1
|
Liang KA, Chih HY, Liu IJ, Yeh NT, Hsu TC, Chin HY, Tzang BS, Chiang WH. Tumor-targeted delivery of hyaluronic acid/polydopamine-coated Fe 2+-doped nano-scaled metal-organic frameworks with doxorubicin payload for glutathione depletion-amplified chemodynamic-chemo cancer therapy. J Colloid Interface Sci 2025; 677:400-415. [PMID: 39096708 DOI: 10.1016/j.jcis.2024.07.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (H2O2) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe2+-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe2+ release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe2+/Fe3+ redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.
Collapse
Affiliation(s)
- Kai-An Liang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Yun Chih
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Liu J, Yao H, Zhang X, Chai X, Fu J. Electrospun PVDF/PVP Fibrous Membrane with Photocatalytic and Superhydrophilic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23169-23177. [PMID: 39446625 DOI: 10.1021/acs.langmuir.4c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Membrane separation technology is used to treat environmental wastewater, but during the treatment process, the occurrence of membrane fouling greatly affects the treatment efficiency. To address this phenomenon, improve membrane antipollution capabilities, and treat organic wastewater, photocatalysis and membrane separation technology have been coupled, forming a suitable and promising treatment method. Here, we propose a simple strategy to prepare a polyvinylidene fluoride/polyvinyl pyrrolidone nitrogen-doped titanium dioxide fibrous membrane (PVDF/PVP N-doped TiO2 fibrous membrane). The experimental results showed that PVDF and PVP mixed spinning made the fibrous membrane have a unique microstructure, and the superhydrophobic PVDF fibrous membrane was changed into superhydrophilic. In addition, electrospraying technology was used to attach TiO2 nanoparticles (NPs) to the fiber, and nitrogen (N) was doped in this process to improve the photocatalytic activity of the fibrous membrane. Finally, methyl blue solution was used as the target organic pollutant. Under the irradiation of a xenon lamp, 90.05% of methyl blue was removed within 90 min, indicating that the membrane had good photocatalytic performance. In a water contact angle test, the PVDF/PVP N-doped TiO2 fibrous membrane showed superhydrophilicity. The design of a fibrous membrane with high photocatalytic activity and superhydrophilicity properties has great potential for practical application in the purification of industrial wastewater.
Collapse
Affiliation(s)
- Jianxin Liu
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Hengzhe Yao
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaolei Zhang
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Xuedi Chai
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
- College of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junlin Fu
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
3
|
Salahshoori I, Yazdanbakhsh A, Namayandeh Jorabchi M, Kazemabadi FZ, Khonakdar HA, Mohammadi AH. Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103304. [PMID: 39357211 DOI: 10.1016/j.cis.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Zare Kazemabadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
4
|
Zeng W, Jiang Q, Ruan C, Ni W, Zhu C, Zeng X, Shi X, You R, Ma N, Tsai FC. A rewritable and shape memory hydrogel doped with fluorescein-functionalized ZIF-8 for information storage and fluorescent anti-counterfeiting. Talanta 2024; 283:127088. [PMID: 39461041 DOI: 10.1016/j.talanta.2024.127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
The emergence of stimuli-responsive fluorescence anti-counterfeiting technology has garnered increasing attention in the era of intelligent internet. Smart fluorescent hydrogels combine the characteristics of luminous materials with the unique structure of hydrogels, offering the potential for dynamic reversible erasing and multi-tiered data encryption. In this work, a fluorescent hydrogel was constructed by zeolitic imidazolate framework-8 loaded with fluorescein and then mixed with polyvinyl alcohol hydrogel, sodium carboxymethyl cellulose and borax, which could be used for image hiding in visible light. The reversible bonds cross-linked fluorescent hydrogel was stretchable and self-healing with a three-dimensional network structure. The hydrogel presented bright green fluorescence under 365 nm UV light, which was quenched by adding copper ions. Meanwhile, the imprint of the hydrogel could be cleared by L-Cysteine and repeatedly recorded information many times. The alkali-induced shape memory capability was further utilized to achieve multi-tiered data encryption by deforming it to a 3D-specific shape through folding. The rewritable and multi-dimensional encrypted hydrogel is expected to improve data security and reduce resource consumption.
Collapse
Affiliation(s)
- Wenyan Zeng
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Qingyuan Jiang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Chaofan Ruan
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Wang Ni
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Changchang Zhu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Xueling Zeng
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Xuan Shi
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Rongke You
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Ning Ma
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Fang-Chang Tsai
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
5
|
Wang J, Tai L, Zhou W, Chen H, Liu J, Jiang S. Facile Preparation of Three-Dimensional Cubic MnSe 2/CNTs and Their Application in Aqueous Copper Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1621. [PMID: 39452958 PMCID: PMC11510134 DOI: 10.3390/nano14201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Transition metal sulfide compounds with high theoretical specific capacity and excellent electronic conductivity that can be used as cathode materials for secondary batteries attract great research interest in the field of electrochemical energy storage. Among these materials, MnSe2 garners significant interest from researchers due to its unique three-dimensional cubic structure and inherent stability. However, according to the relevant literature, the performance and cycle life of MnSe2 are not yet satisfactory. To address this issue, we synthesize MnSe2/CNTs composites via a straightforward hydrothermal method. MnSO4·H2O, Se, and N2H4·H2O are used as reactants, and CNTs are incorporated during the stirring process. The experimental outcomes indicate that the fabricated electrode demonstrates an initial discharge specific capacity that reaches 621 mAh g-1 at a current density of 0.1 A g-1. Moreover, it exhibits excellent rate capability, delivering a discharge specific capacity of 476 mAh g-1 at 10 A g-1. The electrode is able to maintain a high discharge specific capacity of 545 mAh g-1 after cycling for 1000 times at a current density of 2 A g-1. The exceptional electrochemical performance of the MnSe2/CNTs composites can be ascribed to their three-dimensional cubic architecture and the 3D CNT network. This research aids in the progression of aqueous Cu-ion cathode materials with significant potential, offering a viable route for their advancement.
Collapse
Affiliation(s)
- Junjun Wang
- College of Liling Ceramic, Hunan University of Technology, Zhuzhou 412007, China
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China; (W.Z.); (H.C.)
| | - Linlin Tai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhou
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China; (W.Z.); (H.C.)
| | - Han Chen
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China; (W.Z.); (H.C.)
| | - Jingxiong Liu
- College of Liling Ceramic, Hunan University of Technology, Zhuzhou 412007, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Bioinspired interlaced wetting surfaces for continuous on-demand emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136011. [PMID: 39393316 DOI: 10.1016/j.jhazmat.2024.136011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Maintaining high separation performance during continuous emulsion separation remains a challenge. Herein, based on biomimetic coupling ideas, hole array interlaced wetting surfaces (HAIWSs) and mastoid array interlaced wetting surfaces (MAIWSs) were prepared by laser processing, electroless silver deposition, thiol modification, and spraying for on-demand emulsion separation. When the separation is going on, randomly moving emulsion droplets are prone to being captured by holes or mastoids due to interlaced wettability. Under this unique interface behavior, the occurrence of filter cake and pore clogging is reduced, thus achieving both high efficiency (∼99.5 and ∼99.3 %). Meanwhile, the high flux can also be maintained (∼3212 and ∼3458 L m-2 h-1). Significantly better than surfaces without pores or mastoid structures. Further, the as-prepared surfaces also exhibit excellent recyclability. After 50 separation cycles, optimized HAIWS and MAIWS still maintained high efficiency (∼96.2 and ∼95.8 %) and high flux (∼3042 and ∼3164 L m-2 h-1), exceeding other surfaces without hole or mastoid structure. Notably, complex physical/chemical cleaning processes are avoided. Besides, even in harsh conditions, HAIWS and MAIWS still maintain excellent stability. The above strategy provides a novel mechanism for effective on-demand emulsion separation and is expected to encourage the creation of new-class separation devices for oily wastewater treatment in industry.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
7
|
Yang X, Liu Y, Huang Y, Han X, Duan G, Fu H, Han J, Zhang C, He S, Jiang S. Coordination-driven in-situ controlled synthesis of cellulose-based fluorescent composite with tunable color for decoration, anti-counterfeiting, and accurate color recognition. Int J Biol Macromol 2024; 278:134890. [PMID: 39214836 DOI: 10.1016/j.ijbiomac.2024.134890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Fluorescent composites have widespread applications in many aspects. Wood-derived cellulose is a renewable, easily processed and biodegradable, and cellulose-based fluorescent composites are highly favored for in different fields. However, the existing cellulose-based fluorescent composites still have many urgent problems to be solved, such as unstable luminescence properties and easy shedding of luminescent substances, and the development of their practical applications is still a formidable challenge. Herein, a green and mild strategy for the in-situ controllable synthesis of cellulose-based fluorescent composites membrane (CFM) was developed. Firstly, delignified wood (DW) was modified with citric acid, and then lanthanide ions were introduced on modified DW through coordinated covalent bonds. Additionally, the luminescence mechanism of CFM is proposed. CFMs show adjustable color for decorative and light conversion and can be accurately identified for data protection, which increases the high value-added of cellulose-based composites. The stable luminescent properties were maintained after sonication for 30 min or solvent immersion for three months. Therefore, this work presents a new approach for the synthesis of CFM, which provides an environment-friendly strategy for manufacturing cellulose-based fluorescent materials, which is significant for the subsequent development of environment-friendly composites for anti-counterfeiting and decorative applications.
Collapse
Affiliation(s)
- Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Fu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Hu Y, Maimaitiyiming X. Gelatin/sodium alginate-based strongly adhesive, environmentally resistant, highly stable hydrogel for 3D printing to prepare multifunctional sensors and flexible supercapacitors. Int J Biol Macromol 2024; 278:134712. [PMID: 39154688 DOI: 10.1016/j.ijbiomac.2024.134712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The increasing demand for environmentally friendly performance materials in the field of wearable electronics has brought renewable and low-cost hydrogels based on natural polymers into the research spotlight. As a biodegradable natural polymer, sodium alginate (SA) shows great promise for applications in wearable electronics. Here, we report a hydrogel with printability, adhesion, and is highly stable based on gelatin (Gel) and SA. SA improves the viscosity of the hydrogel, which can bond iron products weighing up to 20 kg due to metal coordination with the material, and the hydrogel binder is recyclable and reusable. The presence of glycerin allowed the hydrogel sensor device to maintain sensitivity after exposure to air at 25 °C for up to 35 days, and printed hydrogel samples retained their compressive resilience after exposure to air (25 °C, 55 % RH) for 30 days. Hydrogel-based supercapacitors show good stability after 58 h of charge/discharge cycling. This paper provides research ideas for the preparation of hydrogels with strong adhesion properties, as well as hydrogel 3D printing technology for the preparation of flexible sensor devices and flexible energy storage devices.
Collapse
Affiliation(s)
- Yajuan Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Xieraili Maimaitiyiming
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| |
Collapse
|
9
|
Rahmanian H, Malekkiani M, Dadmehr M, Es'haghi Z, Moshirian-Farahi SS. A biosensor integrating the electrochemical and fluorescence strategies for detection of aflatoxin B1 based on a dual-functionalized platform. Anal Chim Acta 2024; 1323:343085. [PMID: 39182978 DOI: 10.1016/j.aca.2024.343085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Aflatoxin B1 (AFB1), is a potent hepatic carcinogen which causes cancer by inducing DNA changes in the liver cells. Variety of methods have been developed for detection of AFB1 which are based on single mode detection strategy. Fabrication of novel platform which are compatible for multimodal detection of AFB1 provide robust performance for reliable detection of AFB1. In this study, we aimed to develop a robust biosensing platform that combines electrochemical and fluorescence techniques for the sensitive and specific detection of Aflatoxin B1. RESULTS The sensing platform includes the magnetic core-shell Fe3O4@AuNPs and zeolitic imidazolate framework-8 (ZIF-8). In electrochemical mode, the applied voltametric approach was used through functionalization of glassy carbon electrode and exhibited a linear range between 0.5 and 10000 pg mL-1 with LOD of 0.32 pg mL-1. Fluorescence analysis was based on the FRET on/off status of FAM-functionalized aptamer deposited on the same platform. The FAM emission recovered by the addition of AFB1 concentration in the range of 6-60 fg mL-1 with the LOD of 0.20 fg mL-1. The real sample analysis demonstrated satisfactory relative recoveries in the range of 92.81-105.32 % and 91.66-106.66 % using the electrochemical and fluorescence methods, respectively, and its reliability was confirmed by the HPLC technique. SIGNIFICANCE The experimental results affirm that the proposed aptasensor serves as a sensitive, efficient, and precise platform for monitoring AFB1 in both electrochemical and fluorescence detection approaches. Proposed strategy showed efficient selectivity among different analytes and was reproducible. Furthermore, the applicability of biosensor was confirmed in food and biological samples.
Collapse
Affiliation(s)
- Hamidreza Rahmanian
- Department of Chemistry, Payame Noor University, Tehran, Iran; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | | | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | - Zarrin Es'haghi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | | |
Collapse
|
10
|
Escriba Flores AA, de Almeida DS, Aguiar ML, Cava CE. Enhanced Air Filtration Efficiency through Electrospun PVC/PVP/MWCNTs Nanofibers: Design, Optimization, and Performance Evaluation. ACS OMEGA 2024; 9:37771-37779. [PMID: 39281912 PMCID: PMC11391459 DOI: 10.1021/acsomega.4c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
This study presents a novel approach for creating an effective air filtration medium using electrospun nanofibers comprised of poly(vinyl chloride) (PVC), poly(vinylpyrrolidone) (PVP), and impregnated with multiwall carbon nanotubes (MWCNTs). The membrane production was optimized using an experimental design methodology, resulting in a hydrophobic membrane that exhibits excellent dispersion of MWCNTs. Scanning electron microscopy images illustrate the nanofibers' morphology, featuring an average diameter of approximately 240 nm, minimal bead formation, and optimal MWCNT dispersion. Air filtration tests conducted with NaCl nanoparticles (7-300 nm) demonstrated superior permeability (10-12 m2) and minimal pressure drop (approximately 780 Pa at a 5 LPM airflow rate) compared to other electrospun materials. Both MWCNT-impregnated samples and individual PVC/PVP nanofibers exhibited filtration efficiencies nearing 96%. These results underscore the potential of this developed material for air filtration, particularly in indoor environments, where MWCNTs effectively adsorb and maintain low levels of gaseous and particulate pollutants. This study emphasizes the design, optimization, and comprehensive performance evaluation of PVC/PVP/MWCNT nanofibers, showcasing significant advancements in filtration efficiency with high flux. The findings suggest promising applications for this composite material in advanced air purification systems.
Collapse
Affiliation(s)
- Armando A Escriba Flores
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, Londrina, PR 86036-370, Brazil
| | | | - Monica Lopes Aguiar
- Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos, SP 13565-905, Brazil
| | - Carlos Eduardo Cava
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, Londrina, PR 86036-370, Brazil
| |
Collapse
|
11
|
Zhao J, Zhang R, Zhang Y, Piao H, Ren Z, Zhang H, Fan T, Jiang F, Cai Z, Fan L. Biobased Polybutyrolactam Nanofiber with Excellent Biodegradability and Cell Growth for Sustainable Healthcare Textiles. Biomacromolecules 2024; 25:5745-5757. [PMID: 39173040 DOI: 10.1021/acs.biomac.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The white pollution caused by unsustainable materials is a significant challenge around the globe. Here, a novel and fully biobased polybutyrolactam (PBY) nanofiber membrane was fabricated via the electrospinning method. As-spun PBY nanofiber membranes have good thermal stability, high porosity of up to 71.94%, and excellent wetting behavior. The biodegradability in soil, UV aging irradiation, and seawater was investigated. The PBY nanofiber membrane is almost completely degraded in the soil within 80 days, showing excellent degradability. More interestingly, γ-aminobutyric acid, as a healthcare agent with intrinsic hypotensive, tranquilizing, diuretic, and antidiabetic efficacy, can be detected in the degradation intermediates. In addition, the PBY nanofiber membrane also exhibits antibacterial ability against Escherichia coli. As a fully biomass-derived material, the PBY membrane has excellent biodegradable performance in various environments as well as negligible cytotoxicity and commendable cell proliferation. Our PBY nanofiber membrane shows great potential as biodegradable packaging and in vitro healthcare materials.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Key Laboratory of Advanced Braided Composites Ministry of Education, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Run Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yajing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hongwei Piao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhibo Ren
- Textile Testing Center, China Textile Information Center, Beijing 100025, China
| | - Huan Zhang
- Textile Testing Center, China Textile Information Center, Beijing 100025, China
| | - Tingting Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Feng Jiang
- State Key Laboratory of Bio-based Fiber Manufacture Technology, China Textile Academy, Beijing 100025, P.R. China
| | - Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
12
|
Ding M, Yang X, Liu Y, Zeng S, Duan G, Huang Y, Liang Z, Zhang P, Ji J, Jiang S. A review of advanced helical fibers: formation mechanism, preparation, properties, and applications. MATERIALS HORIZONS 2024. [PMID: 39221699 DOI: 10.1039/d4mh00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, etc., which are expected to be used in energy, environment, medical and other fields. The helical structure also has unique charm and application value in the fields of aesthetics and architecture. In addition, helical fibers have attracted a lot of attention because of their tendrils' vascular geometry and indispensable structural properties. In this paper, the development of helical fibers is briefly reviewed from the aspects of mechanism, synthesis process and application. Due to their good chemical and physical properties, helical fibers have a good application prospect in many fields. Potential problems and future opportunities for helical fibers are also presented for future studies.
Collapse
Affiliation(s)
- Minmin Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China.
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
13
|
Chang Y, Zhao W, Li W, Zhang Q, Wang G. Bioadhesive and drug-loaded cellulose nanofiber/alginate film for healing oral mucosal wounds. Int J Biol Macromol 2024; 276:133858. [PMID: 39009262 DOI: 10.1016/j.ijbiomac.2024.133858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Recurrent oral ulcers are common oral mucosal lesions that severely reduce patients' quality of life. Commercial mucoadhesive films are easily disrupted due to oral movement and complex wet environments, thus reducing drug utilization and even causing toxic side effects. Herein, we report a mucoadhesive film composed of Ca2+-crosslinked carboxymethylated cellulose nanofibers and alginate, in which two drugs of dexamethasone (DXM) and dyclonine hydrochloride (DYC) are loaded for the treatment of oral ulcers. The wet films have a high Young's modulus of 7.1 ± 2.6 MPa and a large strain of 53.6 ± 9.8 % and adhere to tissue strongly, which allows them to resist the deformation caused by frequent oral movement. The films also have nice durability against water and excellent biocompatibility. Moreover, the drug release was controlled at different rates. The fast release of DYC facilitates the quick relief of pain, while the slow release of DXM benefits the long-term treatment of wounds. Finally, the animal experiment demonstrates the films displayed excellent therapeutic efficacy in healing oral ulcers.
Collapse
Affiliation(s)
- Yuqing Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Zhao
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Wei Li
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
14
|
Ahmed FU, Sharma S, Purkayastha DD. Buoyancy-Assisted Fabrication of Liquid Diode: Janus Nanofibrous Membrane for Efficient Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42641-42659. [PMID: 39087275 DOI: 10.1021/acsami.4c07900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The pressing need for effective methods to separate oil and water in oily wastewater has spurred the development of innovative solutions. This work presents the creation and evaluation of a Janus nanofibrous membrane, also known as the Liquid Diode, developed using electrospinning (e-spinning) and buoyancy-assisted hydrothermal techniques. The membrane features a unique structure: one side is composed of PVDF nanofibers embedded with a GO/TiO2 composite, exhibiting in-air superhydrophobic and superoleophilic properties, while the reverse side consists of PVDF nanofibers with a ZnO nanorod array, demonstrating in-air superhydrophilic and underwater (UW) superoleophobic properties. This distinct asymmetric wettability enables the membrane to effectively separate both water-in-oil (w-in-o) and oil-in-water (o-in-w) emulsions, achieving an impressive liquid flux and separation efficiency (SEff). The in-air superhydrophobic side of the Janus nanofibrous membrane achieves a maximum oil flux (Fo) of 3506 ± 250 L m-2 h-1, while the in-air superhydrophilic side achieves a maximum water flux (Fw) of 1837 ± 150 L m-2 h-1, with SEff exceeding 98% for both sides. Furthermore, the Janus nanofibrous membrane maintained reliable mechanical stability after 10 cycles of sandpaper abrasion test and demonstrated excellent chemical stability when subjected to acidic, alkaline, cold water and hot water conditions for 24 h. These properties, combined with its ability in breaking down of organic contaminants (98% ± 2% in 210 min) and pharmaceutical contaminants (97% ± 2% in 210 min) under visible light, highlight its photocatalytic potential. Additionally, the membrane's antifouling and antibacterial properties suggest long-term and sustainable use in wastewater treatment applications. The synergistic combination of these superior properties positions the Janus nanofibrous membrane as a promising solution for addressing complex challenges in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Fayez U Ahmed
- Department of Physics, National Institute of Technology Nagaland, Chumukedima-797103, India
| | - Sushant Sharma
- LCPME, UMR 7564, Université de Lorraine -CNRS, 405 Rue de Vandoeuvre, 54600, Villers-lès-Nancy, France
| | | |
Collapse
|
15
|
Pang M, Xu R, Xi R, Yao H, Bao K, Peng R, Zhi H, Zhang K, He R, Su Y, Liu X, Ming D. Molecular understanding of the therapeutic potential of melanin inhibiting natural products. RSC Med Chem 2024; 15:2226-2253. [PMID: 39026645 PMCID: PMC11253861 DOI: 10.1039/d4md00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
With the development of society and the improvement of people's living standards, there is an increasing demand for melanin-inhibiting products that prioritize health, safety, and efficacy. Therefore, the development of natural products that can safely and efficiently inhibit melanin synthesis is of great social significance and has significant market potential. In this paper, by reviewing the literature reported in recent years, we summarized the natural products with inhibition of melanin synthesis effects that have been put into or not yet put into the market, and classified them according to the chemical groups of their compounds or the extraction methods of the natural products. Through the summary analysis, we found that these compounds mainly include terpenoids, phenylpropanoids, flavonoids and so on, while the natural product extracts mainly include methanol extracts, ethanol extracts, and aqueous extracts. Their main inhibition of melanin synthesis mechanisms include: (1) direct inhibition of tyrosinase activity; (2) down-regulation of the α-MSH-MC1R, Wnt, NO, PI3K/Akt and MAPK pathways through the expression of MITF and its downstream genes TYR, TRP-1, and TRP-2; (3) antioxidant; (4) inhibition of melanocyte growth through cytotoxicity; (5) inhibition of melanosome production and transport. This paper provides an in-depth discussion on the research progress of whitening natural products and their market value. The aim is to offer guidance for future research and development of natural skin whitening products.
Collapse
Affiliation(s)
- Meijun Pang
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Ruitian Xu
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Rongjiao Xi
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Hong Yao
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Kechen Bao
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Rui Peng
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Hui Zhi
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Kuo Zhang
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Runnan He
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Yanfang Su
- Department of Neurosurgery, Tianjin Medical University General Hospital 154 Anshan Street, Heping District 300052 Tianjin China
| | - Xiuyun Liu
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| | - Dong Ming
- Medical School, Tianjin University 92 Weijin Road, Nankai District 300072 Tianjin China +(86) 13562488561
- State Key Laboratory of Advanced Medical Materials and Devices 300072 Tianjin China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration 300072 Tianjin China
| |
Collapse
|
16
|
Wang Y, Xi S, Zhou B, Zu G, Liang X, Zhang X, Shen J, Wang X. Superhydrophobic Highly Flexible Triple-Network Polyorganosiloxane-Based Aerogels for Thermal Insulation, Oil-Water Separation, and Strain/Pressure Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30324-30335. [PMID: 38805013 DOI: 10.1021/acsami.4c01940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polyvinylpolymethylsiloxane (PVPMS)/polydimethylsiloxane (PDMS) copolymer aerogels were synthesized via consecutive radical polymerization and cohydrolytic polycondensation of vinylmethyldimethoxysilane and dimethyldimethoxysilane, followed by supercritical drying or ambient pressure drying. The resultant PVPMS/PDMS copolymer aerogels exhibit a highly porous, tunable triple-network structure consisting of interlinked hydrocarbon polymers, PVPMS and PDMS. These aerogels display superhydrophobicity (151°), low density (109 mg cm-3), low thermal conductivity (29.8 mW m-1 K-1), and adjustable pore structure. The combination of good machinability, low thermal conductivity, excellent compressive elasticity and bending flexibility, and efficient organic solvent adsorption gives these aerogels broad application prospects in thermal insulation and oil-water separation. In addition, PVPMS/PDMS/carbon nanotube (CNT) composite aerogels were obtained by incorporating the conductive CNTs, followed by vacuum drying. The resultant PVPMS/PDMS/CNT composite aerogel exhibits high sensitivity with a broad pressure sensing range in strain and pressure sensing applications.
Collapse
Affiliation(s)
- Yijun Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuang Xi
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Bowen Zhou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Guoqing Zu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xing Liang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xiaoxue Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaodong Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
17
|
Chaudhary MY, Kanzariya DB, Das A, Pal TK. A fluorescent MOF and its synthesized MOF@cotton composite: Ratiometric sensing of vitamin B 2 and antibiotic drug molecule. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124194. [PMID: 38569387 DOI: 10.1016/j.saa.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Here, we demonstrated the synthesis of a zinc based luminescent MOF, 1 (NDC = 2,6- naphthalenedicarboxylate) for the ratiometric detection of biomarker riboflavin (RBF; vitamin B2) in water dispersed medium. Further, this MOF detected two other antibiotic drug molecules, nitrofurantoin (NFT) and nitrofurazone (NZF). The detection of these analytes is very quick (∼seconds), and the limit of detection (LOD) for RBF, NZF and NFT are calculated as 16.58 ppm, 47.63 ppb and 56.96 ppb, respectively. The detection of these analytes was also comprehended by solid, solution, cost-effective paper strip method i.e., triphasic identification capabilities. The sensor is reusable without losing its detection efficacy. The sensor further showed the recognition abilities of these antibiotics in real field samples (river water, urine and tablet) and RBF in vitamin B2 pills and food samples (milk and cold drinks). The sensing merit of 1 urged us to fabricate of 1@cotton fabric composite, which exhibited the colorimetric detection of these analytes. In-depth experimental analysis suggested that the occurrence of photo-induced electron transfer (PET), fluorescence resonance energy transfer (FRET), and the inner filter effect (IFE) are the possible sensing mechanisms for the recognition of the antibiotics drug. The FRET mechanism is responsible for the recognition of RBF. The sensing mechanism is further supported by the theoretical analysis and the excited lifetime measurement.
Collapse
Affiliation(s)
- Meetkumar Y Chaudhary
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| | | | - Anirban Das
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India.
| | - Tapan K Pal
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India; Department of Chemistry, Bajkul Milani Mahavidalaya, Bajkul 721655, West Bengal, India.
| |
Collapse
|
18
|
Yaashikaa PR, Palanivelu J, Hemavathy RV. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. CHEMOSPHERE 2024; 357:141933. [PMID: 38615953 DOI: 10.1016/j.chemosphere.2024.141933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
In this comprehensive study, highlights emerging environmentally friendly methods to eliminating hazardous heavy metals from contaminated water, with an emphasis on bioremediation and biosorption. Breakthroughs, such as the combination of biological remediation and nanotechnology to improve the elimination of metals effectiveness and the use of genetically modified microbes for targeted pollutant breakdown. Developing biosorption materials made from agricultural waste and biochar, this indicates interesting areas for future research and emphasizes the necessity of sustainable practices in tackling heavy metal contamination in water systems. There seems to be a surge in enthusiasm for the utilization of biological remediation and biosorption methods as sustainable and viable options for eliminating heavy metals from contaminated water in the past couple of decades. The present review intends to offer an in-depth review of the latest understanding and advances in the discipline of biological remediation methods like bioaccumulation, biofiltration, bio-slurping, and bio-venting. Biosorption is specifically explained and includes waste biomass as biosorbent with the removal mechanisms and the hindrances caused in the process are detailed. Advances in biosorption like microbes as biosorbents and the mechanism involved in it. Additionally, novel enhancement techniques like immobilization, genetic modification, and ultrasound-assisted treatment in microbial sorbent are clarified. However, the review extended with analyzing the future advances in the overall biological methods and consequences of heavy metal pollution.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
19
|
Imsong R, Dhar Purkayastha D. Superhydrophilic Photothermal-Responsive CuO@MXene Nanofibrous Membrane with Inherent Biofouling Resistance for Treating Complex Oily Wastewater. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19537-19550. [PMID: 38564420 DOI: 10.1021/acsami.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
MXene, a recently emerged 2D material, has garnered substantial attention for a myriad of applications. Despite the growing interest, there remains a noticeable gap in exploring MXene-based membranes for the simultaneous achievement of photomodulated oil/water separation, bacterial resistance, and the removal of pollutants in the treatment of oily wastewater. In this work, we have successfully synthesized a novel multifunctional CuO@MXene-PAN nanofibrous membrane (NFM) featuring unique nanograin-like structures. Benefitting from these unique structures, the resultant membrane shows excellent superwetting properties, significantly enhancing its performance in oil/water separation. In addition, the membrane's photothermal property boosts its permeance by 40% under visible light illumination within 30 min. Furthermore, the resultant membrane shows decent dye removal efficiency in an aqueous solution, e.g., Rhodamine B (RhB), promoting efficient degradation with high reusability under visible light. Most remarkably, the resultant membrane exhibits superior anti-biofouling capability and consistently resists the adhesion of microorganisms such as cyanobacteria over a 14 day period. Thus, the combined effect of superior superwetting properties, photothermal responsivity, photocatalytic activity, and the antibacterial effect in CuO@MXene-PAN NFM contributes to the efficient treatment of intricate oily wastewater. This synergistic combination of superior properties in the membrane could be an appealing strategy for the broad development of multifunctional materials to prevent fouling during actual separation performance.
Collapse
Affiliation(s)
- Rachel Imsong
- Department of Physics, National Institute of Technology Nagaland, Chumukedima 797103, Dimapur, India
| | - Debarun Dhar Purkayastha
- Department of Physics, National Institute of Technology Nagaland, Chumukedima 797103, Dimapur, India
| |
Collapse
|
20
|
Dong J, Wang Q, Gu T, Liu G, Petrov YV, Baulin VE, Yu Tsivadze A, Jia D, Zhou Y, Yuan H, Li B. Rapamycin functionalized carbon Dots: Target-oriented synthesis and suppression of vascular cell senescence. J Colloid Interface Sci 2024; 660:534-544. [PMID: 38266335 DOI: 10.1016/j.jcis.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Suppression of vascular cell senescence is of great significance in preventing cardiovascular diseases such as hypertension and atherosclerosis. The oxidative stress damage caused by reactive oxygen species (ROS) can lead to cellular senescence. Rapamycin (Rapa) is well known to suppress cell senescence via mammalian target of rapamycin (mTOR) pathway. However, poor water solubility and lack of ROS scavenging ability limit the further development of Rapa. To improve the solubility of Rapa and endow with ROS scavenging ability, Rapa functionalized carbon dots (Rapa-CDs) are target-oriented synthesized via free radical polymerization combination with hydrothermal carbonization. Rapa-CDs improve the solubility of Rapa and show ROS scavenging abilities. The solubility of Rapa-CDs with 9.41 g is improved 3.6 × 104 times higher than that of Rapa (2.6 × 10-4 g). The half maximal inhibitory concentration (IC50) of Rapa-CDs toward hydroxyl radical (•OH) and 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH•) are 0.18 and 0.17 mg/mL, respectively. Rapa-CDs show anti-oxidative stress effect in HEVECs (Human Umbilical Vein Endothelial Cells) via reducing ROS levels by 87 %. Rapa-CDs alleviate HUVECs senescence by suppressing mTOR overactivation, attenuate the expression of P53, P21 and P16. The study demonstrates the target-oriented synthesis of drugs functionalized CDs with anti-senescence via dual-pathway of anti-oxidative stress and mTOR.
Collapse
Affiliation(s)
- Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Tingting Gu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Guanxiong Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia
| | - Vladimir E Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China; Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia.
| |
Collapse
|
21
|
Zhang L, Wen X, Ming Q, Luo X, He T, Chen T, Jiang M, Wang M, Ma L. One-Step Prepared Multifunctional Polyacrylonitrile/MIL-100(Fe) Membrane with High-Density Porous Fibers for Efficient Dye/Oil Wastewater Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6550-6561. [PMID: 38483322 DOI: 10.1021/acs.langmuir.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
With environmental pollution becoming more serious, developing efficient treatment technologies for all kinds of organic wastewater has become the focus of current research. In this work, the coaxial electrospinning technology was used to one-step fabricate a porous and underwater superoleophobic polyacrylonitrile nanofibrous membrane with an Fe-based metal-organic framework (MIL-100(Fe)). Benefiting from the synergistic effect of two jets, the nanofibers are smaller and denser, which prompt the exposure of more nanomaterial additives (MIL-100(Fe)). The BET surface area increased to 202.888 m2/g, and the membranes demonstrated outstanding underwater superoleophobicity. Moreover, compared with traditional blended matrix membranes by the single-axis method, separation of the modifier and membrane matrix material by coaxial methods also maintained excellent mechanical properties, which enhanced Young's modulus 3.4 times (∼1.34 MPa). As a result, facing soluble dyes, the porous C-PAN/MIL-100(Fe) membrane can demonstrate outstanding and fast adsorptive property (the Qm of MB and CR reached 44.71 and 88.74 mg g-1, respectively). For oily emulsion, the hydrophilic and oleophobic nanofibrous reticular surface provided excellent separation performance (flux: 1124.0-1549.3 L m-2 h-1, R > 98%). Moreover, the porous and underwater superoleophobic C-PAN/MIL-100(Fe)-0.5 membrane can synchronously purify the dye/oil mixture emulsions by one-step filtration. Based on the above performance, we believe that the modified nanofibrous membrane prepared by one-step coaxial electrospinning technology can promote more studies of the development of membrane preparation technology in the field of oily wastewater treatment.
Collapse
Affiliation(s)
- Liyun Zhang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xin Wen
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Qingxia Ming
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Xue Luo
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Tianfeng He
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Tian Chen
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Minghang Jiang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Mengjun Wang
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
| | - Lan Ma
- School of Science, Xihua University, Jinzhou Road, Chengdu, Sichuan 610039, P. R. China
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
22
|
Borah A, Hazarika P, Duarah R, Goswami R, Hazarika S. Biodegradable Electrospun Membranes for Sustainable Industrial Applications. ACS OMEGA 2024; 9:11129-11147. [PMID: 38496999 PMCID: PMC10938411 DOI: 10.1021/acsomega.3c09564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
The escalating demand for sustainable industrial practices has driven the exploration of innovative materials, prominently exemplified by biodegradable electrospun membranes (BEMs). This review elucidates the pivotal role of these membranes across diverse industrial applications, addressing the imperative for sustainability. Furthermore, a comprehensive overview of biodegradable materials underscores their significance in electrospinning and their role in minimizing the environmental impact through biodegradability. The application of BEMs in various industrial sectors, including water treatment, food packaging, and biomedical applications, are extensively discussed. The environmental impact and sustainability analysis traverse the lifecycle of BEMs, evaluating their production to disposal and emphasizing reduced waste and resource conservation. This review demonstrates the research about BEMs toward an eco-conscious industrial landscape for a sustainable future.
Collapse
Affiliation(s)
- Akhil
Ranjan Borah
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallabi Hazarika
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Runjun Duarah
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Rajiv Goswami
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swapnali Hazarika
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Avornyo A, Chrysikopoulos CV. Applications of graphene oxide (GO) in oily wastewater treatment: Recent developments, challenges, and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120178. [PMID: 38310795 DOI: 10.1016/j.jenvman.2024.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The treatment of oily wastewater has become a serious environmental challenge, for which graphene oxide has emerged as a promising material in solving the problem. The ever-growing utilization of graphene oxide (GO) in the treatment of oily wastewater necessitates a constant review. This review article employs a comprehensive literature survey methodology, systematically examining peer-reviewed articles, focusing on, but not entirely limited to, the last five years. Major databases such as EBSCOhost, Scopus, ScienceDirect, Web of Science and Google Scholar were searched using specific keywords related to GO and oily wastewater treatment. The inclusion criteria focused on studies that specifically address the application, efficiency, and mechanisms of GO in treating oily wastewater. The data extracted from these sources were then synthesized to highlight the most important developments, challenges, and prospects in this field. As far as oily wastewater treatment is concerned, the majority of the studies revolve around the use of GO in mitigating fouling in membrane processes, improving the stability, capacity and reusability of sorbents, and enhancing photodegradation by minimizing charge recombination.
Collapse
Affiliation(s)
- Amos Avornyo
- Department of Civil and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Constantinos V Chrysikopoulos
- Department of Civil and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|
24
|
Zhu Z, Chen T, Huang F, Wang S, Zhu P, Xu RX, Si T. Free-Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304840. [PMID: 37722080 DOI: 10.1002/adma.202304840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Microfluidics, with its remarkable capacity to manipulate fluids and droplets at the microscale, has emerged as a powerful platform in numerous fields. In contrast to conventional closed microchannel microfluidic systems, free-boundary microfluidic manufacturing (FBMM) processes continuous precursor fluids into jets or droplets in a relatively spacious environment. FBMM is highly regarded for its superior flexibility, stability, economy, usability, and versatility in the manufacturing of advanced materials and architectures. In this review, a comprehensive overview of recent advancements in FBMM is provided, encompassing technical principles, advanced material manufacturing, and their applications. FBMM is categorized based on the foundational mechanisms, primarily comprising hydrodynamics, interface effects, acoustics, and electrohydrodynamic. The processes and mechanisms of fluid manipulation are thoroughly discussed. Additionally, the manufacturing of advanced materials in various dimensions ranging from zero-dimensional to three-dimensional, as well as their diverse applications in material science, biomedical engineering, and engineering are presented. Finally, current progress is summarized and future challenges are prospected. Overall, this review highlights the significant potential of FBMM as a powerful tool for advanced materials manufacturing and its wide-ranging applications.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
25
|
Tao Y, Luo Q, Shen L, Hong F, Pun EYB, Lin H. Swallowed Embedding of Nanopetal-Rich Microflowers in Flexible Photocatalytic and Thermoresponsive Functional Composite Fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1825-1839. [PMID: 38180481 DOI: 10.1021/acs.langmuir.3c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Developing efficient catalysts to degrade pollutants in water is a very important way to alleviate water pollution. However, it is crucial but challenging to broaden the functions of conventional photocatalysts and improve their environmental adaptability. In this paper, Bi(Er3+/Yb3+)OBr/polyacrylonitrile (BOB-EY/PAN) composite fibers with a swallowed-embedded structure assembled with nanopetal-rich microflowers were designed and fabricated, integrating photocatalytic and temperature-monitoring functions simultaneously. Their unique structure brings a large specific surface area, and the doping of rare earth ions improves the separation efficiency of electron-hole pairs, which enhances the photocatalytic efficiency and endows the fibers with a temperature-monitoring function at the same time. Under simulated sunlight irradiation, the nanofibers show a maximum degradation efficiency of 99.2% for tetracycline hydrochloride (TC) with a degradation constant of K as high as 0.078 min-1. Based on the fluorescence intensity ratio (FIR), the two thermally coupled levels of Er3+ in the nanofibers, 2H11/2 and 4S3/2, provide real-time temperature feedback, displaying a maximum relative sensitivity as high as 0.0215 K-1 at 303 K. Dual-functional BOB-EY/PAN composite nanofibers show great potential for industrial wastewater disposition, providing solutions for wastewater purification in special scenarios.
Collapse
Affiliation(s)
- Yahui Tao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qian Luo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Lifan Shen
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
- College of Microelectronics and Key Laboratory of Optoelectronics Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P. R. China
| | - Feng Hong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region, P. R. China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region, P. R. China
| |
Collapse
|
26
|
Chen X, Zhang D, Guan Y, Chen D, Ge H, Wang Z, Bao M, Li Y. Joule Heating-Assisted Crude Oil Purification by a Poly(pyrrole)-Modified Microfibril Cellulose Membrane. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2624-2636. [PMID: 38166459 DOI: 10.1021/acsami.3c15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Using membrane materials to purify viscous watery oil from industrial production processes and accidental oil spills is of great importance but still challenging. Based on the excellent electrical conductivity and electric-thermal conversion of poly(pyrrole) (PPy), a hydrophobic PPy-modified micro-fibrillated cellulose membrane (P-CP) was successfully prepared. The size of the P-CP membrane can be customized to meet specific requirements. In this research, the membrane diameter is capable of reaching 24 cm. By applying a voltage ranging from 0 to 12 V, the surface temperature of the P-CP membrane can be elevated to roughly 120 °C. After 10 cycles of heating and cooling under 12 V voltage, the electric-thermal curves, surface hydrophobicity, and pore structure of P-CP membrane can remain stable, which suggests remarkable electric-thermal stability and reliability despite prolonged operation. The P-CP membrane shows good linearity between voltage and current (R2 = 0.997) and easy temperature control from room temperature to ∼120 °C at low supply voltage (0-12 V). Under the condition of 12 V power supply and self-gravity, the separation flux of the P-CP membrane for water-in-oil (W/O) emulsions (kerosene, diesel) is 2-3 times higher than that at room temperature, and the separation efficiency is also improved. Importantly, the P-CP membrane shows excellent separation performance for high viscosity water-in-crude oil emulsions, with a separation flux of 40 L m-2 h-1 by gravity. Compared to the situation without electricity, the separation flux of water-in-crude oil emulsion has increased four-fold. The joule heating of the P-CP membrane expands its service time and application scenarios, demonstrating its great application prospects in actual viscous oil-water emulsion separation.
Collapse
Affiliation(s)
- Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Dan Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Dafan Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Hongwei Ge
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 266237 Qingdao, P. R. China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, 266100 Qingdao, P. R. China
| |
Collapse
|
27
|
Geng YH, Xin Y, Du J, Cui MY, Liu YY, Zhang LX, Ding B. Yolk-shell composite optical sensors with chiral L-histidine/Rhodamine 6G for high-sensitivity "turn-on" detection of L-proline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123468. [PMID: 37804709 DOI: 10.1016/j.saa.2023.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Chirality is a ubiquitous phenomenon in nature and has attracted wide attention in the biomedicine, pharmaceutics and biosensing research fields. Enantiomeric recognition of chiral compounds, especially chiral drugs and chiral amino acids, is important for human health and nutrition. In this work, through the encapsulation of L-His&R6G (L-His = L-Histidine; R6G = Rhodamine 6G) into MOF@MOF framework ZIF-67@ZIF-8, composited material L-His&R6G@ZIF-67@ZIF-8 can be obtained. Additionally, through the etching process, a unique yolk-shell ZIF-8 chiral composite optical sensors L-His&R6G@ZIF-8 (1) can be successfully prepared. Photo-luminescent (PL) experiment also reveals that 1 can highly sensitively detect L-Proline (L-Pro) through the "turn-on" detection strategy (KBH = 1.22 × 104 M-1 and detection limit 1.9 μM). Further yolk-shell L-His&R6G@ZIF-8-based fabricate flexible mixed-matrix membranes has been prepared using doctor-blading technique, which show significant fluorescence enhancement effect under ultraviolet lamp. This work also provides the unique example of preparing chiral yolk-shell framework composite sensors, which have broad application in chiral sensing area.
Collapse
Affiliation(s)
- Yu-Han Geng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China
| | - Yu Xin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Ming-Yi Cui
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China
| | - Yuan-Yuan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China.
| | - Le-Xi Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, China.
| |
Collapse
|
28
|
Manouchehri M. A comprehensive review on state-of-the-art antifouling super(wetting and anti-wetting) membranes for oily wastewater treatment. Adv Colloid Interface Sci 2024; 323:103073. [PMID: 38160525 DOI: 10.1016/j.cis.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One of the most dangerous types of pollution to the environment is oily wastewater, which is produced from a number of industrial sources and can cause damage to the environment, people, and creatures. To overcome this issue, membrane technology as an advanced method has been considered for treating oily wastewater due to its stability, high removal efficiency, and simplicity in scaling up. Membrane fouling, or the accumulation of oil droplets at or within the membrane pores, compromises the efficiency of membrane separation and water flux. In the last decade, the fabrication of membranes with specific wettability to reduce fouling has received much consideration. The purpose of this article is to offer a literature overview of all fabricated anti-fouling super(wetting and anti-wetting) membranes for applicable membrane processes for the separation of immiscible and emulsified oil/water mixtures. In this review, we first explain membrane fouling and discuss methods for preventing it. Afterwards, in all membrane separation processes, including pressure-driven, gravity-driven, and thermal-driven, membranes based on the form and density of oil are categorized as oil-removing or water-removing with special wettability, and then their wettability modification with different materials is particularly discussed. Finally, the prospect of anti-fouling membrane fabrication in the future is presented.
Collapse
Affiliation(s)
- Massoumeh Manouchehri
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Ye X, Zheng Z, Chi R, Liu J, Chen J, Luo W. Waste for Waste: Interface-Intensified Durable Superhydrophilic-Superoleophobic Collagen Fiber Membrane for Efficient Separation of Cationic Surfactant-Stabilized Oil-in-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18815-18824. [PMID: 38088351 DOI: 10.1021/acs.langmuir.3c02493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Cationic surfactant-stabilized oil-in-water emulsions pose a significant challenge in separation due to the presence of surfactants. Herein, we develop a collagen-fiber-based CFM-PMDA-TiO2 membrane with unique infiltration properties capable of efficiently separating cationic surfactant-stabilized oil-in-water emulsions by exploiting the charge-demulsification effect. The membrane exhibits superhydrophilic and submerged superoleophobic properties, making it highly suitable for separating a wide range of commercially available cationic surfactant-stabilized oil-in-water microemulsions and nanoemulsions, which demonstrates an exceptional separation efficiency as high as 99.86% and an impressive flux of up to 1436.40 L m-2 h-1. Furthermore, even after a strong subjecting of the membrane to sandpaper abrasion and a full 15 time use, the separation efficacy of oil-in-water emulsions is retained, highlighting the durability, reusability, and economic viability. We propose that these features are enabled by the electrostatic interactions triggered from pyromellitic dianhydride (PMDA) and superhydrophilic-superoleophobic membrane intensified by the TiO2 on the unique collagen fiber membrane. Outcomes emphasize the versatility and potential of our membrane in addressing emulsified oily wastewater hurdles.
Collapse
Affiliation(s)
- Xiaoxia Ye
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Zhihong Zheng
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Ruiyang Chi
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Juan Liu
- College of Environmental and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jie Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Wei Luo
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
30
|
Thamer BM, Al-aizari FA, Abdo HS. Activated Carbon-Incorporated Tragacanth Gum Hydrogel Biocomposite: A Promising Adsorbent for Crystal Violet Dye Removal from Aqueous Solutions. Gels 2023; 9:959. [PMID: 38131945 PMCID: PMC10743021 DOI: 10.3390/gels9120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Biomaterials-based adsorbents have emerged as a sustainable and promising solution for water purification, owing to their eco-friendly nature and remarkable adsorption capacities. In this study, a biocomposite hydrogel was prepared by the incorporation of activated carbon derived from pomegranate peels (PPAC) in tragacanth gum (TG). The hydrogel biocomposite (PPAC/TG) showed a porous structure, a negative surface charge at a pH of more than 4.9, and good stability in aqueous media. The adsorption properties of the PPAC/TG hydrogel biocomposite were assessed for the removal of crystal violet dye (CV) from aqueous solutions using a batch adsorption. The equilibrium adsorption data followed the Sips isotherm model, as supported by the calculated R2 (>0.99), r-χ2 (<64), and standard error values (<16). According to the Sips model, the maximum values of the adsorption capacity of PPAC/TG were 455.61, 470.86, and 477.37 mg/g at temperatures of 25, 30, and 35 °C, respectively. The adsorption kinetic of CV onto the PPAC/TG hydrogel biocomposite was well described by the pseudo-second-order model with R2 values more than 0.999 and r-χ2 values less than 12. Thermodynamic studies confirmed that the CV dye adsorption was spontaneous and endothermic. Furthermore, the prepared hydrogel exhibited excellent reusability, retaining its adsorption capacity even after being used more than five times. Overall, this study concludes that the prepared PPAC/TG exhibited a significant adsorption capacity for cationic dyes, indicating its potential as an effective and eco-friendly adsorbent for water treatment.
Collapse
Affiliation(s)
- Badr M. Thamer
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Faiz A. Al-aizari
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hany S. Abdo
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| |
Collapse
|
31
|
Vaithilingam S, Thirviyam SK, Muthukaruppan A, Arulanandu JA. CdO-Nanografted Superhydrophobic Hybrid Polymer Composite-Coated Cotton Fabrics for Self-Cleaning and Oil/Water Separation Applications. ACS OMEGA 2023; 8:43163-43177. [PMID: 38024688 PMCID: PMC10652371 DOI: 10.1021/acsomega.3c06790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
The current study presents a simple and cost-competitive method for the development of high-performance superhydrophobic and superoleophilic cotton fabrics coated with cadmium oxide/cerotic acid (CdO/CE)-polycaprolactone (PCL)- and cadmium oxide/stearic acid (CdO/ST)-polycaprolactone-grafted hybrid composites. X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy are used to characterize the CdO/CE-PCL and CdO/ST-PCL and polycaprolactone-modified cotton fabrics. Using an optical contact angle meter, the wetting behavior of corrosive liquids such as coffee, milk, tea, water dyed with methylene blue, strong acids (HCl), strong alkali (NaOH), and saturated salt solution (NaCl) on the CdO-CE/ST/PCL-modified cotton fabrics is assessed as well as the durability of CdO-CE/ST/PCL-modified cotton fabrics in corrosive liquids. Data obtained from the oil-water separation experiment indicate remarkable separation efficiency with oil purity values of ≥99.97 wt %, and high permeation flux values of up to 11,700 ± 300 L m-2 h-1 are observed for surfactant-stabilized water-in-oil emulsions via a gravity-driven technique. From the data obtained, it is concluded that the nano-CdO-grafted superhydrophobic hybrid polymer composite-coated cotton fabrics (CdO-ST/(CE)/PCL/CFs) can be utilized for self-cleaning and oil/water separation applications.
Collapse
Affiliation(s)
- Selvaraj Vaithilingam
- Nanotech
Research Lab, Department of Chemistry, University
College of Engineering Villupuram (A Constituent College of Anna University,
Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India
| | - Swarna Karthika Thirviyam
- Nanotech
Research Lab, Department of Chemistry, University
College of Engineering Villupuram (A Constituent College of Anna University,
Chennai), Kakuppam, Villupuram 605 103, Tamil Nadu, India
- Dept.
of Chemistry, SDNB Vaishnav College for
Women, Chrompet, Chennai 600 044, India
| | - Alagar Muthukaruppan
- Polymer
Engineering Laboratory, PSG Institute of
Technology and Applied Research, Neelambur, Coimbatore 641 062, India
| | | |
Collapse
|
32
|
Han X, Wang X, Tian W, Wang Y, Wang J, Lam F, Jiang S. A Strong, Tough and Fire-Retardant Biomimetic Multifunctional Wooden Laminate. Polymers (Basel) 2023; 15:4063. [PMID: 37896308 PMCID: PMC10610539 DOI: 10.3390/polym15204063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mildly delignified wood showed a well-preserved wood cell wall framework, and its derived compressed materials demonstrate excellent mechanical properties and advanced functional material potential. Here, we proposed a simple yet effective approach for making strong, tough, and fire-retardant wooden laminate by a three-step process of mild delignification, infiltrating potassium nonafluoro-1-butanesulfonate (PFBS), and hot-pressing to densify the material. PFBS can be infiltrated into the micro/nano-structures of the mildly delignified wood to achieve a good flame-resistant protective barrier. Flame retardant tests showed that this strong, tough, and fire-retardant wooden laminate has a superior flame-retardant performance to natural wood. Additionally, the wooden laminate also exhibits a simultaneously enhanced tensile strength (175.6 MPa vs. 89.9 MPa for natural wood) and toughness (22.9 MJ m-3vs. 10.9 MJ m-3 for natural wood). Given these attributes, the resulting wooden laminates are identified as promising candidates for high-performance structural applications, fulfilling stringent requirements for both mechanical resilience and flame-retardant efficacy.
Collapse
Affiliation(s)
- Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyi Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuli Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangbo Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Frank Lam
- Department of Wood Science, The University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
33
|
Jeon Y, Kim D, Lee S, Lee K, Ko Y, Kwon G, Park J, Kim UJ, Hwang SY, Kim J, You J. Multiscale Porous Carbon Materials by In Situ Growth of Metal-Organic Framework in the Micro-Channel of Delignified Wood for High-Performance Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2695. [PMID: 37836336 PMCID: PMC10574260 DOI: 10.3390/nano13192695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Porous carbon materials are suitable as highly efficient adsorbents for the treatment of organic pollutants in wastewater. In this study, we developed multiscale porous and heteroatom (O, N)-doped activated carbon aerogels (CAs) based on mesoporous zeolitic imidazolate framework-8 (ZIF-8) nanocrystals and wood using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation, in situ synthesis, and carbonization/activation. The surface carboxyl groups in a TEMPO-oxidized wood (TW) can provide considerably large nucleation sites for ZIF-8. Consequently, ZIF-8, with excellent porosity, was successfully loaded into the TW via in situ growth to enhance the specific surface area and enable heteroatom doping. Thereafter, the ZIF-8-loaded TW was subjected to a direct carbonization/activation process, and the obtained activated CA, denoted as ZIF-8/TW-CA, exhibited a highly interconnected porous structure containing multiscale (micro, meso, and macro) pores. Additionally, the resultant ZIF-8/TW-CA exhibited a low density, high specific surface area, and excellent organic dye adsorption capacity of 56.0 mg cm-3, 785.8 m2 g-1, and 169.4 mg g-1, respectively. Given its sustainable, scalable, and low-cost wood platform, the proposed high-performance CA is expected to enable the substantial expansion of strategies for environmental protection, energy storage, and catalysis.
Collapse
Affiliation(s)
- Youngho Jeon
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| | - Dabum Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| | - Suji Lee
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| | - Kangyun Lee
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| | - Youngsang Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| | - Goomin Kwon
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| | - Jisoo Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ung-Jin Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| | - Sung Yeon Hwang
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea (S.Y.H.)
| |
Collapse
|
34
|
Zhang Z, Xiao S, Meng X, Yu S. Research progress of MOF-based membrane reactor coupled with AOP technology for organic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104958-104975. [PMID: 37723390 DOI: 10.1007/s11356-023-29852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
MOF-based catalytic membrane reactor (MCMR), which can simultaneously achieve membrane separation and chemical catalytic degradation in an integrated system, is a cutting-edge technology for effective treatment of organic pollutants in water. The coupling of MCMR and advanced oxidation process (AOP) not only significantly improves the pollutant removal efficiency but also inhibits the membrane pollution through self-cleaning effect, thus improving the stability of MCMR. This paper reviews different MCMR systems combined with photocatalysis, Fenton oxidation, and persulfate activation, elucidates the reaction mechanism, discusses key issues to improve system effectiveness, and suggests future challenges and research directions.
Collapse
Affiliation(s)
- Ziyang Zhang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shujuan Xiao
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xianguang Meng
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shouwu Yu
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
35
|
Bazan-Wozniak A, Machelak K, Nosal-Wiercińska A, Pietrzak R. Microwave Heating for Synthesis of Carbonaceous Adsorbents for Removal of Toxic Organic and Inorganic Contaminants. Molecules 2023; 28:6825. [PMID: 37836668 PMCID: PMC10574095 DOI: 10.3390/molecules28196825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The residues obtained from the extraction of Inonotus obliquus fungus were used to produce carbonaceous adsorbents. The initial material was subjected to pyrolysis in a microwave oven. The adsorbents were characterized through elemental analysis, low-temperature nitrogen adsorption/desorption isotherms, and Boehm titration. The carbonaceous adsorbents were tested for the removal of NO2, methylene blue, and malachite green. The results indicated that the obtained carbonaceous adsorbents exhibited basic characteristics and possessed specific surface areas of 372 and 502 m2/g. The adsorption process of liquid contaminants was modeled using the single-layer Langmuir model. The maximum adsorption capacities were found to be 101 and 109 mg/g for methylene blue, and 75 and 77 mg/g for malachite green. The kinetic study demonstrated that the adsorption of methylene blue and malachite green was better described by a pseudo-second order model. The study affirmed that the adsorption of organic dyes onto the resultant carbonaceous adsorbents was both spontaneous and endothermic. The study also demonstrated that the presence of an air stream during the NO2 adsorption process and prehumidization of the adsorbent with humid air had a beneficial effect on the obtained sorption capacities. In conclusion, the study demonstrated that pyrolysis of the extraction residues from the fungus Inonotus obliquus yields highly effective, environmentally friendly, and cost-efficient carbonaceous adsorbents for the removal of both gaseous and liquid pollutants.
Collapse
Affiliation(s)
- Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.B.-W.); (K.M.)
| | - Katarzyna Machelak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.B.-W.); (K.M.)
| | - Agnieszka Nosal-Wiercińska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.B.-W.); (K.M.)
| |
Collapse
|
36
|
Ma X, Zhou S, Li J, Xie F, Yang H, Wang C, Fahlman BD, Li W. Natural microfibrils/regenerated cellulose-based carbon aerogel for highly efficient oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131397. [PMID: 37104952 DOI: 10.1016/j.jhazmat.2023.131397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Cellulose-based carbon aerogels as biodegradable and renewable biomass materials have presented potential applications in oil/water separation. Herein, a novel carbon aerogel composed of natural microfibrils/regenerated cellulose (NM/RCA) was directly prepared by economical hardwood pulp as raw material using a novel co-solvent composed of deep eutectic solvent (DES) and N-methyl morpholine-N-oxide monohydrate (NMMO·H2O). In addition, the morphology and structure of the filiform natural microfibers could be remained after carbonized at 400 ℃, which resulted in a low density (8-10 mg cm-3), high specific surface area (768.89 m2 g-1) and high sorption capability. In addition, the aerogel exhibited high compressibility, outstanding elasticity, excellent fatigue resistance, and recyclability (80.5% height recovery after repeating 100 cycles at the strain of 80%). Due to the morphology and composition of the carbonized microfiber surface, the superhydrophobic materials with a water contact angle of 151.5°, could sorb various oils and organic solvents with 65-133 times its own weight and maintain 91.9% sorption capacity after 25 cycles. In addition, the aerogels could achieve the continuous separation of carbon tetrachloride (CCl4) from water with a high flux rate of 11,718.8 L m-2 h-1. Therefore, our prepared NM/RCA aerogels are anticipated to have broad potential applications in oil purification and contaminant remediation.
Collapse
Affiliation(s)
- Xiang Ma
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Shuang Zhou
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Junting Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Fei Xie
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Hui Yang
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310012, PR China
| | - Cheng Wang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Bradley D Fahlman
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Wenjiang Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
37
|
Youn J, Rhyou J, Kim D, Lee J, Choi JW, Park TE, Kim DS. Facile and adhesive-free method for bonding nanofiber membrane onto thermoplastic polystyrene substrate to fabricate 3D cell culture platforms. Mater Today Bio 2023; 20:100648. [PMID: 37214546 PMCID: PMC10192924 DOI: 10.1016/j.mtbio.2023.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Nanofiber (NF) membranes have been highlighted as functional materials for biomedical applications owing to their high surface-to-volume ratios, high permeabilities, and extracellular matrix-like biomimetic structures. Because many in vitro platforms for biomedical applications are made of thermoplastic polymers (TP), a simple and leak-free method for bonding NF membranes onto TP platforms is essential. Here, we propose a facile but leak-free localized thermal bonding method for integrating 2D or 3D-structured NF membrane onto a TP supporting substrate while preserving the pristine nanofibrous structure of the membrane, based on localized preheating of the substrate. A methodology for determining the optimal preheating temperature was devised based on a numerical simulation model considering the melting temperature of the NF material and was experimentally validated by evaluating bonding stability and durability under cell culture conditions. The thermally-bonded interface between the NF membrane and TP substrate was maintained stably for 3 weeks allowing the successful construction of an intestinal barrier model. The applicability of the localized thermal bonding method was also demonstrated on various combinations of TP materials (e.g., polystyrene and polymethylmethacrylate) and geometries of the supporting substrate, including a culture insert and microfluidic chip. We expect the proposed localized thermal bonding method to contribute toward broadening and realizing the practical applications of functional NF membranes in various biomedical fields.
Collapse
Affiliation(s)
- Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Junyeol Rhyou
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jisang Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeong-Won Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
38
|
Zhang Q, Qiao Q, Wang Z, Liu Y, Pei Z, Guo J, Fei P, Zhang A, Jia H, Xu B. Covalent Bonding Enhanced Polypropylene Based T-ZIF-8 Masterbatch with Superior Photocatalytic and Antibacterial Performances. J Inorg Organomet Polym Mater 2023; 33:1219-1233. [PMID: 36844785 PMCID: PMC9937522 DOI: 10.1007/s10904-023-02576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 02/20/2023]
Abstract
In order to solve the problem of poor compatibility between modified-ZIF-8 nanoparticles and mask matrix polypropylene (PP) and melt-blown materials, in this work, PP based modified-ZIF-8 antibacterial masterbatch was prepared employing surface modification and torque blending method. IR, SEM, XRD, XPS, DSC results confirm that the antibacterial masterbatch maintains the chemical and crystal structure of modified-ZIF-8 and the thermal stability of PP. Photocatalytic performance indicates that the antibacterial masterbatch basically maintains the photoresponse range of modified-ZIF-8, has narrower band gap and the superior photocatalytic performance than that of modified-ZIF-8. The photocatalytic antibacterial mechanism of ·O2- and h+ as antibacterial active species is revealed according to the energy band structure and free radical capture experiment. The photocatalytic antibacterial activity of the antibacterial masterbatch against Staphylococcus aureus and Escherichia coli under different dosage holds that the relationship between antibacterial rate and antibacterial agent concentration conforms to Beta distribution, demonstrating second-order kinetic behavior. The antibacterial properties reach the maximum when the loading of modified-ZIF-8 is 2% of the total weight of PP and melt-blown materials. S. aureus and E. coli could be completely killed when the simulated sunlight is irradiated for 30 min. These results indicate that PP based modified-ZIF-8 antibacterial masterbatch has potential application in photocatalytic antibacterial masks.
Collapse
Affiliation(s)
- Qian Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, 030006 China
| | - Qikai Qiao
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, 030006 China
| | - Zihao Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Yuanyuan Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, 030006 China
| | - Zhen Pei
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, 030006 China
| | - Jiandong Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, 030006 China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030600 China
| | - Aiqin Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, 030006 China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030600 China
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Husheng Jia
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030600 China
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024 China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Bingshe Xu
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030600 China
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024 China
| |
Collapse
|
39
|
Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers (Basel) 2023; 15:polym15040921. [PMID: 36850206 PMCID: PMC9961710 DOI: 10.3390/polym15040921] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Electrospun porous nanofibers have gained a lot of interest recently in various fields because of their adjustable porous structure, high specific surface area, and large number of active sites, which can further enhance the performance of materials. This paper provides an overview of the common polymers, preparation, and applications of electrospun porous nanofibers. Firstly, the polymers commonly used to construct porous structures and the main pore-forming methods in porous nanofibers by electrospinning, namely the template method and phase separation method, are introduced. Secondly, recent applications of electrospun porous nanofibers in air purification, water treatment, energy storage, biomedicine, food packaging, sensor, sound and wave absorption, flame retardant, and heat insulation are reviewed. Finally, the challenges and possible research directions for the future study of electrospun porous nanofibers are discussed.
Collapse
|
40
|
Waste marble dust-filled sustainable polymer composite selection using a multi-criteria decision-making technique. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
41
|
Iftekhar S, Deb A, Heidari G, Sillanpää M, Lehto VP, Doshi B, Hosseinzadeh M, Zare EN. A review on the effectiveness of nanocomposites for the treatment and recovery of oil spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16947-16983. [PMID: 36609763 DOI: 10.1007/s11356-022-25102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The introduction of unintended oil spills into the marine ecosystem has a significant impact on aquatic life and raises important environmental concerns. The present review summarizes the recent studies where nanocomposites are applied to treat oil spills. The review deals with the techniques used to fabricate nanocomposites and identify the characteristics of nanocomposites beneficial for efficient recovery and treatment of oil spills. It classifies the nanocomposites into four categories, namely bio-based materials, polymeric materials, inorganic-inorganic nanocomposites, and carbon-based nanocomposites, and provides an insight into understanding the interactions of these nanocomposites with different types of oils. Among nanocomposites, bio-based nanocomposites are the most cost-effective and environmentally friendly. The grafting or modification of magnetic nanoparticles with polymers or other organic materials is preferred to avoid oxidation in wet conditions. The method of synthesizing magnetic nanocomposites and functionalization polymer is essential as it influences saturation magnetization. Notably, the inorganic polymer-based nanocomposite is very less developed and studied for oil spill treatment. Also, the review covers some practical considerations for treating oil spills with nanocomposites. Finally, some aspects of future developments are discussed. The terms "Environmentally friendly," "cost-effective," and "low cost" are often used, but most of the studies lack a critical analysis of the cost and environmental damage caused by chemical alteration techniques. However, the oil and gas industry will considerably benefit from the stimulation of ideas and scientific discoveries in this field.
Collapse
Affiliation(s)
- Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland
| | - Anjan Deb
- Department of Chemistry, University of Helsinki, 00014, Helsinki, Finland
| | - Golnaz Heidari
- School of Chemistry, Damghan University, Damghan, 36716-41167, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
- Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, People's Republic of China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland
| | | | - Mehdi Hosseinzadeh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | | |
Collapse
|
42
|
Zhang X, Xu Y, Zeng Y. Efficient, Breathable and Biodegradable Filter Media for Face Masks. FIBERS AND POLYMERS 2023; 24:1613-1621. [PMCID: PMC10071238 DOI: 10.1007/s12221-023-00178-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 09/03/2023]
Abstract
The global outbreak of COVID-19 results in the surge of disposable sanitary supplies, especially personal protective face masks. However, the charge dissipation of the electret meltblown nonwovens, which predominate in the commercial face mask filters, confines the durability and safety of commercial face masks. Furthermore, most of the face masks are made from nondegradable materials (such as PP) or part of their degradation products are toxic and contaminative to the environment. Herein, a type of face mask with biodegradable and highly effective PLA bi-layer complex fibrous membrane as filter core is reported. The prepared PLA complex membrane possesses a high-filtration efficiency of 99.1% for PM0.3 while providing a favorable pressure drop of 93.2 Pa. With the PLA complex membrane as the filter core, our face mask exhibits comparable or even higher wearability to commercial face masks, which further manifests our designed PLA complex membrane a promising filter media for face masks.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Yuanqiang Xu
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai, 201620 China
| |
Collapse
|
43
|
Abdulhamid MA, Muzamil K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. CHEMOSPHERE 2023; 310:136886. [PMID: 36265699 DOI: 10.1016/j.chemosphere.2022.136886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Developing new polymer membranes with excellent thermal, mechanical, and chemical stability has shown great potential for various environmental remediation applications such as wastewater treatment and air filtration. Polymer membranes have been widely investigated over the past years and utilized to overcome severe ecological issues. Membrane-based technologies play a critical role in water purification and air filtration with the ability to act efficiently and sustainably. Electrospun nanofiber membranes have displayed excellent performance in removing various contaminants from water, such as bacteria, dyes, heavy metals, and oil. These nanofibrous membranes have shown good potential to filter the air from tiny particles, volatile organic compounds, and toxic gases. The performance of polymer membranes can be enhanced by fine-tuning polymer structure, varying surface properties, and strengthening overall membrane porosity. In this review, we discuss the involvement of electrospun nanofibrous membranes in different environmental remediation applications. It further reviews the recent progress of polymer membrane development by utilizing nanoparticles and naturally occurring polymers.
Collapse
Affiliation(s)
- Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Khatri Muzamil
- Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster of Cutting-Edge Research (ICCER), Shishu University, Tokida 3-15-1, Ueda, 386-8567, Japan
| |
Collapse
|
44
|
Superhydrophilic microfibrous adsorbent with broad-spectrum binding affinity to effectively remove diverse pollutants from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
He XT, Li BY, Liu JX, Tao WQ, Li Z. Facile fabrication of 2D MOF-Based membrane with hierarchical structures for ultrafast Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Liu J, Aday X, Wang X, Li Z, Liu J. On demand oil/water separation enabled by microporous ultra-thin aluminum foil with asymmetric wettability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Ma R, Lu X, Wu C, Zhang S, Zheng S, Ren K, Gu J, Wang H, Shen H. Performance design of a highly anti-fouling porous membrane with dual pH-responsiveness. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
48
|
Pang Y, Yu Z, Chen H, Xiang Q, Wang Q, Xie C, Liu Y. Superhydrophobic polyurethane sponge based on sepiolite for efficient oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128833. [PMID: 35429755 DOI: 10.1016/j.jhazmat.2022.128833] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Massive oil leakage accidents and illegal discharge of oily wastewater have not just destroyed the sustainability of the ecological environment but caused permanent damage to marine ecosystems, which makes it urgent to handle it. In this paper, by means of sol-gel, micro-nan silica that grew from the surface of fibrous sepiolite was organically modified with 1 H, 1 H, 2 H, 2 H-perfluorodecyltriethoxysilane (PFDS). The superhydrophobic sepiolite/silica firmly attached to the surface of polyurethane sponge under the action of oily epoxy resin with strong adhesion. The sponge exhibited superhydrophobicity and excellent selective oil adsorption capacity (19.98-40 times of their own weight). More importantly, besides the effective separation of immiscible oil-water mixtures (the separation rate reached 98.72%), it could also efficiently separate oil with water and oil with salt solution emulsions. In addition, the sponges kept hydrophobic even after floating in extremely corrosive liquids for 20 h, showing a strong resistance to strong acidic as well as alkaline liquids. After 100 times of mechanical compression, the three-dimensional structure of sponge held still and the water contact angle was greater than 144°, demonstrating an excellent mechanical stability, which provided a reference for its practical application in oil-water separation.
Collapse
Affiliation(s)
- Yao Pang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu, Sichuan 610500, PR China.
| | - Haidong Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Qingcan Xiang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Qiuxiang Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Chunxia Xie
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
49
|
M'barek I, Isik Z, Ozay Y, Özdemir S, Tollu G, Moussaoui Y, Dizge N. Nanocellulose synthesis from Tamarix aphylla and preparation of hybrid nanocellulose composites membranes with investigation of antioxidant and antibacterial effects. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
A Review of the Techno-Economic Feasibility of Nanoparticle Application for Wastewater Treatment. WATER 2022. [DOI: 10.3390/w14101550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increase in heavy metal contamination has led to an increase in studies investigating alternative sustainable ways to treat heavy metals. Nanotechnology has been shown to be an environmentally friendly technology for treating heavy metals and other contaminants from contaminated water. However, this technology is not widely used in wastewater treatment plants (WWTPs) due to high operational costs. The increasing interest in reducing costs by applying nanotechnology in wastewater treatment has resulted in an increase in studies investigating sustainable ways of producing nanoparticles. Certain researchers have suggested that sustainable and cheap raw materials must be used for the production of cheaper nanoparticles. This has led to an increase in studies investigating the production of nanoparticles from plant materials. Additionally, production of nanoparticles through biological methods has also been recognized as a promising, cost-effective method of producing nanoparticles. Some studies have shown that the recycling of nanoparticles can potentially reduce the costs of using freshly produced nanoparticles. This review evaluates the economic impact of these new developments on nanotechnology in wastewater treatment. An in-depth market assessment of nanoparticle application and the economic feasibility of nanoparticle applications in WWTPs is presented. Moreover, the challenges and opportunities of using nanoparticles for heavy metal removal are also discussed.
Collapse
|