1
|
Liu Y, Wu J, Yang J, Lang T, Xu W, Chen J, Xie T, Qiu Q, Liang T. FeOCl/MOF-derived In 2S 3 photocatalysts with high H 2O 2 adsorption: Degradation mechanism, H 2O 2 activation process. ENVIRONMENTAL RESEARCH 2024; 257:119350. [PMID: 38844035 DOI: 10.1016/j.envres.2024.119350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The FeOCl-based photo-Fenton heterojunction catalyst holds great promise for effective water pollution treatment. A novel heterojunction FeOCl/MOF-In2S3 (F/M-I) was fabricated by coating hollow MOF-In2S3 nanoflowers onto the surface of FeOCl. Under the optimal conditions, the maximum photo-Fenton degradation rate constants of FeOCl/MOF-In2S3 for oxytetracycline (OTC) within 20 min is 0.88192 L mg-1·min-1, which are 3.2 and 2.5 times that of pure FeOCl (0.27357 L mg-1·min-1) and MOF-In2S3 (0.35222 L mg-1·min-1). Density functional theory (DFT) results confirm that the electron-rich nature of MOF-In2S3 accelerates the cycle between Fe (III)/Fe (II)of FeOCl, promoting H2O2 adsorption by FeOCl/MOF-In2S3 and generating more hydroxyl radicals (·OH) for pollutant degradation. Based on the results of DFT, combined with the results of the reactive oxidation species scavenger (ROSs), electron paramagnetic resonance (EPR) and Mott-Schottky curves, the separation and transfer behavior of photoexcited charges in FeOCl/MOF-In2S3 heterojunction and the possible photocatalytic degradation mechanism were investigated. Finally, a Z-scheme heterostructure is proposed to elucidate the catalytic mechanism. This study provides a new perspective on designing and synthesizing semiconductor materials for water treatment by photo-Fenton catalysis.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, PR China
| | - Jing Wu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, PR China
| | - Jiayan Yang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, PR China
| | - Tian Lang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, PR China
| | - Wenwen Xu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, PR China
| | - Jie Chen
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, PR China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qingqing Qiu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, PR China.
| | - Tongxiang Liang
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou, 341000, PR China
| |
Collapse
|
2
|
Chen Q, Wang S, Miao B, Chen Q. Dual p-n Z-scheme heterostructure boosted superior photoreduction CO 2 to CO, CH 4 and C 2H 4 in In 2S 3/MnO 2/BiOCl photocatalyst. J Colloid Interface Sci 2024; 663:1005-1018. [PMID: 38452542 DOI: 10.1016/j.jcis.2024.02.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The creation of a Z-scheme heterojunction is a sophisticated strategy to enhance photocatalytic efficiency. In our study, we synthesized an In2S3/MnO2/BiOCl dual Z-scheme heterostructure by growing BiOCl nanoplates on the sheets of In2S3 nanoflowers, situated on the surface of MnO2 nanowires. This synthesis involved a combination of hydrothermal and solution combustion methods. Experiments and density functional theory (DFT) calculations demonstrated that the In2S3/MnO2/BiOCl composite exhibited notable photo reduction performance and photocatalytic stability. This was attributed to the pivotal roles of BiOCl and MnO2 in the composite, acting as auxiliaries to enhance the electronic structure and facilitate the adsorption/activation capacity of CO2 and H2O. The yield rates of CO, CH4, and C2H4 over In2S3/MnO2/BiOCl as the catalyst were 3.94, 5.5, and 3.64 times higher than those of pure In2S3, respectively. Photoelectrochemical analysis revealed that the dual Z-scheme heterostructure, with its oxygen vacancies and large surface area, enhanced CO2 absorption and active sites on the nanoflower/nanowire intersurfaces. Consequently, the dual Z-scheme charge transfer pathway provided efficient channels for boosting electron transfer and charge separation, resulting in high C2H4, CH4, and CO yields of formed and exihibits an promising photoreduction rate of CO2 to CO (51.2 µmol/g.h), CH4 (42.4 µmol/g.h) and C2H4 (63.2 µmol/g.h), respectively. DFT, in situ Diffuse reflectance infrared fourier transform spectroscopy, and temperature-programmed desorption tests were employed to verify the intermediates pathway. The study proposed a potential photocatalytic mechanism based on these findings.
Collapse
Affiliation(s)
- Qiuling Chen
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material of Henan University of Technology.
| | - Shun Wang
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Baoji Miao
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material of Henan University of Technology
| | - Qiuping Chen
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, Torino, Italy
| |
Collapse
|
3
|
Zuo C, Tang X, Wang H, Su Q. A Review of the Effect of Defect Modulation on the Photocatalytic Reduction Performance of Carbon Dioxide. Molecules 2024; 29:2308. [PMID: 38792169 PMCID: PMC11123808 DOI: 10.3390/molecules29102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Constructive defect engineering has emerged as a prominent method for enhancing the performance of photocatalysts. The mechanisms of the influence of defect types, concentrations, and distributions on the efficiency, selectivity, and stability of CO2 reduction were revealed for this paper by analyzing the effects of different types of defects (e.g., metallic defects, non-metallic defects, and composite defects) on the performance of photocatalysts. There are three fundamental steps in defect engineering techniques to promote photocatalysis, namely, light absorption, charge transfer and separation, and surface-catalyzed reactions. Defect engineering has demonstrated significant potential in recent studies, particularly in enhancing the light-harvesting, charge separation, and adsorption properties of semiconductor photocatalysts for reducing processes like carbon dioxide reduction. Furthermore, this paper discusses the optimization method used in defect modulation strategy to offer theoretical guidance and an experimental foundation for designing and preparing efficient and stable photocatalysts.
Collapse
Affiliation(s)
- Cheng Zuo
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xiao Tang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Haiquan Wang
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qian Su
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
4
|
Wen Q, Li D, Gao C, Wu L, Song F, Zhou J. Synthesis of Dual p-n Heterojunction of Ni/Mn-MOF-74/CdS@Co 3O 4 Photocatalyst as a Photoassisted Fenton-like Catalyst for Removal of Tetracycline Hydrochloride. Inorg Chem 2023. [PMID: 37992674 DOI: 10.1021/acs.inorgchem.3c03377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In this study, a novel composite material, Ni/Mn-MOF-74/CdS@Co3O4 was synthesized. This material consisted of a dual p-n heterojunction, which enabled efficient separation and transfer of charge carriers. Compared to a single p-n heterojunction, the presence of this dual heterojunction significantly enhanced the overall efficiency. The improved efficiency could be attributed to the unique properties of the constituent semiconductors. Co3O4 exhibited p-type semiconductor properties, while Ni/Mn-MOF-74 and CdS exhibited n-type semiconductor properties. By a combination of these materials to form a composite photocatalyst, a Z-type heterojunction was created at the interface of the p-n junction. This design established an internal electric field at both ends, effectively separating the photogenerated electrons and holes in each individual photocatalyst. As a result, the respective photocatalytic activities of the materials were maximized. To demonstrate the practical application of this composite material, it was utilized for the activation of peroxymonosulfate under visible light irradiation, with the aim of enhancing the photocatalytic degradation efficiency of tetracycline hydrochloride. The photocatalytic mechanism of Ni/Mn-MOF-74/CdS@Co3O4 in activating peroxymonosulfate and degrading tetracycline hydrochloride was investigated in detail. Furthermore, the toxicity of tetracycline hydrochloride and its intermediates was evaluated by using toxicity evaluation software.
Collapse
Affiliation(s)
- Qi Wen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Di Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chunyan Gao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fang Song
- Instrument Analysis Center of Xi'an University of Architecture and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Yang S, Zhang W, Pan G, Chen J, Deng J, Chen K, Xie X, Han D, Dai M, Niu L. Photocatalytic Co-Reduction of N 2 and CO 2 with CeO 2 Catalyst for Urea Synthesis. Angew Chem Int Ed Engl 2023; 62:e202312076. [PMID: 37667537 DOI: 10.1002/anie.202312076] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
The effective conversion of carbon dioxide (CO2 ) and nitrogen (N2 ) into urea by photocatalytic reaction under mild conditions is considered to be a more environmentally friendly and promising alternative strategies. However, the weak adsorption and activation ability of inert gas on photocatalysts has become the main challenge that hinder the advancement of this technique. Herein, we have successfully established mesoporous CeO2-x nanorods with adjustable oxygen vacancy concentration by heat treatment in Ar/H2 (90 % : 10 %) atmosphere, enhancing the targeted adsorption and activation of N2 and CO2 by introducing oxygen vacancies. Particularly, CeO2 -500 (CeO2 nanorods heated treatment at 500 °C) revealed high photocatalytic activity toward the C-N coupling reaction for urea synthesis with a remarkable urea yield rate of 15.5 μg/h. Besides, both aberration corrected transmission electron microscopy (AC-TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to research the atomic surface structure of CeO2 -500 at high resolution and to monitor the key intermediate precursors generated. The reaction mechanism of photocatalytic C-N coupling was studied in detail by combining Density Functional Theory (DFT) with specific experiments. We hope this work provides important inspiration and guiding significance towards highly efficient photocatalytic synthesis of urea.
Collapse
Affiliation(s)
- Shuyi Yang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wensheng Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Guoliang Pan
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jiaying Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jiayi Deng
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ke Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xianglun Xie
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, P. R. China
| | - Mengjiao Dai
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
6
|
Lv M, Liu H, He L, Zheng B, Tan Q, Hassan M, Chen F, Gong Z. Efficient photocatalytic degradation of ciprofloxacin by graphite felt-supported MnS/Polypyrrole composite: Dominant reactive species and reaction mechanisms. ENVIRONMENTAL RESEARCH 2023; 231:116218. [PMID: 37224952 DOI: 10.1016/j.envres.2023.116218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The accumulation of antibiotics in aquatic environments poses a serious threat to human health. Photocatalytic degradation is a promising method for removing antibiotics from water, but its practical implementation requires improvements in photocatalyst activity and recovery. Here, a novel graphite felt-supported MnS/Polypyrrole composite (MnS/PPy/GF) was constructed to achieve effective adsorption of antibiotics, stable loading of photocatalyst, and rapid separation of spatial charge. Systematic characterization of composition, structure and photoelectric properties indicated the efficient light absorption, charge separation and migration of the MnS/PPy/GF, which achieved 86.2% removal of antibiotic ciprofloxacin (CFX), higher than that of MnS/GF (73.7%) and PPy/GF (34.8%). The charge transfer-generated 1O2, energy transfer-generated 1O2, and photogenerated h+ were identified as the dominant reactive species, which mainly attacked the piperazine ring in the photodegradation of CFX by MnS/PPy/GF. The •OH was confirmed to participate in the defluorination of CFX via hydroxylation substitution. The MnS/PPy/GF-based photocatalytic process could ultimately achieve the mineralization of CFX. The facile recyclability, robust stability, and excellent adaptability to actual aquatic environments further confirmed MnS/PPy/GF is a promising eco-friendly photocatalyst for antibiotic pollution control.
Collapse
Affiliation(s)
- Miao Lv
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Hongchang Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Lei He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Binbin Zheng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Muhammad Hassan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China; State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
7
|
Ouyang YS, Jiang Y, Ni S, Jiang RY, Wang J, Wang WB, Zhang W, Yang QY. Efficient Visible-Light Photocatalytic Hydrogen Evolution over the In 2O 3@Ni 2P Heterojunction of an In-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366269 DOI: 10.1021/acsami.3c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Although the engineering of visible-light-driven photocatalysts with appropriate bandgap structures is beneficial for generating hydrogen (H2), the construction of heterojunctions and energy band matching are extremely challenging. In this study, In2O3@Ni2P (IO@NP) heterojunctions are attained by annealing MIL-68(In) and combining the resulting material with NP via a simple hydrothermal method. Visible-light photocatalysis experiments validate that the optimized IO@NP heterojunction exhibits a dramatically improved H2 release rate of 2485.5 μmol g-1 h-1 of 92.4 times higher than that of IO. Optical characterization reveals that the doping of IO with an NP component promotes the rapid separation of photo-induced carriers and enables the capture of visible light. Moreover, the interfacial effects of the IO@NP heterojunction and synergistic interaction between IO and NP that arises through their close contact mean that plentiful active centers are available to reactants. Notably, eosin Y (EY) acts as a sacrificial photosensitizer and has a significant effect on the rate of H2 generation under visible light irradiation, which is an aspect that needs further improvement. Overall, this study describes a feasible approach for synthesizing promising IO-based heterojunctions for use in practical photocatalysis.
Collapse
Affiliation(s)
- Yi-Shan Ouyang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Jiang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuang Ni
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Run-Yuan Jiang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 230088, China
| | - Wen-Bin Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, Anhui 230088, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Ma X, Li D, Jin H, Zeng X, Qi J, Yang Z, You F, Yuan F. Urchin-like band-matched Fe 2O 3@In 2S 3 hybrid as an efficient photocatalyst for CO 2 reduction. J Colloid Interface Sci 2023; 648:1025-1033. [PMID: 37343489 DOI: 10.1016/j.jcis.2023.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Herein, an urchin-like Fe2O3@In2S3 hybrid composite is designed and synthesized using a facile process. The composite efficiently harvests light in both the ultraviolet and visible regions, and the unique hierarchical structure provides several advantages for photocatalytic applications: (i) a suitable band-matching structure and broadband-light absorbing capacity enable the reduction of CO2 into hydrocarbon, (ii) the extensive network of interfacial contact between nano-sized Fe2O3 and In2S3 significantly increases the separation of charge carriers and enhances the utilization of photogenerated electron-hole pairs, and (iii) an abundance of surface oxygen vacancies provide numerous active sites for CO2 molecule adsorption. The optimized Fe2O3@In2S3 composite generated CO from the photocatalytic reduction of CO2 at a rate of 42.83 μmol·g-1·h-1, and no signs of deactivation were observed during continued testing for 32 h under 300 W Xe lamp irradiation.
Collapse
Affiliation(s)
- Xiaohong Ma
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Danyang Li
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Huacheng Jin
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xi Zeng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jian Qi
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zongxian Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feifei You
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Fangli Yuan
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
9
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Poonia K, Patial S, Raizada P, Ahamad T, Parwaz Khan AA, Van Le Q, Nguyen VH, Hussain CM, Singh P. Recent advances in Metal Organic Framework (MOF)-based hierarchical composites for water treatment by adsorptional photocatalysis: A review. ENVIRONMENTAL RESEARCH 2023; 222:115349. [PMID: 36709022 DOI: 10.1016/j.envres.2023.115349] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Architecting a desirable and highly efficient nanocomposite for applications like adsorption, catalysis, etc. has always been a challenge. Metal Organic Framework (MOF)-based hierarchical composite has perceived popularity as an advanced adsorbent and catalyst. Hierarchically structured MOF material can be modulated to allow the surface interaction (external or internal) of MOF with the molecules of interest. They are well endowed with tunable functionality, high porosity, and increased surface area epitomizing mass transfer and mechanical stability of the fabricated nanostructure. Additionally, the anticipated optimization of nanocomposite can only be acquired by a thorough understanding of the synthesis techniques. This review starts with a brief introduction to MOF and the requirement for advanced nanocomposites after the setback faced by conventional MOF structures. Further, we discussed the background of MOF-based hierarchical composites followed by synthetic techniques including chemical and thermal treatment. It is important to rationally validate the successful nanocomposite fabrication by characterization techniques, an overview of challenges, and future perspectives associated with MOF-based hierarchically structured nanocomposite.
Collapse
Affiliation(s)
- Komal Poonia
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia.
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Quyet Van Le
- Faculty of Department of Materials Science and Engineering, Korea University, 145, Anam13 Ro Seongbuk-gu, Seoul, 02841, South Korea.
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
11
|
Gu L, Deng G, Huang R, Shi X. Optimization of Fe/Ni organic frameworks with core-shell structures for efficient visible-light-driven reduction of carbon dioxide to carbon monoxide. NANOSCALE 2022; 14:15821-15831. [PMID: 36255381 DOI: 10.1039/d2nr04377g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To address CO2 emissions caused by the overuse of fossil fuels, photocatalytic CO2 reduction from metal-organic frameworks (MOFs) to valuable chemicals is critical for energy conversion and storage. Core-shell MOFs improve interfacial interactions, increasing the number of active sites in the catalyst, thereby improving the photocatalytic reduction. In this work, the catalytic performance of Fe/Ni-MOFs toward photocatalytic CO2 reduction was improved using a bimetallic strategy. We successfully synthesized a series of Fe/Ni-MOFs with a core-shell structure using a single-step approach combined with hydrothermal synthesis. By altering the synthesis conditions of the bimetallic organic skeleton and contrasting it with a single MOF, we successfully synthesized Fe/Ni-T120 through an efficient photocatalytic reduction of CO2. The results of photocatalytic CO2 reduction experiments indicated that upon using [Ru(bpy)3]Cl2·6H2O as a photosensitizer and triethanolamine (TEOA) and acetonitrile (MeCN) as sacrificial agents, the CO evolution rate of Fe/Ni-T120 reached 9.74 mmol g-1 h-1 and the CO2 to CO selectivity reached up to 92.1%. Additionally, Fe/Ni-T120 has a broad response range to visible light, a high photocurrent intensity, good chemical stability, and strong photocatalytic efficiency, even after repeated cycles. This study proposes a straightforward method for producing adaptable and stable MOFs for effective photocatalytic CO2 reduction that is driven by visible light.
Collapse
Affiliation(s)
- Lin Gu
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Guozhi Deng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Ruting Huang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Xianyang Shi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
12
|
Zhu Q, Xu Q, Du M, Zeng X, Zhong G, Qiu B, Zhang J. Recent Progress of Metal Sulfide Photocatalysts for Solar Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202929. [PMID: 35621917 DOI: 10.1002/adma.202202929] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Artificial photosynthetic solar-to-chemical cycles enable an entire environment to operate in a more complex, yet effective, way to perform natural photosynthesis. However, such artificial systems suffer from a lack of well-established photocatalysts with the ability to harvest the solar spectrum and rich catalytic active-site density. Benefiting from extensive experimental and theoretical investigations, this bottleneck may be overcome by devising a photocatalytic platform based on metal sulfides with predominant electronic, physical, and chemical properties. These tunable properties can endow them with abundant active sites, favorable light utilization, and expedited charge transportation for solar-to-chemical conversion. Here, it is described how some vital lessons extracted from previous investigations are employed to promote the further development of metal sulfides for artificial photosynthesis, including water splitting, CO2 reduction, N2 reduction, and pollutant removal. Their functions, properties, synthetic strategies, emerging issues, design principles, and intrinsic functional mechanisms for photocatalytic redox reactions are discussed in detail. Finally, the associated challenges and prospects for the utilization of metal sulfides are highlighted and future development trends in photocatalysis are envisioned.
Collapse
Affiliation(s)
- Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Qing Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Mengmeng Du
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Guofu Zhong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Bocheng Qiu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
13
|
Nordin NA, Mohamed MA, Salehmin MNI, Mohd Yusoff SF. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Tailoring Structure: Current Design Strategies and Emerging Trends to Hierarchical Catalysts. Catalysts 2022. [DOI: 10.3390/catal12101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nature mimicking implies the design of nanostructured materials, which can be assembled into a hierarchical structure, thus outperforming the features of the neat components because of their multiple length scale organization. This approach can be effectively exploited for the design of advanced photocatalysts with superior catalytic activity for energy and environment applications with considerable development in the recent six years. In this context, we propose a review on the state of the art for hierarchical photocatalyst production. Particularly, different synthesis strategies are presented, including template-free structuring, and organic, inorganic, and hybrid templating. Furthermore, emerging approaches based on hybrid and bio-waste templating are also highlighted. Finally, a critical comparison among available methods is carried out based on the envisaged application.
Collapse
|
16
|
Liu Y, Chen C, He Y, Zhang Z, Li M, Li C, Chen XB, Han Y, Shi Z. Rich Indium-Vacancies In 2 S 3 with Atomic p-n Homojunction for Boosting Photocatalytic Multifunctional Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201556. [PMID: 35892262 DOI: 10.1002/smll.202201556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Design and development of highly efficient photocatalytic materials are key to employ photocatalytic technology as a sound solution to energy and environment related challenges. This work aims to significantly boost photocatalytic activity through rich indium vacancies (VIn ) In2 S3 with atomic p-n homojunction through a one-pot preparation strategy. Positron annihilation spectroscopy and electron paramagnetic resonance reveal existence of VIn in the prepared photocatalysts. Mott-Schottky plots and surface photovoltage spectra prove rich VIn In2 S3 can form atomic p-n homojunction. It is validated that p-n homojunction can effectively separate carriers combined with photoelectrochemical tests. VIn decreases carrier transport activation energy (CTAE) from 0.64 eV of VIn -poor In2 S3 to 0.44 eV of VIn -rich In2 S3 . The special structure endows defective In2 S3 with multifunctional photocatalysis properties, i.e., hydrogen production (872.7 µmol g-1 h-1 ), degradation of methyl orange (20 min, 97%), and reduction in heavy metal ions Cr(VI) (30 min, 98%) under simulated sunlight, which outperforms a variety of existing In2 S3 composite catalysts. Therefore, such a compositional strategy and mechanistic study are expected to offer new insights for designing highly efficient photocatalysts through defect engineering.
Collapse
Affiliation(s)
- Yuxin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Cailing Chen
- King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yiqiang He
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mingbian Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, VIC, 3053, Australia
| | - Yu Han
- King Abdullah University of Science and Technology (KAUST), Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
17
|
Shen C, Yin Z, Collins F, Pinna N. Atomic Layer Deposition of Metal Oxides and Chalcogenides for High Performance Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104599. [PMID: 35712776 PMCID: PMC9376853 DOI: 10.1002/advs.202104599] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Atomic layer deposition (ALD) is a deposition technique well-suited to produce high-quality thin film materials at the nanoscale for applications in transistors. This review comprehensively describes the latest developments in ALD of metal oxides (MOs) and chalcogenides with tunable bandgaps, compositions, and nanostructures for the fabrication of high-performance field-effect transistors. By ALD various n-type and p-type MOs, including binary and multinary semiconductors, can be deposited and applied as channel materials, transparent electrodes, or electrode interlayers for improving charge-transport and switching properties of transistors. On the other hand, MO insulators by ALD are applied as dielectrics or protecting/encapsulating layers for enhancing device performance and stability. Metal chalcogenide semiconductors and their heterostructures made by ALD have shown great promise as novel building blocks to fabricate single channel or heterojunction materials in transistors. By correlating the device performance to the structural and chemical properties of the ALD materials, clear structure-property relations can be proposed, which can help to design better-performing transistors. Finally, a brief concluding remark on these ALD materials and devices is presented, with insights into upcoming opportunities and challenges for future electronics and integrated applications.
Collapse
Affiliation(s)
- Chengxu Shen
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| | - Zhigang Yin
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Fionn Collins
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| |
Collapse
|
18
|
Bai Y, Li M, Liu X, Han J, Zhu X, Ge Q, Wang H. Ti 3+ Defective TiO 2/CdS Z-Scheme Photocatalyst for Enhancing Photocatalytic CO 2 Reduction to C1–C3 Products. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yunxia Bai
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mei Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xuemei Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinyu Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinli Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Hua Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Yu M, Lv X, Mahmoud Idris A, Li S, Lin J, Lin H, Wang J, Li Z. Upconversion nanoparticles coupled with hierarchical ZnIn 2S 4 nanorods as a near-infrared responsive photocatalyst for photocatalytic CO 2 reduction. J Colloid Interface Sci 2022; 612:782-791. [PMID: 35032929 DOI: 10.1016/j.jcis.2021.12.197] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Developing near-infrared responsive (NIR) photocatalysts is very important for the development of solar-driven photocatalytic systems. Metal sulfide semiconductors have been extensively used as visible-light responsive photocatalysts for photocatalytic applications owing to their high chemical variety, narrow bandgap and suitable redox potentials, particularly the benchmark ZnIn2S4. However, their potential as NIR-responsive photocatalysts is yet to be reported. Herein, for the first time demonstrated that upconversion nanoparticles can be delicately coupled with hierarchical ZnIn2S4 nanorods (UCNPs/ZIS) to assemble a NIR-responsive composite photocatalyst, and as such composite is verified by ultraviolet-visible diffuse reflectance spectra and upconversion luminescence spectra. As a result, remarkable photocatalytic CO and CH4 production rates of 1500 and 220 nmol g-1h-1, respectively, were detected for the UCNPs/ZIS composite under NIR-light irradiation (λ ≥ 800 nm), which is rarely reported in the literature. The remarkable photocatalytic activity of the UCNPs/ZIS composite can be understood not only because the heterojunction between UCNPs and ZIS can promote the charge separation efficiency, but also the intimate interaction of UCNPs with hierarchical ZIS nanorods can enhance the energy transfer. This finding may open a new avenue to develop more NIR-responsive photocatalysts for various solar energy conversion applications.
Collapse
Affiliation(s)
- Mengshi Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Xiaoyu Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Ahmed Mahmoud Idris
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China.
| | - Suhang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Jiaqi Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Heng Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Jin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China.
| |
Collapse
|
20
|
Zhang Y, Xu J, Zhou J, Wang L. Metal-organic framework-derived multifunctional photocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Behera P, Subudhi S, Tripathy SP, Parida K. MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214392] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Xiong H, Dong Y, Liu D, Long R, Kong T, Xiong Y. Recent Advances in Porous Materials for Photocatalytic CO 2 Reduction. J Phys Chem Lett 2022; 13:1272-1282. [PMID: 35099983 DOI: 10.1021/acs.jpclett.1c03204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic CO2 reduction into solar fuels is a promising technology for addressing energy and CO2 emission issues. Because of the superior properties in CO2 adsorption and activation, molecular diffusion, light absorption, and charge separation and transfer, porous materials have been developed into a multifunctional platform for photocatalytic CO2 reduction. In this Perspective, we first discuss the emerging trends of CO2 reduction in major inorganic porous materials-based photocatalysts, such as mesoporous materials, macroporous materials, hollow materials, hierarchically porous materials, and zeolites. Prospects and challenges in the development of porous materials-based photocatalysts are then outlined. Finally, we envision feasible solutions for the deployment of porous materials to enhance photocatalytic CO2 reduction performance.
Collapse
Affiliation(s)
- Hailong Xiong
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueyue Dong
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Liu
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ran Long
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tingting Kong
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Behera A, Kar AK, Srivastava R. Challenges and prospects in the selective photoreduction of CO 2 to C1 and C2 products with nanostructured materials: a review. MATERIALS HORIZONS 2022; 9:607-639. [PMID: 34897343 DOI: 10.1039/d1mh01490k] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar fuel generation through CO2 hydrogenation is the ultimate strategy to produce sustainable energy sources and alleviate global warming. The photocatalytic CO2 conversion process resembles natural photosynthesis, which regulates the ecological systems of the earth. Currently, most of the work in this field has been focused on boosting efficiency rather than controlling the distribution of products. The structural architecture of the semiconductor photocatalyst, CO2 photoreduction process, product analysis, and elucidating the CO2 photoreduction mechanism are the key features of the photoreduction of CO2 to generate C1 and C2 based hydrocarbon fuels. The selectivity of C1 and C2 products during the photocatalytic CO2 reduction have been ameliorated by suitable photocatalyst design, co-catalyst, defect states, and the impacts of the surface polarisation state, etc. Monitoring product selectivity allows the establishment of an appropriate strategy to generate a more reduced state of a hydrocarbon, such as CH4 or higher carbon (C2) products. This article concentrates on studies that demonstrate the production of C1 and C2 products during CO2 photoreduction using H2O or H2 as an electron and proton source. Finally, it highlights unresolved difficulties in achieving high selectivity and photoconversion efficiency of CO2 in C1 and C2 products over various nanostructured materials.
Collapse
Affiliation(s)
- Arjun Behera
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| | - Ashish Kumar Kar
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| |
Collapse
|
24
|
She P, Guan B, Sheng J, Qi Y, Qiao G, Rui H, Lu G, Qin JS, Rao H. Bioinspired spike-like double yolk–shell structured TiO2@ZnIn2S4 for efficient photocatalytic CO2 reduction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02079j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A spike-like double yolk–shell structured TiO2@ZnIn2S4 (D-Y-TiO2@ZnIn2S4) photocatalyst was designed, which possesses superior photocatalytic CO2 reduction efficiency.
Collapse
Affiliation(s)
- Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiyao Sheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guanyu Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hongbang Rui
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
25
|
Chen W, Huang J, He ZC, Ji X, Zhang YF, Sun HL, Wang K, Su ZW. Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n heterojunctions under visible light irradiation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119461] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Yang H, Tang J, Luo Y, Zhan X, Liang Z, Jiang L, Hou H, Yang W. MOFs-Derived Fusiform In 2 O 3 Mesoporous Nanorods Anchored with Ultrafine CdZnS Nanoparticles for Boosting Visible-Light Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102307. [PMID: 34270871 DOI: 10.1002/smll.202102307] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Indexed: 06/13/2023]
Abstract
The development of efficient visible-light-driven photocatalysts is one of the critically important issues for solar hydrogen production. Herein, high-efficiency visible-light-driven In2 O3 /CdZnS hybrid photocatalysts are explored by a facile oil-bath method, in which ultrafine CdZnS nanoparticles are anchored on NH2 -MIL-68-derived fusiform In2 O3 mesoporous nanorods. It is disclosed that the as-prepared In2 O3 /CdZnS hybrid photocatalysts exhibit enhanced visible-light harvesting, improves charges transfer and separation as well as abundant active sites. Correspondingly, their visible-light-driven H2 production rate is significantly enhanced for more than 185 times to that of pristine In2 O3 nanorods, and superior to most of In2 O3 -based photocatalysts ever reported, representing their promising applications in advanced photocatalysts.
Collapse
Affiliation(s)
- Hongli Yang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Jiaqi Tang
- College of Material Science and Engineering, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Yong Luo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Xiaoqiang Zhan
- Institute of Materials, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Zhao Liang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Lan Jiang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Huilin Hou
- Institute of Materials, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Weiyou Yang
- Institute of Materials, Ningbo University of Technology, Ningbo, 315211, P. R. China
| |
Collapse
|
27
|
Dai X, Chen L, Li Z, Li X, Wang J, Hu X, Zhao L, Jia Y, Sun SX, Wu Y, He Y. CuS/KTa 0.75Nb 0.25O 3 nanocomposite utilizing solar and mechanical energy for catalytic N 2 fixation. J Colloid Interface Sci 2021; 603:220-232. [PMID: 34197982 DOI: 10.1016/j.jcis.2021.06.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022]
Abstract
This work synthesized a novel CuS/KTa0.75Nb0.25O3 (KTN) heterojunction composite and firstly applied it in photocatalytic and piezocatalytic reduction of N2 to NH3. XRD, Raman, XPS, SEM, and TEM analyses indicate that CuS nanoparticles closely adhered to the surface of KTN nanorods, which facilitates the migration of electrons between the two semiconductors. Mott-Schottky and valence band XPS analysis shows that KNbO3 shows a higher conduction band than CuS, indicating that CuS mainly acts as electron trappers to capture the photogenerated electrons from KTN. Because of the great enhanced spatial separation of photogenerated charge carriers, the CuS/KTN presents much higher performance than pure KNT, which is further confirmed by 1H NMR analysis of the reaction solution. An interesting finding is that synthesized CuS/KTN not only performs well under light irradiation but also can work in an ultrasonic bath, indicating its great potential in photo/piezocatalytic conversion of N2 to NH3. The optimal 10 %CuS/KTN shows an NH3 production rate of 36.2 μmol L-1 g-1 h-1 under ultrasonic vibration, which reaches 7.4 times that of KTN. The electrons generated by KTN through the piezoelectric effect can be captured by CuS, which endows the electrons a longer life to participate in the reaction, thereby improving the catalytic reaction performance.
Collapse
Affiliation(s)
- Xiaoquan Dai
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Chen
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Ziyu Li
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaojing Li
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Junfeng Wang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Leihong Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yanmin Jia
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
| | - Shi-Xin Sun
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China.
| | - Ying Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|