1
|
Jamal HS, Raja R, Ahmed S, Yesiloz G, Ali SA. Immobilization of collagenase in inorganic hybrid nanoflowers with enhanced stability, proteolytic activity, and their anti-amyloid potential. Int J Biol Macromol 2024; 274:133114. [PMID: 38871102 DOI: 10.1016/j.ijbiomac.2024.133114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Organic-inorganic hybrid nanomaterials are considered as promising immobilization matrix for enzymes owing to their markedly enhanced stability and reusability. Herein, collagenase was chosen as a model enzyme to synthesize collagenase hybrid nanoflowers (Col-hNFs). Maximum collagenase activity (155.58 μmol min-1 L-1) and encapsulation yield (90 %) were observed in presence of Zn(II) ions at 0.05 mg/mL collagenase, 120 mM zinc chloride and PBS (pH 7.5). Synthesized Col-Zn-hNFs were extensively characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. SEM images showed flower-like morphology with average size of 5.1 μm and zeta potential of -14.3 mV. Col-Zn-hNFs demonstrated superior relative activity across wide pH and temperature ranges, presence of organic solvents and surfactants as compared to its free form. Moreover, Col-Zn-hNFs exhibited excellent shelf life stability and favorable reusability. Col-Zn-hNFs showed the ability to suppress and eradicate fully developed insulin fibrils in vitro (IC50 = 2.8 and 6.2 μg/mL, respectively). This indicates a promising inhibitory potential of Col-Zn-hNFs against insulin amyloid fibrillation. The findings suggest that the utilization of Col-Zn-hNFs as a carrier matrix holds immense potential for immobilizing collagenase with improved catalytic properties and biomedical applications.
Collapse
Affiliation(s)
- Hafiza Sumaiyya Jamal
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Rameez Raja
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Shakil Ahmed
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Gurkan Yesiloz
- National Nanotechnology Research Center of Turkiye, Institute of Materials Science and Nanotechnology, Bilkent University-UNAM-Universiteler Mah, 06800 Cankaya, Ankara, Turkey
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Bobrowska K, Sadowska K, Stolarczyk K, Prześniak-Welenc M, Golec P, Bilewicz R. Bovine Serum Albumin - Hydroxyapatite Nanoflowers as Potential Local Drug Delivery System of Ciprofloxacin. Int J Nanomedicine 2023; 18:6449-6467. [PMID: 38026518 PMCID: PMC10640833 DOI: 10.2147/ijn.s427258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Hybrid nanoflowers are structures consisting of organic (enzymes, proteins, nucleic acids) and inorganic components (mostly metal phosphates) with a flower-like hierarchical structure. Novel hybrid nanoflowers based on bovine serum albumin (BSA) and hydroxyapatite (HA) were obtained and characterized. Study on BSA-HA nanoflowers as potential drug delivery system is reported for the first time. Methods Embedding ciprofloxacin in the structure of hybrid nanoflowers was confirmed by ATR-FTIR and thermogravimetric analysis. The inorganic phase of the nanoflowers was determined by X-ray diffraction. UV‒Vis spectroscopy was used to evaluate the release profiles of ciprofloxacin from nanoflowers in buffer solutions at pH 7.4 and 5. The agar disk diffusion method was used to study the antibacterial activity of the synthesized nanoflowers against Staphylococcus aureus and Pseudomonas aeruginosa. Results Bovine serum albumin - hydroxyapatite nanoflowers were obtained with diameters of ca. 1-2 µm. The kinetics of ciprofloxacin release from nanoflowers were described by the Korsmeyer-Peppas model. The antibacterial activity of the synthesized nanoflowers was demonstrated against S. aureus and P. aeruginosa, two main pathogens found in osteomyelitis. Conclusion The formulated nanoflowers may act as an efficient local antibiotic delivery system. Due to the use of nonhazardous, biodegradable components and benign synthesis, hybrid nanoflowers are very promising drug delivery systems that could be applied in the treatment of skeletal system infections.
Collapse
Affiliation(s)
- Kornelia Bobrowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marta Prześniak-Welenc
- Institute of Nanotechnology and Materials Engineering, and Advanced Materials Centre, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
3
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
4
|
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. NANOSCALE ADVANCES 2023; 5:5165-5213. [PMID: 37767032 PMCID: PMC10521310 DOI: 10.1039/d3na00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023]
Abstract
In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University Seoul 01897 Korea
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
5
|
Ekeoma BC, Ekeoma LN, Yusuf M, Haruna A, Ikeogu CK, Merican ZMA, Kamyab H, Pham CQ, Vo DVN, Chelliapan S. Recent Advances in the Biocatalytic Mitigation of Emerging Pollutants: A Comprehensive Review. J Biotechnol 2023; 369:14-34. [PMID: 37172936 DOI: 10.1016/j.jbiotec.2023.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The issue of environmental pollution has been worsened by the emergence of new contaminants whose morphology is yet to be fully understood. Several techniques have been adopted to mitigate the pollution effects of these emerging contaminants, and bioremediation involving plants, microbes, or enzymes has stood out as a cost-effective and eco-friendly approach. Enzyme-mediated bioremediation is a very promising technology as it exhibits better pollutant degradation activity and generates less waste. However, this technology is subject to challenges like temperature, pH, and storage stability, in addition to recycling difficulty as it is arduous to isolate them from the reaction media. To address these challenges, the immobilization of enzymes has been successfully applied to ameliorate the activity, stability, and reusability of enzymes. Although this has significantly increased the uses of enzymes over a wide range of environmental conditions and facilitated the use of smaller bioreactors thereby saving cost, it still comes with additional costs for carriers and immobilization. Additionally, the existing immobilization methods have their individual limitations. This review provides state-of-the-art information to readers focusing on bioremediation using enzymes. Different parameters such as: the sustainability of biocatalysts, the ecotoxicological evaluation of transformation contaminants, and enzyme groups used were reviewed. The efficacy of free and immobilized enzymes, materials and methods for immobilization, bioreactors used, challenges to large-scale implementation, and future research needs were thoroughly discussed.
Collapse
Affiliation(s)
- Bernard Chukwuemeka Ekeoma
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Leonard Nnamdi Ekeoma
- Department of Pharmacy, Nnamdi Azikiwe University, Agulu Campus, Anambra State, Nigeria
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Department of Chemistry, Ahmadu Bello University Zaria-Nigeria
| | | | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Dai-Viet N Vo
- Centre of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113241. [PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
Collapse
|
7
|
Mostafavi M, Mahmoodzadeh K, Habibi Z, Yousefi M, Brask J, Mohammadi M. Immobilization of Bacillus amyloliquefaciens protease "Neutrase" as hybrid enzyme inorganic nanoflower particles: A new biocatalyst for aldol-type and multicomponent reactions. Int J Biol Macromol 2023; 230:123140. [PMID: 36621745 DOI: 10.1016/j.ijbiomac.2023.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Organic-inorganic hybrid nanoflowers (hNFs) with commercial protease "Neutrase" is proposed and characterized as efficient and green biocatalysts for promiscuous catalysis in aldol-type and multicomponent reactions. Neutrase hNFs [Neutrase-(Cu/Ca/Co/Mn)3(PO4)2] are straightforwardly prepared through mixing metal ion (Cu2+, Ca2+, Co2+ or Mn2+) aqueous solutions with Neutrase in phosphate buffer (pH 7.4, 10 mM) resulting in precipitation (3 days). The hNFs were characterized by various techniques including scanning electron microscopy (SEM), energy dispersive X-ray (EDX), element mapping, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In SEM images, the metal-Neutrase complexes revealed flower-like or granular structures after hybridization. The effect of metal ions and enzyme concentrations on the morphology and enzyme activity of the Neutrase-hNFs was examined. The synthesized Neutrase-Mn hNFs showed superior activity and stability compared to free Neutrase. Traditional organic CC coupling reactions such as aldol condensation, decarboxylative aldol, Knoevenagel, Hantzsch-type reactions and synthesis of 4H-pyran derivatives were used to test the generality and scope of Neutrase promiscuity, while optimizing conditions for the Neutrase-Mn hNF biocatalyst. Briefly, Neutrase-Mn3(PO4)2 hNFs showed excellent enzyme activity, stability and reusability, qualifying as effective reusable catalysts for coupling reactions under mild conditions.
Collapse
Affiliation(s)
- Mostafa Mostafavi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Kazem Mahmoodzadeh
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran.
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Jesper Brask
- Novozymes A/S, Krogshøjvej 36, 2880, Bagsværd, Copenhagen, Denmark
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
8
|
In-situ growth of enzyme/copper phosphate hybrids on carbon cloth surface as self-powered electrochemical glucose biosensor. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
M. Khalaf M, M. Abd El-Lateef H, Dao VD, Mohamed IMA. Electrocatalysis of Methanol Oxidation in Alkaline Electrolytes over Novel Amorphous Fe/Ni Biphosphate Material Prepared by Different Techniques. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3429. [PMID: 36234558 PMCID: PMC9565568 DOI: 10.3390/nano12193429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In this work, novel phosphate materials based on bimetallic character (Fe and Ni) were introduced by different chemical fabrication methods, the reflux method (FeNiP-R) and the sol-gel technique (FeNiP-S), and evaluated as non-precious electrodes for methanol electrooxidation in KOH electrolytes. The designed FeNiP-R and FeNiP-S samples were investigated using different characterization techniques, namely TEM, SEM, XPS, BET, DLS, and FT-IR, to describe the impact of the fabrication technique on the chemistry, morphology, and surface area. The characterization techniques indicate the successful fabrication of nanoscale-sized particles with higher agglomeration by the sol-gel technique compared with the reflux strategy. After that, the electrochemical efficiency of the fabricated FeNiP-R and FeNiP-S as electrodes for electrocatalytic methanol oxidation was studied through cyclic voltammetry (CV) at different methanol concentrations and scan rates in addition to impedance analysis and chronoamperometric techniques. From electrochemical analyses, a sharp improvement in the obtained current values was observed in both electrodes, FeNiP-R and FeNiP-S. During the MeOH electrooxidation over FeNiP-S, the current value was improved from 0.14 mA/cm2 at 0.402 V to 2.67 mA/cm2 at 0.619 V, which is around 109 times the current density value (0.0243 mA/cm2 at 0.62 V) found in the absence of MeOH. The designed FeNiP-R electrode showed an improved electrocatalytic character compared with FeNiP-S at different methanol concentrations up to 80 mmol/L. The enhancement of the anodic current density and charge transfer resistance indicates the methanol electrooxidation over the designed bimetallic Fe/Ni-phosphates.
Collapse
Affiliation(s)
- Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Van-Duong Dao
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 10000, Vietnam
| | | |
Collapse
|
10
|
Peng LJ, Zhou HY, Zhang CY, Yang FQ. Study on the peroxidase-like activity of cobalt phosphate and its application in colorimetric detection of hydrogen peroxide. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Catalytic performance improvement with metal ion changes for efficient, stable, and reusable superoxide dismutase–metalphosphates hybrid nanoflowers. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Wang Z, Sun Y. A hybrid nanobiocatalyst with in situ encapsulated enzyme and exsolved Co nanoclusters for complete chemoenzymatic conversion of methyl parathion to 4-aminophenol. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127755. [PMID: 34799161 DOI: 10.1016/j.jhazmat.2021.127755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Combination of enzymatic and chemical reactions provides tremendous possibilities for chemoenzymatic cascade processes. However, constructing efficient hybrid catalysts still faces great challenges. Herein, we develop a hybrid catalyst by in situ encapsulating organophosphorus hydrolase (OPH) into a Zn-doped Co-based ZIF (0.8CoZIF) via biomimetic mineralization for the chemoenzymatic cascade conversion of methyl parathion to 4-nitrophenol and then 4-aminophenol. The exsolved Co nanoclusters in Zn/Co-ZIF are found to catalyze 4-nitrophenol reduction into 4-aminophenol in the presence of sodium borohydride (NaBH4). The as-synthesized OPH@0.8CoZIF catalyzes the complete conversion of 95 μM methyl parathion at nearly 100% 4-aminophenol production in the presence of 50 mM NaBH4 within 15 min, which is 1/4 that of the physical mixture of OPH and 0.8CoZIF, benefiting from the MP accumulation and substrate channeling in the hybrid catalyst. The maximum cascade conversion rate of MP to 4-AP reaches 8.07 μmol·min-1·g-catalyst-1, which is higher than most of the reported chemoenzymatic cascade catalysts. Therefore, the hybrid nanocatalyst containing Co-ZIF-based catalyst and OPH is successfully fabricated and enables to catalyze the complete conversion of a toxic pollutant like methyl parathion into a non-toxic resource like 4-aminophenol for recycling in useful chemical synthesis through efficient one-pot cascade reactions.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
13
|
da Costa FP, Cipolatti EP, Furigo Junior A, Oliveira Henriques R. Nanoflowers: A New Approach of Enzyme Immobilization. CHEM REC 2022; 22:e202100293. [PMID: 35103373 DOI: 10.1002/tcr.202100293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Indexed: 01/15/2023]
Abstract
Enzymes are biocatalysts known for versatility, selectivity, and brand operating conditions compared to chemical catalysts. However, there are limitations to their large-scale application, such as the high costs of enzymes and their low stability under extreme reaction conditions. Immobilization techniques can efficiently solve these problems; nevertheless, most current methods lead to a significant loss of enzymatic activity and require several steps of activation and functionalization of the supports. In this context, a new form of immobilization has been studied: forming organic-inorganic hybrids between metal phosphates as inorganic parts and enzymes as organic parts. Compared to traditional immobilization methods, the advantages of these nanomaterials are high surface area, simplicity of synthesis, high stability, and catalytic activity. The current study presents an overview of organic-inorganic hybrid nanoflowers and their applications in enzymatic catalysis.
Collapse
Affiliation(s)
- Felipe Pereira da Costa
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| | - Eliane Pereira Cipolatti
- Department of Chemical Engineering, Federal Rural University of Rio de Janeiro - UFRRJ, Seropédica, RJ 23890-000, Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| |
Collapse
|
14
|
Barbhuiya NH, Misra U, Singh SP. Biocatalytic membranes for combating the challenges of membrane fouling and micropollutants in water purification: A review. CHEMOSPHERE 2022; 286:131757. [PMID: 34371356 DOI: 10.1016/j.chemosphere.2021.131757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over the last few years, the list of water contaminants has grown tremendously due to many anthropogenic activities. Various conventional technologies are available for water and wastewater treatment. However, micropollutants of emerging concern (MEC) are posing a great threat due to their activity at trace concentration and poor removal efficiency by the conventional treatment processes. Advanced technology like membrane technology can remove MEC to some extent. However, issues like the different chemical properties of MEC, selectivity, and fouling of membranes can affect the removal efficiency. Moreover, the concentrate from the membrane filtration may need further treatment. Enzymatic degradation of pollutants and foulants is one of the green approaches for removing various contaminants from the water as well as mitigating membrane fouling. Biocatalytic membranes (BCMs), in which enzymes are immobilized on membranes, combines the advantages of membrane separation and enzymatic degradation. This review article discussed various commonly used enzymes in BCMs for removing MEC and fouling. The majorly used enzymes were oxidoreductases and hydrolases for removing MEC, antifouling, and self-cleaning ability. The various BCM synthesis processes based on entrapment, crosslinking, and binding have been summarized, along with the effects of the addition of the nanoparticles on the performances of the BCMs. The scale-up, commercial viability, challenges, and future direction for improving BCMs have been discussed and shown bright possibilities for these new generation membranes.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Utkarsh Misra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies (IDPCS), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
15
|
Preparation of a flowerlike protein-inorganic nanohybrid biocatalyst via co-immobilization of cobalt phosphate with mutant cellobiose 2-epimerase. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Dube S, Rawtani D. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Adv Colloid Interface Sci 2021; 295:102484. [PMID: 34358991 DOI: 10.1016/j.cis.2021.102484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023]
Abstract
The immobilization of biomolecules has been a subject of interest for scientists for a long time. The organic-inorganic hybrid nanoflowers are a new class of nanostructures that act as a host platform for the immobilization of such biomolecules. It provides better practical applicability to these functional biomolecules while also providing superior activity and reusability when catalysis is involved. These nanostructures have a versatile and straightforward synthesis process and also exhibit enzyme mimicking activity in many cases. However, this facile synthesis involves many intricacies that require in-depth analysis to fully attain its potential as an immobilization technique. A complete account of all the factors involving the synthesis process optimisation is essential to be studied to make it commercially viable. This paper explores all the different aspects of hybrid nanoflowers which sets them apart from the conventional immobilization techniques while also giving an overview of its wide range of applications in industries.
Collapse
|
17
|
Xu L, Liu S. Rapid Cu(II)-Directed Self Assembly of Esterified Tea Polyphenol Oligomers to Controlled Release Nanoflower Carrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7725-7732. [PMID: 34189913 DOI: 10.1021/acs.jafc.1c01425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, novel tea polyphenolic-copper hybrid nanoflowers were assembled with tea polyphenol palmitate oligomers generated simply through air oxidation. It was revealed that the growth of tea polyphenolic-based hybrid nanoflowers was notably faster than protein-based ones, presumably owing to rigid polyphenolic molecular architecture and the resultant different growth mechanism. The structures and composition investigation by FT-IR, X-ray, and SEM-EDS unveiled that the whole framework of the nanoflowers was composed of complexes of tea polyphenolic oligomers and copper phosphate crystals. The tea polyphenolic hybrid nanoflowers demonstrated high loading capacity of curcumin due to flower-like porous structure and hydrophobic pockets furnished by lipophilic side chains. The nanoflowers exhibited remarkable protection capacity for carried curcumin from UV irradiation and thermal treatment. Controlled release of the nanoflowers could be readily achieved by adjustment of pH condition. Owing to high assembly efficiency, biocompatibility, and natural abundance, tea polyphenols are intriguing organic components to generate nanoflowers.
Collapse
Affiliation(s)
- Lujing Xu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
18
|
Tavernini L, Romero O, Aburto C, López-Gallego F, Illanes A, Wilson L. Development of a Hybrid Bioinorganic Nanobiocatalyst: Remarkable Impact of the Immobilization Conditions on Activity and Stability of β-Galactosidase. Molecules 2021; 26:molecules26144152. [PMID: 34299429 PMCID: PMC8303607 DOI: 10.3390/molecules26144152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023] Open
Abstract
Hybrid bioinorganic biocatalysts have received much attention due to their simple synthesis, high efficiency, and structural features that favor enzyme activity and stability. The present work introduces a biomineralization strategy for the formation of hybrid nanocrystals from β-galactosidase. The effects of the immobilization conditions were studied, identifying the important effect of metal ions and pH on the immobilization yield and the recovered activity. For a deeper understanding of the biomineralization process, an in silico study was carried out to identify the ion binding sites at the different conditions. The selected β-galactosidase nanocrystals showed high specific activity (35,000 IU/g biocatalyst) and remarkable thermal stability with a half-life 11 times higher than the soluble enzyme. The nanobiocatalyst was successfully tested for the synthesis of galacto-oligosaccharides, achieving an outstanding performance, showing no signs of diffusional limitations. Thus, a new, simple, biocompatible and inexpensive nanobiocatalyst was produced with high enzyme recovery (82%), exhibiting high specific activity and high stability, with promising industrial applications.
Collapse
Affiliation(s)
- Luigi Tavernini
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Oscar Romero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (O.R.); (L.W.)
| | - Carla Aburto
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain;
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Andrés Illanes
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile; (L.T.); (C.A.); (A.I.)
- Correspondence: (O.R.); (L.W.)
| |
Collapse
|
19
|
Al-Maqdi KA, Bilal M, Alzamly A, Iqbal HMN, Shah I, Ashraf SS. Enzyme-Loaded Flower-Shaped Nanomaterials: A Versatile Platform with Biosensing, Biocatalytic, and Environmental Promise. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1460. [PMID: 34072882 PMCID: PMC8227841 DOI: 10.3390/nano11061460] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
As a result of their unique structural and multifunctional characteristics, organic-inorganic hybrid nanoflowers (hNFs), a newly developed class of flower-like, well-structured and well-oriented materials has gained significant attention. The structural attributes along with the surface-engineered functional entities of hNFs, e.g., their size, shape, surface orientation, structural integrity, stability under reactive environments, enzyme stabilizing capability, and organic-inorganic ratio, all significantly contribute to and determine their applications. Although hNFs are still in their infancy and in the early stage of robust development, the recent hike in biotechnology at large and nanotechnology in particular is making hNFs a versatile platform for constructing enzyme-loaded/immobilized structures for different applications. For instance, detection- and sensing-based applications, environmental- and sustainability-based applications, and biocatalytic and biotransformation applications are of supreme interest. Considering the above points, herein we reviewed current advances in multifunctional hNFs, with particular emphasis on (1) critical factors, (2) different metal/non-metal-based synthesizing processes (i.e., (i) copper-based hNFs, (ii) calcium-based hNFs, (iii) manganese-based hNFs, (iv) zinc-based hNFs, (v) cobalt-based hNFs, (vi) iron-based hNFs, (vii) multi-metal-based hNFs, and (viii) non-metal-based hNFs), and (3) their applications. Moreover, the interfacial mechanism involved in hNF development is also discussed considering the following three critical points: (1) the combination of metal ions and organic matter, (2) petal formation, and (3) the generation of hNFs. In summary, the literature given herein could be used to engineer hNFs for multipurpose applications in the biosensing, biocatalysis, and other environmental sectors.
Collapse
Affiliation(s)
- Khadega A. Al-Maqdi
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Iltaf Shah
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi P. O. Box 127788, United Arab Emirates
| |
Collapse
|
20
|
Gkantzou E, Chatzikonstantinou AV, Fotiadou R, Giannakopoulou A, Patila M, Stamatis H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol Adv 2021; 51:107738. [PMID: 33775799 DOI: 10.1016/j.biotechadv.2021.107738] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
The ever-growing demand for cost-effective and innocuous biocatalytic transformations has prompted the rational design and development of robust biocatalytic tools. Enzyme immobilization technology lies in the formation of cooperative interactions between the tailored surface of the support and the enzyme of choice, which result in the fabrication of tremendous biocatalytic tools with desirable properties, complying with the current demands even on an industrial level. Different nanoscale materials (organic, inorganic, and green) have attracted great attention as immobilization matrices for single or multi-enzymatic systems. Aiming to unveil the potentialities of nanobiocatalytic systems, we present distinct immobilization strategies and give a thorough insight into the effect of nanosupports specific properties on the biocatalysts' structure and catalytic performance. We also highlight the development of nanobiocatalysts for their incorporation in cascade enzymatic processes and various types of batch and continuous-flow reactor systems. Remarkable emphasis is given on the application of such nanobiocatalytic tools in several biocatalytic transformations including bioremediation processes, biofuel production, and synthesis of bioactive compounds and fine chemicals for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Elena Gkantzou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Alexandra V Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
21
|
Subramani IG, Perumal V, Gopinath SCB, Fhan KS, Mohamed NM. Organic-Inorganic Hybrid Nanoflower Production and Analytical Utilization: Fundamental to Cutting-Edge Technologies. Crit Rev Anal Chem 2021; 52:1488-1510. [PMID: 33691533 DOI: 10.1080/10408347.2021.1889962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past decade, science has experienced a growing rise in nanotechnology with ground-breaking contributions. Through various laborious technologies, nanomaterials with different architectures from 0 D to 3 D have been synthesized. However, the 3 D flower-like organic-inorganic hybrid nanomaterial with the most direct one-pot green synthesis method has attracted widespread attention and instantly become research hotspot since its first allusion in 2012. Mild synthesis procedure, high surface-to-volume ratio, enhanced enzymatic activity and stability are the main factor for its rapid development. However, its lower mechanical strength, difficulties in recovery from the reaction system, lower loading capacity, poor reusability and accessibility of enzymes are fatal, which hinders its wide application in industry. This review first discusses the selection of non-enzymatic biomolecules for the synthesis of hybrid nanoflowers followed by the innovative advancements made in organic-inorganic hybrid nanoflowers to overcome aforementioned issues and to enhance their extensive downstream applications in transduction technologies. Besides, the role of hybrid nanoflower has been successfully utilized in many fields including, water remediation, biocatalyst, pollutant adsorption and decolourization, nanoreactor, biosensing, cellular uptake and others, accompanied with several quantification technologies, such as ELISA, electrochemical, surface plasmon resonance (SPR), colorimetric, and fluorescence were comprehensively reviewed.
Collapse
Affiliation(s)
- Indra Gandi Subramani
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Khor Shing Fhan
- Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Norani Muti Mohamed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
22
|
Kaur H, Bari NK, Garg A, Sinha S. Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids. Int J Biol Macromol 2021; 176:106-116. [PMID: 33556398 DOI: 10.1016/j.ijbiomac.2021.01.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/26/2022]
Abstract
Bio-hybrid materials have received a lot of attention in view of their bio-mimicking nature. One such biomimetic material with catalytic activity are the protein derived floral nanohybrid. Copper phosphate coordinated flakes can be curated to distinct floral morphology using proteins. Structurally two different proteins with similar size and with no known enzymatic activity are used to evaluate the role of protein structure and morphology, on the structure-activity relationship of the developed hybrid nanoflowers. Globular protein BSA and bacterial microcompartment domain protein PduBB' are selected. PduBB' because of self-assembling nature forms extended sheets, whereas BSA lacks specific assembly. The developed hybrid NFs differ in their morphology and also in their mimicry as a biological catalyst. The present investigation highlights the importance of the quaternary structure of proteins in tailoring the structure and function of the h-NFs. The results in this manuscript will motivate and guide designing, engineering and selection of glue material for fabricating biomacromolecule derived biohybrid material to mimic natural enzymes of potential industrial application.
Collapse
Affiliation(s)
- Harpreet Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Naimat K Bari
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Ankush Garg
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India.
| |
Collapse
|
23
|
Liu F, Shah DS, Gadd GM. Role of Protein in Fungal Biomineralization of Copper Carbonate Nanoparticles. Curr Biol 2021; 31:358-368.e3. [PMID: 33176131 DOI: 10.1016/j.cub.2020.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/15/2022]
Abstract
Biomineralization processes are of key importance in the biogeochemical cycling of metals and other elements by microorganisms, and several studies have highlighted the potential applications of nanoparticle synthesis via biomineralization. The roles played by proteins in the transformation and biologically induced biomineralization of metals by microorganisms is not well understood, despite the interactions of protein and nanoparticles at mineral interfaces attracting much interest in various emerging fields for novel biomaterial synthesis. Here, we have elucidated the association and involvement of fungal proteins in the formation of biogenic copper carbonate nanoparticles (CuNPs) using a carbonate-enriched biomass-free ureolytic fungal culture supernatant. Proteomic analysis was conducted that identified the major proteins present in the culture supernatant. Of the proteins identified, triosephosphate isomerase (TPI) exhibited a strong affinity to the CuNPs, and the impact of purified TPI on CuNP formation was studied in detail. The combined use of scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) confirmed that TPI played an important role in controlling the morphology and structure of the nanomaterials. Fourier transform infrared spectroscopy (FTIR) was applied to examine conformational changes of the proteins to further clarity the interaction mechanisms with CuNPs during biomineralization. Such analyses revealed unfolding of proteins on the mineral surface and an increase in β sheets within the protein structure. These results extend understanding of how microbial systems can influence biomineral formation through protein secretion, the mechanisms involved in formation of complex protein/inorganic systems, and provide useful guidelines for the synthesis of inorganic-protein based nanomaterials.
Collapse
Affiliation(s)
- Feixue Liu
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Dinesh Singh Shah
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
24
|
Altinkaynak C, Gulmez C, Atakisi O, Özdemir N. Evaluation of organic-inorganic hybrid nanoflower's enzymatic activity in the presence of different metal ions and organic solvents. Int J Biol Macromol 2020; 164:162-171. [DOI: 10.1016/j.ijbiomac.2020.07.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
25
|
Luo X, Al-Antaki AHM, Igder A, Stubbs KA, Su P, Zhang W, Weiss GA, Raston CL. Vortex Fluidic-Mediated Fabrication of Fast Gelated Silica Hydrogels with Embedded Laccase Nanoflowers for Real-Time Biosensing under Flow. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51999-52007. [PMID: 33151682 PMCID: PMC9943686 DOI: 10.1021/acsami.0c15669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The fabrication of hybrid protein-Cu3(PO4)2 nanoflowers (NFs) via an intermediate toroidal structure is dramatically accelerated under shear using a vortex fluidic device (VFD), which possesses a rapidly rotating angled tube. As-prepared laccase NFs (LNFs) exhibit ≈1.8-fold increase in catalytic activity compared to free laccase under diffusion control, which is further enhanced by ≈ 2.9-fold for the catalysis under shear in the VFD. A new LNF immobilization platform, LNF@silica incorporated in a VFD tube, was subsequently developed by mixing the LNFs for 15 min with silica hydrogel resulting in gelation along the VFD tube surface. The resulting LNFs@silica coating is highly stable and reusable, which allows a dramatic 16-fold enhancement in catalytic rates relative to LNF@silica inside glass vials. Ultraviolet-visible spectroscopy-based real-time monitoring within the LNFs@silica-coated tube reveals good stability of the coating in continuous flow processing. The results demonstrate the utility of the VFD microfluidic platform, further highlighting its ability to control chemical and enzymatic processes.
Collapse
Affiliation(s)
- Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Aghil Igder
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
- School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia 5042, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, South Australia 5042, Australia
| | - Gregory A. Weiss
- Department of Chemistry, University of California Irvine, CA, 92697-2025, USA
| | - Colin L. Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
26
|
3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Koshy DS, Das RK. Studies on the role of curcumin concentration, synthesis time, mechanism of formation, and fluorescence properties of curcumin–copper phosphate hybrid nanoflowers. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1841234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Divya Susan Koshy
- TERI-Deakin Nanobiotechnology Centre (TDNBC), The Energy and Resources Institute (TERI), Gual Pahari, Gurugram, Haryana, India
- Institute for Frontier Materials, Deakin University - Geelong Waurn Ponds Campus, Waurn Ponds, VIC, Australia
| | - Ratul Kumar Das
- TERI-Deakin Nanobiotechnology Centre (TDNBC), The Energy and Resources Institute (TERI), Gual Pahari, Gurugram, Haryana, India
| |
Collapse
|
28
|
Fu Y, Jiang Z, Feng W. A peroxidase coordinating to Zn (II) preventing heme bleaching and resistant to the interference of H 2 O 2. Biotechnol Prog 2020; 37:e3075. [PMID: 32869526 DOI: 10.1002/btpr.3075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023]
Abstract
Dehaloperoxidase (DHP) catalyzes detoxifying halophenols. It is a heme-containing enzyme using H2 O2 as the oxidant. Heme bleaching from the active site is of great concern. In addition, the interference of DHP by H2 O2 leads to the inactivation of the enzyme. To solve these two problems, DHP is coordinated to Zn (II) in PBS buffer to form a biomineralized composite (DHP&Zn-CP). DHP&Zn-CP was characterized by measuring SEM and confocal images, as well as energy dispersive X-ray spectrometry mapping. Fluorescence spectra demonstrated that DHP&Zn-CP can prevent heme bleaching. Two-dimensional FTIR spectra were measured, dynamically providing insight into the structural change of DHP along the coordination process. Raman spectra were performed to analyze the structural change. The optical spectra confirmed that the forming of DHP&Zn-CP had a little effect on the structures of DHP. For the dehalogenation of 2,4,6-trichlorophenol, DHP&Zn-CP can tolerate the presence of H2 O2 and is resistant to the interference by H2 O2 . The catalytic efficiency of DHP&Zn-CP is much higher than that of free DHP.
Collapse
Affiliation(s)
- Yaqi Fu
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zhengfeng Jiang
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
29
|
Noma SAA, Yılmaz BS, Ulu A, Özdemir N, Ateş B. Development of l-asparaginase@hybrid Nanoflowers (ASNase@HNFs) Reactor System with Enhanced Enzymatic Reusability and Stability. Catal Letters 2020. [DOI: 10.1007/s10562-020-03362-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
T Sriwong K, Koesoema AA, Matsuda T. Organic-inorganic nanocrystal reductase to promote green asymmetric synthesis. RSC Adv 2020; 10:30953-30960. [PMID: 35516042 PMCID: PMC9056328 DOI: 10.1039/d0ra03160g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
An acetophenone reductase from Geotrichum candidum (GcAPRD) was immobilized by the organic–inorganic nanocrystal method. The GcAPRD nanocrystal presented improved stability and recyclability compared with those of the free GcAPRD. Moreover, the GcAPRD nanocrystal reduced broad kinds of ketones with excellent enantioselectivities to produce beneficial chiral alcohols such as (S)-1-(3′,4′-dichlorophenyl)ethanol with >99% yield and >99% ee. The robust and versatile properties of the GcAPRD nanocrystal demonstrated an approach to promote green asymmetric synthesis and sustainable chemistry. Geotrichum candidum acetophenone reductase (GcAPRD) nanocrystal reduces broad kinds of ketones to their corresponding (S)-alcohols with excellent enantioselectivity.![]()
Collapse
Affiliation(s)
- Kotchakorn T Sriwong
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan +81-45-924-5757 +81-45-924-5757
| | - Afifa Ayu Koesoema
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan +81-45-924-5757 +81-45-924-5757
| | - Tomoko Matsuda
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan +81-45-924-5757 +81-45-924-5757
| |
Collapse
|
31
|
Li Y, Wu H, Su Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Dayan S, Altinkaynak C, Kayaci N, Doğan ŞD, Özdemir N, Ozpozan NK. Hybrid nanoflowers bearing tetraphenylporphyrin assembled on copper(II) or cobalt(II) inorganic material: A green efficient catalyst for hydrogenation of nitrobenzenes in water. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Serkan Dayan
- Drug Application and Research CenterErciyes University 38039 Kayseri Turkey
| | - Cevahir Altinkaynak
- Department of Plant and Animal Production, Avanos Vocational SchoolNevsehir Haci Bektas Veli University 50500 Nevsehir Turkey
| | - Nilgün Kayaci
- Department of Chemistry, Faculty of ScienceErciyes University 38039 Kayseri Turkey
| | - Şengül Dilem Doğan
- Department of Pharmaceutical Basic Sciences, Faculty of PharmacyErciyes University 38039 Kayseri Turkey
| | - Nalan Özdemir
- Department of Chemistry, Faculty of ScienceErciyes University 38039 Kayseri Turkey
| | | |
Collapse
|
33
|
Luo M, Li M, Jiang S, Shao H, Razal J, Wang D, Fang J. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120947. [PMID: 31394395 DOI: 10.1016/j.jhazmat.2019.120947] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Organic-inorganic nanoflower is a new type of functional material that can effectively immobilize a wide range of enzymes to form flower-like structures for various enzymatic applications with enhanced catalytic performance and stability. In order to avoid the processing inconvenience and flower structure damage caused by the particular form of these hybrid nanoflowers during material fabrication and catalytic application, different substrates have been used to carry out supported growth of hybrid nanoflowers. However, all previously used substrates have only 2-dimensional feature and only incorporate hybrid nanoflowers on surface with limited nanoflower loading. In this study, three-dimensional (3D) hierarchically porous nanofibrous PVA-co-PE membranes (HPNM) are prepared by a simple template method for effectively immobilizing laccase-Cu2(PO4)3•3H2O hybrid nanoflowers. Compared with dense nanofibre membrane with only small sized pores (<1 micron), the coexistence of both small and large sized (30-80 microns) pores of HPNM could significantly increase the nanoflower density and allow the penetrated growth of hybrid nanoflowers into the inner structure of the membrane. The hybrid nanoflower containing hierarchically porous nanofibrous membranes (HNF-HPNM) show excellent catalytic performance in degrading different types of textile dyes (reactive blue 2, acid blue 25, acid yellow 76 and indigo carmine), with a degradation efficiency of ˜99.5% for indigo carmine. In addition, the HNF-HPNM could be reused at least 14 times for indigo carmine degradation, with a negligible degradation efficiency drop from 99.48% to 98.52%. These results indicate that hierarchically porous nanofibrous membrane can be a promising type of materials for supported hybrid nanoflower growth for practical applications such as waste water treatment, dye degradation and biosensing.
Collapse
Affiliation(s)
- Mengying Luo
- Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China; Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Mufang Li
- Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China; Hebei Key Laboratory of Advanced Textile Materials & Application, Wuhan 430200, China.
| | - Shan Jiang
- Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Hao Shao
- Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Joselito Razal
- Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Dong Wang
- Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China; Hebei Key Laboratory of Advanced Textile Materials & Application, Wuhan 430200, China
| | - Jian Fang
- Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia.
| |
Collapse
|
34
|
Tian Y, Lian X, Wu Y, Guo W, Wang S. The morphology controlled growth of Co 11(HPO 3) 8(OH) 6 on nickel foams for quasi-solid-state supercapacitor applications. CrystEngComm 2020. [DOI: 10.1039/d0ce00885k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co11(HPO3)8(OH)6 microstructures with different morphologies growing on NF were synthesized under different conditions, and the flower-like sample presents excellent electrochemical properties.
Collapse
Affiliation(s)
- Yamei Tian
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Jinzhong 030600
- PR China
| | - Xiaojuan Lian
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Jinzhong 030600
- PR China
| | - Yueli Wu
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Jinzhong 030600
- PR China
| | - Wei Guo
- Institute of Energy Innovation
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan
- PR China
| | - Shuang Wang
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Jinzhong 030600
- PR China
| |
Collapse
|
35
|
Preparation of cytochrome P450 enzyme-cobalt phosphate hybrid nano-flowers for oxidative coupling of benzylamine. Enzyme Microb Technol 2019; 131:109386. [DOI: 10.1016/j.enzmictec.2019.109386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022]
|
36
|
Xia J, Zuo J, Li H. Single molecule force spectroscopy reveals that the oxidation state of cobalt ions plays an important role in enhancing the mechanical stability of proteins. NANOSCALE 2019; 11:19791-19796. [PMID: 31612899 DOI: 10.1039/c9nr06912g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Engineered bi-histidine (biHis)-based metal chelation is a general and robust method to enhance the mechanical stability of proteins. Here we used single molecule force spectroscopy techniques to investigate the effect of binding of Co2+/Co3+ on the mechanical stability of an engineered biHis mutant of protein GB1, G6-53. We found that the binding of Co2+/Co3+ can lead to an enhancement of the mechanical stability of G6-53, but the degree of enhancement is drastically different. The binding of Co2+ can only lead to marginal enhancement of G6-53's mechanical stability, while Co3+ has a much stronger effect. This large difference is likely due to the large difference in thermodynamic stability and kinetic lability of Co2+ and Co3+ complexes. These results opened up new avenues towards fine tuning the mechanical properties of proteins.
Collapse
Affiliation(s)
- Jiahao Xia
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. and Key Laboratory of Organic Optoelectronic and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 10084, P. R. China
| | - Jiacheng Zuo
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
37
|
Lu Y, Chen Y, Wang Q, Hao X, Liu P, Chu X. Organic–Inorganic Hybrid Nanocomposites: A Novel Way to Immobilize l-Glutamate Oxidase with Manganese Phosphate. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Bilal M, Asgher M, Shah SZH, Iqbal HMN. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. Int J Biol Macromol 2019; 135:677-690. [PMID: 31152838 DOI: 10.1016/j.ijbiomac.2019.05.206] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
The current industrial revolution signifies the high-value of biocatalysis engineering. Over the past decade, multiple micro- and nanostructured materials have been attempted for immobilization of enzymes to improve their catalytic properties. Conventional immobilization strategies result in improved stability, while insolubilized enzymes generally lost their activity compared to free counterparts. Recently, a new generation organic-inorganic hybrid nanoflowers with unique properties have received great attention as a novel and incentive immobilization approach owing to their simple fabrication, high biocatalytic efficiency, and enzyme stabilizing capability. The hybrid nanoflowers biocatalytic system implicates metal ions and biomolecules (enzymes). In contrast to free or conventionally immobilized enzymes, single enzyme or multi enzyme-incorporated flowers-like hybrid nanoconstructs demonstrated elevated catalytic activities and stabilities over a very broader range of experimental conditions, i.e., pHs, temperatures and salt concentration. This review discusses the recent developments in the fabrication strategies to diversifying nanoflowers, types, characteristics, and applications of organic-inorganic hybrid nanoflowers as a host platform to engineer different kinds of enzymes with requisite functionalities for biocatalysis applications in different sectors of the modern world. Based on experimental and theoretical literature data, the review is wrapped up with concluding remarks and an outlook in terms of upcoming challenges and prospects for their scale-up applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Asgher
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
39
|
Anwar A, Numan A, Siddiqui R, Khalid M, Khan NA. Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii. Parasit Vectors 2019; 12:280. [PMID: 31159839 PMCID: PMC6545699 DOI: 10.1186/s13071-019-3528-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Species of Acanthamoeba are facultative pathogens which can cause sight threatening Acanthamoeba keratitis and a rare but deadly brain infection, granulomatous amoebic encephalitis. Due to conversion of Acanthamoeba trophozoites to resistant cyst stage, most drugs are found to be ineffective at preventing recurrence of infection. This study was designed to test the antiacanthamoebic effects of different cobalt nanoparticles (CoNPs) against trophozoites and cysts, as well as parasite-mediated host cell cytotoxicity. Methods Three different varieties of CoNPs were synthesized by utilizing hydrothermal and ultrasonication methods and were thoroughly characterized by X-ray diffraction and field emission scanning electron microscopy. Amoebicidal, encystation, excystation, and host cell cytopathogenicity assays were conducted to study the antiacanthamoebic effects of CoNPs. Results The results of the antimicrobial evaluation revealed that cobalt phosphate Co3(PO4)2 hexagonal microflakes, and 100 nm large cobalt hydroxide (Co(OH)2) nanoflakes showed potent amoebicidal activity at 100 and 10 µg/ml against Acanthamoeba castellanii as compared to granular cobalt oxide (Co3O4) of size 35–40 nm. Furthermore, encystation and excystation assays also showed consistent inhibition at 100 µg/ml. CoNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release without causing significant damage to human cells when treated alone. Conclusions To our knowledge, these findings determined, for the first time, the effects of composition, size and morphology of CoNPs against A. castellanii. Co3(PO4)2 hexagonal microflakes showed the most promising antiamoebic effects as compared to Co(OH)2 nanoflakes and granular Co3O4. The results reported in the present study hold potential for the development of antiamoebic nanomedicine.
Collapse
Affiliation(s)
- Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| | - Arshid Numan
- Graphene and Advanced 2D Materials Research Group, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
40
|
Tomanin PP, Cherepanov PV, Besford QA, Christofferson AJ, Amodio A, McConville CF, Yarovsky I, Caruso F, Cavalieri F. Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42786-42795. [PMID: 30422616 DOI: 10.1021/acsami.8b12966] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanostructured materials have potential as platforms for analytical assays and catalytic reactions. Herein, we report the synthesis of electrocatalytically active cobalt phosphate nanostructures (CPNs) using a simple, low-cost, and scalable preparation method. The electrocatalytic properties of CPNs toward the electrooxidation of glucose (Glu) were studied by cyclic voltammetry and chronoamperometry in relevant biological electrolytes, such as phosphate-buffered saline (PBS), at physiological pH (7.4). Using CPNs, Glu detection could be achieved over a wide range of biologically relevant concentrations, from 1 to 30 mM Glu in PBS, with a sensitivity of 7.90 nA/mM cm2 and a limit of detection of 0.3 mM, thus fulfilling the necessary requirements for human blood Glu detection. In addition, CPNs showed a high structural and functional stability over time at physiological pH. The CPN-coated electrodes could also be used for Glu detection in the presence of interfering agents (e.g., ascorbic acid and dopamine) and in human serum. Density functional theory calculations were performed to evaluate the interaction of Glu with different faceted cobalt phosphate surfaces; the results revealed that specific surface presentations of under-coordinated cobalt led to the strongest interaction with Glu, suggesting that enhanced detection of Glu by CPNs can be achieved by lowering the surface coordination of cobalt. Our results highlight the potential use of phosphate-based nanostructures as catalysts for electrochemical sensing of biochemical analytes.
Collapse
Affiliation(s)
- Pietro Pacchin Tomanin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Pavel V Cherepanov
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | | | - Alessia Amodio
- Department of Chemical Science and Technologies , University of Rome Tor Vergata , via della ricerca scientifica 1 , 00133 Rome , Italy
| | | | | | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
- Department of Chemical Science and Technologies , University of Rome Tor Vergata , via della ricerca scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
41
|
Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron 2018; 120:175-187. [DOI: 10.1016/j.bios.2018.08.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|
42
|
Gulmez C, Altinkaynak C, Özdemir N, Atakisi O. Proteinase K hybrid nanoflowers (P-hNFs) as a novel nanobiocatalytic detergent additive. Int J Biol Macromol 2018; 119:803-810. [DOI: 10.1016/j.ijbiomac.2018.07.195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/10/2023]
|
43
|
Preparation of a Flower-Like Immobilized D-Psicose 3-Epimerase with Enhanced Catalytic Performance. Catalysts 2018. [DOI: 10.3390/catal8100468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this present study, we proposed a smart biomineralization method for creating hybrid organic–inorganic nanoflowers using a Co2+-dependent enzyme (D-psicose 3-epimerase; DPEase) as the organic component and cobalt phosphate as the inorganic component. The prepared nanoflowers have many separated petals that have a nanometer size. Under optimum conditions (60 °C and pH of 8.5), the nanoflower can display its maximum activity (36.2 U/mg), which is about 7.2-fold higher than free DPEase. Furthermore, the immobilized DPEase presents enhanced pH and thermal stabilities. The DPEase-nanoflower maintained about 90% of its activity after six reaction cycles, highlighting its excellent reusability.
Collapse
|
44
|
Jiang W, Wang X, Yang J, Han H, Li Q, Tang J. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. J Colloid Interface Sci 2018; 514:102-107. [DOI: 10.1016/j.jcis.2017.12.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/24/2023]
|
45
|
Lei Z, Gao C, Chen L, He Y, Ma W, Lin Z. Recent advances in biomolecule immobilization based on self-assembly: organic-inorganic hybrid nanoflowers and metal-organic frameworks as novel substrates. J Mater Chem B 2018; 6:1581-1594. [PMID: 32254274 DOI: 10.1039/c7tb03310a] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past few years, the immobilization of biomolecules on hybrid nanoflowers and metal-organic frameworks (MOFs) via self-assembly synthesis has received much attention due to its simplicity, high efficiency, and a bright prospect of enhancing the stability, activity and even selectivity of biomolecules compared to conventional immobilization methods. In the synthesis of organic-inorganic hybrid nanoflowers, biomolecules used as organic components are simply mixed with metal ions which act as inorganic components to form flower-like nanocomposites, while in the self-assembly process of encapsulating biomolecules in MOFs (biomolecule@MOF composites), the biomolecules just need to be added to the precursor mixtures of MOFs, in which the biomolecules are therefore embedded in MOF crystals with small pores. In this review, we focus on the recent advances of these composites, especially in the synthesis strategies, mechanism and applications in biosensors, biomedicine, pollutant disposal, and industrial biocatalysis, and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Zhixian Lei
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | | | | | | | | | | |
Collapse
|
46
|
Synthesis of Protein-Inorganic Nanohybrids with Improved Catalytic Properties Using Co 3(PO 4) 2. Indian J Microbiol 2017; 58:100-104. [PMID: 29434403 DOI: 10.1007/s12088-017-0700-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 02/01/2023] Open
Abstract
In the present study, a method for easy and rapid synthesis of lipase nanohybrids was evaluated using cobalt chloride as an encapsulating agent. The synthesized nanohybrids exhibited higher activity (181%) compared to free lipase and improved catalytic properties at higher temperature and in harsh conditions. The nanohybrids retained 84% of their residual activity at 25 °C after 10 days. In addition, these nanohybrids also exhibited high storage stability and reusability. Collectively, the synthesis of carrier-free immobilized biocatalysts was performed rapidly within 24 h at 4 °C. Their high reusability and catalytic activities highlight the broad applicability of this method for catalysis in organic and aqueous media.
Collapse
|
47
|
Song Y, Gao J, He Y, Zhou L, Ma L, Huang Z, Jiang Y. Preparation of a Flowerlike Nanobiocatalyst System via Biomimetic Mineralization of Cobalt Phosphate with Enzyme. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Song
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Jing Gao
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Ying He
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Liya Zhou
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Li Ma
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Zhihong Huang
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| | - Yanjun Jiang
- School of Chemical Engineering
and
Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, People’s Republic of China
| |
Collapse
|
48
|
|
49
|
Microwave-Assisted Synthesis of Co3(PO4)2 Nanospheres for Electrocatalytic Oxidation of Methanol in Alkaline Media. Catalysts 2017. [DOI: 10.3390/catal7040119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Jiao J, Xin X, Wang X, Xie Z, Xia C, Pan W. Self-assembly of biosurfactant–inorganic hybrid nanoflowers as efficient catalysts for degradation of cationic dyes. RSC Adv 2017. [DOI: 10.1039/c7ra06592b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The scheme of recycling of nanoflowers as an efficient catalyst for degradation of MB.
Collapse
Affiliation(s)
- Jianmei Jiao
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
| | - Xia Xin
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
- State Key Laboratory of Solid Lubrication
| | - Xingang Wang
- China Research Institute of Daily Chemical Industry
- Taiyuan
- P. R. China
| | - Zengchun Xie
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
| | - Congxin Xia
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- P. R. China
| |
Collapse
|