1
|
Sautrey G. An Update on Theoretical and Metrological Aspects of the Surface Hydrophobicity of Virus and Virus-Like Particles. Adv Biol (Weinh) 2024:e2400221. [PMID: 39435562 DOI: 10.1002/adbi.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Viruses are biological entities embodied in protein-based nanoparticles devoid of metabolic activity. Hence, the colloidal, interfacial, and chemical reactivity of virus particles (VPs) profoundly affects the fate of natural and artificial viruses in biotic or abiotic aqueous systems. These rely on the physical chemistry at the outer surface of VPs. In other words, whether wild or synthetic VPs and regardless of the scientific fields involved, taming viruses implies thus managing the physical chemistry at the VP external surface. The surface hydrophobicity (SH) of VPs is a critical feature that must be looked at. Still, the literature dealing with nanoscale hydrophobic domains at the proteinaceous surface of VPs underlying their global SH is like a fragmented puzzle. This article provides an overview of the topic from the perspective of modern protein biophysics for updating the classic physicochemical picture of outer VP/water interfaces hitherto accepted. Patterns of non-polar and "false-polar" patches, expressing variable hydrophobic degrees according to neighboring polar patches, are now drawn. The extensive discussion of reviewed data generates such fresh ideas to explore in the coming years for better modeling the SH of wild virions or engineered virus-based nanoparticles, paving the way for new directions in fundamental virology and virus-based chemistry.
Collapse
Affiliation(s)
- Guillaume Sautrey
- LCPME UMR 7564 Université de Lorraine - CNRS, 405 rue de Vandoeuvre, Villers-lès-Nancy, 54600, France
| |
Collapse
|
2
|
Ho J, Ahmadi J, Schweikart C, Hübner U, Schwaller C, Tiehm A, Drewes JE. Assuring reclaimed water quality using a multi-barrier treatment train according to the new EU non-potable water reuse regulation. WATER RESEARCH 2024; 267:122429. [PMID: 39303574 DOI: 10.1016/j.watres.2024.122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
In this study, we evaluated the ability of various pilot-scale treatment train combinations to meet the microbial requirements of the new European non-potable water reuse regulation 2020/741. The study utilized non-disinfected secondary effluent from the wastewater treatment plant in Schweinfurt, Germany, as feedwater for two pilot-scale treatment trains. The first, a reference treatment train (Train A), consisted of filtration and UV disinfection as specified for reclaimed water class A in the EU regulation. The second, an advanced treatment train (Train B), included ceramic ultrafiltration (UF), ozonation, biological activated carbon filtration (BAC), and final UV disinfection. Based on a Monte Carlo simulation for Train A, the EU requirements for pathogen removal were not met when an average UV dose of 400-600 J m-2 was applied. This shortcoming was likely due to a moderate transmittance range (50-65 %), resulting in decreased UV fluence. These findings suggest that operational conditions for disinfection should be more clearly specified to ensure consistent pathogen inactivation both during validation and regular operation. In contrast, treatment train B successfully met the requirements of the EU regulations by reducing pathogens to below the detection limit. The UF membrane demonstrated a positive effect on the overall log reduction values (LRVs) throughout the water reclamation system. It also enhanced the efficiency of downstream processes, such as ozonation and UV disinfection, by lowering total suspended solids and turbidity. However, even without the UF membrane, treatment train B was still able to meet the pathogenic EU requirements for non-potable reuse applications. Furthermore, the study observed that the inclusion of biologically activated carbon (BAC) filtration requires a final disinfection step (e.g., UV disinfection) to prevent the potential occurrence of heterotrophic bacteria that proliferate in the BAC filter. For process validation it is recommended to use at least two different virus surrogates (MS2 and PhiX174), rather than just one or total coliphage as required in the EU regulation.
Collapse
Affiliation(s)
- Johannes Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, Karlsruhe 76139, Germany
| | - Javad Ahmadi
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Carolin Schweikart
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, Karlsruhe 76139, Germany
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany; Xylem Water Solutions Herford GmbH, Boschstr. 4-14, Herford 32051, Germany
| | - Christoph Schwaller
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Andreas Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, Karlsruhe 76139, Germany.
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany.
| |
Collapse
|
3
|
Wang X, Zheng K, Wang Y, Hou X, He Y, Wang Z, Zhang J, Chen X, Liu X. Microplastics and viruses in the aquatic environment: a mini review. Front Microbiol 2024; 15:1433724. [PMID: 39021631 PMCID: PMC11251918 DOI: 10.3389/fmicb.2024.1433724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Microplastics (MPs) have been widely found in the environment and have exerted non-negligible impacts on the environment and human health. Extensive research has shown that MPs can act as carriers for viruses and interacts with them in various ways. Whether MPs influence the persistence, transmission and infectivity of virus has attracted global concern in the context of increasing MPs contamination. This review paper provides an overview of the current state of knowledge regarding the interactions between MPs and viruses in aquatic environments. Latest progress and research trends in this field are summarized based on literature analysis. Additionally, we discuss the potential risks posed by microplastic-associated viruses to human health and the environmental safety, highlighting that MPs can affect viral transmission and infectivity through various pathways. Finally, we underscores the need for further research to address key knowledge gaps, such as elucidating synergistic effects between MPs and viruses, understanding interactions under real environmental conditions, and exploring the role of biofilms in virus-MPs interactions. This review aims to contribute to a deeper understanding on the transmission of viruses in the context of increasing MPs pollution in water, and promote actions to reduce the potential risks.
Collapse
Affiliation(s)
- Xiuwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yike He
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, China
- Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiabo Zhang
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, China
- Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Li T, Liu R, Wang Q, Rao J, Liu Y, Dai Z, Gooneratne R, Wang J, Xie Q, Zhang X. A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133831. [PMID: 38402684 DOI: 10.1016/j.jhazmat.2024.133831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Qian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Jiaqian Rao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Yuanjia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenkai Dai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wolf T, Grau C, Rosengarten JF, Stitz J, Wilkens J, Barbe S. Investigation of the Electrokinetic Properties of HIV-Based Virus-Like Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4762-4771. [PMID: 38385169 DOI: 10.1021/acs.langmuir.3c03535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The antigen density on the surface of HIV-based virus-like particles (VLPs) plays a crucial role in the improvement of HIV vaccine potency. HIV VLPs consist of a dense protein core, which is surrounded by a lipid bilayer and whose surface is usually decorated with antigenic glycoproteins. The successful downstream processing of these particles is challenging, and the high-resolution and cost-efficient purification of HIV-based VLPs has not yet been achieved. Chromatography, one of the major unit operations involved in HIV VLP purification strategies, is usually carried out by means of ion exchangers or ion-exchange membranes. Understanding the electrokinetic behavior of HIV-based VLPs may help to improve the adjustment and efficiency of the corresponding chromatographic processes. In this study, we investigated the electrokinetics and aggregation of both undecorated and decorated VLPs and interpreted the data from the perspective of the soft particle model developed by Ohshima (OSPM), which fails to fully predict the behavior of the studied VLPs. Post-Ohshima literature, and particularly the soft multilayer particle model developed by Langlet et al., provides an alternative theoretical framework to overcome the limits of the OSPM. We finally hypothesized that the electrophoretic mobility of HIV-based VLPs is controlled by an electrohydrodynamic interplay between envelope glycoproteins, lipid bilayer, and Gag envelope.
Collapse
Affiliation(s)
- Tobias Wolf
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Christoph Grau
- Research Group Colloid Chemistry, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Physical Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstraße 4-6, 50939 Cologne, Germany
| | - Jamila Franca Rosengarten
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Jan Wilkens
- Research Group Colloid Chemistry, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Stéphan Barbe
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln─University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| |
Collapse
|
6
|
Bichet MC, Gardette M, Das Neves B, Challant J, Erbs A, Roman V, Robin M, La Carbona S, Gantzer C, Boudaud N, Bertrand I. A new understanding of somatic coliphages belonging to the Microviridae family in urban wastewater. WATER RESEARCH 2024; 249:120916. [PMID: 38043350 DOI: 10.1016/j.watres.2023.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Somatic coliphages (SC) and F-specific RNA coliphages (FRNAPH) have been included in regulations or guidelines by several developed countries as a way of monitoring water safety and the microbiological quality of shellfish harvesting waters. SC are highly diverse in their morphology, size and genome. The Microviridae family contains three genera of phages (Alphatrevirus, Gequatrovirus, and Sinsheimervirus), all having a capsid of similar morphology (icosahedral) and size (25-30 nm in diameter) to that of common pathogenic enteric viruses. Three PCR assays specific for each genus of Microviridae were designed to study these phages in raw and treated wastewater (WW) in order to gain knowledge about the diversity and prevalence of Microviridae among SC, as well as their inactivation and removal during WW treatments. Among the four wastewater treatment plants (WWTPs) monitored here, two WWTPs applied disinfection by UV light as tertiary treatment. First, we noticed that Microviridae represented 10 to 30 % of infectious SC in both raw and treated WW. Microviridae appeared to behave in the same way as all SC during these WW treatments. As expected, the highest inactivation, at least 4 log10, was achieved for infectious Microviridae and SC in both WWTPs using UV disinfection. PCR assays showed that the highest removal of Microviridae reached about 4 log10, but the phage removal can vary greatly between WWTPs using similar treatments. This work forms the basis for a broader evaluation of Microviridae as a viral indicator of water treatment efficiency and WW reuse.
Collapse
Affiliation(s)
- Marion C Bichet
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Marion Gardette
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Anaïs Erbs
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Véronica Roman
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Maëlle Robin
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France
| | | | | | | | | |
Collapse
|
7
|
Torres-Franco AF, Leroy-Freitas D, Martinez-Fraile C, Rodríguez E, García-Encina PA, Muñoz R. Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems. WATER RESEARCH 2024; 248:120834. [PMID: 37984037 DOI: 10.1016/j.watres.2023.120834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Anaerobic and microalgae-based technologies for municipal wastewater treatment have emerged as sustainable alternatives to activated sludge systems. However, viruses are a major sanitary concern for reuse applications of liquid and solid byproducts from these technologies. To assess their capacity to reduce viruses during secondary wastewater treatment, enveloped Phi6 and nonenveloped MS2 bacteriophages, typically used as surrogates of several types of wastewater viruses, were spiked into batch bioreactors treating synthetic municipal wastewater (SMWW). The decay of Phi6 and MS2 in anaerobic and microalgae-based reactors was compared with the decay in activated sludge batch reactors for 96 h (Phi6) and 144 h (MS2). In each reactor, bacteriophages in the soluble and solids fractions were titered, allowing the assessment of virus partitioning to biomass over time. Moreover, the influence of abiotic conditions such as agitation, oxygen absence and light excess in activated sludge, anaerobic and microalgae reactors, respectively, was assessed using dedicated SMWW control reactors. All technologies showed Phi6 and MS2 reductions. Phi6 was reduced in at least 4.7 to 6.5 log10 units, with 0 h concentrations ranging from 5.0 to 6.5 log10 PFU mL-1. Similarly, reductions achieved for MS2 were of at least 3.9 to 7.2 log10 units, from starting concentrations of 8.0 to 8.6 log10 PFU mL-1. Log-logistic models adjusted to bacteriophages' decay indicated T90 values in activated sludge and microalgae reactors of 2.2 and 7.9 h for Phi6 and of 1.0 and 11.5 h for MS2, respectively, all within typical hydraulic retention times (HRT) of full-scale operation. In the case of the microalgae technology, T99 values for Phi6 and MS2 of 12.7 h and 13.6 h were also lower than typical operating HRTs (2-10 d), while activated sludge and anaerobic treatment achieved less than 99 % of Phi6 and 50 % of MS2 inactivation within 12 h of typical HRT, respectively. Thus, the microalgae-based treatment exhibited a higher potential to reduce the disinfection requirements of treated wastewater.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Cristina Martinez-Fraile
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Elisa Rodríguez
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| |
Collapse
|
8
|
Robalo A, Brandão J, Shibata T, Solo-Gabriele H, Santos R, Monteiro S. Detection of enteric viruses and SARS-CoV-2 in beach sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165836. [PMID: 37517729 DOI: 10.1016/j.scitotenv.2023.165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Beach sand harbors a diverse group of microbial organisms that may be of public health concern. Nonetheless, little is known about the presence and distribution of viruses in beach sand. In this study, the first objective was to evaluate the presence of seven viruses (Aichi virus, enterovirus, hepatitis A virus, human adenovirus, norovirus, rotavirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) in sands collected at public beaches. The second objective was to assess the spatial distribution of enteric viruses in beach sand. To that end, 27 beach sand samples from different beaches in Portugal were collected between November 2018 and August 2020 and analyzed for the presence of viruses. At seven beaches, samples were collected in the supratidal and intertidal zones. Results show that viruses were detected in 89 % (24/27) of the sand samples. Aichi virus was the most prevalent (74 %). Noroviruses were present in 19 % of the samples (norovirus GI - 15 %, norovirus GII - 4 %). Human adenovirus and enterovirus were detected in 48 % and 22 % of the samples, respectively. Hepatitis A virus and rotavirus were not detected. Similarly, SARS-CoV-2 in beach sand collected during the initial stages of the pandemic was also not detected. The detection of three or more viruses occurred in 15 % of the samples. Concentrations of viruses were as high as 7.2 log copies (cp)/g of sand. Enteric viruses were found in higher prevalence in sand collected from the supratidal zone compared to the intertidal zone. Human adenovirus was detected in 43 % of the supratidal and 14 % in the intertidal samples and Aichi virus in 57 % and 86 % of the intertidal and supratidal areas, respectively. Our findings suggest that beach sand can be a reservoir of enteric viruses, suggesting that it might be a vehicle for disease transmission, particularly for children, the elderly, and immunocompromised users.
Collapse
Affiliation(s)
- A Robalo
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal
| | - J Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - T Shibata
- Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA; Center for Southeast Asian Studies, Northern Illinois University, DeKalb, IL, USA
| | - H Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - R Santos
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Técnico Lisboa, Universidade de Lisboa, Portugal
| | - S Monteiro
- Laboratorio Analises, Técnico Lisboa, Universidade Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Técnico Lisboa, Universidade de Lisboa, Portugal.
| |
Collapse
|
9
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
10
|
Ashokkumar S, Kaushik NK, Han I, Uhm HS, Park JS, Cho GS, Oh YJ, Shin YO, Choi EH. Persistence of Coronavirus on Surface Materials and Its Control Measures Using Nonthermal Plasma and Other Agents. Int J Mol Sci 2023; 24:14106. [PMID: 37762409 PMCID: PMC10531613 DOI: 10.3390/ijms241814106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e., paper, wood, and masks) and non-porous (i.e., plastic, stainless steel, and glass) materials. The persistence of viruses on materials depends on porosity, adsorption, evaporation, isoelectric point, and environmental conditions, such as temperature, pH, and relative humidity. Disinfection techniques are crucial for preventing viral contamination on animated and inanimate surfaces. Currently, there are few effective methodologies for preventing SARS-CoV-2 and other coronaviruses without any side effects. Before infection can occur, measures must be taken to prevent the persistence of the coronavirus on the surfaces of both porous and non-porous inanimate materials. This review focuses on coronavirus persistence in surface materials (inanimate) and control measures. Viruses are inactivated through chemical and physical methods; the chemical methods particularly include alcohol, chlorine, and peroxide, whereas temperature, pH, humidity, ultraviolet irradiation (UV), gamma radiation, X-rays, ozone, and non-thermal, plasma-generated reactive oxygen and nitrogen species (RONS) are physical methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yung Oh Shin
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
11
|
Shan LP, Hu Y, Hu L, Liu HW, Liu L, Chen J. Involvement of Microplastics in the Conflict Between Host Immunity Defense and Viral Virulence: Promoting the Susceptibility of Shrimp to WSSV Infection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11634-11642. [PMID: 37498082 DOI: 10.1021/acs.est.3c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
As the concentration of microplastics/microspheres (MPs) in coastal and estuarine regions increases, the likelihood of disease outbreaks and epidemics also rises. Our study investigated the impact of polyvinyl chloride MPs (PVC-MPs) on white spot syndrome virus (WSSV) infection in shrimp. The results revealed that PVC-MPs obviously increased WSSV replication in vivo, leading to a high mortality rate among the larvae and facilitating the horizontal transmission of WSSV. Furthermore, the data of WSSV loads detected together with qPCR, agarose gel electrophoresis, and flow cytometry approaches indicated that PVC-MPs could interact with the virus to prolong survival and maintain the virulence of WSSV at different temperatures and pH values. In terms of host resistance, metabolomics and transcriptomics analysis demonstrated that exposure to PVC-MPs upregulated metabolic concentrations and gene expressions associated with phospholipid metabolism that were associated with innate immunity responses. Particularly, PVC-MPs stimulated the synthesis of phosphatidylcholine (PC) and induced lipid peroxidation. The inhibition of PC on Stimulator of Interferon Genes (STING) translocation from the endoplasmic reticulum to the Golgi apparatus reduces expression of the innate immunity genes (IFN-like genes Vago4 and Vago5) regulated by STING signaling pathways, resulting in a significant decrease in the shrimp's resistance to WSSV infection. Notably, a recovery operation in which the exposed larvae were transferred to a MPs-free aquatic environment led to decreased WSSV infectivity over time, indicating the restoration of antiviral properties in shrimp. Overall, these findings highlight that MPs promote shrimp susceptibility to WSSV in two aspects: host immune defense and viral virulence.
Collapse
Affiliation(s)
- Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo 315832, China
| | - Ling Hu
- Ningbo Academy of Inspection and Quarantine, Ningbo 315000, China
| | - Han-Wei Liu
- Ningbo Customs District Technology Center, Ningbo 315100, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo 315832, China
| |
Collapse
|
12
|
Suh D, Jin H, Park H, Lee C, Cho YH, Baek Y. Effect of protein fouling on filtrate flux and virus breakthrough behaviors during virus filtration process. Biotechnol Bioeng 2023. [PMID: 37144573 DOI: 10.1002/bit.28407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Virus filtration process is used to ensure viral safety in the biopharmaceutical downstream processes with high virus removal capacity (i.e., >4 log10 ). However, it is still constrained by protein fouling, which results in reduced filtration capacity and possible virus breakthrough. This study investigated the effects of protein fouling on filtrate flux and virus breakthrough using commercial membranes that had different symmetricity, nominal pore size, and pore size gradients. Flux decay tendency due to protein fouling was influenced by hydrodynamic drag force and protein concentration. As the results of prediction with the classical fouling model, standard blocking was suitable for most virus filters. Undesired virus breakthrough was observed in the membranes having relatively a large pore diameter of the retentive region. The study found that elevated levels of protein solution reduced virus removal performance. However, the impact of prefouled membranes was minimal. These findings shed light on the factors that influence protein fouling during the virus filtration process of biopharmaceutical production.
Collapse
Affiliation(s)
- Dongwoo Suh
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, Republic of Korea
| | - Hoeun Jin
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Hosik Park
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science & Technology (UST), Daejeon, Yuseong-gu, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, Republic of Korea
| | - Young Hoon Cho
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science & Technology (UST), Daejeon, Yuseong-gu, Republic of Korea
| | - Youngbin Baek
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
13
|
Maciel C, Silva NFD, Teixeira P, Magalhães JMCS. Development of a Novel Phagomagnetic-Assisted Isothermal DNA Amplification System for Endpoint Electrochemical Detection of Listeria monocytogenes. BIOSENSORS 2023; 13:bios13040464. [PMID: 37185539 PMCID: PMC10136355 DOI: 10.3390/bios13040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
The hitherto implemented Listeria monocytogenes detection techniques are cumbersome or require expensive non-portable instrumentation, hindering their transposition into on-time surveillance systems. The current work proposes a novel integrated system resorting to loop-mediated isothermal amplification (LAMP), assisted by a bacteriophage P100-magnetic platform, coupled to an endpoint electrochemical technique, towards L. monocytogenes expeditious detection. Molybdophosphate-based optimization of the bacterial phagomagnetic separation protocol allowed the determination of the optimal parameters for its execution (pH 7, 25 °C, 32 µg of magnetic particles; 60.6% of specific capture efficiency). The novel LAMP method targeting prfA was highly specific, accomplishing 100% inclusivity (for 61 L. monocytogenes strains) and 100% exclusivity (towards 42 non-target Gram-positive and Gram-negative bacteria). As a proof-of-concept, the developed scheme was successfully validated in pasteurized milk spiked with L. monocytogenes. The phagomagnetic-based approach succeeded in the selective bacterial capture and ensuing lysis, triggering Listeria DNA leakage, which was efficiently LAMP amplified. Methylene blue-based electrochemical detection of LAMP amplicons was accomplished in 20 min with remarkable analytical sensitivity (1 CFU mL-1). Hence, the combined system presented an outstanding performance and robustness, providing a 2.5 h-swift, portable, cost-efficient detection scheme for decentralized on-field application.
Collapse
Affiliation(s)
- Cláudia Maciel
- Laboratório Associado, Escola Superior de Biotecnologia, CBQF-Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Nádia F D Silva
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Paula Teixeira
- Laboratório Associado, Escola Superior de Biotecnologia, CBQF-Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Júlia M C S Magalhães
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| |
Collapse
|
14
|
Michalski J, Sommer J, Rossmanith P, Syguda A, Clapa T, Mester P. Antimicrobial and Virucidal Potential of Morpholinium-Based Ionic Liquids. Int J Mol Sci 2023; 24:ijms24021686. [PMID: 36675201 PMCID: PMC9863300 DOI: 10.3390/ijms24021686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Witnessed by the ongoing spread of antimicrobial resistant bacteria as well as the recent global pandemic of the SARS-CoV-2 virus, the development of new disinfection strategies is of great importance, and novel substance classes as effective antimicrobials and virucides are urgently needed. Ionic liquids (ILs), low-melting salts, have been already recognized as efficient antimicrobial agents with prospects for antiviral potential. In this study, we examined the antiviral activity of 12 morpholinium based herbicidal ionic liquids with a tripartite test system, including enzyme inhibition tests, virucidal activity determination against five model viruses and activity against five bacterial species. The antimicrobial and enzymatic tests confirmed that the inhibiting activity of ILs corresponds with the number of long alkyl side chains and that [Dec2Mor]+ based ILs are promising candidates as novel antimicrobials. The virucidal tests showed that ILs antiviral activity depends on the type and structure of the virus, revealing enveloped Phi6 phage as highly susceptible to the ILs action, while the non-enveloped phages PRD1 and MS2 proved completely resistant to ionic liquids. Furthermore, a comparison of results obtained for P100 and P001 phages demonstrated for the first time that the susceptibility of viruses to ionic liquids can be dependent on differences in the phage tail structure.
Collapse
Affiliation(s)
- Jakub Michalski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Julia Sommer
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Epitome GmbH, The ICON Vienna, Tower 17, Gertrude-Fröhlich-Sandner-Str. 2–4, 1100 Vienna, Austria
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Anna Syguda
- Department of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Tomasz Clapa
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Patrick Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
15
|
Eilts F, Steger M, Pagallies F, Rziha HJ, Hardt M, Amann R, Wolff MW. Comparison of sample preparation techniques for the physicochemical characterization of Orf virus particles. J Virol Methods 2022; 310:114614. [PMID: 36084768 DOI: 10.1016/j.jviromet.2022.114614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
The determination of the electrostatic charge of biological nanoparticles requires a purified, mono-disperse, and concentrated sample. Previous studies proofed an impact of the preparation protocol on the stability and electro-hydrodynamics of viruses, whereas commonly used methods are often complex and do not allow the required sample throughput. In the present study, the application of the (I) steric exclusion chromatography (SXC) for the Orf virus (ORFV) purification and subsequent physicochemical characterization was evaluated and compared to (II) SXC followed by centrifugal diafiltration and (III) sucrose cushion ultracentrifugation. The three methods were characterized in terms of protein removal, size distribution, infectious virus recovery, visual appearance, and electrophoretic mobility as a function of pH. All preparation techniques achieved a protein removal of more than 99 %, and (I) an infectious ORFV recovery of more than 85 %. Monodisperse samples were realized by (I) and (III). In summary, ORFV samples prepared by (I) and (III) displayed comparable quality. Additionally, (I) offered the shortest operation time and easy application. Based on the obtained data, the three procedures were ranked according to eight criteria of possible practical relevance, which delineate the potential of SXC as virus preparation method for physicochemical analysis.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Hanns-Joachim Rziha
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Schubertstraße 81, 35392 Giessen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany; PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
16
|
Suh D, Kim M, Lee C, Baek Y. Virus filtration in biopharmaceutical downstream processes: key factors and current limitations. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2143379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dongwoo Suh
- School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process (ICP), Seoul National University (SNU), Gwanak-gu, Republic of Korea
| | - Mina Kim
- Department of Biotechnology, Institute of Basic Science, Sungshin Women’s University, Seoul, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process (ICP), Seoul National University (SNU), Gwanak-gu, Republic of Korea
| | - Youngbin Baek
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
17
|
Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: What we know or not? GEOSCIENCE FRONTIERS 2022; 13. [PMID: 37521131 PMCID: PMC8730742 DOI: 10.1016/j.gsf.2021.101346] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The global outbreak of coronavirus infectious disease-2019 (COVID-19) draws attentions in the transport and spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in aerosols, wastewater, surface water and solid wastes. As pathogens eventually enter the subsurface system, e.g., soils in the vadose zone and groundwater in the aquifers, they might survive for a prolonged period of time owing to the uniqueness of subsurface environment. In addition, pathogens can transport in groundwater and contaminate surrounding drinking water sources, possessing long-term and concealed risks to human society. This work critically reviews the influential factors of pathogen migration, unravelling the impacts of pathogenic characteristics, vadose zone physiochemical properties and hydrological variables on the migration of typical pathogens in subsurface system. An assessment algorithm and two rating/weighting schemes are proposed to evaluate the migration abilities and risks of pathogens in subsurface environment. As there is still no evidence about the presence and distribution of SARS-CoV-2 in the vadose zones and aquifers, this study also discusses the migration potential and behavior of SARS-CoV-2 viruses in subsurface environment, offering prospective clues and suggestions for its potential risks in drinking water and effective prevention and control from hydrogeological points of view.
Collapse
|
18
|
Armanious A, Mezzenga R. A Roadmap for Building Waterborne Virus Traps. JACS AU 2022; 2:2205-2221. [PMID: 36311831 PMCID: PMC9597599 DOI: 10.1021/jacsau.2c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Outbreaks of waterborne viruses pose a massive threat to human health, claiming the lives of hundreds of thousands of people every year. Adsorption-based filtration offers a promising facile and environmentally friendly approach to help provide safe drinking water to a world population of almost 8 billion people, particularly in communities that lack the infrastructure for large-scale facilities. The search for a material that can effectively trap viruses has been mainly driven by a top-down approach, in which old and new materials have been tested for this purpose. Despite substantial advances, finding a material that achieves this crucial goal and meets all associated challenges remains elusive. We suggest that the road forward should strongly rely on a complementary bottom-up approach based on our fundamental understanding of virus interactions at interfaces. We review the state-of-the-art physicochemical knowledge of the forces that drive the adsorption of viruses at solid-water interfaces. Compared to other nanometric colloids, viruses have heterogeneous surface chemistry and diverse morphologies. We advocate that advancing our understanding of virus interactions would require describing their physicochemical properties using novel descriptors that reflect their heterogeneity and diversity. Several other related topics are also addressed, including the effect of coadsorbates on virus adsorption, virus inactivation at interfaces, and experimental considerations to ensure well-grounded research results. We finally conclude with selected examples of materials that made notable advances in the field.
Collapse
Affiliation(s)
- Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
| | - Raffaele Mezzenga
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
- Department
of Materials, ETH Zurich, Zurich8093, Switzerland
| |
Collapse
|
19
|
Vodolazkaya N, Nikolskaya M, Laguta A, Farafonov V, Balklava Z, Stich M, Mchedlov-Petrossyan N, Nerukh D. Estimation of Nanoparticle's Surface Electrostatic Potential in Solution Using Acid-Base Molecular Probes. III. Experimental Hydrophobicity/Hydrophilicity and Charge Distribution of MS2 Virus Surface. J Phys Chem B 2022; 126:8166-8176. [PMID: 36198175 DOI: 10.1021/acs.jpcb.2c04491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MS2 bacteriophage is often used as a model for evaluating pathogenic viruses' behavior in aqueous solution. However, the questions of the virus surface's hydrophilic/hydrophobic balance, the charge distribution, and the binding mechanism are open. Using the dynamic light scattering method and laser Doppler electrophoresis, the hydrodynamic diameter and the ζ-potential of the virus particles were measured at their concentration of 5 × 1011 particles per mL and ionic strength 0.03 M. The values were found to be 30 nm and -29 or -34 mV (by Smoluchowski or Ohshima approximations), respectively. The MS2 bacteriophage surface was also investigated using a series of acid-base indicator dyes of various charge type, size, and structure. Their spectral and acid-base properties (pKa) are very sensitive to the microenvironment in aqueous solution, including containing nanoparticles. The electrostatic potential of the surface Ψ was estimated using the common formula: Ψ = 59 × (pKai - pKa) in mV at 25 °C. The Ψ values were -50 and +10 mV, respectively, which indicate the "mosaic" way of the charge distribution on the surface. These data are in good agreement with the obtained ζ-potential values and provide even more information about the virus surface. It was found that the surface of the MS2 virus is hydrophilic in solution in contrast to the commonly accepted hypothesis of the hydrophobicity of virus particles. No hydrophobic interactions between various molecular probes and the capsid were observed.
Collapse
Affiliation(s)
- Natalya Vodolazkaya
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | - Marina Nikolskaya
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | - Anna Laguta
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | - Vladimir Farafonov
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | | | - Michael Stich
- Departamento de Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain
| | - Nikolay Mchedlov-Petrossyan
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | | |
Collapse
|
20
|
Lu J, Yu Z, Ngiam L, Guo J. Microplastics as potential carriers of viruses could prolong virus survival and infectivity. WATER RESEARCH 2022; 225:119115. [PMID: 36137436 DOI: 10.1016/j.watres.2022.119115] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are emerging contaminants in various aquatic environments, leading to human and environmental health concerns. Viruses have also been ubiquitously detected in aquatic environments, and there is an unknown risk of microplastics-mediated virus migration through adsorption. This study applied polystyrene microplastics as the carrier and the T4 bacteriophage (or phage) as the virus model, and a violet side scatter/green fluorescence double-gated flow cytometry approach to investigate the adsorption capacity of viruses on microplastics. Our results show that up to 98.6±0.2% of the dosed viruses can be adsorbed by microplastics, and such adsorptions are dependent on size and surface functional groups. Both Fourier-transform infrared spectroscopy and fluorescence-labelled confocal microscopy confirmed that the virus can successfully adsorb onto microplastics. Zeta potential characterisation revealed that the electrostatic interaction is the primary adsorption mechanism associated with the adsorption of viruses. UV-aging was found to enhance the adsorption capacities of viruses on microplastics. Both pristine and UV-aged microplastics were found to significantly prolong the infectivity of the adsorbed viruses, even under elevated temperatures. Collectively, our findings highlight that microplastics are associated with the biological risks of water-borne viral transmission through virus adsorption.
Collapse
Affiliation(s)
- Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lyman Ngiam
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
21
|
Moresco V, Charatzidou A, Oliver DM, Weidmann M, Matallana-Surget S, Quilliam RS. Binding, recovery, and infectiousness of enveloped and non-enveloped viruses associated with plastic pollution in surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119594. [PMID: 35680062 DOI: 10.1016/j.envpol.2022.119594] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 06/05/2022] [Indexed: 05/25/2023]
Abstract
Microplastics in wastewater and surface water rapidly become colonised by microbial biofilm. Such 'plastisphere' communities are hypothesised to persist longer and be disseminated further in the environment and may act as a vector for human pathogens, particularly as microplastics entering wastewater treatment plants are exposed to high concentrations of pathogenic bacteria. However, the potential for human viral pathogens to become associated with the plastisphere has never before been quantified. Here, we have used rotavirus (RV) SA11 (a non-enveloped enteric virus) and the enveloped bacteriophage Phi6 as model viruses to quantify binding and recovery from biofilm-colonised microplastic pellets in three different water treatments (filtered and non-filtered surface water, and surface water with added nutrients). Viruses associated with biofilm-colonised pellets were more stable compared to those remaining in the water. While infectious particles and genome copies of RV remained stable over the 48 h sampling period, Phi6 stability was highly impacted, with a reduction ranging from 2.18 to 3.94 log10. Virus particles were protected against inactivation factors when associated with the biofilm on microplastic surfaces, and when there was a high concentration of particulate matter in the liquid phase. Although our results suggest that the presence of an envelope may limit virus interaction with the plastisphere, the ability to recover both enveloped and non-enveloped infectious viruses from colonised microplastic pellets highlights an additional potential public health risk of surface waters becoming contaminated with microplastics, and subsequent human exposure to microplastics in the environment.
Collapse
Affiliation(s)
- Vanessa Moresco
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Anna Charatzidou
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Manfred Weidmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Senftenberg, D-01968, Germany
| | - Sabine Matallana-Surget
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
22
|
Reiss RA, Makhnin O, Lowe TC. Rapid Method to Quantify the Antiviral Potential of Porous and Nonporous Material Using the Enveloped Bacteriophage Phi6. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8350-8362. [PMID: 35543429 DOI: 10.1021/acs.est.1c07716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pandemic revealed significant gaps in our understanding of the antiviral potential of porous textiles used for personal protective equipment and nonporous touch surfaces. What is the fate of a microbe when it encounters an abiotic surface? How can we change the microenvironment of materials to improve antimicrobial properties? Filling these gaps requires increasing data generation throughput. A method to accomplish this leverages the use of the enveloped bacteriophage ϕ6, an adjustable spacing multichannel pipette, and the statistical design opportunities inherent in the ordered array of the 24-well culture plate format, resulting in a semi-automated small drop assay. For 100 mm2 nonporous coupons of Cu and Zn, the reduction in ϕ6 infectivity fits first-order kinetics, resulting in half-lives (T50) of 4.2 ± 0.1 and 29.4 ± 1.6 min, respectively. In contrast, exposure to stainless steel has no significant effect on infectivity. For porous textiles, differences associated with composition, color, and surface treatment of samples are detected within 5 min of exposure. Half-lives for differently dyed Zn-containing fabrics from commercially available masks ranged from 2.1 ± 0.05 to 9.4 ± 0.2 min. A path toward full automation and the application of machine learning techniques to guide combinatorial material engineering is presented.
Collapse
Affiliation(s)
- Rebecca A Reiss
- Biology Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801-4750, United States
| | - Oleg Makhnin
- Mathematics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801-4750, United States
| | - Terry C Lowe
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, 920 15th, Street, Golden, Colorado 80401-1887, United States
| |
Collapse
|
23
|
The Suitability of Latex Particles to Evaluate Critical Process Parameters in Steric Exclusion Chromatography. MEMBRANES 2022; 12:membranes12050488. [PMID: 35629814 PMCID: PMC9144368 DOI: 10.3390/membranes12050488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
The steric exclusion chromatography (SXC) is a rather new method for the purification of large biomolecules and biological nanoparticles based on the principles of precipitation. The mutual steric exclusion of a nonionic organic polymer, i.e., polyethylene glycol (PEG), induces target precipitation and leads to their retention on the chromatographic stationary phase. In this work, we investigated the application of latex particles in the SXC by altering the particle’s surface charge as well as the PEG concentration and correlated both with their aggregation behavior. The parameters of interest were offline precipitation kinetics, the product recovery and yield, and the chromatographic column blockage. Sulfated and hydroxylated polystyrene particles were first characterized concerning their aggregation behavior and charge in the presence of PEG and different pH conditions. Subsequently, the SXC performance was evaluated based on the preliminary tests. The studies showed (1) that the SXC process with latex particles was limited by aggregation and pore blockage, while (2) not the aggregate size itself, but rather the aggregation kinetics dominated the recoveries, and (3) functionalized polystyrene particles were only suitable to a limited extent to represent biological nanoparticles of comparable size and charge.
Collapse
|
24
|
Removal of MS2 and fr Bacteriophages Using MgAl2O4-Modified, Al2O3-Stabilized Porous Ceramic Granules for Drinking Water Treatment. MEMBRANES 2022; 12:membranes12050471. [PMID: 35629797 PMCID: PMC9145336 DOI: 10.3390/membranes12050471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023]
Abstract
Point-of-use ceramic filters are one of the strategies to address problems associated with waterborne diseases to remove harmful microorganisms in water sources prior to its consumption. In this study, development of adsorption-based ceramic depth filters composed of alumina platelets was achieved using spray granulation (calcined at 800 °C). Their virus retention performance was assessed using cartridges containing granular material (4 g) with two virus surrogates: MS2 and fr bacteriophages. Both materials showed complete removal, with a 7 log10 reduction value (LRV) of MS2 up to 1 L. MgAl2O4-modified Al2O3 granules possessed a higher MS2 retention capacity, contrary to the shortcomings of retention limits in pure Al2O3 granules. No significant decline in the retention of fr occurred during filtration tests up to 2 L. The phase composition and morphology of the materials were preserved during filtration, with no magnesium or aluminum leakage during filtration, as confirmed by X-ray diffractograms, electron micrographs, and inductively coupled plasma-optical emission spectrometry. The proposed MgAl2O4-modified Al2O3 granular ceramic filter materials offer high virus retention, achieving the criterion for virus filtration as required by the World Health Organization (LRV ≥ 4). Owing to their high thermal and chemical stability, the developed materials are thus suitable for thermal and chemical-free regeneration treatments.
Collapse
|
25
|
You X, Kallies R, Hild K, Hildebrandt A, Harms H, Chatzinotas A, Wick LY. Transport of marine tracer phage particles in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152704. [PMID: 34973315 DOI: 10.1016/j.scitotenv.2021.152704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Marine phages have been applied to trace ground- and surface water flows. Yet, information on their transport in soil and related particle intactness is limited. Here we compared the breakthrough of two lytic marine tracer phages (Pseudoalteromonas phages PSA-HM1 and PSA-HS2) with the commonly used Escherichia virus T4 in soil- and sand-filled laboratory percolation columns. All three phages showed high mass recoveries in the effluents and a higher transport velocity than non-reactive tracer Br-. Comparison of effluent gene copy numbers (CN) to physically-determined phage particle counts or infectious phage counts showed that PSA-HM1 and PSA-HS2 retained high phage particle intactness (Ip > 81%), in contrast to T4 (Ip < 36%). Our data suggest that marine phages may be applied in soil to mimic the transport of (bio-) colloids or anthropogenic nanoparticles of similar traits. Quantitative PCR (qPCR) thereby allows for highly sensitive quantification and thus for the detection of even highly diluted marine tracer phages in environmental samples.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Konstanze Hild
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Anke Hildebrandt
- Helmholtz Centre for Environmental Research - UFZ, Department of Computational Hydrosystems, Permoserstraße 15, 04318 Leipzig, Germany; Friedrich Schiller University Jena, Institute of Geoscience, Burgweg 11, 07749 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; Leipzig University, Institute of Biology, Talstr.33, Leipzig 04103, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany.
| |
Collapse
|
26
|
Fate and Transportation of Viruses from Reclaimed Water into a Floatation System. WATER 2022. [DOI: 10.3390/w14050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The fate and transport of viruses in floatation systems is considerably important for accurate determination of the safety of reusing reclaimed water in the flotation process. Herein, simulation experiments on the floatation, adsorption and desorption were performed to examine the effect of initial virus concentration, pH and floatation reagents on the adsorption of viruses ΦΧ174 and MS2 onto copper–molybdenum ores. The transport of viruses in the flotation systems was also investigated. The viruses in the reclaimed water were rapidly adsorbed onto the ore particles, suggesting that tailing wastewater can be safely reused for floatation. However, the adsorbed viruses in the concentrates, middlings and tailings may pose health risks at certain exposure levels. The transport of viruses was dominated by their attachment to ore particles, with most being inactivated or irreversibly adsorbed. The removal and adsorption rates decreased as the initial virus concentration increased, and the removal rate decreased as pH was increased from 7.5 to 9.5. In comparison with MS2, ΦΧ174 was removed more effectively. This suggested that electrostatic repulsion is an important mechanism because MS2 has a greater negative charge. The attachment of both ΦΧ174 and MS2 onto the mineral particles increased significantly in the presence of PJ053 and CaO.
Collapse
|
27
|
Monitoring coliphages to reduce waterborne infectious disease transmission in the One Water framework. Int J Hyg Environ Health 2022; 240:113921. [DOI: 10.1016/j.ijheh.2022.113921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
|
28
|
You X, Klose N, Kallies R, Harms H, Chatzinotas A, Wick LY. Mycelia-Assisted Isolation of Non-Host Bacteria Able to Co-Transport Phages. Viruses 2022; 14:195. [PMID: 35215789 PMCID: PMC8877629 DOI: 10.3390/v14020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Recent studies have demonstrated that phages can be co-transported with motile non-host bacteria, thereby enabling their invasion of biofilms and control of biofilm composition. Here, we developed a novel approach to isolate non-host bacteria able to co-transport phages from soil. It is based on the capability of phage-carrying non-host bacteria to move along mycelia out of soil and form colonies in plaques of their co-transported phages. The approach was tested using two model phages of differing surface hydrophobicity, i.e., hydrophobic Escherichia virus T4 (T4) and hydrophilic Pseudoalteromonas phage HS2 (HS2). The phages were mixed into soil and allowed to be transported by soil bacteria along the mycelia of Pythium ultimum. Five phage-carrying bacterial species were isolated (Viridibacillus sp., Enterobacter sp., Serratia sp., Bacillus sp., Janthinobacterium sp.). These bacteria exhibited phage adsorption efficiencies of ≈90-95% for hydrophobic T4 and 30-95% for hydrophilic HS2. The phage adsorption efficiency of Viridibacillus sp. was ≈95% for both phages and twofold higher than T4-or HS2-adsorption to their respective hosts, qualifying Viridibacillus sp. as a potential super carrier for phages. Our approach offers an effective and target-specific way to identify and isolate phage-carrying bacteria in natural and man-made environments.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Niclas Klose
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - René Kallies
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Talstr.33, 04103 Leipzig, Germany
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| |
Collapse
|
29
|
New method to quantify hydrophobicity of non-enveloped virions in aqueous media by capillary zone electrophoresis. Virology 2022; 568:23-30. [DOI: 10.1016/j.virol.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/21/2022]
|
30
|
Population balance modeling of homogeneous viral aggregation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
32
|
Optimizing the synthesis and purification of MS2 virus like particles. Sci Rep 2021; 11:19851. [PMID: 34615923 PMCID: PMC8494748 DOI: 10.1038/s41598-021-98706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Introducing bacteriophage MS2 virus-like particles (VLPs) as gene and drug delivery tools increases the demand for optimizing their production and purification procedure. PEG precipitation method is used efficiently to purify VLPs, while the effects of pH and different electrolytes on the stability, size, and homogeneity of purified MS2 VLPs, and the encapsulated RNA sequences remained to be elucidated. In this regard, a vector, capable of producing VLP with an shRNA packed inside was prepared. The resulting VLPs in different buffers/solutions were assessed for their size, polydispersity index, and ability to protect the enclosed shRNA. We report that among Tris, HEPES, and PBS, with or without NaNO3, and also NaNO3 alone in different pH and ionic concentrations, the 100 mM NaNO3-Tris buffer with pH:8 can be used as a new and optimal MS2 VLP production buffer, capable of inhibiting the VLPs aggregation. These VLPs show a size range of 27-30 nm and suitable homogeneity with minimum 12-month stability at 4 °C. Moreover, the resulting MS2 VLPs were highly efficient and stable for at least 48 h in conditions similar to in vivo. These features of MS2 VLPs produced in the newly introduced buffer make them an appropriate candidate for therapeutic agents' delivery.
Collapse
|
33
|
|
34
|
Coleman CK, Mai E, Miller M, Sharma S, Williamson C, Oza H, Holmes E, Lamer M, Ly C, Stewart J, Sobsey MD, Abebe LS. Chitosan Coagulation Pretreatment to Enhance Ceramic Water Filtration for Household Water Treatment. Int J Mol Sci 2021; 22:ijms22189736. [PMID: 34575900 PMCID: PMC8472054 DOI: 10.3390/ijms22189736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses are major contributors to the annual 1.3 million deaths associated with the global burden of diarrheal disease morbidity and mortality. While household-level water treatment technologies reduce diarrheal illness, the majority of filtration technologies are ineffective in removing viruses due to their small size relative to filter pore size. In order to meet the WHO health-based tolerable risk target of 10−6 Disability Adjusted Life Years per person per year, a drinking water filter must achieve a 5 Log10 virus reduction. Ceramic pot water filters manufactured in developing countries typically achieve less than 1 Log10 virus reductions. In order to overcome the shortfall in virus removal efficiency in household water treatment filtration, we (1) evaluated the capacity of chitosan acetate and chitosan lactate, as a cationic coagulant pretreatment combined with ceramic water filtration to remove lab cultured and sewage derived viruses and bacteria in drinking waters, (2) optimized treatment conditions in waters of varying quality and (3) evaluated long-term continuous treatment over a 10-week experiment in surface waters. For each test condition, bacteria and virus concentrations were enumerated by culture methods for influent, controls, and treated effluent after chitosan pretreatment and ceramic water filtration. A > 5 Log10 reduction was achieved in treated effluent for E.coli, C. perfringens, sewage derived E. coli and total coliforms, MS2 coliphage, Qβ coliphage, ΦX174 coliphage, and sewage derived F+ and somatic coliphages.
Collapse
Affiliation(s)
- Collin Knox Coleman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
- Correspondence:
| | - Eric Mai
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Megan Miller
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Shalini Sharma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Clark Williamson
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Hemali Oza
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30033, USA;
| | - Eleanor Holmes
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Marie Lamer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Christopher Ly
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Jill Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Mark D. Sobsey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.M.); (M.M.); (S.S.); (C.W.); (E.H.); (M.L.); (C.L.); (J.S.); (M.D.S.)
| | - Lydia S. Abebe
- Center for Environment, Energy and Infrastructure, U.S. Agency for International Development (USAID), Washington, DC 20004, USA;
| |
Collapse
|
35
|
Moresco V, Oliver DM, Weidmann M, Matallana-Surget S, Quilliam RS. Survival of human enteric and respiratory viruses on plastics in soil, freshwater, and marine environments. ENVIRONMENTAL RESEARCH 2021; 199:111367. [PMID: 34029551 DOI: 10.1016/j.envres.2021.111367] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 05/24/2023]
Abstract
The public health significance of plastics and microplastics in different environmental matrices has mainly focused on the toxicological effects of human ingestion. But these pollutants can also harbour pathogenic bacteria as the surfaces of plastics in the environment quickly become colonised by microbial biofilm. This novel microbial habitat has been termed the 'plastisphere' and could facilitate the survival and dissemination of important bacterial and fungal pathogens. Importantly, however, the role of plastic pollution as a secondary pathway for the transmission of human pathogenic viruses has never been addressed. Due to the high prevalence of both enteric and respiratory viruses in the population and in the environment, there is significant potential for human viruses to become associated with the plastisphere. In this review we critically evaluate current knowledge on the interaction of human enteric and respiratory viruses with plastic surfaces and identify the main environmental conditions and plastic characteristics that could affect virus survival and persistence in the environment. Our hypothesis is that the plastisphere can enhance the adhesion, survival and dissemination of human pathogenic viruses and potentially lead to more effective transfer and transmission of viral diseases within the environment. We identify key research questions needed to more fully assess the potential human health risks associated with viruses on plastic surfaces. These include understanding, (1) the mechanisms of viral attachment to either naked or biofilm-colonised plastic (2) how the structural characteristics of viruses (e.g., enveloped, or non-enveloped), affect their persistence in the plastisphere, (3) whether the plastisphere offers protection and increases the persistence of infectious viruses in soil, freshwater, and marine environments.
Collapse
Affiliation(s)
- Vanessa Moresco
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Manfred Weidmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Senftenberg, D-01968, Germany
| | - Sabine Matallana-Surget
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
36
|
Single-Particle Characterization of SARS-CoV-2 Isoelectric Point and Comparison to Variants of Interest. Microorganisms 2021; 9:microorganisms9081606. [PMID: 34442686 PMCID: PMC8401476 DOI: 10.3390/microorganisms9081606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2, the cause of COVID-19, is a new, highly pathogenic coronavirus, which is the third coronavirus to emerge in the past 2 decades and the first to become a global pandemic. The virus has demonstrated itself to be extremely transmissible and deadly. Recent data suggest that a targeted approach is key to mitigating infectivity. Due to the proliferation of cataloged protein and nucleic acid sequences in databases, the function of the nucleic acid, and genetic encoded proteins, we make predictions by simply aligning sequences and exploring their homology. Thus, similar amino acid sequences in a protein usually confer similar biochemical function, even from distal or unrelated organisms. To understand viral transmission and adhesion, it is key to elucidate the structural, surface, and functional properties of each viral protein. This is typically first modeled in highly pathogenic species by exploring folding, hydrophobicity, and isoelectric point (IEP). Recent evidence from viral RNA sequence modeling and protein crystals have been inadequate, which prevent full understanding of the IEP and other viral properties of SARS-CoV-2. We have thus experimentally determined the IEP of SARS-CoV-2. Our findings suggest that for enveloped viruses, such as SARS-CoV-2, estimates of IEP by the amino acid sequence alone may be unreliable. We compared the experimental IEP of SARS-CoV-2 to variants of interest (VOIs) using their amino acid sequence, thus providing a qualitative comparison of the IEP of VOIs.
Collapse
|
37
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
38
|
Castaño N, Cordts SC, Kurosu Jalil M, Zhang KS, Koppaka S, Bick AD, Paul R, Tang SKY. Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS OMEGA 2021; 6:6509-6527. [PMID: 33748563 PMCID: PMC7944398 DOI: 10.1021/acsomega.0c06335] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Inanimate objects or surfaces contaminated with infectious agents, referred to as fomites, play an important role in the spread of viruses, including SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The long persistence of viruses (hours to days) on surfaces calls for an urgent need for effective surface disinfection strategies to intercept virus transmission and the spread of diseases. Elucidating the physicochemical processes and surface science underlying the adsorption and transfer of virus between surfaces, as well as their inactivation, is important for understanding how diseases are transmitted and for developing effective intervention strategies. This review summarizes the current knowledge and underlying physicochemical processes of virus transmission, in particular via fomites, and common disinfection approaches. Gaps in knowledge and the areas in need of further research are also identified. The review focuses on SARS-CoV-2, but discussion of related viruses is included to provide a more comprehensive review given that much remains unknown about SARS-CoV-2. Our aim is that this review will provide a broad survey of the issues involved in fomite transmission and intervention to a wide range of readers to better enable them to take on the open research challenges.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Seth C. Cordts
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Myra Kurosu Jalil
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kevin S. Zhang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Saisneha Koppaka
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alison D. Bick
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rajorshi Paul
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K. Y. Tang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
39
|
Tang A, Bi X, Li X, Li F, Liao X, Zou J, Sun W, Yuan B. The inactivation of bacteriophage MS2 by sodium hypochlorite in the presence of particles. CHEMOSPHERE 2021; 266:129191. [PMID: 33310358 DOI: 10.1016/j.chemosphere.2020.129191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The inactivation of bacteriophage MS2 by sodium hypochlorite was investigated to understand the effect of solution chemistry on the disinfection efficacy in the presence of particles. Kaolinite and Microcystis aeruginosa (M. aeruginosa) were used as the models of inorganic and organic particles to simulate high turbidity and algal cells, respectively, in drinking water sources. In both particle-containing solutions, lower pH, the presence of cations (di-valent Ca2+) and natural organic matters (NOM) were regarded as the main factors to influence the aggregation and inactivation of MS2. The results showed that MS2 aggregated in all solutions at pH 3.0, protecting the inner viruses. At pH 7.0, the presence of Na+ cations (0-200 mmol/L) did not affect the inactivation efficacy of MS2, which always followed the order of particles-free ≈ kaolinite > M. aeruginosa. The inactivation efficacy of MS2 in the presence of Ca2+ cations followed the order of kaolinite > particles-free > M. aeruginosa at 0-50 mmol/L Ca2+ cations, while the inactivation efficacy remained almost constant in the range of 100-200 mmol/L Ca2+ cations. By contrast, kaolinite offered not enough protection to adsorbed MS2, but MS2 aggregation decreased disinfection efficacy at a high concentration of Ca2+ cations. Moreover, the presence of humic acid as NOM decreased the inactivation of MS2 more significantly than M. aeruginosa due to the more consumption of free chlorine from humic acids. Therefore, the co-existence of NOM and di-valent Ca2+ cations are potential challenges for the inactivation of viruses by sodium hypochlorite in safe drinking water.
Collapse
Affiliation(s)
- Aixi Tang
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Xiaochao Bi
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Xiaoxue Li
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Fei Li
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Xiaobin Liao
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Jing Zou
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Wenjie Sun
- Department of Civil and Environmental Engineering, Southern Methodist University, Dallas, TX, 75275, USA
| | - Baoling Yuan
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| |
Collapse
|
40
|
Abstract
Much of virus fate, both in the environment and in physical/chemical treatment, is dependent on electrostatic interactions. Developing an accurate means of predicting virion isoelectric point (pI) would help to understand and anticipate virus fate and transport, especially for viruses that are not readily propagated in the lab. One simple approach to predicting pI estimates the pH at which the sum of charges from ionizable amino acids in capsid proteins approaches zero. However, predicted pIs based on capsid charges frequently deviate by several pH units from empirically measured pIs. Recently, the discrepancy between empirical and predicted pI was attributed to the electrostatic neutralization of predictable polynucleotide-binding regions (PBRs) of the capsid interior. In this paper, we review models presupposing (i) the influence of the viral polynucleotide on surface charge or (ii) the contribution of only exterior residues to surface charge. We then compare these models to the approach of excluding only PBRs and hypothesize a conceptual electrostatic model that aligns with this approach. The PBR exclusion method outperformed methods based on three-dimensional (3D) structure and accounted for major discrepancies in predicted pIs without adversely affecting pI prediction for a diverse range of viruses. In addition, the PBR exclusion method was determined to be the best available method for predicting virus pI, since (i) PBRs are predicted independently of the impact on pI, (ii) PBR prediction relies on proteome sequences rather than detailed structural models, and (iii) PBR exclusion was successfully demonstrated on a diverse set of viruses. These models apply to nonenveloped viruses only. A similar model for enveloped viruses is complicated by a lack of data on enveloped virus pI, as well as uncertainties regarding the influence of the phospholipid envelope on charge and ion gradients.
Collapse
Affiliation(s)
- Joe Heffron
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
|
42
|
Heffron J, Mayer BK. Improved Virus Isoelectric Point Estimation by Exclusion of Known and Predicted Genome-Binding Regions. Appl Environ Microbiol 2020; 86:e01674-20. [PMID: 32978129 PMCID: PMC7657617 DOI: 10.1128/aem.01674-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023] Open
Abstract
Knowledge of the isoelectric points (pIs) of viruses is beneficial for predicting virus behavior in environmental transport and physical/chemical treatment applications. However, the empirically measured pIs of many viruses have thus far defied simple explanation, let alone prediction, based on the ionizable amino acid composition of the virus capsid. Here, we suggest an approach for predicting the pI of nonenveloped viruses by excluding capsid regions that stabilize the virus polynucleotide via electrostatic interactions. This method was applied first to viruses with known polynucleotide-binding regions (PBRs) and/or three-dimensional (3D) structures. Then, PBRs were predicted in a group of 32 unique viral capsid proteome sequences via conserved structures and sequence motifs. Removing predicted PBRs resulted in a significantly better fit to empirical pI values. After modification, mean differences between theoretical and empirical pI values were reduced from 2.1 ± 2.4 to 0.1 ± 1.7 pH units.IMPORTANCE This model fits predicted pIs to empirical values for a diverse set of viruses. The results suggest that many previously reported discrepancies between theoretical and empirical virus pIs can be explained by coulombic neutralization of PBRs of the inner capsid. Given the diversity of virus capsid structures, this nonarbitrary, heuristic approach to predicting virus pI offers an effective alternative to a simplistic, one-size-fits-all charge model of the virion. The accurate, structure-based prediction of PBRs of the virus capsid employed here may also be of general interest to structural virologists.
Collapse
Affiliation(s)
- Joe Heffron
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
43
|
Single-particle chemical force microscopy to characterize virus surface chemistry. Biotechniques 2020; 69:363-370. [DOI: 10.2144/btn-2020-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Two important viral surface characteristics are the hydrophobicity and surface charge, which determine the viral colloidal behavior and mobility. Chemical force microscopy allows the detection of viral surface chemistry in liquid samples with small amounts of virus sample. This single-particle method requires the functionalization of an atomic force microscope (AFM) probe and covalent bonding of viruses to a surface. A hydrophobic methyl-modified AFM probe was used to study the viral surface hydrophobicity, and an AFM probe terminated with either negatively charged carboxyl acid or positively charged quaternary amine was used to study the viral surface charge. With an understanding of viral surface properties, the way in which viruses interact with the environment can be better predicted.
Collapse
|
44
|
Berchtikou A, Sokullu E, Nahar S, Tijssen P, Gauthier MA, Ozaki T. Comparative study on the inactivation of MS2 and M13 bacteriophages using energetic femtosecond lasers. JOURNAL OF BIOPHOTONICS 2020; 13:e202000109. [PMID: 32701195 DOI: 10.1002/jbio.202000109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Femtosecond (fs) laser irradiation techniques are emerging tools for inactivating viruses that do not involve ionizing radiation. In this work, the inactivation of two bacteriophages representing protective capsids with different geometric constraints, that is, the near-spherical MS2 (with a diameter of 27 nm) and the filamentous M13 (with a length of 880 nm) is compared using energetic visible and near-infrared fs laser pulses with various energies, pulse durations, and exposure times. Intriguingly, the results show that inactivation using 400 nm lasers is substantially more efficient for MS2 compared to M13. In contrast, using 800 nm lasers, M13 was slightly more efficiently inactivated. For both viruses, the genome was exposed to a harmful environment upon fs-laser irradiation. However, in addition to the protection of the genome, the metastable capsids differ in many properties required for stepwise cell entry that may explain their dissimilar behavior after (partial) disassembly. For MS2, the dominant mechanism of fs-laser inactivation was the aggregation of the viral capsid proteins, whereas aggregation did not affect M13 inactivation, suggesting that the dominant mechanism of M13 inactivation was related to breaking of secondary protein links.
Collapse
Affiliation(s)
- Aziz Berchtikou
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Esen Sokullu
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Sharifun Nahar
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Peter Tijssen
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Marc A Gauthier
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| | - Tsuneyuki Ozaki
- INRS - Centre Énergie Matériaux Télécommunications, Varennes, Québec, Canada
| |
Collapse
|
45
|
Guo A, Shieh YC, Wang RR. Features of material surfaces affecting virus adhesion as determined by nanoscopic quantification. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Leisi R, Wolfisberg R, Nowak T, Caliaro O, Hemmerle A, Roth NJ, Ros C. Impact of the isoelectric point of model parvoviruses on viral retention in anion-exchange chromatography. Biotechnol Bioeng 2020; 118:116-129. [PMID: 32886351 DOI: 10.1002/bit.27555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
Anion-exchange chromatography (AEX) is used in the downstream purification of monoclonal antibodies to remove impurities and potential viral contamination based on electrostatic interactions. Although the isoelectric point (pI) of viruses is considered a key factor predicting the virus adsorption to the resin, the precise molecular mechanisms involved remain unclear. To address this question, we compared structurally homologous parvoviruses that only differ in their surface charge distribution. A single charged amino acid substitution on the capsid surface of minute virus of mice (MVM) provoked an increased apparent pI (pIapp ) 6.2 compared to wild-type MVM (pIapp = 4.5), as determined by chromatofocusing. Despite their radically different pIapp , both viruses displayed the same interaction profile in Mono Q AEX at different pH conditions. In contrast, the closely related canine parvovirus (pIapp = 5.3) displayed a significantly different interaction at pH 5. The detailed structural analysis of the intricate three-dimensional structure of the capsids suggests that the charge distribution is critical, and more relevant than the pI, in controlling the interaction of a virus with the chromatographic resin. This study contributes to a better understanding of the molecular mechanisms governing virus clearance by AEX, which is crucial to enable robust process design and maximize safety.
Collapse
Affiliation(s)
- Remo Leisi
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Raphael Wolfisberg
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Oliver Caliaro
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Andreas Hemmerle
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
|
48
|
Gamazo P, Victoria M, Schijven JF, Alvareda E, Tort LFL, Ramos J, Lizasoain LA, Sapriza G, Castells M, Bessone L, Colina R. Modeling the Transport of Human Rotavirus and Norovirus in Standardized and in Natural Soil Matrix-Water Systems. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:58-67. [PMID: 31721078 DOI: 10.1007/s12560-019-09414-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 05/24/2023]
Abstract
We modeled Group A Rotavirus (RVA) and Norovirus genogroup II (GII NoV) transport experiments in standardized (crystal quartz sand and deionized water with adjusted pH and ionic strength) and natural soil matrix-water systems (MWS). On the one hand, in the standardized MWS, Rotavirus and Norovirus showed very similar breakthrough curves (BTCs), showing a removal rate of 2 and 1.7 log10, respectively. From the numerical modeling of the experiment, transport parameters of the same order of magnitude were obtained for both viruses. On the other hand, in the natural MWS, the two viruses show very different BTCs. The Norovirus transport model showed significant changes; BTC showed a removal rate of 4 log10, while Rotavirus showed a removal rate of 2.6 log10 similar to the 2 log10 observed on the standardized MWS. One possible explanation for this differential behavior is the difference in the isoelectric point value of these two viruses and the increase of the ionic strength on the natural MWS.
Collapse
Affiliation(s)
- P Gamazo
- Departamento del Agua (Water Department), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay.
| | - M Victoria
- Laboratorio de Virología Molecular, (Molecular Virology Laboratory), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| | - J F Schijven
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, P.O. Box 80021, 3508 TA, Utrecht, The Netherlands
- Department of Statistics, Informatics and Modelling, National Institute of Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, The Netherlands
| | - E Alvareda
- Departamento del Agua (Water Department), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| | - L F L Tort
- Laboratorio de Virología Molecular, (Molecular Virology Laboratory), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| | - J Ramos
- Departamento del Agua (Water Department), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| | - L A Lizasoain
- Laboratorio de Virología Molecular, (Molecular Virology Laboratory), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| | - G Sapriza
- Departamento del Agua (Water Department), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| | - M Castells
- Laboratorio de Virología Molecular, (Molecular Virology Laboratory), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| | - L Bessone
- Departamento del Agua (Water Department), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| | - R Colina
- Laboratorio de Virología Molecular, (Molecular Virology Laboratory), CENUR LN (North Littoral Regional University Center), Universidad de la República, Gral. Rivera 1350, CP: 50.000, Salto, Uruguay
| |
Collapse
|
49
|
Mazurkow JM, Yüzbasi NS, Domagala KW, Pfeiffer S, Kata D, Graule T. Nano-Sized Copper (Oxide) on Alumina Granules for Water Filtration: Effect of Copper Oxidation State on Virus Removal Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1214-1222. [PMID: 31855599 DOI: 10.1021/acs.est.9b05211] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Virus removal can be successfully achieved based on an electrostatic adsorption mechanism. The key requirement for this process is to develop filter materials that can be produced by low-cost technologies and are suitable in large-scale production for real applications. In this study, we report development of spray-dried alumina granules modified with copper (oxide) nanoparticles and critically assess the effect of copper oxidation state on virus removal capacity. Using plate-shaped alumina as a support material resulted in porous structure, which in turn ensured prolonged contact time of contaminated water with the material. Subsequently, copper (oxide) nanoparticles provided a large number of adsorption sites. Flow experiments revealed that copper(I) oxide and metallic copper were the active phases in virus removal and 99.9% of MS2 bacteriophages could be removed. However, almost no virus removal was observed in the presence of copper(II) oxide. Contrasting virus removal characteristics are associated with the different surface charge of copper species, as determined by zeta potential measurements.
Collapse
Affiliation(s)
- Julia M Mazurkow
- Laboratory for High Performance Ceramics , EMPA, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600B , Switzerland
- Faculty of Materials Science and Ceramics , AGH, University of Science and Technology , Krakow 30-059 , Poland
| | - Nur Sena Yüzbasi
- Laboratory for High Performance Ceramics , EMPA, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600B , Switzerland
| | - Kamila W Domagala
- Laboratory for High Performance Ceramics , EMPA, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600B , Switzerland
- Faculty of Materials Science and Ceramics , AGH, University of Science and Technology , Krakow 30-059 , Poland
| | - Stefan Pfeiffer
- Laboratory for High Performance Ceramics , EMPA, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600B , Switzerland
- Institute of Ceramic , Glass and Construction Materials TU Bergakademie Freiberg , Freiberg 09599 , Germany
| | - Dariusz Kata
- Faculty of Materials Science and Ceramics , AGH, University of Science and Technology , Krakow 30-059 , Poland
| | - Thomas Graule
- Laboratory for High Performance Ceramics , EMPA, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600B , Switzerland
- Institute of Ceramic , Glass and Construction Materials TU Bergakademie Freiberg , Freiberg 09599 , Germany
| |
Collapse
|
50
|
Mi X, Bromley EK, Joshi PU, Long F, Heldt CL. Virus Isoelectric Point Determination Using Single-Particle Chemical Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:370-378. [PMID: 31845814 DOI: 10.1021/acs.langmuir.9b03070] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Virus colloidal behavior is governed by the interaction of the viral surface and the surrounding environment. One method to characterize the virus surface charge is the isoelectric point (pI). Traditional determination of virus pI has focused on the bulk characterization of a viral solution. However, virus capsids are extremely heterogeneous, and a single-particle method may give more information on the range of surface charge observed across a population. One method to measure the virus pI is chemical force microscopy (CFM). CFM is a single-particle technique that measures the adhesion force of a functionalized atomic force microscope (AFM) probe and, in this case, a virus covalently bound to a surface. Non-enveloped porcine parvovirus (PPV) and enveloped bovine viral diarrhea virus (BVDV) were used to demonstrate the use of CFM for viral particles with different surface properties. We have validated the CFM to determine the pI of PPV to be 4.8-5.1, which has a known pI value of 5.0 in the literature, and to predict the unknown pI of BVDV to be 4.3-4.5. Bulk measurements, ζ-potential, and aqueous two-phase system (ATPS) cross-partitioning methods were also used to validate the new CFM method for the virus pI. Most methods were in good agreement. CFM can detect the surface charge of viral capsids at a single-particle level and enable the comparison of surface charge between different types of viruses.
Collapse
|