1
|
Zhu L, Wang Y, Rao L, Yu X. Se-incorporated polycaprolactone spherical polyhedron enhanced vitamin B2 loading and prolonged release for potential application in proliferative skin disorders. Colloids Surf B Biointerfaces 2024; 245:114295. [PMID: 39368421 DOI: 10.1016/j.colsurfb.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Development of novel drug vehicles for vitamin B2 (VitB2) delivery is very important for designing controllable release system to improve epidermal growth and bone metabolism. In this work, selenium (Se)-incorporated polycaprolactone (PCL) spherical polyhedrons are successfully synthesized via a single emulsion solvent evaporation method which is utilized to load VitB2 to fabricate cell-responsive Se-PCL@VitB2 delivery systems. Their physicochemical properties are characterized by DLS, SEM, XRD, FTIR, and TGA-DSC. The release kinetics of VitB2 or Se from the samples are investigated in PBS solution (pH = 2.0, 5.0, 7.4, 8.0 and 12.0). The cytocompatibilities are also evaluated with normal BMSC and epidermal HaCat cells. Results exhibit that Se-PCL@VitB2 particles presents spherical polyhedral morphology (approximately (3.25 ± 0.46) μm), negative surface charge (-(54.03 ± 2.94) mV), reduced crystallinity and good degradability. Stability experiments imply that both VitB2 and Se might be uniformly dispersed in PCL matrix. And the incorporation of Se facilely promotes the loading of VitB2. The encapsulation efficiency and loading capacity are (98.42 ± 1.06)% and (76.25 ± 1.27) for Se-PCL@VitB2 sample. Importantly, it exhibits more prolonged release of both VitB2 and Se in neutral PBS solution (pH = 7.4) than other pH conditions. Presumably, the electrostatic interaction between Se, VitB2 and PCL contribute to its release mode. Cell experiments show that Se-PCL@VitB2 presents strong cytotoxicity to HaCat cells mainly due to the cytotoxic effect of Se anions and PCL degradation products. However, it exhibits weak inhibitory effect on BMSC cells. These note that the synthesized Se-PCL@VitB2 particles can be promising drug vehicles for potential application in epidermal proliferative disorders.
Collapse
Affiliation(s)
- Lixian Zhu
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yanhua Wang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Department of Morphology, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Luping Rao
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xin Yu
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Yiling People's Hospital of Yichang City, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
2
|
Bao S, Zou Y, Firempong CK, Feng Y, Yu Y, Wang Y, Dai H, Mo W, Sun C, Liu H. Preparation and evaluation of sustained release pirfenidone-loaded microsphere dry powder inhalation for treatment of idiopathic pulmonary fibrosis. Eur J Pharm Sci 2023; 188:106509. [PMID: 37356463 DOI: 10.1016/j.ejps.2023.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Pirfenidone (PFND) is a recommended oral drug used to treat idiopathic pulmonary fibrosis, but have low bioavailability and high hepatotoxicity. The study, therefore, seeks to improve the therapeutic activities of the drug via increased bioavailability and reduced associated side effects by developing a novel drug delivery system. The electrostatic spray technology was used to prepare a sustained release pirfenidone-loaded microsphere dry powder inhalation with PEG-modified chitosan (PFND-mPEG-CS-MS). The entrapment efficiency, drug loading, and in vitro cumulative drug release rate (at 24 h and with a sustained release effect) of PFND-mPEG-CS-MS were 77.35±3.01%, 11.45±0.64%, and 90.4%, respectively. The Carr's index of PFND-mPEG-CS-MS powder was 17.074±2.163% with a theoretical mass median aerodynamic diameter (MMADt) of 0.99±0.07 μm, and a moisture absorption weight gain rate (Rw) of 4.61±0.72%. The emptying rate, pulmonary deposition rate (fine particle fraction) and actual mass median aerodynamic diameter (MMADa) were 90%∼95%, 48.72±7.04% and 3.10±0.16 μm, respectively. MTT bioassay showed that mPEG-CS-MS (200 μg/mL) had good biocompatibility (RGR = 90.25%) and PFND-mPEG-CS-MS (200 μg/mL) had significant inhibitory activity (RGR = 49.82%) on fibroblast growth. The pharmacokinetic data revealed that the t1/2 (5.02 h) and MRT (10.66 h) of PFND-mPEG-CS-MS were prolonged compared with the free PFND (t1/2, 1.67 h; MRT, 2.71 h). The pharmacodynamic results also showed that the formulated-drug group had slight pathological changes, lower lung hydroxyproline content, and reduced hepatotoxicity compared with the free-drug group. The PFND-mPEG-CS-MS further significantly down-regulated TGF-β cytokines, Collagen I, and α-SMA protein expression levels compared with the free drug. The findings indicated that the PFND-mPEG-CS-MS had a good sustained release effect, enhanced bioavailability, decreased toxicity, and increased anti-fibrotic activities.
Collapse
Affiliation(s)
- Shixue Bao
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Zou
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Suzhou Zelgen Biopharmaceutical Co., Ltd, Kunshan, 215300, PR China
| | | | - Yingshu Feng
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang, 212028, PR China; Postdoctoral Programme of JiangSu CTQJ Pharmaceutical Co., Ltd., Huaian, 223001, PR China
| | - Yang Yu
- Jiang Sunan Pharmaceutical Industrial CO., Ltd, Zhenjiang, 212400, PR China
| | - Ying Wang
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huiying Dai
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Weiwei Mo
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Changshan Sun
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Jiang Sunan Pharmaceutical Industrial CO., Ltd, Zhenjiang, 212400, PR China; Jiangmen Hongxiao Biomedical Technology Co., Ltd, Jiangmen, 529040, PR China.
| |
Collapse
|
3
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
4
|
Safdar R, Nawaz M, Mushtaq A, Khanh Tran T, Aziz Omar A. A Bibliometric Analysis for Estimating the Global Research Trends Related to Applications of Ionic Liquids in Drug Delivery. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Özcan Bülbül E, Üstündağ Okur N, Mısırlı D, Cevher E, Tsanaktsis V, Bingöl Özakpınar Ö, Siafaka PI. Applying quality by design approach for the determination of potent paclitaxel loaded poly(lactic acid) based implants for localized tumor drug delivery. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2067538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Duygu Mısırlı
- Department of Biochemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Vasilios Tsanaktsis
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Panoraia I. Siafaka
- School of Health Studies, KES College, Nicosia, Cyprus
- Faculty of Pharmacy, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Zaib S, Areeba BS, Nehal Rana BS, Wattoo JI, Alsaab HO, Alzhrani RM, Awwad NS, Ibrahium HA, Khan I. Nanomedicines Targeting Heat Shock Protein 90 Gene Expression in the Therapy of Breast Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - B. S. Areeba
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - B. S. Nehal Rana
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - Javed Iqbal Wattoo
- Department of Biotechnology Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology Taif University, P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Rami M. Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy College of Pharmacy Taif University, P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant Nuclear Materials Authority P.O. Box 530 El Maadi Egypt
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
7
|
Wang G, Ren H, Chen Q, Zhou M, Xie F, Yan M, Wang Q, Bi H. Eco‐friendly
PCL
@
CDs
biomaterials via phytic acid,
CDs
‐cocatalyzed polymerization for rifapentin delivery. J Appl Polym Sci 2021. [DOI: 10.1002/app.51984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoyu Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Huifang Ren
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiuyang Chen
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Mingchen Zhou
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Fei Xie
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Manqing Yan
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Hong Bi
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| |
Collapse
|
8
|
Aram E, Mehdipour-Ataei S. Carbon-based nanostructured composites for tissue engineering and drug delivery. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1785456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol, Iran
| | | |
Collapse
|
9
|
Safdar R, Gnanasundaram N, Appusamy A, Thanabalan M. Synthesis, physiochemical properties, colloidal stability evaluation and potential of ionic liquid modified CS-TPP MPs in controlling the release rate of insulin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Silva SS, Gomes JM, Reis RL, Kundu SC. Green Solvents Combined with Bioactive Compounds as Delivery Systems: Present Status and Future Trends. ACS APPLIED BIO MATERIALS 2021; 4:4000-4013. [PMID: 35006819 DOI: 10.1021/acsabm.1c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Green solvents such as ionic liquids (ILs) unlock possibilities for developing innovative biomedical and pharmaceutical solutions. ILs are the most investigated solvents for compound extractions, as reaction media and/or catalysts, and a desired eco-friendly solvent to process biomacromolecules for biomaterial production. Investigations demonstrate that the tunable nature and physicochemical features of ILs are also beneficial for building up delivery systems through their combination with bioactive compounds. Bioactive compounds from synthetic origins, like ibuprofen, ketoprofen, and natural sources such as curcumin, flavonoids, and polyphenols are essential starting points as preventive and therapeutic agents for treating diseases. Therefore, the association of those compounds with ILs opens up windows of opportunities in this research field. This Review assesses some of the main and important recent information and the current challenges concerning delivery platforms based on ILs combined with bioactive compounds of both natural and synthetic origins. Moreover, the chemistry, bioavailability, and biological functions of the main bioactive compounds used in the ILs-based delivery platforms are described. These data are presented and are discussed, together with the main delivery routes of the systems.
Collapse
Affiliation(s)
- Simone S Silva
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joana M Gomes
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B́s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Subhas C Kundu
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B́s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Biocompatible Ionic Liquid-Mediated Micelles for Enhanced Transdermal Delivery of Paclitaxel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19745-19755. [PMID: 33891816 DOI: 10.1021/acsami.1c03111] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Agarwal P, Greene DG, Sherman S, Wendl K, Vega L, Park H, Shimanovich R, Reid DL. Structural characterization and developability assessment of sustained release hydrogels for rapid implementation during preclinical studies. Eur J Pharm Sci 2021; 158:105689. [PMID: 33359482 DOI: 10.1016/j.ejps.2020.105689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/12/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Sustained-release formulations are important tools to convert efficacious molecules into therapeutic products. Hydrogels enable the rapid assessment of sustained-release strategies, which are important during preclinical development where drug quantities are limited and fast turnaround times are the norm. Most research in hydrogel-based drug delivery has focused around synthesizing new materials and polymers, with limited focus on structural characterization, technology developability and implementation. Two commercially available thermosensitive hydrogel systems, comprised of block copolymers of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PLGA) and poly(lactide-co-caprolactone)-b-poly(ethyleneglycol)-b-poly(lactide-co-caprolactone) (PLCL), were evaluated during this study. The two block copolymers described in the study were successfully formulated to form hydrogels which delayed the release of lysozyme (> 20 days) in vitro. Characterization of formulation attributes of the hydrogels like Tsol-gel temperature, complex viscosity and injection force showed that these systems are amenable to rapid implementation in preclinical studies. Understanding the structure of the gel network is critical to determine the factors controlling the release of therapeutics out of these gels. The structures were characterized via the gel mesh sizes, which were estimated using two orthogonal techniques: small angle X-ray scattering (SAXS) and rheology. The mesh sizes of these hydrogels were larger than the hydrodynamic radius (size) of lysozyme (drug), indicating that release through these gels is expected to be diffusive at all time scales rather than sub-diffusive. In vitro drug release experiments confirm that diffusion is the dominating mechanism for lysozyme release; with no contribution from degradation, erosion, relaxation, swelling of the polymer network or drug-polymer interactions. PLGA hydrogel was found to have a much higher complex viscosity than PLCL hydrogel, which correlates with the slower diffusivity and release of lysozyme seen from the PLGA hydrogel as compared to PLCL hydrogel. This is due to the increased frictional drag experienced by the lysozyme molecule in the PLGA hydrogel network, as described by the hydrodynamic theory.
Collapse
Affiliation(s)
- Prashant Agarwal
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States.
| | - Daniel G Greene
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Scott Sherman
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Kaitlyn Wendl
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Leonela Vega
- Final Product Technologies, Process Development, Amgen Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Hyunsoo Park
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Roman Shimanovich
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| |
Collapse
|
13
|
Costa Salles TH, Volpe-Zanutto F, de Oliveira Sousa IM, Machado D, Zanatta AC, Vilegas W, Lancellotti M, Foglio MA, d'Ávila MA. Electrospun PCL-based nanofibers Arrabidaea chica Verlot - Pterodon pubescens Benth loaded: synergic effect in fibroblast formation. Biomed Mater 2020; 15:065001. [PMID: 32955022 DOI: 10.1088/1748-605x/ab9bb1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The guided tissue regeneration (GTR) technique can be applied in dentistry and other medical specializations, such as orthopedics. In modern dentistry, GTR has been used in periodontics and implantology to treat periodontal defects, to reconstruct lost, damaged and atrophied bone tissue in dental implant procedures, and to preserve alveolar bases after tooth extraction. In order to create and improve new therapies and to develop new biomaterials that restore, improve and prevent aggravation of compromised tissue function, poly (ϵ-caprolactone) (PCL) polymer membranes were obtained by the electrospinning process and were associated with two plant extracts: Pterodon pubescens Benth (P. pubescens) and Arrabidaea chica Verlot (A. chica) which are characterized by their pharmacological activities of anti-inflammatory and healing actions, respectively. Fiber morphology was analyzed using scanning electron microscopy (SEM), where fiber average diameter was measured from SEM images. Contact angle measurements were performed in order to evaluate the hydrophilicity of electrospun membranes containing vegetal extract. High-performance liquid chromatography was used to evaluate the ability to release active ingredients. Cytotoxicity and cell proliferation assays were performed in vitro on NIH-3T3 cells for 1, 3 and 7 d. Electrospun PCL membranes associated with plant extracts P. pubescens and/or A. chica presented a controlled release profile of the active compounds induced fibroblast formation, suggesting that they are promising and suitable for applications in GTR.
Collapse
Affiliation(s)
- Tais Helena Costa Salles
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
- Graduate School of Bioscience and Technology of Bioactive Products, Biology Institute, University at Campinas, Brazil
| | | | - Daisy Machado
- Faculty of Pharmaceutical Science, University at Campinas, Brazil
| | - Ana Caroline Zanatta
- Instituto de Biociências, Univ Estadual Paulista, UNESP-, São Vicente, SP, Brazil
| | - Wagner Vilegas
- Instituto de Biociências, Univ Estadual Paulista, UNESP-, São Vicente, SP, Brazil
| | | | - Mary Ann Foglio
- Faculty of Pharmaceutical Science, University at Campinas, Brazil
| | - Marcos Akira d'Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
14
|
Han HJ, Ekweremadu C, Patel N. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, Goto M. In vivo biocompatibility, pharmacokinetics, antitumor efficacy, and hypersensitivity evaluation of ionic liquid-mediated paclitaxel formulations. Int J Pharm 2019; 565:219-226. [DOI: 10.1016/j.ijpharm.2019.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 01/26/2023]
|
16
|
Safdar R, Gnanasundaram N, Iyyasami R, Appusamy A, Papadimitriou S, Thanabalan M. Preparation, characterization and stability evaluation of ionic liquid blended chitosan tripolyphosphate microparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, Goto M. Ionic-Liquid-Based Paclitaxel Preparation: A New Potential Formulation for Cancer Treatment. Mol Pharm 2018; 15:2484-2488. [DOI: 10.1021/acs.molpharmaceut.8b00305] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Md. Raihan Chowdhury
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiro Tahara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Niezabitowska E, Smith J, Prestly MR, Akhtar R, von Aulock FW, Lavallée Y, Ali-Boucetta H, McDonald TO. Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect ratios with potential applications in drug delivery. RSC Adv 2018; 8:16444-16454. [PMID: 30009019 PMCID: PMC6003547 DOI: 10.1039/c7ra13553j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/13/2018] [Indexed: 11/24/2022] Open
Abstract
The geometries and surface properties of nanocarriers greatly influence the interaction between nanomaterials and living cells. In this work we combine multiwalled carbon nanotubes (CNTs) with poly-ε-caprolactone (PCL) to produce non-spherical nanocomposites with high aspect ratios by using a facile emulsion solvent evaporation method. Particles were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and asymmetric flow field flow fractionation (AF4). Different sizes and morphologies of nanoparticles were produced depending on the concentration of the sodium dodecyl sulphate (SDS), CNTs and PCL. Rod-like PCL-CNT nanostructures with low polydispersity were obtained with 1.5 mg mL-1 of SDS, 0.9 mg mL-1 of CNTs and 10 mg mL-1 PCL. AFM analysis revealed that the PCL and PCL-CNT nanocomposite had comparatively similar moduli of 770 and 560 MPa respectively, indicating that all the CNTs have been coated with at least 2 nm of PCL. Thermogravimetric analysis of the PCL-CNT nanocomposite indicated that they contained 9.6% CNTs by mass. The asymmetric flow field flow fractionation of the samples revealed that the PCL-CNT had larger hydrodynamic diameters than PCL alone. Finally, the drug loading properties of the nanocomposites were assessed using docetaxel as the active substance. The nanocomposites showed comparable entrapment efficiencies of docetaxel (89%) to the CNTs alone (95%) and the PCL nanoparticles alone (81%). This is a facile method for obtaining non-spherical nanocomposites that combines the properties of PCL and CNTs such as the high aspect ratio, modulus. The high drug entrapment efficiency of these nanocomposites may have promising applications in drug delivery.
Collapse
Affiliation(s)
- Edyta Niezabitowska
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Jessica Smith
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Mark R Prestly
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK
| | - Felix W von Aulock
- School of Environmental Sciences, University of Liverpool, Jane Herdman Building, Brownlow Street, Liverpool, L69 3GP, UK
| | - Yan Lavallée
- School of Environmental Sciences, University of Liverpool, Jane Herdman Building, Brownlow Street, Liverpool, L69 3GP, UK
| | - Hanene Ali-Boucetta
- The School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| |
Collapse
|
19
|
Measurement and correlation of the physical properties of aqueous solutions of ammonium based ionic liquids. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine 2017; 12:5879-5892. [PMID: 28860754 PMCID: PMC5566389 DOI: 10.2147/ijn.s123437] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common malignant disease in women worldwide, but the current drug therapy is far from optimal as indicated by the high death rate of breast cancer patients. Nanomedicine is a promising alternative for breast cancer treatment. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for breast cancer adjuvant therapy with favorable clinical outcomes. However, these products were originally designed for generic anticancer purpose and not specifically for breast cancer treatment. With better understanding of the molecular biology of breast cancer, a number of novel promising nanotherapeutic strategies and devices have been developed in recent years. In this review, we will first give an overview of the current breast cancer treatment and the updated status of nanomedicine use in clinical setting, then discuss the latest important trends in designing breast cancer nanomedicine, including passive and active cancer cell targeting, breast cancer stem cell targeting, tumor microenvironment-based nanotherapy and combination nanotherapy of drug-resistant breast cancer. Researchers may get insight from these strategies to design and develop nanomedicine that is more tailored for breast cancer to achieve further improvements in cancer specificity, antitumorigenic effect, antimetastasis effect and drug resistance reversal effect.
Collapse
Affiliation(s)
- Di Wu
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Mengjie Si
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Hui-Yi Xue
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ho-Lun Wong
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
21
|
Lee JJ, Saiful Yazan L, Che Abdullah CA. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int J Nanomedicine 2017; 12:2373-2384. [PMID: 28392694 PMCID: PMC5376210 DOI: 10.2147/ijn.s127329] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common malignancy worldwide, especially among women, with substantial after-treatment effects. The survival rates of breast cancer have decreased over the years even with the existence of various therapeutic strategies, specifically, chemotherapy. Clinical drugs administered for breast cancer appear to be non-targeting to specific cancer sites leading to severe side effects and potentially harming healthy cells instead of just killing cancer cells. This leads to the need for designing a targeted drug delivery system. Nanomaterials, both organic and inorganic, are potential drug nanocarriers with the ability of targeting, imaging and tracking. Various types of nanomaterials have been actively researched together with their drug conjugate. In this review, we focus on selected nanomaterials, namely solid-lipid, liposomal, polymeric, magnetic nanoparticles, quantum dots, and carbon nanotubes and their drug conjugates, for breast cancer studies. Their advantages, disadvantages and previously conducted studies were highlighted.
Collapse
|
22
|
Egorova KS, Gordeev EG, Ananikov VP. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem Rev 2017; 117:7132-7189. [PMID: 28125212 DOI: 10.1021/acs.chemrev.6b00562] [Citation(s) in RCA: 927] [Impact Index Per Article: 115.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia.,Department of Chemistry, Saint Petersburg State University , Stary Petergof 198504, Russia
| |
Collapse
|
23
|
Adsorption of N2, O2, CO, and CO2 on open ends and surface of single wall carbon nano-tubes: A computational nuclear magnetic resonance and nuclear quadrupole resonance study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Kim SH, Shin US. Production of Carbonaceous Materials with Various Lengths in Small Spheroidal Fullerenes and Long CNTs by Tunable Multi-walled Carbon Nanotube Cutting. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seung-Hoi Kim
- Department of Chemistry; Dankook University; Cheonan 330-714 Republic of Korea
| | - Ueon Sang Shin
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
| |
Collapse
|
25
|
Yuan X, Ji W, Chen S, Bao Y, Tan S, Lu S, Wu K, Chu Q. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int J Nanomedicine 2016; 11:2119-31. [PMID: 27307727 PMCID: PMC4887048 DOI: 10.2147/ijn.s92271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug resistance has become a main obstacle for the effective treatment of lung cancer. To address this problem, a novel biocompatible nanoscale package, poly(d,l-lactide-co-glycolide)-Tween 80, was designed and synthesized to overcome paclitaxel (PTX) resistance in a PTX-resistant human lung cancer cell line. The poly(d,l-lactide-co-glycolide) (PLGA)-Tween 80 nanoparticles (NPs) could efficiently load PTX and release the drug gradually. There was an increased level of uptake of PLGA-Tween 80 in PTX-resistant lung cancer cell line A549/T, which achieved a significantly higher level of cytotoxicity than both PLGA NP formulation and Taxol®. The in vivo antitumor efficacy also showed that PLGA-Tween 80 NP was more effective than Taxol®, indicating that PLGA-Tween 80 copolymer was a promising carrier for PTX in resistant lung cancer.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenxiang Ji
- Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Si Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuling Bao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shun Lu
- Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Singh B, Lohan S, Sandhu PS, Jain A, Mehta SK. Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics. NANOBIOMATERIALS IN MEDICAL IMAGING 2016. [PMCID: PMC7152156 DOI: 10.1016/b978-0-323-41736-5.00015-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbon nanotubes (CNTs) have attracted much attention from researchers worldwide in recent years due to their high aspect ratio, high surface area, and excellent material properties, such as electrical and thermal conductivities and mechanical strength. These rolled-up seamless cylinders of graphene sheets possess nanosized hollow-tube-shaped structures. The CNTs can be single-walled, double-walled or multi-walled, depending upon the number of graphene layers from which a single nanotube is composed. The CNTs, favoring encapsulation of drug molecules or by possible attachment of theranostic agents on the nanotube walls, have enabled their use in controlled drug delivery, and in targeting of drug molecules to specific sites such as the lymphatic system, brain, ocular system, and cancerous tissue. This chapter provides an overview of various types of CNTs, methods utilized for their commercial production, and the functionalization approaches employed in drug-delivery applications. In addition, the chapter also endeavors to provide a thoughtful insight into the toxicity and regulatory concerns that need to be addressed before the CNTs can be launched in the market.
Collapse
Affiliation(s)
- Bhupinder Singh
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India,University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Shikha Lohan
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India
| | - Premjeet S. Sandhu
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India
| | - Atul Jain
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India
| | - Surinder Kumar Mehta
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India,Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
27
|
Preparation of nano/macroporous polycaprolactone microspheres for an injectable cell delivery system using room temperature ionic liquid and camphene. J Colloid Interface Sci 2015; 465:18-25. [PMID: 26641560 DOI: 10.1016/j.jcis.2015.11.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 01/06/2023]
Abstract
The nano/macroporous polycaprolactone (PCL) microspheres with cell active surfaces were developed as an injectable cell delivery system. Room temperature ionic liquid (RTIL) and camphene were used as a liquid mold and a porogen, respectively. Various-sized spheres of 244-601μm with pores of various size and shape of 0.02-100μm, were formed depending on the camphene/RTIL ratio (0.8-2.6). To give cell activity, the surface of porous microspheres were further modified with nerve growth factors (NGF) containing gelatin to give a thin NGF/gelatin layer, to which the neural progenitor cells (PC-12) attached and extended their neurites on to the surface layers of the microspheres. The developed microspheres may be potentially applicable as a neuronal cell delivery scaffold for neuron tissue engineering.
Collapse
|