci 2022; 614:120-129. [DOI: 10.1016/j.jcis.2022.01.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
5
|
Zhang Y, Feng X, Tian G, Jia C. Rheological Properties and Drag Reduction Performance of Puffer Epidermal Mucus. ACS Biomater Sci Eng 2022; 8:460-469. [PMID: 35077127 DOI: 10.1021/acsbiomaterials.1c01049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most species of fish are covered with mucus, which provides the effect of reduction in swimming drag. In this paper, three concentrations of puffer epidermal mucus were obtained from the epidermal mucosa of puffer. The rheological properties and the drag reduction performance of the puffer epidermal mucus were characterized via a rheometer experimental and numerical simulation method. The relationship between the rheological properties and the drag reduction performance was analyzed and discussed, and the drag reduction mechanism of the puffer epidermal mucus was further explored. The results showed that the best drag reduction rate was 6.2% when the inflow velocity and concentration of puffer epidermal mucus were 0.1 m/s and 18.2 g/L, respectively. The rheological properties of puffer epidermal mucus are viscoelastic, and the mucus forms a sliding surface, which reduces the frictional drag of the fluid. In conclusion, this paper may provide a reference for the development of drag-reducing agents and drag-reducing research studies on other fish mucus.
Collapse
Affiliation(s)
- Yaosheng Zhang
- College of Mechanical Engineering, Jiangsu Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Changfeng Jia
- Department of Technology, Three Gorges New Energy Offshore Wind Power Operation and Maintenance Jiangsu Limited Liability Company, Yancheng 224400, China
| |
Collapse
|
6
|
Wojas NA, Dobryden I, Wallqvist V, Swerin A, Järn M, Schoelkopf J, Gane PAC, Claesson PM. Nanoscale Wear and Mechanical Properties of Calcite: Effects of Stearic Acid Modification and Water Vapor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9826-9837. [PMID: 34355909 PMCID: PMC8397405 DOI: 10.1021/acs.langmuir.1c01390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Understanding the wear of mineral fillers is crucial for controlling industrial processes, and in the present work, we examine the wear resistance and nanomechanical properties of bare calcite and stearic acid-modified calcite surfaces under dry and humid conditions at the nanoscale. Measurements under different loads allow us to probe the situation in the absence and presence of abrasive wear. The sliding motion is in general characterized by irregular stick-slip events that at higher loads lead to abrasion of the brittle calcite surface. Bare calcite is hydrophilic, and under humid conditions, a thin water layer is present on the surface. This water layer does not affect the friction force. However, it slightly decreases the wear depth and strongly influences the distribution of wear particles. In contrast, stearic acid-modified surfaces are hydrophobic. Nevertheless, humidity affects the wear characteristics by decreasing the binding strength of stearic acid at higher humidity. A complete monolayer coverage of calcite by stearic acid results in a significant reduction in wear but only a moderate reduction in friction forces at low humidity and no reduction at 75% relative humidity (RH). Thus, our data suggest that the wear reduction does not result from a lowering of the friction force but rather from an increased ductility of the surface region as offered by the stearic acid layer. An incomplete monolayer of stearic acid on the calcite surface provides no reduction in wear regardless of the RH investigated. Clearly, the wear properties of modified calcite surfaces depend crucially on the packing density of the surface modifier and also on the air humidity.
Collapse
Affiliation(s)
- Natalia A. Wojas
- Bioeconomy
and Health Division, Department of Materials and Surface Design, RISE Research Institutes of Sweden, Box 5607, SE-114 86 Stockholm, Sweden
- Division
of Surface Chemistry and Corrosion Science, Department of Chemistry,
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Illia Dobryden
- Division
of Surface Chemistry and Corrosion Science, Department of Chemistry,
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE−971 87 Luleå, Sweden
| | - Viveca Wallqvist
- Bioeconomy
and Health Division, Department of Materials and Surface Design, RISE Research Institutes of Sweden, Box 5607, SE-114 86 Stockholm, Sweden
| | - Agne Swerin
- Department
of Engineering and Chemical Sciences: Chemical Engineering, Faculty
of Health, Science and Technology, Karlstad
University, SE-651 88 Karlstad, Sweden
| | - Mikael Järn
- Bioeconomy
and Health Division, Department of Materials and Surface Design, RISE Research Institutes of Sweden, Box 5607, SE-114 86 Stockholm, Sweden
| | | | - Patrick A. C. Gane
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FI-00076 Aalto, Finland
| | - Per M. Claesson
- Bioeconomy
and Health Division, Department of Materials and Surface Design, RISE Research Institutes of Sweden, Box 5607, SE-114 86 Stockholm, Sweden
- Division
of Surface Chemistry and Corrosion Science, Department of Chemistry,
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| |
Collapse
|
7
|
Liu C, Madl AC, Cirera‐Salinas D, Kress W, Straube F, Myung D, Fuller GG. Mucin-Like Glycoproteins Modulate Interfacial Properties of a Mimetic Ocular Epithelial Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100841. [PMID: 34184839 PMCID: PMC8373091 DOI: 10.1002/advs.202100841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Dry eye disease (DED) has high personal and societal costs, but its pathology remains elusive due to intertwined biophysical and biochemical processes at the ocular surface. Specifically, mucin deficiency is reported in a subset of DED patients, but its effects on ocular interfacial properties remain unclear. Herein a novel in vitro mucin-deficient mimetic ocular surface (Mu-DeMOS) with a controllable amount of membrane-tethered mucin molecules is developed to represent the diseased ocular surfaces. Contact angle goniometry on mimetic ocular surfaces reveals that high surface roughness, but not the presence of hydrophilic mucin molecules, delivers constant hydration over native ocular surface epithelia. Live-cell rheometry confirms that the presence of mucin-like glycoproteins on ocular epithelial cells reduces shear adhesive strength at cellular interfaces. Together, optimal surface roughness and surface chemistry facilitate sustainable lubrication for healthy ocular surfaces, while an imbalance between them contributes to lubrication-related dysfunction at diseased ocular epithelial surfaces. Furthermore, the restoration of low adhesive strength at Mu-DeMOS interfaces through a mucin-like glycoprotein, recombinant human lubricin, suggests that increased frictional damage at mucin-deficient cellular surfaces may be reversible. More broadly, these results demonstrate that Mu-DeMOS is a promising platform for drug screening assays and fundamental studies on ocular physiology.
Collapse
Affiliation(s)
- Chunzi Liu
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Amy C. Madl
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Daniel Cirera‐Salinas
- Global Drug DevelopmentBiopharmaceutical Process & Product DevelopmentNovartis PharmaBaselAG 4002Switzerland
| | - Wolfgang Kress
- Global Drug DevelopmentBiopharmaceutical Process & Product DevelopmentNovartis PharmaBaselAG 4002Switzerland
| | - Frank Straube
- Global Drug DevelopmentBiopharmaceutical Process & Product DevelopmentNovartis PharmaBaselAG 4002Switzerland
| | - David Myung
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
- Department of OphthalmologyStanford UniversityStanfordCA94305USA
| | - Gerald G. Fuller
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| |
Collapse
|
8
|
Boyd H, Gonzalez-Martinez JF, Welbourn RJL, Gutfreund P, Klechikov A, Robertsson C, Wickström C, Arnebrant T, Barker R, Sotres J. A comparison between the structures of reconstituted salivary pellicles and oral mucin (MUC5B) films. J Colloid Interface Sci 2020; 584:660-668. [PMID: 33198975 DOI: 10.1016/j.jcis.2020.10.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS Salivary pellicles i.e., thin films formed upon selective adsorption of saliva, protect oral surfaces against chemical and mechanical insults. Pellicles are also excellent aqueous lubricants. It is generally accepted that reconstituted pellicles have a two-layer structure, where the outer layer is mainly composed of MUC5B mucins. We hypothesized that by comparing the effect of ionic strength on reconstituted pellicles and MUC5B films we could gain further insight into the pellicle structure. EXPERIMENTS Salivary pellicles and MUC5B films reconstituted on solid surfaces were investigated at different ionic strengths by Force Spectroscopy, Quartz Crystal Microbalance with Dissipation, Null Ellipsometry and Neutron Reflectometry. FINDINGS Our results support the two-layer structure for reconstituted salivary pellicles. The outer layer swelled when ionic strength decreased, indicating a weak polyelectrolyte behavior. While initially the MUC5B films exhibited a similar tendency, this was followed by a drastic collapse indicating an interaction between exposed hydrophobic domains. This suggests that mucins in the pellicle outer layer form complexes with other salivary components that prevent this interaction. Lowering ionic strength below physiological values also led to a partial removal of the pellicle inner layer. Overall, our results highlight the importance that the interactions of mucins with other pellicle components play on their structure.
Collapse
Affiliation(s)
- Hannah Boyd
- Department of Biomedical Science & Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden.
| | - Juan F Gonzalez-Martinez
- Department of Biomedical Science & Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Rebecca J L Welbourn
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Philipp Gutfreund
- Institut Laue Langevin, 71 avenue des Martyrs, Grenoble 38000, France
| | - Alexey Klechikov
- Institut Laue Langevin, 71 avenue des Martyrs, Grenoble 38000, France; Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Carolina Robertsson
- Department of Oral Biology and Pathology & Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Claes Wickström
- Department of Oral Biology and Pathology & Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Thomas Arnebrant
- Department of Biomedical Science & Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, UK
| | - Javier Sotres
- Department of Biomedical Science & Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden.
| |
Collapse
|
9
|
|
10
|
Sarkar A, Xu F, Lee S. Human saliva and model saliva at bulk to adsorbed phases - similarities and differences. Adv Colloid Interface Sci 2019; 273:102034. [PMID: 31518820 DOI: 10.1016/j.cis.2019.102034] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/04/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Human saliva, a seemingly simple aqueous fluid, is, in fact, an extraordinarily complex biocolloid that is not fully understood, despite many decades of study. Salivary lubrication is widely believed to be a signature of good oral health and is also crucial for speech, food oral processing and swallowing. However, saliva has been often neglected in food colloid research, primarily due to its high intra- to inter-individual variability and altering material properties upon collection and storage, when used as an ex vivo research material. In the last few decades, colloid scientists have attempted designing model (i.e. 'saliva mimicking fluid') salivary formulations to understand saliva-food colloid interactions in an in vitro set up and its contribution on microstructural aspects, lubrication properties and sensory perception. In this Review, we critically examine the current state of knowledge on bulk and interfacial properties of model saliva in comparison to real human saliva and highlight how far such model salivary formulations can match the properties of real human saliva. Many, if not most, of these model saliva formulations share similarities with real human saliva in terms of biochemical compositions, including electrolytes, pH and concentrations of salivary proteins, such as α-amylase and highly glycosylated mucins. This, together with similarities between model and real saliva in terms of surface charge, has led to significant advancement in decoding various colloidal interactions (bridging, depletion) of charged emulsion droplets and associated sensory perception in the oral phase. However, model saliva represents significant dissimilarity to real saliva in terms of lubricating properties. Based on in-depth examination of properties of mucins derived from animal sources (e.g. pig gastric mucins (PGM) or bovine submaxillary mucin (BSM)), we can recommend that BSM is currently the most optimal commercially available mucin source when attempting to replicate saliva based on surface adsorption and lubrication properties. Even though purification via dialysis or chromatographic techniques may influence various physicochemical properties of BSM, such as structure and surface adsorption, the lubricating properties of model saliva formulations based on BSM are generally superior and more reliable than the PGM counterpart at orally relevant pH. Comparison of mucin-containing model saliva with ex vivo human salivary conditioning films suggests that mucin alone cannot replicate the lubricity of real human salivary pellicle. Mucin-based multi-layers containing mucin and oppositely charged polyelectrolytes may offer promising avenues in the future for engineering biomimetic salivary pellicle, however, this has not been explored in oral tribology experiments to date. Hence, there is a strong need for systematic studies with employment of model saliva formulations containing mucins with and without polycationic additives before a consensus on a standardized model salivary formulation can be achieved. Overall, this review provides the first comprehensive framework on simulating saliva for a particular bulk or surface property when doing food oral processing experiments.
Collapse
|
11
|
Cooper PK, Staddon J, Zhang S, Aman ZM, Atkin R, Li H. Nano- and Macroscale Study of the Lubrication of Titania Using Pure and Diluted Ionic Liquids. Front Chem 2019; 7:287. [PMID: 31106198 PMCID: PMC6498968 DOI: 10.3389/fchem.2019.00287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Titanium is a strong, corrosion-resistant light-weight metal which is poised to replace steel in automobiles, aircraft, and watercraft. However, the titanium oxide (titania) layer that forms on the surface of titanium in air is notoriously difficult to lubricate with conventional lubricants, which restricts its use in moving parts such as bearings. Ionic liquids (ILs) are potentially excellent lubricants for titania but the relationship between IL molecular structure and lubricity for titania remains poorly understood. Here, three-ball-on-disk macrotribology and atomic force microscopy (AFM) nanotribology measurements reveal the lubricity of four IL lubricants: trioctyl(2-ethylhexyl)phosphonium bis(2-ethylhexyl)phosphate (P8,8,8,6(2) BEHP), trihexyl(tetradecyl)phosphonium bis(2-ethylhexyl)phosphate (P6,6,6,14 BEHP), trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (P6,6,6,14 ( i C8)2PO2), and trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide (P6,6,6,14 TFSI). The macrotribology measurements demonstrated that friction decreased in P6,6,6,14 TFSI by four times (μ = 0.13) compared to in hexadecane, even at 60°C and loads up to 10 N. On the other hand, P8,8,8,6(2) BEHP reduced friction most effectively in the AFM nanotribology measurements. The results were interpreted in terms of the lubrication regime. The lower viscosity of P6,6,6,14 TFSI coupled with its good boundary lubrication made it the most effective IL for the macrotribology measurements, which were in the mixed lubrication regime. Conversely, the cation structure of P8,8,8,6(2) BEHP allowed it to adsorb strongly to the surface and minimized energy dissipation in the nanotribology measurements, although its high bulk viscosity inhibited its performance in the mixed regime. These results reinforce the importance of carefully selecting IL lubricants based on the lubrication regime of the sliding surfaces.
Collapse
Affiliation(s)
- Peter K Cooper
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Joe Staddon
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Songwei Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zachary M Aman
- Fluid Science and Resources, Department of Chemical Engineering, University of Western Australia, Crawley, WA, Australia
| | - Rob Atkin
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Hua Li
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
12
|
Dobryden I, Cortes Ruiz M, Zhang X, Dėdinaitė A, Wieland DCF, Winnik FM, Claesson PM. Thermoresponsive Pentablock Copolymer on Silica: Temperature Effects on Adsorption, Surface Forces, and Friction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:653-661. [PMID: 30605339 DOI: 10.1021/acs.langmuir.8b03729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adsorption of hydrophilic or amphiphilic multiblock copolymers provides a powerful means to produce well-defined "smart" surfaces, especially if one or several blocks are sensitive to external stimuli. We focus here on an A-B-A-B-A copolymer, where A is a cationic poly((3-acrylamido-propyl)-trimethylammonium chloride) (PAMPTMA) block containing 15 (end blocks) or 30 (middle block) repeat units and B is a neutral thermosensitive water-soluble poly(2-isopropyl-2-oxazoline) (PIPOZ) block with 50 repeat units. X-ray reflectivity and quartz crystal microbalance with dissipation monitoring were employed to study the adsorption of PAMPTMA15-PIPOZ50-PAMPTMA30-PIPOZ50-PAMPTMA15 on silica surfaces. The latter technique was employed at different temperatures up to 50 °C. Surface forces and friction between the two silica surfaces across aqueous pentablock copolymer solutions at different temperatures were determined with the atomic force microscopy colloidal probe force and friction measurements. The cationic pentablock copolymer was found to have a high affinity to the negatively charged silica surface, leading to a thin (2 nm) and rigid adsorbed layer. A steric force was encountered at a separation of around 3 nm from hard wall contact. A capillary condensation of a polymer-rich phase was observed at the cloud point of the solution. The friction forces were evaluated using Amontons' rule modified with an adhesion term.
Collapse
Affiliation(s)
- Illia Dobryden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | - Maria Cortes Ruiz
- Department of Chemical Engineering , Grove School of Engineering, the City College of New York , New York , New York 10031 , United States
| | - Xuwei Zhang
- Department of Chemistry , University of Montreal , CP 6128 Succursale Centre Ville , Montreal , Québec H3C3 J7 , Canada
| | - Andra Dėdinaitė
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
- Division of Bioscience and Materials , RISE Research Institutes of Sweden , SE-114 86 Stockholm , Sweden
| | - D C Florian Wieland
- Helmholtz Zentrum Geesthacht, Institute for Materials Research , Max-Planck Straße 1 , 21502 Geesthacht , Germany
| | - Françoise M Winnik
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki FI00014 , Finland
- International Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba 305-0044 , Japan
| | - Per M Claesson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
- Division of Bioscience and Materials , RISE Research Institutes of Sweden , SE-114 86 Stockholm , Sweden
| |
Collapse
|
13
|
Ding D, Kundukad B, Somasundar A, Vijayan S, Khan SA, Doyle PS. Design of Mucoadhesive PLGA Microparticles for Ocular Drug Delivery. ACS APPLIED BIO MATERIALS 2018; 1:561-571. [DOI: 10.1021/acsabm.8b00041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawei Ding
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Enterprise
Wing, Singapore 138602, Singapore
| | - Binu Kundukad
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Enterprise
Wing, Singapore 138602, Singapore
| | - Ambika Somasundar
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117576, Singapore
| | - Sindhu Vijayan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Saif A. Khan
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Enterprise
Wing, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117576, Singapore
| | - Patrick S. Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Enterprise
Wing, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Building 66, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Ex-Vivo Force Spectroscopy of Intestinal Mucosa Reveals the Mechanical Properties of Mucus Blankets. Sci Rep 2017; 7:7270. [PMID: 28779181 PMCID: PMC5544714 DOI: 10.1038/s41598-017-07552-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023] Open
Abstract
Mucus is the viscous gel that protects mucosal surfaces. It also plays a crucial role in several diseases as well as in mucosal drug delivery. Because of technical limitations, mucus properties have mainly been addressed by in-vitro studies. However, this approach can lead to artifacts as mucus collection can alter its structure. Here we show that by using an implemented atomic force microscope it is possible to measure the interactions between micro-particles and mucus blankets ex-vivo i.e., on fresh excised mucus-covered tissues. By applying this method to study the small intestine, we were able to quantify the stiffness and adhesiveness of its mucus blanket at different pH values. We also demonstrate the ability of mucus blankets to bind and attract particles hundreds of µm away from their surface, and to trap and bury them even if their size is as big as 15 µm.
Collapse
|
15
|
Mackie AR, Goycoolea FM, Menchicchi B, Caramella CM, Saporito F, Lee S, Stephansen K, Chronakis IS, Hiorth M, Adamczak M, Waldner M, Nielsen HM, Marcelloni L. Innovative Methods and Applications in Mucoadhesion Research. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600534] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/10/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Alan R. Mackie
- Institute of Food Research; Norwich Research Park Norwich NR4 7UA UK
- School of Food Science and Nutrition; University of Leeds; LS2 9JT Leeds UK
| | - Francisco M. Goycoolea
- School of Food Science and Nutrition; University of Leeds; LS2 9JT Leeds UK
- Institut für Biologie und Biotechnologie der Pflanzen; Westfälische Wilhelms-Universität Münster; Schlossgarten 3 48149 Münster Germany
| | - Bianca Menchicchi
- Department of Medicine 1; University of Erlangen-Nueremberg; Hartmanstrasse 14 91052 Erlangen Germany
- Nanotechnology Group; Department of Plant Biology and Biotechnology; University of Münster; Schlossgarten 3 48149 Münster Germany
| | | | - Francesca Saporito
- Department of Drug Sciences; University of Pavia; Via Taramelli, 12 27100 Pavia Italy
| | - Seunghwan Lee
- Department of Mechanical Engineering; Technical University of Denmark; Produktionstorvet 2800 Kgs Lyngby Copenhagen Denmark
| | - Karen Stephansen
- National Food Institute; Technical University of Denmark; Søltofts Plads, 2800 Kgs Lyngby Copenhagen Denmark
| | - Ioannis S. Chronakis
- National Food Institute; Technical University of Denmark; Søltofts Plads, 2800 Kgs Lyngby Copenhagen Denmark
| | - Marianne Hiorth
- School of Pharmacy; University of Oslo; Postboks 1068 Blindern 0316 OSLO Norway
| | - Malgorzata Adamczak
- School of Pharmacy; University of Oslo; Postboks 1068 Blindern 0316 OSLO Norway
| | - Max Waldner
- Medizinische Klinik 1; Ulmenweg 18 91054 Erlangen Germany
| | - Hanne Mørck Nielsen
- Department of Pharmacy; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luciano Marcelloni
- S.I.I.T. S.r.l Pharmaceutical & Health Food Supplements; Via Canova 5/7-20090 Trezzano S/N Milan Italy
| |
Collapse
|
16
|
An J, Liu X, Dedinaite A, Korchagina E, Winnik FM, Claesson PM. Effect of solvent quality and chain density on normal and frictional forces between electrostatically anchored thermoresponsive diblock copolymer layers. J Colloid Interface Sci 2017; 487:88-96. [DOI: 10.1016/j.jcis.2016.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
|
17
|
Abstract
In living organisms the aqueous medium is used for providing low friction forces. This is achieved by synergistic actions of different biomolecules that together accomplish a high load bearing capacity and sustain an easily sheared water layer.
Collapse
Affiliation(s)
- Andra Dėdinaitė
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Chemistry
- Division of Surface and Corrosion Science
- Drottning Kristinas väg 51
| | - Per M. Claesson
- KTH Royal Institute of Technology
- School of Chemical Science and Engineering
- Department of Chemistry
- Division of Surface and Corrosion Science
- Drottning Kristinas väg 51
| |
Collapse
|
18
|
Liu X, Yun SH, Claesson PM. Frictional behavior of micro-patterned silicon surface. J Colloid Interface Sci 2015; 456:76-84. [DOI: 10.1016/j.jcis.2015.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 11/24/2022]
|
19
|
Delvar A, Lindh L, Arnebrant T, Sotres J. Interaction of Polyelectrolytes with Salivary Pellicles on Hydroxyapatite Surfaces under Erosive Acidic Conditions. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21610-21618. [PMID: 26368580 DOI: 10.1021/acsami.5b07118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The modification of acidic beverage formulations with food-approved, nonhazardous substances with antierosive properties has been identified as a key strategy for counteracting the prevalence of dental erosion, i.e., the acid-induced dissolution of hydroxyapatite (HA, the main mineral component of tooth surfaces). While many of such substances have been reported, very little is known on how they interact with teeth and inhibit their acid-induced dissolution. With the aim of filling this gap in knowledge, we have studied under acidic conditions the interaction between two polyelectrolytes of differing ionic character, carboxymethyl cellulose (CMC) and chitosan, and saliva-coated hydroxyapatite, i.e., a model for the outer surface of teeth. These studies were performed by means of ellipsometry, quartz crystal microbalance with dissipation monitoring, and atomic force microscopy. We also studied, by means of pH variations, how dissolution of saliva-coated HA is affected by including these polyelectrolytes in the erosive solutions. Our results confirm that salivary films protect HA from acid-induced dissolution, but only for a limited time. If the acid is modified with CMC, this polyelectrolyte incorporates into the salivary films prolonging in time their protective function. Eventually, the CMC-modified salivary films are removed from the HA surfaces. From this moment, HA is continuously coated with CMC, but this offers only a weak protection against erosion. When the acid is modified with the cationic chitosan, the polyelectrolyte adsorbs on top of the salivary films. Chitosan-modified salivary films are also eventually replaced by bare chitosan films. In this case both coatings offer a similar protection against HA dissolution, which is nevertheless notably higher than that offered by CMC.
Collapse
Affiliation(s)
- Alice Delvar
- Chemistry Department, ENSIACET , 31030 Toulouse, France
| | | | | | | |
Collapse
|
20
|
Wang X, Du M, Han H, Song Y, Zheng Q. Boundary lubrication by associative mucin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4733-40. [PMID: 25843576 DOI: 10.1021/acs.langmuir.5b00604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mucus lubricants are widely distributed in living organisms. Such lubricants consist of a gel structure constructed by associative mucin. However, limited tribological studies exist on associative mucin fluids. The present research is the first to investigate the frictional behavior of a typical intact vertebrate mucin (loach skin mucin), which can recover the gel structure of mucus via hydrophobic association under physiological conditions (5-10 mg/mL loach skin mucin dissolved in water). Both rough hydrophobic and hydrophilic polydimethylsiloxane (PDMS) rubber plates were used as friction substrates. Up to 10 mg/mL loach skin mucin dissolved in water led to a 10-fold reduction in boundary friction of the two substrates. The boundary-lubricating ability for hydrophilic PDMS decreased with rubbing time, whereas that for hydrophobic PDMS remained constant. The boundary-lubricating abilities of the mucin on hydrophobic PDMS and hydrophilic PDMS showed almost similar responses toward changing concentration or sodium dodecyl sulfate (SDS). The mucin fluids reduced boundary friction coefficients (μ) only at concentrations (c) in which intermucin associations were formed, with a relationship shown as μ ∼ c(-0.7). Destroying intermucin associations by SDS largely impaired the boundary-lubricating ability. Results reveal for the first time that intermolecular association of intact mucin in bulk solution largely enhances boundary lubrication, whereas tightly adsorbed layer plays a minor role in the lubrication. This study indicates that associated mucin should contribute considerably to the lubricating ability of biological mucus in vivo.
Collapse
Affiliation(s)
- Xiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongpeng Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer. J Colloid Interface Sci 2015; 443:162-9. [DOI: 10.1016/j.jcis.2014.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 11/18/2022]
|
22
|
Seo JH, Tsutsumi Y, Kobari A, Shimojo M, Hanawa T, Yui N. Modulation of friction dynamics in water by changing the combination of the loop- and graft-type poly(ethylene glycol) surfaces. SOFT MATTER 2015; 11:936-942. [PMID: 25515504 DOI: 10.1039/c4sm02082k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A Velcro-like poly(ethylene glycol) (PEG) interface was prepared in order to control the friction dynamics of material surfaces. Graft- and loop-type PEGs were formed on mirror-polished Ti surfaces using an electrodeposition method with mono- and di-amine functionalized PEGs. The friction dynamics of various combinations of PEG surfaces (i.e., graft-on-graft, loop-on-loop, graft-on-loop, and loop-on-graft) were investigated by friction testing. Here, only the Velcro-like combinations (graft-on-loop and loop-on-graft) exhibited a reversible friction behavior (i.e., resetting the kinetic friction coefficient and the reappearance of the maximum static friction coefficient) during the friction tests. The same tendency was observed when the molecular weights of loop- and graft-type PEGs were tested at 1 k and 10 k, respectively. This indicates that a Velcro-like friction behavior could be induced by simply changing the conformation of PEGs, which suggests a novel concept of altering polymer surfaces for the effective control of friction dynamics.
Collapse
Affiliation(s)
- Ji-Hun Seo
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Direct Determination of Chitosan–Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate–Mucin Interactions. Polymers (Basel) 2015. [DOI: 10.3390/polym7020161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
24
|
Nikogeorgos N, Efler P, Kayitmazer AB, Lee S. "Bio-glues" to enhance slipperiness of mucins: improved lubricity and wear resistance of porcine gastric mucin (PGM) layers assisted by mucoadhesion with chitosan. SOFT MATTER 2015; 11:489-498. [PMID: 25413148 DOI: 10.1039/c4sm02021a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A synergetic lubricating effect between porcine gastric mucin (PGM) and chitosan based on their mucoadhesive interaction is reported at a hydrophobic interface comprised of self-mated polydimethylsiloxane (PDMS) surfaces. In acidic solution (pH 3.2) and low concentrations (0.1 mg mL(-1)), the interaction of PGM with chitosan led to surface recharge and size shrinkage of their aggregates. This resulted in higher mass adsorption on the PDMS surface with an increasing weight ratio of [chitosan]/[PGM + chitosan] up to 0.50. While neither PGM nor chitosan exhibited slippery characteristics, the coefficient of friction being close to 1, their mixture improved considerably the lubricating efficiency (the coefficient of friction is 0.011 at an optimum mixing ratio) and wear resistance of the adsorbed layers. These findings are explained by the role of chitosan as a physical crosslinker within the adsorbed PGM layers, resulting in higher cohesion and lower interlayer chain interpenetration and bridging.
Collapse
Affiliation(s)
- Nikolaos Nikogeorgos
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
25
|
Taira Y, McNamee CE. Polysaccharide films at an air/liquid and a liquid/silicon interface: effect of the polysaccharide and liquid type on their physical properties. SOFT MATTER 2014; 10:8558-8572. [PMID: 25248865 DOI: 10.1039/c4sm01572j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigated the effect of the polysaccharide type, the subphase on which the Langmuir monolayers were prepared, and the liquid in which the properties of the transferred monolayers were measured on the physical properties of the polysaccharide films at an air/aqueous interface and at a silicon substrate, and the forces and friction of the polysaccharide transferred films when measured in solution against a silica probe. Chitosan was modified with a silane coupling agent to make chitosan derived compounds with a low and a medium molecular weight. Chitin and the chitosan-derived compounds were used to make Langmuir monolayers at air/water and air/pH 9 buffer interfaces. The monolayers were transferred to silicon substrates via Langmuir-Blodgett deposition, and the chitosan-derived compounds subsequently chemically reacted with the silicon substrates. Atomic force microscope force and friction measurements were made in water and in the pH 9 buffer, where the water and the pH 9 buffer acted as a good and a bad solvent for the polysaccharides, respectively. The polysaccharide type affected the friction of the polysaccharide film, where the physically adsorbed chitin gave the lowest friction. The friction of L-chitosan was higher than that of M-chitosan in water, suggesting that the molecular weight of the polymer affects its lubricating ability. The forces and friction of the polysaccharide films changed when the subphase on which the Langmuir monolayers were formed was changed or when the liquid in which the properties of the films adsorbed at the silicon substrate were measured was changed. The friction increased significantly when the liquid was changed from water to the pH 9 buffer. This increase was explained by the reduced charge of the chitin and chitosan-derived materials due to the pH increase, the screening of the charges by the salts in the buffer, and the possible hardening of the monolayer caused by the adsorption of salts from the buffer.
Collapse
Affiliation(s)
- Yasunori Taira
- Department of Medical Engineering and Cardiology, Tohoku University, Japan
| | | |
Collapse
|
26
|
Aroonsang W, Sotres J, El-Schich Z, Arnebrant T, Lindh L. Influence of substratum hydrophobicity on salivary pellicles: organization or composition? BIOFOULING 2014; 30:1123-1132. [PMID: 25377485 DOI: 10.1080/08927014.2014.974155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Different physico-chemical properties (eg adsorption kinetics, thickness, viscoelasticity, and mechanical stability) of adsorbed salivary pellicles depend on different factors, including the properties (eg charge, roughness, wettability, and surface chemistry) of the substratum. Whether these differences in the physico-chemical properties are a result of differences in the composition or in the organization of the pellicles is not known. In this work, the influence of substratum wettability on the composition of the pellicle was studied. For this purpose, pellicles eluted from substrata of different but well-characterized wettabilities were examined by means of sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The results showed that substratum hydrophobicity did not have a major impact on pellicle composition. In all substrata, the major pellicle components were found to be cystatins, amylases and large glycoproteins, presumably mucins. In turn, interpretation of previously reported data based on the present results suggests that variations in substratum wettability mostly affect the organization of the pellicle components.
Collapse
|
27
|
Nikogeorgos N, Madsen JB, Lee S. Influence of impurities and contact scale on the lubricating properties of bovine submaxillary mucin (BSM) films on a hydrophobic surface. Colloids Surf B Biointerfaces 2014; 122:760-766. [PMID: 25189473 DOI: 10.1016/j.colsurfb.2014.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 01/01/2023]
Abstract
Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively. At both contact scales, the purity of BSM and the presence of BSA were quantitatively discriminated. The presence of BSA was responsible for higher frictional forces observed from BSM samples containing relatively larger amount of BSA. But, the mechanisms contributing to higher friction forces by BSA were different at different contact scales. At the macroscale contact, higher friction forces were caused by faster and dominant adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption of the macromolecules from tribostress. Nevertheless, all BSMs lowered the interfacial friction forces due to large contact area and a large number of BSM molecules in the contact area. At the nanoscale contact, however, no significant desorption of the macromolecules is expected in tribological contacts because of too small contact area and extremely small number of BSM molecules involved in the contact area. Instead, increasingly higher friction forces with increasing amount of BSA in BSM layer are attributed to higher viscosity caused by BSA in the layer. Comparable size of AFM probes with BSM molecules allowed them to penetrate through the BSM layers and to scratch on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates.
Collapse
Affiliation(s)
- Nikolaos Nikogeorgos
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jan Busk Madsen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
28
|
An J, Dėdinaitė A, Nilsson A, Holgersson J, Claesson PM. Comparison of a Brush-with-Anchor and a Train-of-Brushes Mucin on Poly(methyl methacrylate) Surfaces: Adsorption, Surface Forces, and Friction. Biomacromolecules 2014; 15:1515-25. [DOI: 10.1021/bm500173s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junxue An
- School
of Chemical Science and Engineering, Department of Chemistry, Division
of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Andra Dėdinaitė
- School
of Chemical Science and Engineering, Department of Chemistry, Division
of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Chemistry,
Materials and Surfaces, SP Technical Research Institute of Sweden, P. O. Box 5607, SE-114 86 Stockholm, Sweden
| | - Anki Nilsson
- Recopharma
AB, Arvid Wallgrens backe 20, 413 46 Gothenburg, Sweden
| | - Jan Holgersson
- Department
of Clinical Chemistry and Transfusion Medicine, The Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Vita stråket
13, SE-413 45 Gothenburg, Sweden
| | - Per M. Claesson
- School
of Chemical Science and Engineering, Department of Chemistry, Division
of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Chemistry,
Materials and Surfaces, SP Technical Research Institute of Sweden, P. O. Box 5607, SE-114 86 Stockholm, Sweden
| |
Collapse
|
29
|
Experimental Investigations of Biological Lubrication at the Nanoscale: The Cases of Synovial Joints and the Oral Cavity. LUBRICANTS 2013. [DOI: 10.3390/lubricants1040102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Wang M, Liu C, Thormann E, Dėdinaitė A. Hyaluronan and Phospholipid Association in Biolubrication. Biomacromolecules 2013; 14:4198-206. [DOI: 10.1021/bm400947v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Wang
- KTH Royal Institute of Technology, School of
Chemical Sciences and Engineering, Department of Chemistry, Surface
and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden
| | - Chao Liu
- KTH Royal Institute of Technology, School of
Chemical Sciences and Engineering, Department of Chemistry, Surface
and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden
| | - Esben Thormann
- KTH Royal Institute of Technology, School of
Chemical Sciences and Engineering, Department of Chemistry, Surface
and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden
| | - Andra Dėdinaitė
- KTH Royal Institute of Technology, School of
Chemical Sciences and Engineering, Department of Chemistry, Surface
and Corrosion Science, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden
- SP Technical Research Institute of Sweden, SP Chemistry, Materials and Surfaces,
Box 5607, SE-114 86 Stockholm, Sweden
| |
Collapse
|
31
|
Nugroho RWN, Pettersson T, Odelius K, Höglund A, Albertsson AC. Force interactions of nonagglomerating polylactide particles obtained through covalent surface grafting with hydrophilic polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8873-8881. [PMID: 23799799 DOI: 10.1021/la401076m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nonagglomerating polylactide (PLA) particles with various interaction forces were designed by covalent photografting. PLA particles were surface grafted with hydrophilic poly(acrylic acid) (PAA) or poly(acrylamide) (PAAm), and force interactions were determined using colloidal probe atomic force microscopy. Long-range repulsive interactions were detected in the hydrophilic/hydrophilic systems and in the hydrophobic/hydrophilic PLA/PLA-g-PAAm system. In contrast, attractive interactions were observed in the hydrophobic PLA/PLA and in the hydrophobic/hydrophilic PLA/PLA-g-PAA systems. AFM was also used in the tapping mode to determine the surface roughness of both neat and surface-grafted PLA film substrates. The imaging was performed in the dry state as well as in salt solutions of different concentrations. Differences in surface roughness were identified as conformational changes induced by the altered Debye screening length. To understand the origin of the repulsive force, the AFM force profiles were compared to the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory and the Alexander de Gennes (AdG) model. The steric repulsion provided by the different grafted hydrophilic polymers is a useful tool to inhibit agglomeration of polymeric particles. This is a key aspect in many applications of polymer particles, for example in drug delivery.
Collapse
Affiliation(s)
- Robertus Wahyu N Nugroho
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
32
|
Veeregowda DH, Kolbe A, van der Mei HC, Busscher HJ, Herrmann A, Sharma PK. Recombinant supercharged polypeptides restore and improve biolubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3426-31. [PMID: 23696056 DOI: 10.1002/adma.201300188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/01/2013] [Indexed: 05/23/2023]
Abstract
Recombinant supercharged polypeptides (SUPs) with low cytotoxicity are developed and applied to rejuvenate the lubrication of naturally occurring salivary conditioning films (SCFs). SUPs with 72 positive charges adsorbed and rigidified the SCFs and recruited mucins to form a hydrated layer. These SCFs with SUPs have higher mechanical strength and sustain lubricating effect for longer duration compared with only SCFs.
Collapse
Affiliation(s)
- Deepak H Veeregowda
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, W.J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Iarikov DD, Ducker WA. Effect of grafted oligopeptides on friction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5760-5769. [PMID: 23594080 DOI: 10.1021/la4002225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.
Collapse
Affiliation(s)
- Dmitri D Iarikov
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | | |
Collapse
|
34
|
Ankerfors C, Johansson E, Pettersson T, Wågberg L. Use of polyelectrolyte complexes and multilayers from polymers and nanoparticles to create sacrificial bonds between surfaces. J Colloid Interface Sci 2013; 391:28-35. [DOI: 10.1016/j.jcis.2012.09.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 11/16/2022]
|
35
|
Veeregowda DH, Busscher HJ, Vissink A, Jager DJ, Sharma PK, van der Mei HC. Role of structure and glycosylation of adsorbed protein films in biolubrication. PLoS One 2012; 7:e42600. [PMID: 22916138 PMCID: PMC3419733 DOI: 10.1371/journal.pone.0042600] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/10/2012] [Indexed: 12/12/2022] Open
Abstract
Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy), we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation of adsorbed protein films, providing an important clue to design effective therapeutics to restore biolubrication in patients with insufficient biolubrication.
Collapse
Affiliation(s)
- Deepak H. Veeregowda
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Henk J. Busscher
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral Maxillofacial Surgery, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Derk-Jan Jager
- Department of Oral Maxillofacial Surgery, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Prashant K. Sharma
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Henny C. van der Mei
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Lee HS, Tsai S, Kuo CC, Bassani AW, Pepe-Mooney B, Miksa D, Masters J, Sullivan R, Composto RJ. Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion. J Colloid Interface Sci 2012; 385:235-43. [PMID: 22840874 DOI: 10.1016/j.jcis.2012.06.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Polymer adsorption onto an artificial saliva (AS) layer is investigated using quartz-crystal microbalance with dissipation (QCM-D) and chitosan as the model polymer. QCM-D is utilized in an innovative manner to monitor in situ adsorption of chitosan (CH) onto a hydroxyapatite (HA) coated crystal and to examine the ability of the adsorbed layer to "protect" the HA upon sequential exposure to acidic solutions. After deposition of a thin AS layer (16 nm), the total thickness on the HA substrate increases to 37 nm upon exposure to CH at pH 5.5 for 10 min. Correspondingly, the surface charge changes from negative (i.e., AS) to positive, consistent with the adsorption the polycationic CH onto or into the AS layer. Upon exposure to an oxidizing agent, the chitosan cross-links and collapses as noted by a decrease in thickness to 10 nm and an increase in the shear modulus by an order of magnitude. Atomic force microscopy (AFM) is used to determine the surface morphology and RMS roughness of the coated and HA surfaces after citric acid challenges. Both physisorbed and cross-linked chitosan are demonstrated to limit and prevent the erosion of HA, respectively.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang Z, Zuo CC, Cao QQ, Li LJ, Gao MF. Adsorption properties of comb-like polymer on nanotube surface. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Surface and friction forces between grafted polysaccharide layers in the absence and presence of surfactant. J Colloid Interface Sci 2011; 364:351-8. [PMID: 21945670 DOI: 10.1016/j.jcis.2011.08.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
|
39
|
Hang F, Lu D, Bailey RJ, Jimenez-Palomar I, Stachewicz U, Cortes-Ballesteros B, Davies M, Zech M, Bödefeld C, Barber AH. In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy. NANOTECHNOLOGY 2011; 22:365708. [PMID: 21844643 DOI: 10.1088/0957-4484/22/36/365708] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A nanomechanical testing set-up is developed by integrating an atomic force microscope (AFM) for force measurements with a scanning electron microscope (SEM) to provide imaging capabilities. Electrospun nanofibers of polyvinyl alcohol (PVA), nylon-6 and biological mineralized collagen fibrils (MCFs) from antler bone were manipulated and tensile-tested using the AFM-SEM set-up. The complete stress-strain behavior to failure of individual nanofibers was recorded and a diversity of mechanical properties observed, highlighting how this technique is able to elucidate mechanical behavior due to structural composition at nanometer length scales.
Collapse
Affiliation(s)
- Fei Hang
- Department of Materials, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stokes JR, Macakova L, Chojnicka-Paszun A, de Kruif CG, de Jongh HHJ. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3474-3484. [PMID: 21366278 DOI: 10.1021/la104040d] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricant's viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio of the wet mass and viscosity at ∼10(4) s(-1) for the smooth surface. These findings are independent of the different polysaccharides used in the study and their different viscoelastic flow properties.
Collapse
Affiliation(s)
- Jason R Stokes
- Unilever Corporate Research, Unilever R&D Colworth, Colworth House, Sharnbrook MK44 ILQ, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Harvey NM, Yakubov GE, Stokes JR, Klein J. Normal and Shear Forces between Surfaces Bearing Porcine Gastric Mucin, a High-Molecular-Weight Glycoprotein. Biomacromolecules 2011; 12:1041-50. [DOI: 10.1021/bm101369d] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Neale M. Harvey
- The Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Gleb E. Yakubov
- Unilever R&D, Colworth Science Park, Bedford MK44 1LQ, United Kingdom
| | - Jason R. Stokes
- Unilever R&D, Colworth Science Park, Bedford MK44 1LQ, United Kingdom
| | - Jacob Klein
- The Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
42
|
Svensson O, Arnebrant T. Mucin layers and multilayers — Physicochemical properties and applications. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Coles JM, Chang DP, Zauscher S. Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Quinton PM. Role of epithelial HCO3⁻ transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 2010; 299:C1222-33. [PMID: 20926781 DOI: 10.1152/ajpcell.00362.2010] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The invitation to present the 2010 Hans Ussing lecture for the Epithelial Transport Group of the American Physiological Society offered me a unique, special, and very surprising opportunity to join in saluting a man whom I met only once, but whose work was the basis, not only for my career, but also for finding the molecular defect in the inherited disease cystic fibrosis (CF). In this context, I will venture to make the tribute with a new explanation of why a mutation in a single gene that codes for an anion channel can cause devastation of multiple epithelial systems with pathogenic mucus. In so doing, I hope to raise awareness of a new role for that peculiar anion around which so much physiology revolves, HCO(3)(-). I begin by introducing CF pathology as I question the name of the disease as well as the prevalent view of the basis of its pathology by considering: 1) mucus, 2) salt, and 3) HCO(3)(-). I then present recent data showing that HCO(3)(-) is required for normal mucus discharge, and I will close with conjecture as to how HCO(3)(-) may support mucus discharge and why the failure to transport this electrolyte is pathogenic in CF.
Collapse
Affiliation(s)
- Paul M Quinton
- Department of Pediatrics, Rady Children’s Hospital, University of California San Diego School of Medicine, La Jolla, California 92093-0830, USA.
| |
Collapse
|
45
|
Dunér G, Thormann E, Ramström O, Dėdinaitė A. Letter to the Editor: Friction between Surfaces—Polyacrylic Acid Brush and Silica—Mediated by Calcium Ions. J DISPER SCI TECHNOL 2010. [DOI: 10.1080/01932691.2010.511973] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Protein interactions with bottle-brush polymer layers: Effect of side chain and charge density ratio probed by QCM-D and AFM. J Colloid Interface Sci 2010; 349:265-74. [DOI: 10.1016/j.jcis.2010.05.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/14/2010] [Accepted: 05/15/2010] [Indexed: 11/18/2022]
|
47
|
Aulin C, Johansson E, Wågberg L, Lindström T. Self-organized films from cellulose I Nanofibrils using the layer-by-layer technique. Biomacromolecules 2010; 11:872-82. [PMID: 20196583 DOI: 10.1021/bm100075e] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The possibility of forming self-organized films using only charge-stabilized dispersions of cellulose I nanofibrils with opposite charges is presented, that is, the multilayers were composed solely of anionically and cationically modified microfibrillated cellulose (MFC) with a low degree of substitution. The build-up behavior and the properties of the layer-by-layer (LbL)-constructed films were studied using a quartz crystal microbalance with dissipation (QCM-D) and stagnation point adsorption reflectometry (SPAR). The adsorption behavior of cationic/anionic MFC was compared with that of polyethyleneimine (PEI)/anionic MFC. The water contents of five bilayers of cationic/anionic MFC and PEI/anionic MFC were approximately 70 and 50%, respectively. The MFC surface coverage was studied by atomic force microscopy (AFM) measurements, which clearly showed a more dense fibrillar structure in the five bilayer PEI/anionic MFC than in the five bilayer cationic/anionic MFC. The forces between the cellulose-based multilayers were examined using the AFM colloidal probe technique. The forces on approach were characterized by a combination of electrostatic and steric repulsion. The wet adhesive forces were very long-range and were characterized by multiple adhesive events. Surfaces covered by PEI/anionic MFC multilayers required more energy to be separated than surfaces covered by cationic/anionic MFC multilayers.
Collapse
Affiliation(s)
- Christian Aulin
- BIM Kemi AB, Box 3102, SE-443 03 Stenkullen, Sweden, Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, The Royal Institute of Technology, SE-100 44 Stockholm, Sweden, and Innventia AB, Box 5604, SE-114 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
48
|
Muchekehu RW, Quinton PM. A new role for bicarbonate secretion in cervico-uterine mucus release. J Physiol 2010; 588:2329-42. [PMID: 20478977 DOI: 10.1113/jphysiol.2010.187237] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cervical mucus thinning and release during the female reproductive cycle is thought to rely mainly on fluid secretion. However, we now find that mucus released from the murine reproductive tract critically depends upon concurrent bicarbonate (HCO(3)(-)) secretion. Prostaglandin E(2) (PGE(2))- and carbachol-stimulated mucus release was severely inhibited in the absence of serosal HCO(3)(-), HCO(3)(-) transport, or functional cystic fibrosis transmembrane conductance regulator (CFTR). In contrast to mucus release, PGE(2)- and carbachol-stimulated fluid secretion was not dependent on bicarbonate or on CFTR, but was completely blocked by niflumic acid. We found stimulated mucus release was severely impaired in the cystic fibrosis F508 reproductive tract, even though stimulated fluid secretion was preserved. Thus, CFTR mutations and/or poor bicarbonate secretion may be associated with reduced female fertility associated with abnormal mucus and specifically, may account for the increased viscosity and lack of cyclical changes in cervical mucus long noted in women with cystic fibrosis.
Collapse
Affiliation(s)
- Ruth W Muchekehu
- Department of Pediatrics-0830, School of Medicine, University of California-San Diego, La Jolla, CA 92093-0830, USA
| | | |
Collapse
|
49
|
Halthur TJ, Arnebrant T, Macakova L, Feiler A. Sequential adsorption of bovine mucin and lactoperoxidase to various substrates studied with quartz crystal microbalance with dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4901-4908. [PMID: 20184356 DOI: 10.1021/la902267c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mucin and lactoperoxidase are both natively present in the human saliva. Mucin provides lubricating and antiadhesive function, while lactoperoxidase has antimicrobial activity. We propose that combined films of the two proteins can be used as a strategy for surface modification in biomedical applications such as implants or biosensors. In order to design and ultilize mixed protein films, it is necessary to understand the variation in adsorption behavior of the proteins onto different surfaces and how it affects their interaction. The quartz crystal microbalance with dissipation (QCM-D) technique has been used to extract information of the adsorption properties of bovine mucin (BSM) and lactoperoxidase (LPO) to gold, silica, and hydrophobized silica surfaces. The information has further been used to retrieve information of the viscoelastic properties of the adsorbed film. The adsorption and compaction of BSM were found to vary depending on the nature of the underlying bare surface, adsorbing as a thick highly hydrated film with loops and tails extending out in the bulk on gold and as a thinner film with much lower adsorbed amount on silica; and on hydrophobic surfaces, BSM adsorbs as a flat and much more compact layer. On gold and silica, the highly hydrated BSM film is cross-linked and compacted by the addition of LPO, whereas the compaction is not as pronounced on the already more compact film formed on hydrophobic surfaces. The adsorption of LPO to bare surfaces also varied depending on the type of surface. The adsorption profile of BSM onto LPO-coated surfaces mimicked the adsorption to the underlying surface, implying little interaction between the LPO and BSM. The interaction between the protein layers was interpreted as a combination of electrostatic and hydrophobic interactions, which was in turn influenced by the interaction of the proteins with the different substrates.
Collapse
Affiliation(s)
- Tobias J Halthur
- Biomedical Laboratory Science and Technology, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden.
| | | | | | | |
Collapse
|
50
|
Claesson P, Makuska R, Varga I, Meszaros R, Titmuss S, Linse P, Pedersen JS, Stubenrauch C. Bottle-brush polymers: adsorption at surfaces and interactions with surfactants. Adv Colloid Interface Sci 2010; 155:50-7. [PMID: 20152957 DOI: 10.1016/j.cis.2010.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
Abstract
Solution and adsorption properties of both charged and uncharged bottle-brush polymers have been investigated. The solution conformation and interactions in solution have been investigated by small-angle scattering techniques. The association of the bottle-brush polymers with anionic surfactants has also been studied. Surfactant binding isotherm measurements, NMR, surface tension measurements, as well as SAXS, SANS and light scattering techniques were utilized for understanding the association behaviour in bulk solutions. The adsorption of the bottle-brush polymers onto oppositely charged surfaces has been explored using a battery of techniques, including reflectometry, ellipsometry, quartz crystal microbalance, and neutron reflectivity. The combination of these techniques allowed determination of adsorbed mass, layer thickness, water content, and structural changes occurring during layer formation. The adsorption onto mica was found to be very different to that on silica, and an explanation for this was sought by employing a lattice mean-field theory. The model was able to reproduce a number of salient experimental features characterizing the adsorption of the bottle-brush polymers over a wide range of compositions, spanning from uncharged bottle-brushes to linear polyelectrolytes. This allowed us to shed light on the importance of electrostatic surface properties and non-electrostatic surface-polymer affinity for the adsorption. The interactions between bottle-brush polymers and anionic surfactants in adsorbed layers have also been elucidated using ellipsometry, neutron reflectivity and surface force measurements.
Collapse
|