1
|
Majdoub M, Sengottuvelu D, Nouranian S, Al-Ostaz A. Graphitic Carbon Nitride Quantum Dots (g-C 3N 4 QDs): From Chemistry to Applications. CHEMSUSCHEM 2024; 17:e202301462. [PMID: 38433108 DOI: 10.1002/cssc.202301462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Since their emergence in 2014, graphitic carbon nitride quantum dots (g-C3N4 QDs) have attracted much interest from the scientific community due to their distinctive physicochemical features, including structural, morphological, electrochemical, and optoelectronic properties. Owing to their desirable characteristics, such as non-zero band gap, ability to be chemically functionalized or doped, possessing tunable properties, outstanding dispersibility in different media, and biocompatibility, g-C3N4 QDs have shown promise for photocatalysis, energy devices, sensing, bioimaging, solar cells, optoelectronics, among other applications. As these fields are rapidly evolving, it is very strenuous to pinpoint the emerging challenges of the g-C3N4 QDs development and application during the last decade, mainly due to the lack of critical reviews of the innovations in the g-C3N4 QDs synthesis pathways and domains of application. Herein, an extensive survey is conducted on the g-C3N4 QDs synthesis, characterization, and applications. Scenarios for the future development of g-C3N4 QDs and their potential applications are highlighted and discussed in detail. The provided critical section suggests a myriad of opportunities for g-C3N4 QDs, especially for their synthesis and functionalization, where a combination of eco-friendly/single step synthesis and chemical modification may be used to prepare g-C3N4 QDs with, for example, enhanced photoluminescence and production yields.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Dineshkumar Sengottuvelu
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Sasan Nouranian
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, MS 38677, United States
| | - Ahmed Al-Ostaz
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Civil Engineering, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
2
|
Mo C, Zhou L, Zheng J, Liang B, Huang H, Huang G, Liang J, Li S, Junaid M, Wang J, Huang K. Efficient photodegradation of antibiotics by g-C 3N 4 and 3D flower-like Bi 2WO 6 perovskite structure: Insights into the preparation, evaluation, and potential mechanism. CHEMOSPHERE 2024; 359:142286. [PMID: 38729439 DOI: 10.1016/j.chemosphere.2024.142286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Antibiotics are emerging organic pollutants that have attracted huge attention owing to their abundant use and associated ecological threats. The aim of this study is to develop and use photocatalysts to degrade antibiotics, including tetracycline (TC), ciprofloxacin (CIP), and amoxicillin (AMOX). Therefore, a novel Z-scheme heterojunction composite of g-C3N4 (gCN) and 3D flower-like Bi2WO6 (BW) perovskite structure was designed and developed, namely Bi2WO6/g-C3N4 (BW/gCN), which can degrade low-concentration of antibiotics in aquatic environments under visible light. According to the Density Functional Theory (DFT) calculation and the characterization results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FITR), Scanning electron microscopy - energy spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), this heterojunction was formed in the recombination process. Furthermore, the results of 15 wt%-BW/gCN photocatalytic experiments showed that the photodegradation rates (Rp) of TC, CIP, and AMOX were 92.4%, 90.1% and 82.3%, respectively, with good stability in three-cycle photocatalytic experiments. Finally, the quenching experiment of free radicals showed that the holes (h+) and superoxide radicals (·O2-) play a more important role than the hydroxyl radicals (·OH) in photocatalysis. In addition, a possible antibiotic degradation pathway was hypothesized on the basis of High performance liquid chromatography (HPLC) analysis. In general, we have developed an effective catalyst for photocatalytic degradation of antibiotic pollutants and analyzed its photocatalytic degradation mechanism, which provides new ideas for follow-up research and expands its application in the field of antibiotic composite pollution prevention and control.
Collapse
Affiliation(s)
- Chao Mo
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China; National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China
| | - Jiahui Zheng
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Bin Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Hualin Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Gang Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Jing Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China.
| | - Shiheng Li
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jun Wang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China; National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China.
| |
Collapse
|
3
|
Rhoomi ZR, Ahmed DS, Jabir MS, Qadeer A, Ismael AB, Swelum AA. Fabrication of pure Bi 2WO 6 and Bi 2WO 6/MWCNTs nanocomposite as potential antibacterial and anticancer agents. Sci Rep 2024; 14:9545. [PMID: 38664493 PMCID: PMC11045852 DOI: 10.1038/s41598-024-58751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.
Collapse
Affiliation(s)
- Zeena R Rhoomi
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq
| | - Duha S Ahmed
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Majid S Jabir
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences Central South University, Changsha, China
| | - Alaa B Ismael
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Phuong Thao NT, Le Minh Tri N, Kien TT, Van Tung T, Hieu TT, Thang NV, Son LT, Le Luu T, Schnitzer H, Le Thanh H. Valorization of the treatment of antibiotic and organic contents generated from an in-situ-RAS-like shrimp farming pond by using graphene-quantum-dots deposited graphitic carbon nitride photocatalysts. Heliyon 2024; 10:e26783. [PMID: 38434284 PMCID: PMC10907777 DOI: 10.1016/j.heliyon.2024.e26783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
In this study, we investigated the possibility of a photocatalytic system that uses graphene-quantum-dot (GQD)-deposited graphitic carbon nitride (g-C3N4) to treat tetracycline (TC) and other organic compounds generated from an in-situ-recirculatory-aquaculture-system (RAS)-like shrimp farming pond. GQDs were successfully deposited on the exfoliated g-C3N4 base through a hydrothermal treatment. The results showed that the incorporation of GQDs into the g-C3N4 enhanced its porosity without aggregating its mesoporous structure. The GQDs-deposited g-C3N4 photocatalysts revealed sheet-like structures with nanopores on their surface that facilitate photocatalysis. More than 90% of the TC was removed by the photocatalysts under UV-LED irradiation. Low loadings of GQDs over g-C3N4 resulted in a faster and more effective photocatalysis of TC, mainly driven by.O2- radicals. The photocatalysts were also applicable in the degradation of organic compounds with 27% of the total organic compounds (TOC) being removed from the wastewater of a RAS-like shrimp farming pond.
Collapse
Affiliation(s)
- Nguyen Thi Phuong Thao
- Institute for Environment and Resources, National University of Ho Chi Minh City, Ho Chi Minh 740500, Viet Nam
| | - Nguyen Le Minh Tri
- Institute for Environment and Resources, National University of Ho Chi Minh City, Ho Chi Minh 740500, Viet Nam
| | - Tran Trung Kien
- Institute for Environment and Resources, National University of Ho Chi Minh City, Ho Chi Minh 740500, Viet Nam
| | - Tra Van Tung
- Institute for Environment and Resources, National University of Ho Chi Minh City, Ho Chi Minh 740500, Viet Nam
| | - Tran Thi Hieu
- Institute for Environment and Resources, National University of Ho Chi Minh City, Ho Chi Minh 740500, Viet Nam
| | - Nguyen Viet Thang
- Institute for Environment and Resources, National University of Ho Chi Minh City, Ho Chi Minh 740500, Viet Nam
| | - Le Thanh Son
- Institute for Environment and Resources, National University of Ho Chi Minh City, Ho Chi Minh 740500, Viet Nam
| | - Tran Le Luu
- Master Program in Water Technology, Reuse and Management, Vietnamese – German University, Binh Duong, Viet Nam
| | - Hans Schnitzer
- Institute for Process and Particle Engineering, Graz University of Technology, Graz A-8010, Austria
| | - Hai Le Thanh
- Institute for Environment and Resources, National University of Ho Chi Minh City, Ho Chi Minh 740500, Viet Nam
| |
Collapse
|
5
|
Li Y, Zhang H, Zhang D, Yao S, Dong S, Chen Q, Fan F, Jia H, Dong M. Construction of Bi 2WO 6/g-C 3N 4 Z-Scheme Heterojunction and Its Enhanced Photocatalytic Degradation of Tetracycline with Persulfate under Solar Light. Molecules 2024; 29:1169. [PMID: 38474681 DOI: 10.3390/molecules29051169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Z-scheme heterojunction Bi2WO6/g-C3N4 was obtained by a novel hydrothermal process; its photocatalysis-persulfate (PDS) activation for tetracycline (TC) removal was explored under solar light (SL). The structure and photoelectrochemistry behavior of fabricated samples were well characterized by FT-IR, XRD, XPS, SEM-EDS, UV-vis DRS, Mott-Schottky, PL, photocurrent response, EIS and BET. The critical experimental factors in TC decomposition were investigated, including the Bi2WO6 doping ratio, catalyst dosage, TC concentration, PDS dose, pH, co-existing ion and humic acid (HA). The optimum test conditions were as follows: 0.4 g/L Bi2WO6/g-C3N4 (BC-3), 20 mg/L TC, 20 mg/L PDS and pH = 6.49, and the maximum removal efficiency of TC was 98.0% in 60 min. The decomposition rate in BC-3/SL/PDS system (0.0446 min-1) was 3.05 times higher than that of the g-C3N4/SL/PDS system (0.0146 min-1), which might be caused by the high-efficiency electron transfer inside the Z-scheme Bi2WO6/g-C3N4 heterojunction. Furthermore, the photogenerated hole (h+), superoxide (O2•-), sulfate radical (SO4•-) and singlet oxygen (1O2) were confirmed as the key oxidation factors in the BC-3/SL/PDS system for TC degradation by a free radical quenching experiment. Particularly, BC-3 possessed a wide application potential in actual antibiotic wastewater treatment for its superior catalytic performance that emerged in the experiment of co-existing components.
Collapse
Affiliation(s)
- Yukun Li
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Haiyang Zhang
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Dan Zhang
- Science and Technology Innovation Coordination Service Center of Laiwu District, Jinan 271100, China
| | - Sen Yao
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Shuying Dong
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Qishi Chen
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Fengjuan Fan
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Hongyuan Jia
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Mingjia Dong
- School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
6
|
Wang F, Jiang L, Zhang G, Ye Z, He Q, Li J, Li P, Chen Y, Zhou X, Shang R. Novel Ag-Bridged Z-Scheme CdS/Ag/Bi 2WO 6 Heterojunction: Excellent Photocatalytic Performance and Insight into the Underlying Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:315. [PMID: 38334586 PMCID: PMC10857298 DOI: 10.3390/nano14030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
The construction of semiconductor heterojunction photocatalysts that improve the separation and transfer of photoinduced charge carriers is an effective and widely employed strategy to boost photocatalytic performance. Herein, we have successfully constructed a CdS/Ag/Bi2WO6 Z-scheme heterojunction with an Ag-bridge as an effective charge transfer channel by a facile process. The heterostructure consists of both CdS and Ag nanoparticles anchored on the surface of Bi2WO6 nanosheets. The photocatalytic efficiency of the CdS/Ag/Bi2WO6 system was studied by the decontamination of tetracycline (TC) and Rhodamine B (RhB) under visible light irradiation (λ ≥ 420). The results exhibited that CdS/Ag/Bi2WO6 shows markedly higher photocatalytic performance than that of CdS, Bi2WO6, Ag/Bi2WO6, and CdS/Bi2WO6. The trapping experiment results verified that the •O2- and h+ radicals are the key active species. The results of photoluminescence spectral analysis and photocurrent responses indicated that the CdS/Ag/Bi2WO6 heterojunctions exhibit exceptional efficiency in separating and transferring photoinduced electron-hole pairs. Based on a series of characterization results, the boosted photocatalytic activity of the CdS/Ag/Bi2WO6 system is mostly due to the successful formation of the Ag-bridged Z-scheme heterojunction; these can not only inhibit the recombination rate of photoinduced charge carriers but also possess a splendid redox capacity. The work provides a way for designing a Z-scheme photocatalytic system based on Ag-bridged for boosting photocatalytic performance.
Collapse
Affiliation(s)
- Fangzhi Wang
- School of Resources and Environmental Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; (L.J.); (G.Z.); (Z.Y.); (Q.H.); (J.L.); (P.L.); (Y.C.); (X.Z.); (R.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dutta V, Sonu S, Raizada P, Thakur VK, Ahamad T, Thakur S, Kumar Verma P, Quang HHP, Nguyen VH, Singh P. Prism-like integrated Bi 2WO 6 with Ag-CuBi 2O 4 on carbon nanotubes (CNTs) as an efficient and robust S-scheme interfacial charge transfer photocatalyst for the removal of organic pollutants from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124530-124545. [PMID: 35554840 DOI: 10.1007/s11356-022-20743-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Photocatalytic hybrid carbon nanotubes (CNTs)-mediated Ag-CuBi2O4/Bi2WO6 photocatalyst was fabricated using a hydrothermal technique to effectively eliminate organic pollutants from wastewater. The as-prepared samples were characterized via Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction patterns (XRD), high-resolution transmission electron microscope (HR-TEM), UV-vis Diffuse Reflectance spectrum (UV-Vis DRS), and photoluminescence (PL) studies. The photocatalytic performance of fabricated pristine and hybrid composites was examined by photo-degradation of toxic dye viz. Rhodamine B (RhB) under visible light. Photo-degradation results revealed that the fabricated Ag-CuBi2O4/CNTs/Bi2WO6 semiconductor photocatalyst followed pseudo-first-order kinetics and displayed a higher photocatalytic rate, which was found to be approximately 3.33 and 2.35 times higher than the pristine CuBi2O4 and Bi2WO6 semiconductor photocatalyst, respectively. Re-cyclic results demonstrated that the formed composite owns excellent stability, even after five consecutive cycles. As per the matched Fermi level of CNTs in between Ag-CuBi2O4 and Bi2WO6, carbon nanotubes severed as electron transfer-bridge, Ag doping on CuBi2O4 surface successfully increased photon absorption all across CuBi2O4 surface. Also, it hindered the assimilation of photoinduced electron-hole pairs. The increased photocatalytic efficiency is contributed to the uniform dispersion of photo-generated electron-hole pairs via the construction of an S-scheme system. ROS trapping and ESR experiments suggested that (∙OH) and (O2-∙) were the main radical species for enhanced photo-degradation of RhB dye. The current investigation, from our perspective, highlights the new insights for the fabrication of practical CNTs-mediated S-scheme-based semiconductor photocatalyst for the resolution of environmental issues based on practical considerations.
Collapse
Affiliation(s)
- Vishal Dutta
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sonu Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Vijay Kumar Thakur
- Bio-Refining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Praveen Kumar Verma
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Huy Hoang Phan Quang
- Faculty of Biology and Environment, Tan Phu District, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Ho Chi Minh City, Vietnam
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
8
|
Khedr TM, El-Sheikh SM, Kowalska E. Bismuth Tungstate Nanoplates-Vis Responsive Photocatalyst for Water Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2438. [PMID: 37686946 PMCID: PMC10490350 DOI: 10.3390/nano13172438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
The development of visible-light-responsive (VLR) semiconductor materials for effective water oxidation is significant for a sustainable and better future. Among various candidates, bismuth tungstate (Bi2WO6; BWO) has attracted extensive attention because of many advantages, including efficient light-absorption ability, appropriate redox properties (for O2 generation), adjustable morphology, low cost, and profitable chemical and optical characteristics. Accordingly, a facile solvothermal method has been proposed in this study to synthesize two-dimensional (2D) BWO nanoplates after considering the optimal preparation conditions (solvothermal reaction time: 10-40 h). To find the key factors of photocatalytic performance, various methods and techniques were used for samples' characterization, including XRD, FE-SEM, STEM, TEM, HRTEM, BET-specific surface area measurements, UV/vis DRS, and PL spectroscopy, and photocatalytic activity was examined for water oxidation under UV and/or visible-light (vis) irradiation. Famous commercial photocatalyst-P25 was used as a reference sample. It was found that BWO crystals grew anisotropically along the {001} basal plane to form nanoplates, and all properties were controlled simultaneously by tuning the synthesis time. Interestingly, the most active sample (under both UV and vis), prepared during the 30 h solvothermal reaction at 433 K (BWO-30), was characterized by the smallest specific surface area and the largest crystals. Accordingly, it is proposed that improved crystallinity (which hindered charge carriers' recombination, as confirmed by PL), efficient photoabsorption (using the smallest bandgap), and 2D mesoporous structure are responsible for the best photocatalytic performance of the BWO-30 sample. This report shows for the first time that 2D mesoporous BWO nanoplates might be successfully prepared through a facile template-free solvothermal approach. All the above-mentioned advantages suggest that nanostructured BWO is a prospective candidate for photocatalytic applications under natural solar irradiation.
Collapse
Affiliation(s)
- Tamer M Khedr
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt
| | - Said M El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
9
|
Goren AY, Recepoglu YK, Vatanpour V, Yoon Y, Khataee A. Insights into engineered graphitic carbon nitride quantum dots for hazardous contaminants degradation in wastewater. ENVIRONMENTAL RESEARCH 2023; 223:115408. [PMID: 36740151 DOI: 10.1016/j.envres.2023.115408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Increased environmental pollution is a critical issue that must be addressed. Photocatalytic, adsorption, and membrane filtration methods are suitable in environmental governance because of their high selectivity, low cost, environment-friendly nature, and excellent treatment efficiency. Graphitic carbon nitride (g-C3N4) quantum dots (QDs) have been considered as photocatalysts, adsorbents, and membrane materials for wastewater treatments, owing to their stability, adsorption capacity, photochemical properties, and low toxicity and cost. This review summarizes g-C3N4 QD synthesis techniques, operating parameters affecting the removal performance in the treatment process, modification effects with other semiconductors, and benefits and drawbacks of g-C3N4 QD-based materials. Furthermore, this review discusses the practical applications of g-C3N4 QDs as adsorbents, photocatalysts, and membrane materials for organic and inorganic contaminant treatments and their value-added product formation potential. Modified g-C3N4 QD-based material adsorbents, photocatalysts, and membranes present potentially applicable effects, such as removal of most waterborne contaminants. Excellent results were obtained for the reduction of methyl orange, bisphenol A, tetracycline, ciprofloxacin, phenol, rhodamine B, E. coli, and Hg. Overall, this paper provides comprehensive background on g-C3N4 QD-based materials and their diverse applications in wastewater treatment, and it presents a foundation for the enhancement of similar unique materials in the future.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Yasar K Recepoglu
- Department of Chemical Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, 1, Yonseidae-gil, Wonju-si, 26493, Gangwon-do, Republic of Korea.
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
10
|
Zhang Y, Zhu Y, Zeng T, Qiao L, Zhang M, Song K, Yin N, Tao Y, Zhao Y, Zhang C, Zhang Y. Self-powered photoelectrochemical aptasensor based on hollow tubular g-C 3N 4/Bi/BiVO 4 for tobramycin detection. Anal Chim Acta 2023; 1250:340951. [PMID: 36898823 DOI: 10.1016/j.aca.2023.340951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
A highly sensitive photoelectrochemical aptasensor based on phosphorus-doped hollow tubular g-C3N4/Bi/BiVO4 (PT-C3N4/Bi/BiVO4) for tobramycin (TOB) detecting was developed. This aptasensor is a self-powered sensing system which could generate the electrical output under visible light irradiation with no external voltage supply. Based on the surface plasmon resonance (SPR) effect and unique hollow tubular structure of PT-C3N4/Bi/BiVO4, the PEC aptasensor exhibited an enhanced photocurrent and favorably specific response to TOB. Under the optimized conditions, the sensitive aptasensor presented a wider linearity to TOB in the range of 0.01-50 ng mL-1 with a low detection limit of 4.27 pg mL-1. This sensor also displayed a satisfying photoelectrochemical performance with optimistic selectivity and stability. In addition, the proposed aptasensor was successfully applied to the detection of TOB in river water and milk samples.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Tianjing Zeng
- Hunan Ecological and Environmental Monitoring Center, Changsha, Hunan, 410001, China
| | - Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingjuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Kexin Song
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Nian Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| |
Collapse
|
11
|
Guan X, Li Z, Geng X, Lei Z, Karakoti A, Wu T, Kumar P, Yi J, Vinu A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207181. [PMID: 36693792 DOI: 10.1002/smll.202207181] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
12
|
Zhu T, Hou Y, Huang G, Fu T, Yang J, Wang Y, Zhang H. Dual modification based on electrostatic repulsion of bentonite and SPR effect of Bi facilitate charge transfer of Bi 2WO 6 for antibiotics degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28874-28888. [PMID: 36401695 DOI: 10.1007/s11356-022-24221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Development of efficient photocatalysts is vital for light-driven removal of refractory antibiotics. Herein, Bi2WO6 microspheres were successfully anchored on the surface of bentonite, and metallic Bi was reduced in-situ by a one-step solvothermal method. Notably, the Bi/Bi2WO6/BT with a mass ratio of 0.15:1:0.1 exhibited the best photocatalytic activity toward degradation of tetracycline (TC) and ciprofloxacin (CIP) after 120 min of visible light irradiation, and their reaction rate constants were 8.0 and 5.5 folds higher than that of pristine Bi2WO6, respectively. The boosted photocatalytic activity over Bi/Bi2WO6/BT was ascribed to the establishment of electrostatic repulsion and SPR effect, which synergistically promoted charges transfer, thus achieving more h+ and ·O2- radical generation. Moreover, possible TC and CIP degradation pathways over Bi/Bi2WO6/BT were proposed based on the identified intermediates, and most of the intermediates were less toxic than TC and CIP. The study provides options to develop high-efficiency photocatalytic composites for contaminants elimination using semiconductors and readily available bentonite.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Nanning, 530004, China
| | - Guofu Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- Sinopec Maoming Petrochemical Company, Maoming, 525000, Guangdong, China
| | - Tian Fu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jinhang Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yutong Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Hanbing Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
13
|
Du F, Lai Z, Tang H, Wang H, Zhao C. Construction of dual Z-scheme Bi 2WO 6/g-C 3N 4/black phosphorus quantum dots composites for effective bisphenol A degradation. J Environ Sci (China) 2023; 124:617-629. [PMID: 36182168 DOI: 10.1016/j.jes.2021.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 06/16/2023]
Abstract
In this work, a novel dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots (Bi2WO6/g-C3N4/BPQDs) composites were fabricated and utilized towards photocatalytic degradation of bisphenol A (BPA) under visible-light irradiation. Optimizing the content of g-C3N4 and BPQDs in Bi2WO6/g-C3N4/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes, resulting in much higher photocatalytic activity for BPA degradation (95.6%, at 20 mg/L in 120 min) than that of Bi2WO6 (63.7%), g-C3N4 (25.0%), BPQDs (8.5%), and Bi2WO6/g-C3N4 (79.6%), respectively. Radical trapping experiments indicated that photogenerated holes (h+) and superoxide radicals (•O2-) played crucial roles in photocatalytic BPA degradation. Further, the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates. This work also demonstrated that the Bi2WO6/g-C3N4/BPQDs as effective photocatalysts was stable and have promising potential to remove environmental contaminants from real water samples.
Collapse
Affiliation(s)
- Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| | - Zhan Lai
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Huiyang Tang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
14
|
Cai H, Wang J, Du Z, Zhao Z, Gu Y, Guo Z, Huang Y, Tang C, Chen G, Fang Y. Construction of novel ternary MoSe2/ZnO/p-BN photocatalyst for efficient ofloxacin degradation under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Cheng J, Li C, Yu Z, Liu H. Efficient photohydrogen production by edge-modified carbon nitride with nonmetallic group. J Colloid Interface Sci 2023; 629:739-749. [PMID: 36193618 DOI: 10.1016/j.jcis.2022.09.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
As an efficient photocatalyst, graphitic carbon nitride (g-C3N4) has been widely used in the field of photocatalytic hydrogen production. However, how to prepare hydrogen efficiently and stably has become a challenge. Herein, we successfully realize metal-free edge modification with phenyl groups by one-step thermal polymerization of urea with 4-phenyl-3-thiosemicarbazide. Consequently, the optimal photocatalytic hydrogen production rate for the modified graphitic carbon nitride is increased by three times to a value of 2390.6 μmol h-1 g-1, while the apparent quantum efficiency (AQE) reaches 8.3 % at a wavelength of 420 nm. We also provide a theoretical explanation for the experiments using density functional theory (DFT) calculations, which suggest that energy level changes and electron redistribution for the modified carbon nitride materials contribute to the observed changes in catalytic performance. This work provides an effective solution for improving the photocatalytic activity of carbon nitride materials and provides theoretical support for the edge modification of carbon nitride materials to promote their photocatalytic hydrogen production efficiency.
Collapse
Affiliation(s)
- Jingsai Cheng
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Chunmei Li
- Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiyong Yu
- State·Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Hanxing Liu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China; State·Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
16
|
Advances in Bi 2WO 6-Based Photocatalysts for Degradation of Organic Pollutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248698. [PMID: 36557830 PMCID: PMC9785842 DOI: 10.3390/molecules27248698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
With the rapid development of modern industries, water pollution has become an urgent problem that endangers the health of human and wild animals. The photocatalysis technique is considered an environmentally friendly strategy for removing organic pollutants in wastewater. As an important member of Bi-series semiconductors, Bi2WO6 is widely used for fabricating high-performance photocatalysts. In this review, the recent advances of Bi2WO6-based photocatalysts are summarized. First, the controllable synthesis, surface modification and heteroatom doping of Bi2WO6 are introduced. In the respect of Bi2WO6-based composites, existing Bi2WO6-containing binary composites are classified into six types, including Bi2WO6/carbon or MOF composite, Bi2WO6/g-C3N4 composite, Bi2WO6/metal oxides composite, Bi2WO6/metal sulfides composite, Bi2WO6/Bi-series composite, and Bi2WO6/metal tungstates composite. Bi2WO6-based ternary composites are classified into four types, including Bi2WO6/g-C3N4/X, Bi2WO6/carbon/X, Bi2WO6/Au or Ag-based materials/X, and Bi2WO6/Bi-series semiconductors/X. The design, microstructure, and photocatalytic performance of Bi2WO6-based binary and ternary composites are highlighted. Finally, aimed at the existing problems in Bi2WO6-based photocatalysts, some solutions and promising research trends are proposed that would provide theoretical and practical guidelines for developing high-performance Bi2WO6-based photocatalysts.
Collapse
|
17
|
Song K, Zhang C, Zhang Y, Yu G, Zhang M, Zhang Y, Qiao L, Liu M, Yin N, Zhao Y, Tao Y. Efficient tetracycline degradation under visible light irradiation using CuBi2O4/ZnFe2O4 type II heterojunction photocatalyst based on two spinel oxides. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Zhang D, Li Y, Dong L, Chen X, Guan Y, Liu W, Wang Z. Efficient degradation of PFOA in water by persulfate-assisted and UV-activated electrocoagulation technique using Fe foam electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Yin X, Sun X, Li D, Xie W, Mao Y, Liu Z, Liu Z. 2D/2D Phosphorus-Doped g-C 3N 4/Bi 2WO 6 Direct Z-Scheme Heterojunction Photocatalytic System for Tetracycline Hydrochloride (TC-HCl) Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214935. [PMID: 36429655 PMCID: PMC9691143 DOI: 10.3390/ijerph192214935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
Bi2WO6-based heterojunction photocatalyst for antibiotic degradation has been a research hotspot, but its photocatalytic performance needs to be further improved. Therefore, 2D/2D P-doped g-C3N4/Bi2WO6 direct Z-scheme heterojunction photocatalysts with different composition ratios were prepared through three strategies of phosphorus (P) element doping, morphology regulation, and heterojunction, and the efficiency of its degradation of tetracycline hydrochloride (TC-HCl) under visible light was studied. Their structural, optical, and electronic properties were evaluated, and their photocatalytic efficiency for TC-HCl degradation was explored with a detailed assessment of the active species, degradation pathways, and effects of humic acid, different anions and cations, and water sources. The 30% P-doped g-C3N4/Bi2WO6 had the best photocatalytic performance for TC-HCl degradation. Its photocatalytic rate was 4.5-, 2.2-, and 1.9-times greater than that of g-C3N4, P-doped g-C3N4, and Bi2WO6, respectively. The improved photocatalytic efficiency was attributed to the synergistic effect of P doping and 2D/2D direct Z-scheme heterojunction construction. The stability and reusability of the 30% P-doped C3N4/Bi2WO6 were confirmed by cyclic degradation experiments. Radical scavenging experiments and electron spin resonance spectroscopy showed that the main active species were •O2- and h+. This work provides a new strategy for the preparation of direct Z-scheme heterojunction catalysts with high catalytic performance.
Collapse
Affiliation(s)
- Xudong Yin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yufeng Mao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhisen Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
20
|
Efficient simultaneous removal of tetracycline hydrochloride and Cr(VI) through photothermal-assisted photocatalytic-Fenton-like processes with CuOx/γ-Al2O3. J Colloid Interface Sci 2022; 622:526-538. [DOI: 10.1016/j.jcis.2022.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/23/2022]
|
21
|
Cao S, Zhang Y, Ding K, Xu J, Zhao Y, Wang Y, Xie X, Wang H. Efficient visible light driven degradation of antibiotic pollutants by oxygen-doped graphitic carbon nitride via the homogeneous supramolecular assembly of urea. ENVIRONMENTAL RESEARCH 2022; 210:112920. [PMID: 35167850 DOI: 10.1016/j.envres.2022.112920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Graphitic carbon nitride (CN), as a non-metal material, has emerged as a promising photocatalyst to address environmental issues with the favorable band gap and chemical stability. The porous oxygen-doped CN nanosheets (CNO) were synthesized by an ecofriendly and efficient self-assembled approach using a sole urea as the precursor. The CNO photocatalysts were derived from the hydrogen-bonded cyanuric acid-urea supramolecular complex, which were obtained by pretreatment of urea at high temperature and pressure. The homogeneous supramolecular assembly was advantageous to the formation of uniform porous and oxygen-doped CN nanosheets. The formation process of the supramolecular intermediate and the CNO nanosheets were investigated. Moreover, doping amount of O in CNO could be controlled by the time of the high-pressure thermal polymerization of urea. The characterization results shown that the O atoms were successfully doped into the framework of CN by substitution the N atoms to form the C-O structures. The obtained CNO photocatalysts demonstrated the excellent visible-light photocatalytic performances for sulfamerazine (SMR) degradation, which was ascribed to synergistic interaction of porous structure and O doping. The degradation intermediates of SMR were identified and the degradation pathway were also proposed. Furthermore, density functional theory (DFT) calculations proved that O doping changed the electronic structure of CN, resulting in more easier to activate O2. This work provides a novel perceptive for the development of high-performance nonmetal photocatalysts by using the homogeneous supramolecular assembly, which exhibits great potential in the environmental treatment.
Collapse
Affiliation(s)
- Shihai Cao
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Yu Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Jianhua Xu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, 210037, China
| | - Yuqi Zhao
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Yi Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province, 330300, China.
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China.
| |
Collapse
|
22
|
Wu X, Zhang C, Nie Z, Zhang Y, Bai Q, Yin Z, Zhang S, Qu X, Du F, Shi L. Cookies-like Ag2S/Bi4NbO8Cl heterostructures for high efficient and stable photocatalytic degradation of refractory antibiotics utilizing full-spectrum solar energy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Li J, Arif N, Lv T, Fang H, Hu X, Zeng YJ. Towards full‐spectrum photocatalysis: extending to the near infrared region. ChemCatChem 2022. [DOI: 10.1002/cctc.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiaxuan Li
- Shenzhen University College of Physics and Optoelectronic Engineering Nanhai Avenue 3688 Shenzhen CHINA
| | - Nayab Arif
- Shenzhen University College of Physics and Optoelectronic Engineering Nanhai Avenue 3688 Shenzhen CHINA
| | - Tao Lv
- Shenzhen University College of Physics and Optoelectronic Engineering Nanhai Avenue 3688 Shenzhen CHINA
| | - Hui Fang
- Shenzhen University Institute of Microscale Optoelectronics Nanhai Avenue 3688 Shenzhen CHINA
| | - Xuejuan Hu
- Shenzhen Technology University Sino-German College of Intelligent Manufacturing CHINA
| | - Yu-Jia Zeng
- Shenzhen University College of Physics and Optoelectronic Engineering Nanhai Avenue 3688 518060 Shenzhen CHINA
| |
Collapse
|
24
|
He Y, Chen Y, Lei S, Zhong J, Li M. Rich oxygen vacancies facilitated visible light-driven removal of phenol and Cr(VI) over Bi2WO6 decorated by sorghum straw carbon. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Li Y, Huo H, Chen W, Li H, Gao L, Yi S. Efficient photocatalytic degradation of tetracycline under visible light by AgCl/Bi12O15Cl6/g-C3N4 with a dual electron transfer mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Li Q, Zhang S, Xia W, Jiang X, Huang Z, Wu X, Zhao H, Yuan CS, Shen H, Jing G. Surface design of g-C 3N 4 quantum dot-decorated TiO 2(001) to enhance the photodegradation of indoor formaldehyde by experimental and theoretical investigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113411. [PMID: 35298971 DOI: 10.1016/j.ecoenv.2022.113411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Formaldehyde (CHOH), a common volatile organic compound, causes many adverse effects on human health. The highly exposed TiO2(001) facet possesses a high photodegradation efficiency of CHOH due to its excellent ability to trap photogenerated holes and high density of surface unsaturated Ti atoms (Ti5c) to bind CHOH. However, the rapid recombination of photoinduced electron-hole pairs of TiO2(001) limits the photodegradation efficiency. We adopted a strategy of decorating TiO2(001) with g-C3N4 quantum dots (QDs), exploiting the quantum effect of g-C3N4QDs and their combined staggered band structure. This decoration improves the photocatalytic activity of TiO2(001). Moreover, the chemical configuration of g-C3N4QDs/TiO2(001) and the combination mode between the g-C3N4QDs and TiO2(001) support were explored in detail using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. Following the physiochemical characteristic results, the transport mechanism of photoinduced carriers was further analyzed by ultraviolet photoelectron spectroscopy (UPS), electron paramagnetic resonance (EPR), and Heyd-Scuseria-Ernzerh (HSE) exchange-correlation functional calculations. Finally, the performance and reaction mechanism of the photodegradation of CHOH by TiO2(001) and g-C3N4QDs/TiO2(001) were thoroughly investigated. The results show that the g-C3N4QDs were composed of an N-defect tri-s-triazine supported by TiO2(001) via a strong C-O-Ti chemical bond, which accelerated the separation of photoinduced carriers through a Z-scheme route. The photodegradation and mineralization efficiencies of CHOH were significantly promoted by 30% and 60% for g-C3N4QDs/TiO2(001) compared with those of TiO2(001). The photodegradation mechanism proceeded as CHOH - dioxymethylene - formate - carbonate - CO2. This study provides a surface engineering means to design highly active modified TiO2 for CHOH photodegradation.
Collapse
Affiliation(s)
- Qing Li
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Shaowen Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Wenjie Xia
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, USA
| | - Xiaoqi Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Zhiwei Huang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Xiaomin Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Huawang Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, No. 70, Lian-Hai Road, Kaohsiung 804, Taiwan, ROC
| | - Huazhen Shen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
| | - Guohua Jing
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
| |
Collapse
|
27
|
Ren K, Dong Y, Chen Y, Shi H. Bi2WO6 nanosheets assembled BN quantum dots: Enhanced charge separation and photocatalytic antibiotics degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Sun M, Gao R, Wang B, Li J, Zhang Z, Bai G, Yan X, Li Y, Chen L. Bi 2S 3-decorated three-dimensional BiOCl as a Z-scheme heterojunction with highly exposed {001} facets of BiOCl for enhanced visible-light photocatalytic performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj02191a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In BOC-BS-x, the highly exposed {001} facets of BiOCl have more oxygen vacancies, which can facilitate the migration of carriers.
Collapse
Affiliation(s)
- Mingming Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province 522000, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Ruixiao Gao
- Oilfield Chemicals R&D Institute, China Oilfield Services Limited, Langfang 065201, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province 522000, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Jiayi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zijing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province 522000, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province 522000, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province 522000, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| |
Collapse
|
29
|
Zhao P, Jin B, Zhang Q, Peng R. Fabrication of g-C 3N 4/Bi 2WO 6 as a direct Z-scheme excellent photocatalyst. NEW J CHEM 2022. [DOI: 10.1039/d1nj06034a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To improve the photocatalytic efficiency of Bi2WO6, two types of g-C3N4 nanomaterial, g-C3N4 quantum dots and nanosheets, were incorporated with Bi2WO6 to construct two kinds of g-C3N4/Bi2WO6 photocatalysts with excellent photocatalytic activity.
Collapse
Affiliation(s)
- Ping Zhao
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Bo Jin
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Qingchun Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Rufang Peng
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| |
Collapse
|
30
|
Liu X, Yang Z, Yang Y, Li H. Carbon quantum dots sensitized 2D/2D carbon nitride nanosheets/bismuth tungstate for visible light photocatalytic degradation norfloxacin. CHEMOSPHERE 2022; 287:132126. [PMID: 34492407 DOI: 10.1016/j.chemosphere.2021.132126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
A novel carbon quantum dots (CQDs) sensitized 2D/2D carbon nitride nanosheets and bismuth tungstate composite (CQD-CNs/BWO) was successfully prepared via the facile hydrothermal method and used for the photocatalytic degradation of norfloxacin (NOR). During 120 min irradiation test, CQD-CNs/BWO exhibited 9 and 1.76 times higher photocatalytic activity than CNs and BWO, respectively. CQDs and constructed 2D/2D structure could not only improve the light harvesting but also promote the generation and separation of electron-holes. The existing inorganic ions in solution (e.g. bicarbonate ions, chlorine ions, and sulfate ions) could inhibit NOR degradation. Based on the electron spin resonance and free radicals inhibition tests, the holes and superoxide radicals rather than hydroxyl radicals were the main reactive species. The intermediates and possible pathways were proposed, and the antibacterial activity of the treated solution after the reaction was evaluated via bacteriostatic tests. The prepared composite material with high photocatalytic activity and stability is potentially effective for the degradation of antibiotics in wastewater.
Collapse
Affiliation(s)
- Xinghao Liu
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Ying Yang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Haipu Li
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
31
|
Modified g-C3N4 derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Zhao P, Jin B, Yan J, Peng R. Fabrication of recyclable reduced graphene oxide/graphitic carbon nitride quantum dot aerogel hybrids with enhanced photocatalytic activity. RSC Adv 2021; 11:35147-35155. [PMID: 35493167 PMCID: PMC9043259 DOI: 10.1039/d1ra06347b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
Recyclable photocatalysts that can efficiently respond to visible light must be developed for practical application. Herein, three-dimensional (3D) reduced graphene oxide (rGO)/graphitic carbon nitride quantum dot (CNQD) aerogel hybrids for harvesting visible light were synthesized via a hydrothermal method. The graphitic CNQDs were not only decorated on but also integrated onto the surface of rGO. The CNQDs produced photogenerated charge under visible light. 3D rGO could serve as an acceptor of the photogenerated electrons and stereoscopically facilitated the charge transfer through aerogel networks owing to its high conductivity. The ciprofloxacin removal ratio of the aerogel hybrids was about 6.1 times higher than that of bulk g-C3N4. Recyclable photocatalysts that can efficiently respond to visible light must be developed for practical application.![]()
Collapse
Affiliation(s)
- Ping Zhao
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Jing Yan
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology Mianyang 621010 Sichuan P. R. China
| |
Collapse
|
33
|
Zhao P, Jin B, Zhang Q, Peng R. Fabrication and photocatalytic activity of graphitic-C 3N 4 quantum dots-decorated basic zinc carbonate prepared by a co-precipitation method. Phys Chem Chem Phys 2021; 23:20329-20339. [PMID: 34486613 DOI: 10.1039/d1cp03466a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphitic carbon nitride quantum dots (CNQDs) with a high quantum yield (up to 43%) were synthesized by incorporating the unique organic functional group of barbituric acid into the framework of the carbon nitride structure by supramolecular pre-organization. The CNQDs were introduced onto the surface of basic zinc carbonate (BZC) by co-precipitation. The resulting CNQDs/BZC composite showed that the degradation efficiency of tetracycline was 2.4 times higher than that of ZnO. The Z-scheme mechanism for the as-prepared sample was proposed for the enhanced photocatalytic degradation rate. The ˙O2- and ˙OH radicals played major roles due to the suitable bandgap. Finally, the formation and possible photocatalytic mechanisms of the CNQDs/BZC composite are proposed.
Collapse
Affiliation(s)
- Ping Zhao
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Bo Jin
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Qingchun Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| | - Rufang Peng
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China.
| |
Collapse
|
34
|
Tetragonal/orthorhombic-bismuth tungstate homojunction formed through in situ bismuth induced phase transformation as highly efficient photocatalyst for pollutant degradation. J Colloid Interface Sci 2021; 607:269-280. [PMID: 34506999 DOI: 10.1016/j.jcis.2021.08.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023]
Abstract
Tetragonal/orthorhombic-bismuth tungstate (t/o-Bi2WO6) homojunctions of high photocatalytic efficiencies were fabricated through a novel in situ Bi induced phase transformation. The photocatalytic efficiencies of t-Bi2WO6 were greatly enhanced via formation of the homojunction. Photocatalytic degradation of rhodamine B (RhB), a recalcitrant organic pollutant, under simulated sunlight illumination was investigated as a demonstration for the efficiency enhancement. A 6.22 folds improvement was achieved with formation of the homojunction in terms of reaction rate constants. The homojunction catalyst was demonstrated to be photocatalytically stable over a five cycles operation. The t/o-Bi2WO6 homojunction enhances separation and utilization efficiency of photo-generated charge carriers and thus greatly boosts the catalytic efficiency. Trapping tests and electron spin resonance spectroscopy were conducted to reveal that singlet oxygen (1O2), hole (h+), electrons (e-), and superoxide anion radical (O2-) are the main working reactive species for RhB degradation. Density functional theory (DFT) calculations were performed to prove the feasibility of Bi induced phase transformation of t-Bi2WO6 to o-Bi2WO6. The present development offers a new design route for high efficiency photocatalysts for water pollution control.
Collapse
|
35
|
Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Fabrication of 3D Bi5O7I/BiOIO3 heterojunction material with enhanced photocatalytic activity towards tetracycline antibiotics. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118522] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Yang Y, Tan H, Cheng B, Fan J, Yu J, Ho W. Near-Infrared-Responsive Photocatalysts. SMALL METHODS 2021; 5:e2001042. [PMID: 34927853 DOI: 10.1002/smtd.202001042] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Indexed: 06/14/2023]
Abstract
Broadening the absorption of light to the near-infrared (NIR) region is important in photocatalysis to achieve efficient solar-to-fuel conversion. NIR-responsive photocatalysts that can utilize diffusive solar energy are attractive for alleviating the energy crisis and environmental pollution. Over the past few years, considerable progress on the component and structural design of NIR-responsive photocatalysts have been reported. This study aims to systematically summarize recent progress toward the material design and mechanism optimization of NIR-responsive photocatalysts in this area. Depending on the main strategies for harvesting NIR photons, NIR-responsive photocatalysts can be categorized as direct NIR-light photocatalysts, indirect NIR-light photocatalysts, and photothermal photocatalysts. Furthermore, the construction and application of different NIR-responsive photocatalytic systems are summarized. Conclusions and perspectives are presented to further explore the potential of NIR-responsive photocatalysts in this field.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Haiyan Tan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, 999077, P. R. China
| |
Collapse
|
38
|
Mohtasham H, Gholipour B, Rostamnia S, Ghiasi-Moaser A, Farajzadeh M, Nouruzi N, Jang HW, Varma RS, Shokouhimehr M. Hydrothermally exfoliated P-doped g-C3N4 decorated with gold nanorods for highly efficient reduction of 4-nitrophenol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Wang L, Xu X, Cheng Q, Dou SX, Du Y. Near-Infrared-Driven Photocatalysts: Design, Construction, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904107. [PMID: 31539198 DOI: 10.1002/smll.201904107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/01/2019] [Indexed: 05/19/2023]
Abstract
Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near-infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR-driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR-active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy-related fields and other energy conversion and storage fields.
Collapse
Affiliation(s)
- Li Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
- School of Chemistry, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Xun Xu
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre and School of Physics, Beihang University, Beijing, 100191, China
| | - Qunfeng Cheng
- BUAA-UOW Joint Research Centre and School of Chemistry, Beihang University, Beijing, 100191, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre and School of Physics, Beihang University, Beijing, 100191, China
| | - Yi Du
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre and School of Physics, Beihang University, Beijing, 100191, China
| |
Collapse
|
40
|
Novel 2D/2D g-C3N4/Bi4NbO8Cl nano-composite for enhanced photocatalytic degradation of oxytetracycline under visible LED light irradiation. J Colloid Interface Sci 2021; 584:320-331. [DOI: 10.1016/j.jcis.2020.09.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/19/2022]
|
41
|
Dou X, Li Q, Shi H. Ag nanoparticle-decorated 2D/2D S-scheme g-C 3N 4/Bi 2WO 6 heterostructures for an efficient photocatalytic degradation of tetracycline. CrystEngComm 2021. [DOI: 10.1039/d1ce00439e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 2D/2D S-scheme Ag–g-C3N4–Bi2WO6 composite with efficient charge transfer, displayed a remarkable degradation activity of tetracycline under visible light irradiation.
Collapse
Affiliation(s)
- Xincheng Dou
- School of Science
- Jiangnan University
- Wuxi
- P. R. China
| | - Qiaoqiao Li
- School of Science
- Jiangnan University
- Wuxi
- P. R. China
| | - Haifeng Shi
- School of Science
- Jiangnan University
- Wuxi
- P. R. China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
| |
Collapse
|
42
|
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
C3N4 modified with single layer ZIF67 nanoparticles for efficient photocatalytic degradation of organic pollutants under visible light. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63620-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Huang X, Zhu N, Mao F, Ding Y, Zhang S, Li F, Liu H, Wu P. Novel Au@C modified g-C3N4 (Au@C/g-C3N4) as efficient visible-light photocatalyst for toxic organic pollutant degradation: Synthesis, performance and mechanism insight. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Gao Y, Yang W, Shan X, Chen Y. Enhanced visible light photocatalytic activity of
Cl‐Bi
2
WO
6
/
g‐C
3
N
4
composite photocatalyst. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yanhua Gao
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing China
| | - Wei Yang
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing China
| | - Xinyao Shan
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing China
| | - Ying Chen
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing China
| |
Collapse
|
46
|
Niu J, Wang K, Ma Z, Yang F, Zhang Y. Application of g‐C
3
N
4
Matrix Composites Photocatalytic Performance from Degradation of Antibiotics. ChemistrySelect 2020. [DOI: 10.1002/slct.202003407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinfen Niu
- School of Science Xi'an University of Technology Xi'an 710048 China
- Research Center for Micro&Nano Materials Xi'an University of Technology Xi'an 710048 China
| | - Kai Wang
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Zhangtengfei Ma
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Fan Yang
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Yue Zhang
- School of Science Xi'an University of Technology Xi'an 710048 China
| |
Collapse
|
47
|
Kumar A, Kumar A, Krishnan V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02947] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ashish Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Ajay Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
48
|
Duan J, Liu M, Song X, Wang W, Zhang Z, Li C. Enhanced photocatalytic degradation of organic pollutants using carbon nanotube mediated CuO and Bi 2WO 6 sandwich flaky structures. NANOTECHNOLOGY 2020; 31:425202. [PMID: 32526716 DOI: 10.1088/1361-6528/ab9bd3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CuO/CNT/Bi2WO6 composites were synthesized with a solvothermal and impregnation-calcination method. This material combines the advantages of CuO, carbon nanotubes (CNTs) and Bi2WO6. The photocatalytic activity of the catalyst was evaluated by degrading phenolic organic pollutants such as p-nitrophenol and phenol under visible light. Compared with pure Bi2WO6, the photocatalytic activity of CuO/CNT/Bi2WO6 composites is significantly increased by a factor of 3.52. The main reason for the increased activity is that the doped CNTs and CuO promote the separation of photogenerated hole and electron pairs. In addition, the coupling of π-π electrons on the CNT surface with the pollutants promotes the adsorption of the pollutants on the photocatalyst surface. The degradation rate of pure photocatalytic degradation of phenol can reach 60%. Under the synergistic effect of H2O2, the degradation rate of phenol can reach 94%, which is 1.56 times higher than that of pure photocatalysis. The UV-vis absorption spectrum shows that CuO/CNT/Bi2WO6 has stronger light absorption ability in both visible and ultraviolet light regions. The trapping experiments of active species show that h + and • OH are the main active substances for photocatalytic degradation of phenol. This paper proposes a Z scheme mechanism to improve the photocatalytic performance.
Collapse
Affiliation(s)
- Jihai Duan
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Facile synthesis and extended visible light activity of oxygen and sulphur co-doped carbon nitride quantum dots modified Bi2MoO6 for phenol degradation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112588] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Shahzad K, Tahir MB, Sagir M. Utilization of Bi2WO6-encapsulated polyaniline-based redox reactions for the efficient detoxification of organic pollutants. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01265-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|