1
|
Elawadi GA. Low-Energy Desalination Techniques, Development of Capacitive Deionization Systems, and Utilization of Activated Carbon. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5130. [PMID: 39459835 PMCID: PMC11509592 DOI: 10.3390/ma17205130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Water desalination technology has emerged as a critical area of research, particularly with the advent of more cost-effective alternatives to conventional methods, such as reverse osmosis and thermal evaporation. Given the vital importance of water for life and the scarcity of potable water for agriculture and livestock-especially in the Kingdom of Saudi Arabia-the capacitive deionization (CDI) method for removing salt from water has been highlighted as the most economical choice compared to other techniques. CDI applies a voltage difference across two porous electrodes to extract salt ions from saline water. This study will investigate water desalination using CDI, utilizing a compact DC power source under 5 volts and a standard current of 2 amperes. We will convert waste materials like sunflower seeds, peanut shells, and rice husks into activated carbon through carbonization and chemical activation to improve its pore structure. Critical parameters for desalination, including voltage, flow rate, and total dissolved solids (TDS) concentration, have been established. The initial TDS levels are set at 2000, 1500, 1000, and 500 ppm, with flow rates of 38.2, 16.8, and 9.5 mL/min across the different voltage settings of 2.5, 2, and 1.5 volts, applicable to both direct and inverse desalination methods. The efficiency at TDS concentrations of 2000, 1500, and 1000 ppm remains between 18% and 20% for up to 8 min. Our results indicate that the desalination process operates effectively at a TDS level of 750 ppm, achieving a maximum efficiency of 45% at a flow rate of 9.5 mL/min. At voltages of 2.5 V, 2 V, and 1.5 V, efficiencies at 3 min are attained with a constant flow rate of 9.5 mL/min and a TDS of 500 ppm, with the maximum desalination efficiency reaching 56%.
Collapse
Affiliation(s)
- Gaber A Elawadi
- Department of Mechanical Engineering, College of Engineering and Computer Sciences, Jazan University, 114 Almarefah Rd., Jazan 45142, Saudi Arabia
| |
Collapse
|
2
|
Shim J, Lee S, Yun N, Son M, Chae SH, Cho KH. Autonomous real-time control for membrane capacitive deionization. WATER RESEARCH 2024; 262:122086. [PMID: 39032338 DOI: 10.1016/j.watres.2024.122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Artificial intelligence has been employed to simulate and optimize the performance of membrane capacitive deionization (MCDI), an emerging ion separation process. However, a real-time control for optimal MCDI operation has not been investigated yet. In this study, we aimed to develop a reinforcement learning (RL)-based control model and investigate the model to find an energy-efficient MCDI operation strategy. To fulfill the objectives, we established three long-short term memory models to predict applied voltage, outflow pH, and outflow electrical conductivity. Also, four RL agents were trained to minimize outflow concentration and energy consumption simultaneously. Consequently, actor-critic (A2C) and proximal policy optimization (PPO2) achieved the ion separation goal (<0.8 mS/cm) as they determined the electrical current and pump speed to be low. Particularly, A2C kept the parameters consistent in charging MCDI, which caused lower energy consumption (0.0128 kWh/m3) than PPO2 (0.0363 kWh/m3). To understand the decision-making process of A2C, the Shapley additive explanation based on the decision tree model estimated the influence of input parameters on the control parameters. The results of this study demonstrate the feasibility of RL-based controls in MCDI operations. Thus, we expect that the RL-based control model can improve further and enhance the efficiency of water treatment technologies.
Collapse
Affiliation(s)
- Jaegyu Shim
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Suin Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Nakyeong Yun
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Moon Son
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Kim J, Rotenberg B. Donnan equilibrium in charged slit-pores from a hybrid nonequilibrium molecular dynamics/Monte Carlo method with ions and solvent exchange. J Chem Phys 2024; 161:054107. [PMID: 39087531 DOI: 10.1063/5.0220913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Ion partitioning between different compartments (e.g., a porous material and a bulk solution reservoir), known as Donnan equilibrium, plays a fundamental role in various contexts such as energy, environment, or water treatment. The linearized Poisson-Boltzmann (PB) equation, capturing the thermal motion of the ions with mean-field electrostatic interactions, is practically useful to understand and predict ion partitioning, despite its limited applicability to conditions of low salt concentrations and surface charge densities. Here, we investigate the Donnan equilibrium of coarse-grained dilute electrolytes confined in charged slit-pores in equilibrium with a reservoir of ions and solvent. We introduce and use an extension to confined systems of a recently developed hybrid nonequilibrium molecular dynamics/grand canonical Monte Carlo simulation method ("H4D"), which enhances the efficiency of solvent and ion-pair exchange via a fourth spatial dimension. We show that the validity range of linearized PB theory to predict the Donnan equilibrium of dilute electrolytes can be extended to highly charged pores by simply considering renormalized surface charge densities. We compare with simulations of implicit solvent models of electrolytes and show that in the low salt concentrations and thin electric double layer limit considered here, an explicit solvent has a limited effect on the Donnan equilibrium and that the main limitations of the analytical predictions are not due to the breakdown of the mean-field description but rather to the charge renormalization approximation, because it only focuses on the behavior far from the surfaces.
Collapse
Affiliation(s)
- Jeongmin Kim
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
4
|
Zhu Y, Miller C, Lian B, Wang Y, Fletcher J, Zhou H, He Z, Lyu S, Purser M, Juracich P, Sweeney D, Waite TD. Brackish groundwater desalination by constant current membrane capacitive deionization (MCDI): Results of a long-term field trial in Central Australia. WATER RESEARCH 2024; 254:121413. [PMID: 38489850 DOI: 10.1016/j.watres.2024.121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
A long-term field trial of membrane capacitive deionization (MCDI) was conducted in a remote community in the Northern Territory of Australia, with the aim of producing safe palatable drinking water from groundwater that contains high concentrations of salt and hardness ions and other contaminants. This trial lasted for 1.5 years, which, to our knowledge, is one of the longest reported studies of pilot-scale MCDI field trials. The 8-module MCDI pilot unit reduced salt concentration to below the Australian Drinking Water Guideline value of 600 mg/L total dissolved solids (TDS) concentration with a relatively high water recovery of 71.6 ± 8.7 %. During continuous constant current operation and electrode discharging at near zero volts, a rapid performance deterioration occurred that was primarily attributed to insufficient desorption of multivalent ions from the porous carbon electrodes. Performance could be temporarily recovered using chemical cleaning and modified operating procedures however these approaches could not fundamentally resolve the issue of insufficient electrode performance regeneration. Constant current discharging of the electrodes to a negative cell cut-off voltage was hence employed to enhance the stability and overall performance of the MCDI unit during the continuous operation. An increase in selectivity of monovalent ions over divalent ions was also attained by implementing negative voltage discharging. The energy consumption of an MCDI system with a capacity of 1000 m3/day was projected to be 0.40∼0.53 kWh/m3, which is comparable to the energy consumption of electrodialysis reversal (EDR) and brackish water reverse osmosis (BWRO) systems of the same capacity. The relatively low maintenance requirements of the MCDI system rendered it the most cost-efficient water treatment technology for deployment in remote locations. The LCOW of an MCDI system with a capacity of 1000 m3/day was projected to be AU$1.059/m3 and AU$1.146/m3 under two operational modes, respectively. Further investigation of particular water-energy trade-offs amongst MCDI performance metrics is required to facilitate broader application of this promising water treatment technology.
Collapse
Affiliation(s)
- Yunyi Zhu
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Christopher Miller
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Boyue Lian
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
| | - Hang Zhou
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
| | - Zhizhao He
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Shunzhi Lyu
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China
| | - Megan Purser
- Power and Water Corporation, Northern Territory, Australia
| | - Peter Juracich
- Power and Water Corporation, Northern Territory, Australia
| | - David Sweeney
- Power and Water Corporation, Northern Territory, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia.
| |
Collapse
|
5
|
Kim H, Kim S, Lee B, Presser V, Kim C. Emerging Frontiers in Multichannel Membrane Capacitive Deionization: Recent Advances and Future Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4567-4578. [PMID: 38377328 DOI: 10.1021/acs.langmuir.3c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Capacitive deionization (CDI) has emerged as a promising desalination technology and recently promoted the development of multichannel membrane capacitive deionization (MC-MCDI). In MC-MCDI, the independent control of multiflow channels, including the feed and electrolyte channels, enables the optimization of electrode operation in various modes, such as concentration gradients and reverse voltage discharge, facilitating semicontinuous operation. Moreover, the integration of redox couples into MC-MCDI has led to advancements in redox-mediated desalination. Specifically, the introduction of redox-active species helps enhance the ion removal efficiency and reduce energy consumption during desalination. This systematic approach, combining principles from CDI and electrodialysis, results in more sustainable and efficient desalination. These advancements have contributed to improved desalination performance and practical feasibility, rendering MC-MCDI an increasingly attractive option for addressing water scarcity challenges. Despite the considerable interest in and potential of this process, there is currently no comprehensive review available that covers the operational features and applications of MC-MCDI. Therefore, this Review provides an overview of recent research progress, focusing on the unique cell configuration, vital operation principles, and potential advantages over conventional CDI. Additionally, innovative applications of MC-MCDI are discussed. The Review concludes with insights into future research directions, potential opportunities in industrial desalination technology, and the fundamental and practical challenges for successful implementation.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Environmental Engineering with Institute of Energy/Environment Convergence Technologies and Department of Future Convergence Engineering, Kongju National University, 1223-24, Cheonan-daero, Cheonan-si 31080, Republic of Korea
| | - Seonghwan Kim
- Department of Environmental Engineering with Institute of Energy/Environment Convergence Technologies and Department of Future Convergence Engineering, Kongju National University, 1223-24, Cheonan-daero, Cheonan-si 31080, Republic of Korea
- Samsung Research, Samsung Electronics Company, Limited, Seoul 06765, Republic of Korea
| | - Byeongho Lee
- Department of Environmental Engineering with Institute of Energy/Environment Convergence Technologies and Department of Future Convergence Engineering, Kongju National University, 1223-24, Cheonan-daero, Cheonan-si 31080, Republic of Korea
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Campus D22, 66123 Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Campus D22, 66123 Saarbrücken, Germany
- Saarland Center for Energy Materials and Sustainability (Saarene), Campus C42, 66123 Saarbrücken, Germany
| | - Choonsoo Kim
- Department of Environmental Engineering with Institute of Energy/Environment Convergence Technologies and Department of Future Convergence Engineering, Kongju National University, 1223-24, Cheonan-daero, Cheonan-si 31080, Republic of Korea
| |
Collapse
|
6
|
Sahray Z, Shocron AN, Uwayid R, Diesendruck CE, Suss ME. Extreme Monovalent Ion Selectivity Via Capacitive Ion Exchange. WATER RESEARCH 2023; 246:120684. [PMID: 37864883 DOI: 10.1016/j.watres.2023.120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Capacitive deionization (CDI) is an emerging technology applied to brackish water desalination and ion selective separations. A typical CDI cell consists of two microporous carbon electrodes, where ions are stored in charged micropore via electrosorption into electric double layers. For typical feed waters containing mixtures of several cations and anions, some of which are polluting, models are needed to guide cell design for a target separation, given the complex electrosorption dynamics of each species. An emerging application for CDI is brackish water treatment for direct agricultural use, for which it is often important to selectively electrosorb monovalent Na+ cations over divalent Ca2+ and Mg2+ cations. Recently, it was demonstrated that utilizing constant-voltage CDI cell charging with sulfonated cathodes and short charging times enabled monovalent-selective separations. Here, we utilize a one-dimensional transient CDI model for a flow-through electrode CDI cell to elucidate the mechanisms enabling such separations. We report the discovery that an asymmetric CDI cell with a chemically functionalized cathode induces electric charges in the pristine anode at 0 V cell voltage, which has important implications for monovalent cation selectivity. Leveraging our mechanistic understanding, with our model we uncover a novel operational regime we term "capacitive ion exchange", where the concentration of one ion species increases while competing species concentration decreases. This regime enables resin-less exchange of monovalent cations for divalent cations, with chemical-free electrical regeneration.
Collapse
Affiliation(s)
- Zohar Sahray
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Amit N Shocron
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rana Uwayid
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel; Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa, Israel
| | - Matthew E Suss
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel; Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa, Israel; Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Sun J, Garg S, Waite TD. A Novel Integrated Flow-Electrode Capacitive Deionization and Flow Cathode System for Nitrate Removal and Ammonia Generation from Simulated Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14726-14736. [PMID: 37721968 DOI: 10.1021/acs.est.3c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrochemical reduction of nitrate is a promising method for the removal of nitrate from contaminated groundwater. However, the presence of hardness cations (Ca2+ and Mg2+) in groundwaters hampers the electroreduction of nitrate as a result of the precipitation of carbonate-containing solids of these elements on the cathode surface. Thus, some pretreatment process is required to remove unwanted hardness cations. Herein, we present a proof-of-concept of a novel three-chambered flow electrode unit, constituting a flow electrode capacitive deionization (FCDI) unit and a flow cathode (FC) unit, which achieves cation removal, nitrate capture and reduction, and ammonia generation in a single cell without the need for any additional chemicals/electrolyte. The addition of the FCDI unit not only achieves removal of hardness cations but also concentrates the nitrate ions and other anions, which facilitates nitrate reduction in the subsequent FC unit. Results show that the FCDI cell voltage influences electrode stability but has a minimal impact on the overall nitrate removal performance. The concentration of coexisting anions influences the nitrate removal due to competitive sorption of anions on the electrode surface. Our results further show that stable electrochemical performance was obtained over 26 h of operation. Overall, this study provides a scalable strategy for continuous nitrate electroreduction and ammonia generation from nitrate contaminated groundwaters containing hardness ions.
Collapse
Affiliation(s)
- Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
| |
Collapse
|
8
|
Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew Chem Int Ed Engl 2023; 62:e202302180. [PMID: 37052355 DOI: 10.1002/anie.202302180] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/14/2023]
Abstract
Recent years have seen the emergence of capacitive deionization (CDI) as a promising desalination technique for converting sea and wastewater into potable water, due to its energy efficiency and eco-friendly nature. However, its low salt removal capacity and parasitic reactions have limited its effectiveness. As a result, the development of porous carbon nanomaterials as electrode materials have been explored, while taking into account of material characteristics such as morphology, wettability, high conductivity, chemical robustness, cyclic stability, specific surface area, and ease of production. To tackle the parasitic reaction issue, membrane capacitive deionization (mCDI) was proposed which utilizes ion-exchange membranes coupled to the electrode. Fabrication techniques along with the experimental parameters used to evaluate the desalination performance of different materials are discussed in this review to provide an overview of improvements made for CDI and mCDI desalination purposes.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Najat Maher Aldaqqa
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emad Alhseinat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis & Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
He Z, Li Y, Wang Y, Miller CJ, Fletcher J, Lian B, Waite TD. Insufficient desorption of ions in constant-current membrane capacitive deionization (MCDI): Problems and solutions. WATER RESEARCH 2023; 242:120273. [PMID: 37393810 DOI: 10.1016/j.watres.2023.120273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Membrane capacitive deionization (MCDI) is a water desalination technology that involves the removal of charged ions from water under an electric field. While constant-current MCDI coupled with stopped-flow during ion discharge is expected to exhibit high water recovery and good performance stability, previous studies have typically been undertaken using NaCl solutions only with limited investigation of MCDI performance using multi-electrolyte solutions. In the present work, the desalination performance of MCDI was evaluated using feed solutions with different levels of hardness. The increase of hardness resulted in the degradation of desalination performance with the desalination time (Δtd), total removed charge, water recovery (WR) and productivity decreasing by 20.5%, 21.8%, 3.8% and 3.2%, respectively. A more serious degradation of WR and productivity would be caused if Δtd decreases further. Analysis of the voltage profiles and effluent ion concentrations reveal that the insufficient desorption of divalent ions at constant-current discharge to 0 V was the principal reason for the degradation of performance. The Δtd and WR can be improved by discharging the cell using a lower current but the productivity decreased by 15.7% on decreasing the discharging current from 161 to 107 mA. Discharging the cell to a negative potential was shown to be a better option with the Δtd, total removed charge, WR and productivity increasing by 27.4%, 23.9%, 3.6% and 5.3%, respectively, when the cell was discharged to a minimum voltage of - 0.3 V. Use of such a method should be feasible for operation of full scale MCDI plants and would be expected to lead to better regeneration of the electrode, improved desalination performance and, potentially, a significant reduction in the need for use of clean-in-place procedures.
Collapse
Affiliation(s)
- Zhizhao He
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yingnan Li
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney 2052, Australia
| | - Boyue Lian
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Bales C, Kinsela AS, Miller C, Wang Y, Zhu Y, Lian B, Waite TD. Removal of Trace Uranium from Groundwaters Using Membrane Capacitive Deionization Desalination for Potable Supply in Remote Communities: Bench, Pilot, and Field Scale Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37464745 DOI: 10.1021/acs.est.3c03477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The performance of membrane capacitive deionization (MCDI) desalination was investigated at bench, pilot, and field scales for the removal of uranium from groundwater. It was found that up to 98.9% of the uranium can be removed using MCDI from a groundwater source containing 50 μg/L uranium, with the majority (94.5%) being retained on the anode. Uranium was found to physiochemically adsorb to the electrode without the application of a potential by displacing chloride ions, with 16.6% uranium removal at the bench scale via this non-electrochemical process. This displacement of chloride did not occur during the MCDI adsorption phase with the adsorption of all ions remaining constant during a time series analysis on the pilot unit. For the scenarios tested on the pilot unit, the flowrate of the product water ranged from 0.15 to 0.23 m3/h, electrode energy consumption from 0.28 to 0.51 kW h/m3, and water recovery from 69 to 86%. A portion (13-53% on the pilot unit) of the uranium was found to remain on the electrodes after the brine discharge phase with conventional cleaning techniques unable to release this retained uranium. MCDI was found to be a suitable means to remove uranium from groundwater systems though with the need to manage the accumulation of uranium on the electrodes over time.
Collapse
Affiliation(s)
- Clare Bales
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew S Kinsela
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christopher Miller
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuan Wang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| | - Yunyi Zhu
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| | - Boyue Lian
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| |
Collapse
|
11
|
Cañas Kurz EE, Hellriegel U, Hdoufane A, Benaceur I, Anane M, Jaiti F, El-Abbassi A, Hoinkis J. Comparison of Pilot-Scale Capacitive Deionization (MCDI) and Low-Pressure Reverse Osmosis (LPRO) for PV-Powered Brackish Water Desalination in Morocco for Irrigation of Argan Trees. MEMBRANES 2023; 13:668. [PMID: 37505034 PMCID: PMC10384803 DOI: 10.3390/membranes13070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
The use of saline water resources in agriculture is becoming a common practice in semi-arid and arid regions such as the Mediterranean. In the SmaCuMed project, the desalination of brackish groundwater (TDS = 2.8 g/L) for the irrigation of Argan trees in Essaouira, Morocco, to 2 g/L and 1 g/L (33% and 66% salt removal, respectively) using low-pressure reverse osmosis (LPRO) (p < 6 bar) and membrane capacitive deionization (MCDI) was tested at pilot scale. MCDI showed 40-70% lower specific energy consumption (SEC) and 10-20% higher water recovery; however, the throughput of LPRO (2.9 m3/h) was up to 1.5 times higher than that of MCDI. In addition, both technologies were successfully powered by PV solar energy with total water costs ranging from EUR 0.82 to EUR 1.34 per m3. In addition, the water quality in terms of sodium adsorption ratio was slightly higher with LPRO resulting in higher concentrations of Ca2+ and Mg2+, due to blending with feed water. In order to evaluate both technologies, additional criteria such as investment and specific water costs, operability and brine disposal have to be considered.
Collapse
Affiliation(s)
- Edgardo E Cañas Kurz
- Center of Applied Research, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany
| | - Ulrich Hellriegel
- Center of Applied Research, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany
| | - Abdelkarim Hdoufane
- Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40010, Morocco
| | - Ibtissame Benaceur
- Faculty of Sciences and Technologies Errachidia, Moulay Ismail University, Errachidia 52000, Morocco
| | - Makram Anane
- Centre de Recherches et des Technologies des Eaux, Soliman 8020, Tunisia
| | - Fatima Jaiti
- Faculty of Sciences and Technologies Errachidia, Moulay Ismail University, Errachidia 52000, Morocco
| | | | - Jan Hoinkis
- Center of Applied Research, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany
| |
Collapse
|
12
|
Mao Y, Qin H, Zhang H, Wu W, Wu D. Unraveling the effect of CDI electrode characteristics on Cs removal from the perspective of ion transfer and energy composition. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131263. [PMID: 36989788 DOI: 10.1016/j.jhazmat.2023.131263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Capacitive deionization (CDI) is surprisingly efficient to remove the aqueous Cs ion due to its small hydrated size and low hydration energy. But current experimental techniques fail in investigating deeply into the influence of some key electrode characteristics due to the difficulty in experimentally fabricating the electrodes as desired. This work presents a dynamic transport model of salt ions in a flow-by CDI cell. By using this model, the electrode thickness, macro- and micro-porosity are investigated to evaluate Cs ion removal efficiency and energy efficiency particularly from the aspect of ion transfer by the approach of decomposing energy contribution. The results indicate that the thick electrode coupled with the high current could greatly improve the effluent quality, but reduce the salt adsorption capacity (SAC). The increasement of the current density from 3 A/m2 to 6 A/m2 greatly decreases the SAC from 4.0 mg/g to 0.8 mg/g. Lower current could prolong the charging period, leading to more ions stored in the micropore. Not all the electrical energy is consumed for separating ions from the feed as desired, but some are used for driving ions diffusing in the electrodes. Consequently charging efficiency will be reduced especially when the electrodes are characterized with high porosity. It is highlighted that future work is required to further consider the complex details of porous structure and pore connectivity.
Collapse
Affiliation(s)
- Yunfeng Mao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China
| | - Huai Qin
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hua Zhang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
| | - Weidong Wu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Abdel-Aziz HF, Hamdy AE, Sharaf A, Abd El-Wahed AEWN, Elnaggar IA, Seleiman MF, Omar M, Al-Saif AM, Shahid MA, Sharaf M. Effects of Fogging System and Nitric Oxide on Growth and Yield of 'Naomi' Mango Trees Exposed to Frost Stress. Life (Basel) 2023; 13:1359. [PMID: 37374143 DOI: 10.3390/life13061359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In years with unfavorable weather, winter frost during the blossoming season can play a significant role in reducing fruit yield and impacting the profitability of cultivation. The mango Naomi cultivar Mangifera indica L. has a low canopy that is severely affected by the effects of frost stress. As a result of the canopy being exposed to physiological problems, vegetative development is significantly inhibited. The current investigation aimed to study the influence of spraying nitric oxide and fogging spray systems on Naomi mango trees grafted on 'Succary' rootstock under frost stress conditions. The treatments were as follows: nitric oxide (NO) 50 and 100 μM, fogging spray system, and control. In comparison to the control, the use of nitric oxide and a fogging system significantly improved the leaf area, photosynthesis pigments of the leaf, the membrane stability index, yield, and physical and chemical characteristics of the Naomi mango cultivar. For instance, the application of 50 μM NO, 100 μM NO, and the fogging spray system resulted in an increase in yield by 41.32, 106.12, and 121.43% during the 2020 season, and by 39.37, 101.30, and 124.68% during the 2021 season compared to the control, respectively. The fogging spray system and highest level of NO decreased electrolyte leakage, proline content, total phenolic content, catalase (CAT), peroxidases (POX), and polyphenol oxidase (PPO) enzyme activities in leaves. Furthermore, the number of damaged leaves per shoot was significantly reduced after the application of fogging spray systems and nitric oxide in comparison to the control. Regarding vegetative growth, our results indicated that the fogging spray system and spraying nitric oxide at 100 μM enhanced the leaf surface area compared to the control and other treatments. A similar trend was noticed regarding yield and fruit quality, whereas the best values were obtained when the fogging spray system using nitric oxide was sprayed at a concentration of 100 μM. The application of fogging spray systems and nitric oxide can improve the production and fruit quality of Naomi mango trees by reducing the effects of adverse frost stress conditions.
Collapse
Affiliation(s)
- Hosny F Abdel-Aziz
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Ashraf E Hamdy
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Sharaf
- Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | | | - Ibrahim A Elnaggar
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Magdy Omar
- Department of Agriculture Botany, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Adel M Al-Saif
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo 11651, Egypt
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
14
|
Shi C, Wang H, Li A, Zhu G, Zhao X, Wu F. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization. WATER RESEARCH 2023; 230:119517. [PMID: 36608524 DOI: 10.1016/j.watres.2022.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) is a new technology for ion removal that delivers sustainable deionization performance. However, FCDI consumes relatively high amounts of energy compared with other conventional desalination technologies, which hinders the industrial application of FCDI. In this study, the energy consumption of each FCDI component was simulated using a steady-state FCDI model to investigate and optimize the main components of energy consumption. Overall, the established process model can be used for theoretical investigation and enhancing our fundamental understanding of the energy consumption of each FCDI component, and provides the design and optimization of FCDI systems. The results showed that the energy consumption of the flow electrodes dominated under most conditions. Changing the operating parameters could obviously affect energy consumption and the energy consumption structure. However, increasing the flow rate and activated carbon (AC) content of the flow-electrode could decrease the energy consumption of the electrode, and the energy consumed by the ion-exchange membranes (IEMs) and desalination chamber was the greatest. These two parts of energy consumption could not be significantly reduced by changing operational parameters. Thus, to further reduce the energy consumption, optimization of the FCDI equipment was carried out by adding titanium mesh to the flow electrodes and the desalination chamber of the FCDI cell. The results showed that the energy consumption of optimized FCDI decreased by 51.9% compared with the original FCDI. The long-term experiment using optimized FCDI showed good stability and repeatability.
Collapse
Affiliation(s)
- Chufeng Shi
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ao Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Nordstrand J, Zuili L, Dutta J. Fully 3D Modeling of Electrochemical Deionization. ACS OMEGA 2023; 8:2607-2617. [PMID: 36687060 PMCID: PMC9850726 DOI: 10.1021/acsomega.2c07133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical deionization devices are crucial for meeting global freshwater demands. One such is capacitive deionization (CDI), which is an emerging technology especially suited for brackish water desalination. In this work, we extend an electrolytic capacitor (ELC) model that exploits the similarities between CDI systems and supercapacitor/battery systems. Compared to the previous work, we introduce new implementational strategies for enhanced stability, a more detailed method of describing charge efficiency, layered integration of leakage reactions, and theory extensions to new material and operational conditions. Thanks to the stability and flexibility the approach brings, the current work can present the first fully coupled and spatiotemporal three-dimensional (3D) CDI model. We hope that this can pave the way toward generalized and full-scale modeling of CDI units under varying conditions. A 3D model can be beneficial for investigating asymmetric CDI device structures, and the work investigates a flow-through device structure with inlet and outlet pipes at the center and corners, respectively. The results show that dead (low-flow) areas can reduce desalination rates while also raising the total leakage. However, the ionic flux in this device is still enough under normal operating conditions to ensure reasonable performance. In conclusion, researchers will now have some flexibility in designing device structures that are not perfectly symmetric (real-life case), and hence we share the model files to facilitate future research with 3D modeling of these electrochemical deionization devices.
Collapse
|
16
|
Gabitto JF, Tsouris C. A review of transport models in charged porous electrodes. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1051594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is increased interest in many different processes based upon interactions between a charged solid surface and a liquid electrolyte. Energy storage in capacitive porous materials, ionic membranes, capacitive deionization (CDI) for water desalination, capacitive energy generation, removal of heavy ions from wastewater streams, and geophysical applications are some examples of these processes. Process development is driven by the production of porous materials with increasing surface area. Understanding of the physical phenomena occurring at the charged solid-electrolyte interface will significantly improve the design and development of more effective applied processes. The goal of this work is to critically review the current knowledge in the field. The focus is on concepts behind different models. We start by briefly presenting the classical electrical double layer (EDL) models in flat surfaces. Then, we discuss models for porous materials containing macro-, meso-, and micro-pores. Some of the current models for systems comprising two different pore sizes are also included. Finally, we discuss the concepts behind the most common models used for ionic transport and Faradaic processes in porous media. The latter models are used for simulation of electrosorption processes in porous media.
Collapse
|
17
|
Beke M, Velempini T, Pillay K. Synthesis and application of NiO-ZrO2@g-C3N4 Nanocomposite for High-performance Hybrid Capacitive Deionisation. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
18
|
Zhu Y, Lian B, Wang Y, Miller C, Bales C, Fletcher J, Yao L, Waite TD. Machine learning modelling of a membrane capacitive deionization (MCDI) system for prediction of long-term system performance and optimization of process control parameters in remote brackish water desalination. WATER RESEARCH 2022; 227:119349. [PMID: 36402097 DOI: 10.1016/j.watres.2022.119349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Membrane Capacitive Deionization (MCDI) is a promising electrochemical technique for water desalination. Previous studies have confirrmed the effectiveness of MCDI in removing contaminants from brackish groundwaters, especially in remote areas where electricity is scarce. However, as with other water treatment technologies, performance deterioration of the MCDI system still occurs, hindering the stability of long-term operation. Herein, a machine learning (ML) modelling framework and various ML models were developed to (i) investigate the performance deterioration due particularly to insufficient charging/discharging of the electrode caused by accumulation of ions and electrode scaling and (ii) optimise MCDI operating parameters such that the impacts of these deleterious effects on unit performance were minimized. The ML models developed in this work exhibited a prediction accuracy of cycle time with average mean absolute percentage error (MAPE) values of 16.82% and 16.09% after 30-fold cross validation for Random Forest (RF) and Multilayer Perceptron (MLP) models respectively. The pre-trained ML model predicted different declining trends of water production for two different operating conditions and provided corresponding recommendations on frequencies of chemical cleaning. A case study on the adjustment of operating parameters using the results suggested by the optimization ML model was conducted. The model validation results showed that the overall water production and water recovery of the system using the cycle-based optimized process control parameters (SCN 1) exceeds the MCDI system performance under three fixed parameter settings that were used at each stage of SCN 1 by 1.78% to 4.48% and 2.95% to 9.46%, respectively. Permutation-based and Shapley additive explanation (SHAP) coefficients were also employed for variable importance (VIMP) analysis to uncover the "black-box" nature of the ML models and to better understand the various features' contributions to overall MCDI system performance.
Collapse
Affiliation(s)
- Yunyi Zhu
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Boyue Lian
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Christopher Miller
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Clare Bales
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
| | - Lina Yao
- School of Computer Science and Engineering, UNSW Sydney, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia.
| |
Collapse
|
19
|
Tauk M, Bechelany M, Lagerge S, Sistat P, Habchi R, Cretin M, Zaviska F. Influence of particle size distribution on carbon-based flowable electrode viscosity and desalination efficiency in flow electrode capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Vos JE, Inder Maur D, Rodenburg HP, van den Hoven L, Schoemaker SE, de Jongh PE, Erné BH. Electric Potential of Ions in Electrode Micropores Deduced from Calorimetry. PHYSICAL REVIEW LETTERS 2022; 129:186001. [PMID: 36374685 DOI: 10.1103/physrevlett.129.186001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The internal energy of capacitive porous carbon electrodes was determined experimentally as a function of applied potential in aqueous salt solutions. Both the electrical work and produced heat were measured. The potential dependence of the internal energy is explained in terms of two contributions, namely the field energy of a dielectric layer of water molecules at the surface and the potential energy of ions in the pores. The average electric potential of the ions is deduced, and its dependence on the type of salt suggests that the hydration strength limits how closely ions can approach the surface.
Collapse
Affiliation(s)
- Joren E Vos
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Danny Inder Maur
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Hendrik P Rodenburg
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Lennart van den Hoven
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Suzan E Schoemaker
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Ben H Erné
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
21
|
Theory of bipolar connections in capacitive deionization and principles of structural design. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Baudino L, Santos C, Pirri CF, La Mantia F, Lamberti A. Recent Advances in the Lithium Recovery from Water Resources: From Passive to Electrochemical Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201380. [PMID: 35896956 PMCID: PMC9507372 DOI: 10.1002/advs.202201380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing amount of batteries used in today's society has led to an increase in the demand of lithium in the last few decades. While mining resources of this element have been steadily exploited and are rapidly depleting, water resources constitute an interesting reservoir just out of reach of current technologies. Several techniques are being explored and novel materials engineered. While evaporation is very time-consuming and has large footprints, ion sieves and supramolecular systems can be suitably tailored and even integrated into membrane and electrochemical techniques. This review gives a comprehensive overview of the available solutions to recover lithium from water resources both by passive and electrically enhanced techniques. Accordingly, this work aims to provide in a single document a rational comparison of outstanding strategies to remove lithium from aqueous sources. To this end, practical figures of merit of both main groups of techniques are provided. An absence of a common experimental protocol and the resulting variability of data and experimental methods are identified. The need for a shared methodology and a common agreement to report performance metrics are underlined.
Collapse
Affiliation(s)
- Luisa Baudino
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| | - Cleis Santos
- Energiespeicher‐ und EnergiewandlersystemeUniversität BremenBibliothekstraße 128359BremenGermany
| | - Candido F. Pirri
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| | - Fabio La Mantia
- Energiespeicher‐ und EnergiewandlersystemeUniversität BremenBibliothekstraße 128359BremenGermany
| | - Andrea Lamberti
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| |
Collapse
|
23
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Deng W, Chen Y, Wang Z, Chen X, Gao M, Chen F, Chen W, Ao T. Regulation, quantification and application of the effect of functional groups on anion selectivity in capacitive deionization. WATER RESEARCH 2022; 222:118927. [PMID: 35933818 DOI: 10.1016/j.watres.2022.118927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Capacitive deionization (CDI) has been widely studied as a highly efficient method for the removal of charged pollutants in sewage. However, the control of ion selectivity has always been challenging, limiting the application of this approach. In this article, the regulation of different acid/base functional group distributions on the selectivity of four anions are comprehensively discussed. The effects are quantified through simulations and statistical analysis. Finally, optimized CDI is used for the simultaneous denitrification and dephosphorization of municipal wastewater. The results show that carboxyl groups significantly promote the selectivity of dihydrogen phosphate and that amino groups promote the selectivity of sulfate and dihydrogen phosphate. Density functional theory is used to calculate the influence of the functional groups on the anion adsorption energy. Compared with other anions, the energy released is improved when carboxyl groups are included in the adsorption of dihydrogen phosphate. The increase in the released energy is highest when amino groups participate in the adsorption of sulfate and is second-highest when they participate in the adsorption of dihydrogen phosphate. Statistical analysis shows that the valence and hydration energy of the anion and the effect of the functional groups on anion adsorption are significantly related to anion adsorption (P < 0.05), and the correlation coefficient of the model is 0.7253. A CDI stack for the removal of phosphorus and nitrogen under high background ion concentrations is constructed and applied, and it is shown that the treated wastewater meets higher discharge standards. Moreover, the method reaches nearly 80% water production under optimized operating modes. This study reveals the importance of functional groups in ion-selective regulation and provides a potential method for high-standard wastewater treatment.
Collapse
Affiliation(s)
- WenYang Deng
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan 610225, China
| | - Yi Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610103, China
| | - Zhen Wang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan 610225, China
| | - XiaoHong Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Gao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - FangFang Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610103, China
| | - WenQing Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - TianQi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Zheng P, Wang L, Wang Q, Zhang J. Enhanced capacitive deionization by rGO@PEI/MoS2 nanocomposites with rich heterostructures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Sulfur & nitrogen co-doped electrospun carbon nanofibers as freestanding electrodes for membrane capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
28
|
Shocron A, Atlas I, Suss M. Predicting ion selectivity in water purification by capacitive deionization: electric double layer models. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Abstract
Nanoporous carbon texture makes fundamental understanding of the electrochemical processes challenging. Based on density functional theory (DFT) results, the proposed atomistic approach takes into account topological and chemical defects of the electrodes and attributes to them a partial charge that depends on the applied voltage. Using a realistic carbon nanotexture, a model is developed to simulate the ionic charge both at the surface and in the subnanometric pores of the electrodes of a supercapacitor. Before entering the smallest pores, ions dehydrate at the external surface of the electrodes, leading to asymmetric adsorption behavior. Ions in subnanometric pores are mostly fully dehydrated. The simulated capacitance is in qualitative agreement with experiments. Part of these ions remain irreversibly trapped upon discharge. Ion desolvation and confinement are key physical processes in porous carbon-based supercapacitors undergoing charging and discharging cycles. We investigate electrolyte interactions between polarized porous carbon with subnanometer pore sizes and aqueous sodium chloride electrolyte, using molecular dynamics. Inspired by recent first-principles calculations, we develop a scheme accounting for chemical defects in electrodes where only the non-sp2 carbons species carry an extra negative charge (on the anode) and an extra positive charge (on the cathode) due to voltage polarization. This drives electrolyte species (ions and solvent molecules; water, in this work) to adsorb at the electrode surface and in subnanometric pores upon polarization. First, we observe an asymmetrical desolvation process of sodium and chloride ions at the external surface of the electrodes. The ionic distribution at the external surface of the electrodes is consistent with the Debye–Hückel electric potential equation and empirical trends observed for nonporous electrodes. In a second stage, we demonstrate that the nanoporosity of the electrodes is filled with ions and scarce water molecules and contributes to about 20% of the overall capacitance. A fraction of desolvated ions are irreversibly trapped in the core of electrodes during discharge. While maintaining the overall electroneutrality of the simulation cell, we find that anodes and cathodes do not carry the same amount of ions at all time steps, leading to charge imbalance.
Collapse
|
30
|
Abstract
Obtaining clean water from salt water by capacitive deionization (CDI) with chemically modified graphene (rGO) was explored in this study. Strong acid (HNO3:H2SO4 = 2:1) was employed to modify rGO to enhance its hydrophilicity and electrochemical properties. Characteristics of rGO with/without acid modification were analyzed by XRD, SEM, FTIR, contact angle, BET, and cyclic voltammetry (CV). Contributions of sulfonic acid groups, hydroxyl groups, and NO2 stretching after acid modification resulted in better wettability and higher specific capacitance of rGO. The contact angle for rGO dropped from 84.9° to 35.1° (am-rGO), indicating improved hydrophilicity of rGO with acid modification. The specific capacitance of am-rGO can reach 150.2 F/g at the scan rate of 1 mV/s. The average NaCl electrosorption capacity of the CDI process with am-rGO was 0.63 mg NaCl/g electrode (10.86 μmol NaCl/g electrode), which indicated rGO with acid modification can enhance the electrosorption capacity by 3.9 times. This study demonstrated that chemical modification can significantly improve the hydrophilicity, electrochemical properties, and electrosorption performance of rGO, which has potential for applications to other carbon-based materials for CDI systems to improve salt removal efficiency.
Collapse
|
31
|
Knowledge and Technology Used in Capacitive Deionization of Water. MEMBRANES 2022; 12:membranes12050459. [PMID: 35629785 PMCID: PMC9143758 DOI: 10.3390/membranes12050459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
Abstract
The demand for water and energy in today’s developing world is enormous and has become the key to the progress of societies. Many methods have been developed to desalinate water, but energy and environmental constraints have slowed or stopped the growth of many. Capacitive Deionization (CDI) is a very new method that uses porous carbon electrodes with significant potential for low energy desalination. This process is known as deionization by applying a very low voltage of 1.2 volts and removing charged ions and molecules. Using capacitive principles in this method, the absorption phenomenon is facilitated, which is known as capacitive deionization. In the capacitive deionization method, unlike other methods in which water is separated from salt, in this technology, salt, which is a smaller part of this compound, is separated from water and salt solution, which in turn causes less energy consumption. With the advancement of science and the introduction of new porous materials, the use of this method of deionization has increased greatly. Due to the limitations of other methods of desalination, this method has been very popular among researchers and the water desalination industry and needs more scientific research to become more commercial.
Collapse
|
32
|
Zhang X, Wang J, Zhang Z, Du X, Gao F, Hao X, Abudula A, Guan G, Liu Z, Li J. Modelling of pseudocapacitive ion adsorption of electrochemically switched ion exchange based on electroactive site concentration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Wu N, Gu X, Zhou S, Han X, Leng H, Zhang P, Yang P, Qi Y, Li S, Qiu J. Hierarchical porous N, S co-doped carbon derived from fish scales for enhanced membrane capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Yu F, Yang Z, Cheng Y, Xing S, Wang Y, Ma J. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Nordstrand J, Dutta J. A new automated model brings stability to finite‐element simulations of capacitive deionization. NANO SELECT 2021. [DOI: 10.1002/nano.202100270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Johan Nordstrand
- Functional Materials, Applied Physics Department, School of Engineering Sciences KTH Royal Institute of Technology AlbaNova universitetscentrum Stockholm 106 91 Sweden
| | - Joydeep Dutta
- Functional Materials, Applied Physics Department, School of Engineering Sciences KTH Royal Institute of Technology AlbaNova universitetscentrum Stockholm 106 91 Sweden
- Center of Nanotechnology King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
36
|
Fritz PA, Boom RM, Schroën C. Electrochemically driven adsorptive separation techniques: From ions to proteins and cells in liquid streams. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Arulrajan A, Dykstra JE, van der Wal A, Porada S. Unravelling pH Changes in Electrochemical Desalination with Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14165-14172. [PMID: 34586796 PMCID: PMC8529871 DOI: 10.1021/acs.est.1c04479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Membrane capacitive deionization (MCDI) is a water desalination technology employing porous electrodes and ion-exchange membranes. The electrodes are cyclically charged to adsorb ions and discharged to desorb ions. During MCDI operation, a difference in pH between feed and effluent water is observed, changing over time, which can cause the precipitation of hardness ions and consequently affect the long-term stability of electrodes and membranes. These changes can be attributed to different phenomena, which can be divided into two distinct categories: Faradaic and non-Faradaic. In the present work, we show that during long-term operation, as the electrodes age over time, the magnitude and direction of pH changes shift. We studied these changes for two different feed water solutions: a NaCl solution and a tap water solution. Whereas we observe a pH decrease during the regeneration with a NaCl solution, we observe an increase during regeneration with tap water, potentially resulting in the precipitation of hardness ions. We compare our experimental findings with theory and conclude that with aged electrodes, non-Faradaic processes are the prominent cause of pH changes. Furthermore, we find that for desalination with tap water, the adsorption and desorption of HCO3-and CO32- ions affect the pH changes.
Collapse
Affiliation(s)
- Antony
C. Arulrajan
- Environmental
Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Jouke E. Dykstra
- Environmental
Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Albert van der Wal
- Environmental
Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Slawomir Porada
- Wetsus, European Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
38
|
Design and Implementation of an Electrical Characterization System for Membrane Capacitive Deionization Units for the Water Treatment. MEMBRANES 2021; 11:membranes11100773. [PMID: 34677539 PMCID: PMC8539898 DOI: 10.3390/membranes11100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/01/2022]
Abstract
The desalination of seawater is one of the most established techniques in the world. In the middle of the 20th century this was achieved using water evaporation systems, later with reverse osmosis membranes and nowadays with the possibility of capacitive deionization membranes. Capacitive deionization and membrane capacitive deionization are an emerging technology that make it possible to obtain drinking water with an efficiency of 95%. This technology is in the development stage and consists of porous activated carbon electrodes, which have great potential for saving energy in the water desalination process and can be used for desalination using an innovative technology called capacitive deionization (CDI), or membrane capacitive deionization (MCDI) if an anion and cation membrane exchange is used. In this paper is proposed and designed a characterization system prototype for CDI and MCDI that can operate with constant current charging and discharging (galvanostatic method). Adequate precision has been achieved, as can be seen in the results obtained. These results were obtained from the performance of typical characterization tests with electrochemical double layer capacitors (EDLC), since they are electrochemical devices that behave similarly to MCDI, from the point of view of the electrical variables of the processes that take place in MCDI. A philosophy of using free software with open-source code has been followed, with software such as the Arduino and Processing programming editors (IDE), as well as the Arduino Nano board (ATmega328), the analogical-digital converter (ADC1115) and the digital-analogical converter (MCP4725). Moreover, a low-cost system has been developed. A robust and versatile system has been designed for water treatment, and a flexible system has been obtained for the specifications established, as it is shown in the results section.
Collapse
|
39
|
Wagner R, Winger S, Franzreb M. Predicting the potential of capacitive deionization for the separation of pH-dependent organic molecules. Eng Life Sci 2021; 21:589-606. [PMID: 34690631 PMCID: PMC8518579 DOI: 10.1002/elsc.202100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
One of the main steps in the biotechnological production of chemical building blocks, such as, e.g. bio-based succinic acid which is used for lubricants, cosmetics, food, and pharmaceuticals, is the isolation and purification of the target molecule. A new approach to isolate charged, bio-based chemicals is by electrosorption onto carbon surfaces. In contrast to ion exchange, electrosorption does not require additional chemicals for elution and regeneration. However, while the electrosorption of inorganic salts is well understood and in commercial use, the knowledge about electrosorption of weak organic acids including the strong implications of the pH-dependent dissociation and their affinity towards physical adsorption must be expanded. Here, we show a detailed discussion of the main pH-dependent effects determining the achievable charge efficiencies and capacities. An explicit set of equations allows the fast prediction of the named key figures for constant voltage and constant current operation. The calculated and experimental results obtained for the electrosorption of maleic acid show that the potential-free adsorption of differently protonated forms of the organic acid play a dominating role in the process. At pH 8 and a voltage threshold of 1.3 V, charge efficiencies of 25% and capacities around 40 mmol/kg could be reached for a constant current experiment. While this capacity is clearly below that of ion exchange resins, the required carbon materials are inexpensive and energy costs are only about 0.013 €/mol. Therefore, we anticipate that electrosorption has the potential to become an interesting alternative to conventional unit operations for the isolation of charged target molecules.
Collapse
Affiliation(s)
- Robin Wagner
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Sebastian Winger
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Matthias Franzreb
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
40
|
Luo L, He Q, Ma Z, Yi D, Chen Y, Ma J. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization. WATER RESEARCH 2021; 203:117522. [PMID: 34384947 DOI: 10.1016/j.watres.2021.117522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Flow electrode capacitive deionization (FCDI) is a promising electrochemical technique for brackish water desalination; however, there are challenges in estimating the distribution of resistance and energy consumption inside a FCDI system, which hinders the optimization of the rate-limiting compartment. In this study, energy consumption of each FCDI component (e.g., flow electrodes, membranes and desalination chamber) was firstly described by using in situ potential measurement (ISPM). Results of this study showed that the energy consumption (EC) of the flow electrodes dominated under most conditions. While an increase in the carbon black content in the flow electrodes could improve the energy efficiency of the electrode component, consideration should be given to the contribution of ion exchange membranes (IEMs) and the desalination chamber to the EC. Based on the above analysis, system optimization was carried out by introducing IEMs with relatively low resistance and/or packing the desalination chamber with titanium meshes. Results showed that the voltage-driven desalination capability was increased by 39.3% with the EC reduced by 17.5% compared to the control, which overcame the tradeoff between the kinetic and energetic efficiencies. Overall, the present work facilitates our understanding of the potential drops across an FCDI system and provides insight to the optimization of system design and operation.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Zixin Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Duo Yi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China..
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
41
|
Applicability of Different Double-Layer Models for the Performance Assessment of the Capacitive Energy Extraction Based on Double Layer Expansion (CDLE) Technique. ENERGIES 2021. [DOI: 10.3390/en14185828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Capacitive energy extraction based on double layer expansion (CDLE) is a renewable method of harvesting energy from the salinity difference between seawater and freshwater. It is based on the change in properties of the electric double layer (EDL) formed at the electrode surface when the concentration of the solution is changed. Many theoretical models have been developed to describe the structural and thermodynamic properties of the EDL at equilibrium, e.g., the Gouy–Chapman–Stern (GCS), Modified Poisson–Boltzmann–Stern (MPBS), modified Donnan (mD) and improved modified Donnan (i-mD) models. To evaluate the applicability of these models, especially the rationality and the physical interpretation of the parameters that were used in these models, a series of single-pass and full-cycle experiments were performed. The experimental results were compared with the numerical simulations of different EDL models. The analysis suggested that, with optimized parameters, all the EDL models we examined can well explain the equilibrium charge–voltage relation of the single-pass experiment. The GCS and MPBS models involve, however, the use of physically unreasonable parameter values. By comparison, the i-mD model is the most recommended one because of its accuracy in the results and the meaning of the parameters. Nonetheless, the i-mD model alone failed to simulate the energy production of the full-cycle CDLE experiments. Future research regarding the i-mD model is required to understand the process of the CDLE technique better.
Collapse
|
42
|
He C, Lian B, Ma J, Zhang C, Wang Y, Mo H, Waite TD. Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes. WATER RESEARCH 2021; 203:117498. [PMID: 34371229 DOI: 10.1016/j.watres.2021.117498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
A novel design for a flow-electrode capacitive deionization (FCDI) system consisting of tubular electrodes in a shell and tube heat exchanger configuration is proposed. Each electrode consists of a metallic mesh current collector along the inner circumference of a tubular ion-exchange membrane. This tubular FCDI design is suitable for scale-up as it consists of easily manufactured components which can be assembled in an array. An apparatus with 4 tubular electrodes with a large effective area (202.3 cm2) was constructed and shown to provide a high net salt (NaCl) removal rate (0.15 mg s-1 at 1.2 V applied voltage and ∼2000 mg L-1 influent total dissolved solids concentration). A computational fluid dynamics (CFD) model incorporating ion migration and transport mechanisms was developed to simulate the ion concentration and electrical potential profiles in the water channel. The results of CFD modelling highlighted the need to maximize regions of both high potential gradient and high hydraulic flow in order to achieve optimal salt removal. In brief, this study presents a new design approach for FCDI scale-up and provides a computational tool for optimization of this design and future innovative FCDI designs.
Collapse
Affiliation(s)
- Calvin He
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Boyue Lian
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hengliang Mo
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing, 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
43
|
A Combined Chemical-Electrochemical Process to Capture CO2 and Produce Hydrogen and Electricity. ENERGIES 2021. [DOI: 10.3390/en14185807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several carbon sequestration technologies have been proposed to utilize carbon dioxide (CO2) to produce energy and chemical compounds. However, feasible technologies have not been adopted due to the low efficiency conversion rate and high-energy requirements. Process intensification increases the process productivity and efficiency by combining chemical reactions and separation operations. In this work, we present a model of a chemical-electrochemical cyclical process that can capture carbon dioxide as a bicarbonate salt. The proposed process also produces hydrogen and electrical energy. Carbon capture is enhanced by the reaction at the cathode that displaces the equilibrium into bicarbonate production. Literature data show that the cyclic process can produce stable operation for long times by preserving ionic balance using a suitable ionic membrane that regulates ionic flows between the two half-cells. Numerical simulations have validated the proof of concept. The proposed process could serve as a novel CO2 sequestration technology while producing electrical energy and hydrogen.
Collapse
|
44
|
Barcelos KM, Oliveira KS, Silva DS, Urquieta-González EA, Ruotolo LA. Efficient and stable operation of capacitive deionization assessed by electrode and membrane asymmetry. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Investigation of Capacitive Deionization; Performance Assessment Based on Operational Parameters and Single-Objective Optimization. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Sayed ET, Al Radi M, Ahmad A, Abdelkareem MA, Alawadhi H, Atieh MA, Olabi AG. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater. CHEMOSPHERE 2021; 275:130001. [PMID: 33984902 DOI: 10.1016/j.chemosphere.2021.130001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Capacitive deionization (CDI) is one of the emerging desalination technologies that attracted much attention in the last years as a low-cost, energy-efficient, and environmentally-friendly alternative to other desalination technologies, such as multi-stage flash desalination (MSF) and multiple effect distillation (MED). The implementation of faradaic electrode materials is a promising method for enhancing CDI systems' performance by achieving higher salt removal characteristics, lower energy consumption, and better ion selectivity. Therefore, a novel CDI technology named Faradaic CDI (FCDI) that implements faradaic electrode materials arose as a high-performance CDI cell design. In this work, the application of FCDI cells in desalination and wastewater treatment systems is reviewed. First, the progress done on using various FCDI systems for saline water desalination is summarized and discussed. Next, the application of FCDI in wastewater treatment applications and selective ion removal is presented. A thorough comparison between FCDI and conventional carbon-based CDI is carried out in terms of working principle, electrode material's cost, salt removal performance, energy consumption, advantages, and disadvantages. Finally, future research consideration regarding FCDI technology is included to drive this technology closer towards practical application.
Collapse
Affiliation(s)
- Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - Muaz Al Radi
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Aasim Ahmad
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| | - Hussain Alawadhi
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Dept. of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Muataz Ali Atieh
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Mechanical and Nuclear Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - A G Olabi
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
47
|
Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Oyarzun DI, Zhan C, Hawks SA, Cerón MR, Kuo HA, Loeb CK, Aydin F, Pham TA, Stadermann M, Campbell PG. Unraveling the Ion Adsorption Kinetics in Microporous Carbon Electrodes: A Multiscale Quantum-Continuum Simulation and Experimental Approach. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23567-23574. [PMID: 33979129 DOI: 10.1021/acsami.1c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding sorption in porous carbon electrodes is crucial to many environmental and energy technologies, such as capacitive deionization (CDI), supercapacitor energy storage, and activated carbon filters. In each of these examples, a practical model that can describe ion electrosorption kinetics is highly desirable for accelerating material design. Here, we proposed a multiscale model to study the ion electrosorption kinetics in porous carbon electrodes by combining quantum mechanical simulations with continuum approaches. Our model integrates the Butler-Volmer (BV) equation for sorption kinetics and a continuously stirred tank reactor (CSTR) formulation with atomistic calculations of ion hydration and ion-pore interactions based on density functional theory (DFT). We validated our model experimentally by using ion mixtures in a flow-through electrode CDI device and developed an in-line UV absorption system to provide unprecedented resolution of individual ions in the separation process. We showed that the multiscale model captures unexpected experimental phenomena that cannot be explained by the traditional ion electrosorption theory. The proposed multiscale framework provides a viable approach for modeling separation processes in systems where pore sizes and ion hydration effects strongly influence the sorption kinetics, which can be leveraged to explore possible strategies for improving carbon-based and, more broadly, pore-based technologies.
Collapse
Affiliation(s)
- Diego I Oyarzun
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Cheng Zhan
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Maira R Cerón
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Helen A Kuo
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Colin K Loeb
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Fikret Aydin
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Patrick G Campbell
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
49
|
Saleem MW, Imran S, Zafar MN, Usman M, Habib MS, Badshah MA. Steady and controlled desalination via capacitive deionization: performance assessment and optimization of hybrid CV-CC process. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1757715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Muhammad Wajid Saleem
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Shahrose Imran
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Nouman Zafar
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Usman
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Salman Habib
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology Lahore, Pakistan
| | - Mohsin Ali Badshah
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
50
|
Capacitive-faradaic fuel cells (CFFCs) for ion separation: Macro-scale configurations and polarization mechanism. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|