1
|
Yin Z, Chen H, Wang Q, Wang Z, Yu G, Tang B, Zhang M, Li K, Zhang Z, Luo Q, Hu T, Lv B. Construction of an interface interaction in a g-C 3N 4/CdS/NiS for photoreforming of plastic and clean hydrogen regeneration. J Colloid Interface Sci 2024; 675:218-225. [PMID: 38968638 DOI: 10.1016/j.jcis.2024.06.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Converting plastics into organic matter by photoreforming is an emerging way to deal with plastic pollution and produce valuable organic matter. Water shortage can be alleviated by using seawater resources. To solve these problems, we synthesize a ternary heterostructure composite g-C3N4/CdS/NiS. Heterojunctions are formed between graphitized carbon nitride (g-C3N4), cadmium sulfide (CdS) and nickel sulfide (NiS), which effectively improve the problem of fast charge recombination of pure g-C3N4 and CdS. The results of the g-C3N4/CdS/NiS photocatalytic tests show that the hydrogen production rates in seawater and pure water for 5 h are 30.44 and 25.79 mmol/g/h, respectively. In stability test, the hydrogen production rate of the g-C3N4/CdS/NiS in seawater and pure water is similar. This suggests that seawater can replace pure water as a source of hydrogen. While H2 is generated, the lactate obtained by polylactic acid (PLA) hydrolysis is oxidized to form small organic compounds such as formate, acetate and pyruvate. Our study shows that g-C3N4/CdS/NiS can not only use seawater as a hydrogen source to produce H2, but also photoreformate plastics dissolved in seawater into valuable small organic molecules. This has a positive impact on the production and use of clean energy, as well as on plastic pollution and water scarcity.
Collapse
Affiliation(s)
- Zhe Yin
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Huanyu Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiuyu Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ziwen Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guoping Yu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Binglin Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Man Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kangzheng Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhichao Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingcheng Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bo Lv
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
2
|
Zhang X, Wu F, Li G, Wang L, Huang J, Song A, Meng A, Li Z. Mechanistic insight into the synergy between platinum cluster and indium particle dual cocatalysts for enhanced photocatalytic water splitting. J Colloid Interface Sci 2024; 670:774-784. [PMID: 38795682 DOI: 10.1016/j.jcis.2024.05.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Photocatalytic H2 production is envisioned as a promising pillar of sustainable energy conversion system to address the energy crisis and environmental issues but still challenging. Herein, a strategy is proposed to design a dual-metal cocatalysts consisting of Pt nanoclusters (Pt NCs) and In nanoparticles (In NPs) anchored on polymeric carbon nitride (Pt-In/CN) for boosting photocatalytic water splitting. As expected, the designed Pt-In/CN photocatalyst exhibits an impressive H2 production rate of 6.49 mmol·h-1·g-1 with an apparent quantum yield (AQY) of 33.56 % at 400 nm, which is 2.8- and 11.2-fold higher than those of the Pt/CN and In/CN, respectively. Combining experimental characterization with theoretical calculation demonstrates the synergistic mechanisms underpinning the enhanced photocatalytic activity. The Pt NCs and In NPs serve as photogenerated electron and hole trapping sites, respectively, which achieves the spatial separation of charge carriers and induces the polarized surface charge distribution, thus fostering optimal adsorption behavior of intermediates. More importantly, the p-block In NPs modulate the electronic microenvironment of Pt NCs to attenuate the adsorption behavior of H* intermediates for accelerated H2 evolution kinetics. This work unveils a versatile strategy to regulate the electronic structures of dual-metal sites with synergy by establishing charge transfer mechanism for dual-metal cocatalysts.
Collapse
Affiliation(s)
- Xinlei Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fei Wu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guicun Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianfeng Huang
- School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Aili Song
- Qingdao Huanghai University, Qingdao 266000, China
| | - Alan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
3
|
Wang B, Huang M, Jiang M, Jia Y, Niu Y, Sun W. Boosting photocatalytic performance of polymeric carbon nitride by adjusting its donor-acceptor structure via functional group modification strategy. CHEMOSPHERE 2024; 364:143137. [PMID: 39181468 DOI: 10.1016/j.chemosphere.2024.143137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Solar-driven photodegradation of pollutant is attractive for environmental remediation. Herein, we designed and synthetized a new kind of group-modified polymeric carbon nitride (PCN) photocatalyst with urea and 4-Nitro-o-phenylenediamine by one-pot method and applied to degrade bisphenol A (BPA) in aqueous solution. The light response range of photocatalyst had been extended a lot due to conjugation and electron-withdrawing properties of nitrobenzene. Physical analysis shows that 4-Nitro-o-phenylenediamine grafting brings an improved charge separation capacity. EPR and DFT results demonstrate the charge separation is significantly affected by the donor-acceptor structure of PCN, which can be altered via aromatic electron-withdrawing group. The kinetic constant of photocatalytic degradation for BPA was promoted by 8.8-times greater than unmodified PCN and a good recyclability was achieved. To verify the universality of group modification strategies, we prepared other two kinds of photocatalysts via electron-withdrawing group modification strategy and their photocatalytic performance all had been improved obviously.
Collapse
Affiliation(s)
- Bei Wang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, China.
| | - Mingxiu Huang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Meng Jiang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Yiqi Jia
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Yanyan Niu
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, China
| |
Collapse
|
4
|
Lv X, Li D, Yu X, McPhedran KN, Huang R. Tungsten sulfide highly boosted Fe(III)/peroxymonosulfate system for rapid degradation of cyclohexanecarboxylic acid: Performance, mechanisms, and applications. CHEMOSPHERE 2024; 361:142556. [PMID: 38851499 DOI: 10.1016/j.chemosphere.2024.142556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
In this study, the Fe(III)/WS2/peroxymonosulfate (PMS) system was found to remove up to 97% of cyclohexanecarboxylic acid (CHA) within 10 min. CHA is a model compound for naphthenic acids (NAs), which are prevalent in petroleum industrial wastewater. The addition of WS2 effectively activated the Fe(III)/PMS system, significantly enhancing its ability to produce reactive oxidative species (ROS) for the oxidation of CHA. Further experimental results and characterization analyses demonstrated that the metallic element W(IV) in WS2 could provide electrons for the direct reduction of Fe(III) to Fe(II), thus rapidly activating PMS and initiating a chain redox process to produce ROS (SO4•-, •OH, and 1O2). Repeated tests and practical exploratory experiments indicated that WS2 exhibited excellent catalytic performance, reusability and anti-interference capacity, achieving efficient degradation of commercial NAs mixtures. Therefore, applying WS2 to catalyze the Fe(III)/PMS system can overcome speed limitations and facilitate simple, economical engineering applications.
Collapse
Affiliation(s)
- Xin Lv
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Dazhen Li
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xi Yu
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Kerry N McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Gharehkhani A, Hajjami M. Magnetic curcumin-copper graphene oxide as facile and recyclable heterogeneous nanocatalyst for preparation of polyhydroquinolines and sulfoxides. Sci Rep 2024; 14:16937. [PMID: 39043853 PMCID: PMC11266393 DOI: 10.1038/s41598-024-67876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
In this research project, a versatile procedure has been designed for the preparation of supported copper@curcumin on magnetic graphene oxide nanoparticles (GO@Fe3O4@Cur-Cu). The structure of prepared nanocatalyst was characterized by several techniques including; Fourier transform infrared, powder X-ray diffraction, thermal gravimetric analysis, energy dispersive X-ray analysis, inductively coupled plasma optical emission spectroscopy, vibrating sample magnetometer, transmission electron microscopy, and scanning electron microscopy analyses. The catalytic properties of GO@Fe3O4@Cur-Cu were examined for the efficient synthesis of polyhydroquinolines as well as the preparation of sulfoxides through selective oxidation of sulfides in the presence of hydrogen peroxide.
Collapse
Affiliation(s)
- Alireza Gharehkhani
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Maryam Hajjami
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| |
Collapse
|
6
|
Arbeláez Perez OF, Bustamante Londoño F, Villa Holguin AL, Ardila A AN, Fuentes GA. Observed kinetics for the production of diethyl carbonate from CO 2 and ethanol catalyzed by CuNi nanoparticles supported on activated carbon. Sci Rep 2024; 14:16667. [PMID: 39030252 PMCID: PMC11271531 DOI: 10.1038/s41598-024-59070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 07/21/2024] Open
Abstract
Monometallic and bimetallic Cu:Ni catalysts with different Cu:Ni molar ratios (3:1, 2:1, 1:1, 1:2, 1:3) were synthesized by wetness impregnation on activated carbon and characterized by TPR (temperature programmed reduction), XRD (X-ray diffraction) and XPS (X-ray photoelectron spectroscopy). The synthesized catalysts were evaluated in the gas phase production of diethyl carbonate from ethanol and carbon dioxide. The largest catalytic activity was obtained over the bimetallic catalyst with a Cu:Ni molar ratio of 3:1. Its improved activity was attributed to the formation of a Cu-Ni alloy on the surface of the catalyst, evidenced by XPS and in agreement with a previous assignment based on Vegard law and TPR analysis. During the reaction rate experiments, it observed the presence of a maximum of the reaction rate as a function of temperature, a tendency also reported for other carbon dioxide-alcohol reactions. It showed that the reaction rate-temperature data can be adjusted with a reversible rate equation. The initial rate as a function of reactant partial pressure data was satisfactorily adjusted using the forward power law rate equation and it was found that the reaction rate is first order in CO2 and second order in ethanol.
Collapse
Affiliation(s)
- Oscar Felipe Arbeláez Perez
- Grupo de investigación Termomec, Facultad de Ingeniería, Universidad Cooperativa de Colombia, Calle 50 No. 40-74 - Bloque A - Piso 4, Medellín, Colombia
| | - Felipe Bustamante Londoño
- Environmental Catalysis Research Group, Chemical Engineering Department, School of Engineering, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Aída Luz Villa Holguin
- Environmental Catalysis Research Group, Chemical Engineering Department, School of Engineering, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Alba N Ardila A
- Research Group in Environmental Catalysis and Renewable Energies, Facultad de Ciencias y Educación, Politécnico Colombiano Jaime Isaza Cadavid, Apartado Aéreo 49-32, Medellín, Colombia.
| | - Gustavo A Fuentes
- Department of Process Engineering, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09310, Mexico, DF, Mexico
| |
Collapse
|
7
|
Xian S, Xie Y, Xu Q, Yang Z, Li H, Wu Y. Mechanism insight into the conversion between COS and thiophene during CO 2 gasification of carbon-based fuels. Sci Rep 2024; 14:15989. [PMID: 38987351 PMCID: PMC11237078 DOI: 10.1038/s41598-024-67180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Thiophene is the organic sulfur with good thermal stability in carbon-based fuel, clarifying the conversion mechanism between thiophene and COS is beneficial for achieving in-situ sulfur fixation during CO2 gasification of carbon-based fuels, but the mechanism has rarely been reported. Therefore, calculations based on density functional theory were performed and 16 reaction paths were proposed in this research, clarifying the decomposition mechanism of thiophene and re-fixation mechanism of COS. The attachment of CO2 will lead to the destruction of the thiophene ring and the generation of COS, and CO2 adsorption is the rate-determined step, while the carbon atom that adjacent sulfur atom is the reaction active site. However, the energy barriers of CO2 addition reactions are lower than those of CO2 adsorption reactions, and the energy barrier of reactions occurring on the aliphatics are lower than that occurring on the aromatics. The combination of CO2 and thiophene will thermodynamically lead to the generation of COS and CO. Moreover, gaseous sulfur generated from thiophene decomposition will be converted mutually, while H2S will not be converted into COS. Furthermore, COS will be captured by char, forming solid organic sulfur. The re-fixation of COS will occur on aliphatic chains from the decomposition of aromatics.
Collapse
Affiliation(s)
- Shengxian Xian
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ye Xie
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qing Xu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China.
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Zhisi Yang
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haowei Li
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yujian Wu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China, Sea Marine Ranching, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
8
|
Kumar V, Paul D, Kumar S. Acid mine drainage from coal mines in the eastern Himalayan sub-region: Hydrogeochemical processes, seasonal variations and insights from hydrogen and oxygen stable isotopes. ENVIRONMENTAL RESEARCH 2024; 252:119086. [PMID: 38723986 DOI: 10.1016/j.envres.2024.119086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Uncontrolled coal mining using non-scientific methods has presented a major threat to the quality of environment, particularly the water resources in eastern himalayan sub-region of India. Water bodies in the vicinity of mining areas are contaminated by acid mine drainage (AMD) that is released into streams and rivers. This study attempted to assess the impact of AMD, deciphering hydrogeochemical processes, seasonal fluctuations, and stable isotope features of water bodies flowing through and around coal mining areas. Self-organizing maps (SOMs) used to separate and categorize AMD, AMD-impacted and non-AMD impacted water from the different study locations for two sampling seasons revealed four clusters (C), with C1 and C2 impacted by AMD, C3 and C4 showing negligible to no impact of AMD. AMD impacted water was SO42- - Mg2+- Ca2+ hydrochemical type with sulphide oxidation and evaporation dominating water chemistry, followed by silicate weathering during both the sampling seasons. Water with negligible-to-no AMD-impact was Mg2+- Ca2+- SO42- to Ca2+ - HCO3- to mixed hydrochemical type with rock weathering and dissolution, followed by ion exchange as major factors controlling water chemistry during both the sampling seasons. Most of physicochemical parameters of C1 and C2 exceeded the prescribed limits, whereas in C3 and C4 water samples, parameters were found within the prescribed limits. Stable isotopes of hydrogen (δ2H) and oxygen (δ18O) during post-monsoon (PoM) varied between -41.04 ‰ and -29.98 ‰, and -6.60 ‰ to -3.94 ‰; and during pre-monsoon (PrM) varied between -58.18 ‰ and - 33.76 ‰ and -8.60 ‰ to -5.46 ‰. Deuterium excess (d-excess) ranged between 1.57 ‰ and 12.47 ‰ during PoM and 5.70 ‰ to 15.17 ‰ during PrM season. The stable isotopes analysis revealed that evaporation, mineral dissolution and mixing with rainwater are the key factors in study area.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Environmental Studies, North-Eastern Hill University, Shillong, 793022, India.
| | - Dibyendu Paul
- Department of Environmental Studies, North-Eastern Hill University, Shillong, 793022, India
| | - Sudhir Kumar
- National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
9
|
Tayyab M, Mansoor S, Akmal Z, Khan M, Zhou L, Lei J, Zhang J. A binary dumbbell visible light driven photocatalyst for simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde. J Colloid Interface Sci 2024; 665:911-921. [PMID: 38569308 DOI: 10.1016/j.jcis.2024.03.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Photocatalytic H2 production with selective oxidation of organic moieties in an aqueous medium is a fascinating research area. However, the rational design of photocatalysts and their photocatalytic performance are still inadequate. In this work, we efficiently synthesized the MoS2 tipped CdS nanowires (NWs) photocatalyst using soft templates via the two-step hydrothermal method for efficient H2 production with selective oxidation of benzyl alcohol (BO) under visible light illumination. The optimized MoS2 tipped CdS NWs (20 % MoS2) photocatalyst exhibits the highest photocatalytic H2 production efficiency of 13.55 mmol g-1 h-1 with 99 % selective oxidation of BO, which was 42.34 and 2.21 times greater photocatalytic performance than that of pristine CdS NWs and MoS2/CdS NWs, respectively. The directional loading of MoS2 at the tips of CdS NWs (as compared to nondirectional MoS2 at CdS NWs) is the key factor towards superior H2 production with 99 % selective oxidation of BO and has an inhibitory effect on the photo corrosion of pristine CdS NWs. Therefore, the amazing enhancement in the photocatalytic performance and selectivity of optimized MoS2 tipped CdS NWs (20 % MoS2) photocatalyst is due to the spatial separation of their photoexcited charge carriers through the Schottky junction. Moreover, the unique structure of the MoS2 flower at the tip of 1D CdS NWs offers separate active sites for adsorption and surface reactions such as H2 production at the MoS2 flower (confirmed by Pt photo deposition) and subsequently the selective oxidation of BO at the stem of CdS NWs. This rational design of a photocatalyst could be an inspiring work for the further development of an efficient photocatalytic system for H2 production with selective oxidation of BO (a strategy of mashing two potatoes with one fork).
Collapse
Affiliation(s)
- Muhammad Tayyab
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Seemal Mansoor
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zeeshan Akmal
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Mazhar Khan
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liang Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
10
|
Abdoli M, Khaledian S, Mavaei M, Hajmomeni P, Ghowsi M, Qalekhani F, Nemati H, Fattahi A, Sadrjavadi K. Centaurea behen leaf extract mediated green synthesized silver nanoparticles as antibacterial and removing agent of environmental pollutants with blood compatible and hemostatic effects. Sci Rep 2024; 14:13941. [PMID: 38886391 PMCID: PMC11183110 DOI: 10.1038/s41598-024-64468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
The present study focused on evaluating the antibacterial properties, radical scavenging, and photocatalytic activities of Centaurea behen-mediated silver nanoparticles (Cb-AgNPs). The formation of Cb-AgNPs was approved by UV-Vis spectrometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. The results showed that the obtained AgNPs have a maximum absorbance peak at 450 nm with spherical morphology and an average size of 13.03 ± 5.8 nm. The catalytic activity of the Cb-AgNPs was investigated using Safranin O (SO) solution as a cationic dye model. The Cb-AgNPs performed well in the removal of SO. The coupled physical adsorption/photocatalysis reaction calculated about 68% and 98% degradation of SO dye under solar irradiation. The Cb-AgNPs inhibited the growth of gram-negative or positive bacteria strains and had excellent DPPH radicals scavenging ability (100% in a concentration of 200 µg/ml) as well as a good effect on reducing coagulation time (at concentrations of 200 and 500 µg/mL reduced clotting time up to 3 min). Considering the fact that green synthesized Cb-AgNPs have antioxidant and antibacterial properties and have a good ability to reduce coagulation time, they can be used in wound dressings. As well as these NPs with good photocatalytic activity can be a suitable option for degrading organic pollutants.
Collapse
Affiliation(s)
- Mohadese Abdoli
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Nanobiotechnology, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Salar Khaledian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryamosadat Mavaei
- Student's Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Pouria Hajmomeni
- Student's Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahnaz Ghowsi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Nemati
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Komail Sadrjavadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Wang D, Wu J, Li P, Li L, Yang J, Zhang P, He S, Kou X, Wang Y. Seasonal nitrate variations, risks, and sources in groundwater under different land use types in a thousand-year-cultivated region, northwestern China. ENVIRONMENTAL RESEARCH 2024; 251:118699. [PMID: 38493861 DOI: 10.1016/j.envres.2024.118699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The global public health concern of nitrate (NO3-) contamination in groundwater is particularly pronounced in irrigated agricultural regions. This paper aims to analyze the spatial distribution of groundwater NO3-, assess potential health risks for local residents, and quantitatively identify nitrate sources during different seasons and land use types in the Jinghuiqu Irrigation District, a region in northwestern China with a longstanding agricultural history. The investigation utilizes hydrochemical parameters, dual isotopic data, and the Bayesian stable isotope mixing model (MixSIAR). The findings underscore significant seasonal variations in the average concentrations of NO3-, with values of 87.72 mg/L and 101.87 mg/L during the wet and dry seasons, respectively. Furthermore, distinct fluctuations in nitrate concentration were observed across different land use types, whereby vegetable lands manifested the maximum concentration. Prolonged exposure to elevated nitrate concentrations may pose potential health risks to residents, especially in the dry season when the non-carcinogenic groundwater nitrate risk surges past its wet season counterpart. The MixSIAR analysis revealed that chemical fertilizers accounted for the majority of nitrate pollution in vegetable lands, both during the dry season (49.6%) and wet season (41.2%). In contrast, manure and sewage contributed significantly to NO3-concentrations in residential land during the wet (74.9%) and dry seasons (67.6%). For croplands, soil nitrogen emerged as a dominant source during the wet season (42.2%), while chemical fertilizers prevailed in the dry season (38.7%). In addition to source variations, the nitrate concentration of groundwater is further affected by hydrogeological conditions, with more permeable aquifers tending to display higher nitrate concentrations. Thus, targeted measures were proposed to modify or impede the nitrogen migration pathway, taking into consideration hydrogeological conditions and incorporating domestic sewage, organic fertilizer, and agricultural management practices.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Jianhua Wu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Lingxi Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Junyan Yang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Pengbin Zhang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Song He
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Xiaomei Kou
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Yong Wang
- PowerChina Sinohydro Bureau 3 Co.,LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an, 710024, Shaanxi, China
| |
Collapse
|
12
|
Bujaldón R, Benamara M, Dhahri R, Gómez E, Serrà A. Attuning doped ZnO-based composites for an effective light-driven mineralization of pharmaceuticals via PMS activation. CHEMOSPHERE 2024; 357:142127. [PMID: 38663678 DOI: 10.1016/j.chemosphere.2024.142127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Water treatment technologies need to go beyond the current control of organic contaminants and ensure access to potable water. However, existing methods are still costly and often inadequate. In this context, novel catalysts that improve the mineralization degree of a wider range of pharmaceuticals through more benign and less consuming methodologies are highly sought after. ZnO, especially when doped, is a well-known semiconductor that also excels in the photocatalytic removal of persistent organic pollutants. In this study, we investigated the effect of doping ZnO nanoparticles with either copper, gallium or indium on the structure, morphology, photophysical properties and photocatalytic mineralization of pharmaceuticals. Their architecture was further improved through the fabrication of composites, pairing the best performing doped ZnO with either BaFe12O19 or nickel nanoparticles. Their suitability was tested on a complex 60-ppm multi-pollutant solution (tetracycline, levofloxacin and lansoprazole). The activation strategy combined photocatalysis with peroxymonosulfate (PMS) as an environmentally friendly source of highly oxidative sulfate radicals. The alliance of doped ZnO and BaFe12O19 was particularly successful, resulting in magnetic microcroquette-shaped composites with excellent inter-component synergy. In fact, indium outperformed the other proposed metal dopants, exceeding 97% mineralization after 1 h and achieving complete elimination after 3 h. All composites excelled in terms of reusability, with no catalytic loss after 10 consecutive cycles and minimal leakage of metal ions, highlighting their applicability in water remediation.
Collapse
Affiliation(s)
- Roger Bujaldón
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Majdi Benamara
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Ramzi Dhahri
- Department of Physics, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran, 11001, Saudi Arabia
| | - Elvira Gómez
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Albert Serrà
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Sedighi RE, Behzad M, Azizi N. Metallosalen modified carbon nitride a versatile and reusable catalyst for environmentally friendly aldehyde oxidation. Sci Rep 2024; 14:8498. [PMID: 38605107 PMCID: PMC11009278 DOI: 10.1038/s41598-024-58946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
The development of environmentally friendly catalysts for organic transformations is of great importance in the field of green chemistry. Aldehyde oxidation reactions play a crucial role in various industrial processes, including the synthesis of pharmaceuticals, agrochemicals, and fine chemicals. This paper presents the synthesis and evaluation of a new metallosalen carbon nitride catalyst named Co(salen)@g-C3N4. The catalyst was prepared by doping salicylaldehyde onto carbon nitride, and subsequently, incorporating cobalt through Schiff base chemistry. The Co(salen)@g-C3N4 catalyst was characterized using various spectroscopic techniques including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Infrared Spectroscopy (IR), and Thermogravimetric Analysis (TGA). Furthermore, after modification with salicylaldehyde, the carbon nitride component of the catalyst exhibited remarkable yields (74-98%) in oxidizing various aldehyde derivatives (20 examples) to benzoic acid. This oxidation reaction was carried out under mild conditions and resulted in short reaction times (120-300 min). Importantly, the catalyst demonstrated recyclability, as it could be reused for five consecutive runs without any loss of activity. The reusable nature of the catalyst, coupled with its excellent yields in oxidation reactions, makes it a promising and sustainable option for future applications.
Collapse
Affiliation(s)
| | - Mahdi Behzad
- Faculty of Chemistry, Semnan University, Semnan, Iran.
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| |
Collapse
|
14
|
Hjiri M, Bujaldón R, Lloreda J, Gómez E, Serrà A. Advanced degradation of organic pollutants using sonophotocatalytic peroxymonosulfate activation with CoFe 2O 4/Cu- and Ce-doped SnO 2 composites. CHEMOSPHERE 2024; 354:141656. [PMID: 38467197 DOI: 10.1016/j.chemosphere.2024.141656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The rampant upsurge of organic pollutants in aqueous media has become one of the major concerns nowadays. Finding non-specific catalysts that can target a wide range of organic pollutants is a key challenge. Eco-friendly oxidative radicals, such as promoted by peroxymonosulfate (PMS), are necessary for efficient water decontamination. We propose a multicomponent composite catalyst for activating PMS using a dual strategy of sonophotocatalysis. The composite integrates cobalt ferrite and Cu- or Ce-doped SnO2, with the at. % of doping metal and the mixture ratio carefully balanced. The top-performing architectures were able to decompose rhodamine B (20 ppm), a representative pollutant, in under 3 min and achieve over 70% mineralization in just 5 min. The synthesized nanocomposites demonstrated exceptional sonophotocatalytic performance, even when treating complex and diverse multipollutant solutions (80 ppm), achieving over 75% mineralization after 150 min. Considering their high stability and reusability, the proposed CoFe2O4/Cu- and Ce-doped SnO2 materials are among the state-of-the-art heterogeneous catalysts for mineralizing organic pollutants through PMS activation.
Collapse
Affiliation(s)
- Mokhtar Hjiri
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), SA-11623, Riyadh, Saudi Arabia; Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in Gabes, Gabes University, TNSA-6079, Gabes, Tunisia
| | - Roger Bujaldón
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain
| | - Judit Lloreda
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain
| | - Elvira Gómez
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain
| | - Albert Serrà
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Khatamian M, Derakhshan SK, Nami SH, Fazli-Shokouhi S. Nitrate removal study of synthesized nano γ-alumina and magnetite-alumina nanocomposite adsorbents prepared by various methods and precursors. Sci Rep 2024; 14:7673. [PMID: 38561453 PMCID: PMC10984990 DOI: 10.1038/s41598-024-58459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
The challenges in water treatment include the need for efficient removal of pollutants like nitrate, which poses significant environmental and health risks. Alumina's significance lies in its proven effectiveness as an adsorbent for nitrate removal due to its high surface area and affinity for nitrate ions. This study delves into the synthesis of differen nano-sized γ-alumina (γA1-5) employing diverse precursors and methods, including nepheline syenite, lime, aluminum hydroxide, precipitation, and hydrothermal processes at varying reaction times. Simultaneously, magnetite (Fe3O4) nanoparticles and magnetite/γ-alumina nanocomposites (Fn/γA5) were synthesized using the co-precipitation method with varying weight ratios (n). Our primary objective was to optimize γ-alumina synthesis by comparing multiple methods, shedding light on the influence of different precursors and sources. Hence, a comprehensive adsorption study was conducted to assess the materials' efficacy in nitrate removal. This study fills gaps in the literature, providing a novel perspective through the simultaneous assessment of magnetite/alumina nanocomposites and pure alumina performance. Structural and morphological properties were studied employing XRD, FT-IR, FESEM, EDX, XRD, and VSM techniques. The conducted experiments for γA5, F5/γA5, and F10/γA5 nanocomposites showcased the optimum pH of 5 and contact time of 45 min for all samples. The influence of nitrate's initial concentration on the removal percentage was investigated with initial concentrations of 10 ppm, 50 ppm, and 100 ppm. γA5, F5/γA5 and F10/γA5 nanocomposites had 17.3%, 55%, and 70% at 10 ppm, 18%, 55.16%, and 74% at 50 ppm, and 8.6%, 53.1%, and 63%, respectively. The results highlighted that F10/γA5 can be used as a remarkable adsorbent for wastewater treatment purposes.
Collapse
Affiliation(s)
- Maasoumeh Khatamian
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
| | | | - Shamin Hosseini Nami
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Sara Fazli-Shokouhi
- Faculty of Materials Engineering, Sahand University of Technology, Tabriz, 513351996, Iran
| |
Collapse
|
16
|
Wang X, Peng X, Zhao Q, Mi J, Jiang H, Li S, Hu H, Huang H. Synergistic oxidation of toluene through bimetal/cordierite monolithic catalysts with ozone. Sci Rep 2024; 14:7203. [PMID: 38532034 DOI: 10.1038/s41598-024-58026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
Toluene treatment has received extensive attention, and ozone synergistic catalytic oxidation was thought to be a potential method to degrade VOCs (violate organic compounds) due to its low reaction temperature and high catalytic efficiency. A series of bimetal/Cord monolithic catalysts were prepared by impregnation with cordierite, including MnxCu5-x/Cord, MnxCo5-x/Cord and CuxCo5-x/Cord (x = 1, 2, 3, 4). Analysis of textural properties, structures and morphology characteristics on the prepared catalysts were conducted to evaluate their performance on toluene conversion. Effects of active component ratio, ozone addition and space velocity on the catalytic oxidation of toluene were investigated. Results showed that MnxCo5-x/Cord was the best among the three bimetal catalysts, and toluene conversion and mineralization rates reached 100 and 96% under the condition of Mn2Co3/Cord with 3.0 g/m3 O3 at the space velocity of 12,000 h-1. Ozone addition in the catalytic oxidation of toluene by MnxCo5-x/Cord could efficiently avoid the 40% reduction of the specific surface area of catalysts, because it could lower the optimal temperature from 300 to 100 °C. (Co/Mn)(Co/Mn)2O4 diffraction peaks in XRD spectra indicated all the four MnxCo1-x/Cord catalysts had a spinel structure, and diffraction peak intensity of spinel reached the largest at the ratio of Mn:Co = 2:3. Toluene conversion rate increased with rising ozone concentration because intermediate products generated by toluene degradation might react with excess ozone to generate free radicals like ·OH, which would improve the toluene mineralization rate of Mn2Co3/Cord catalyst. This study would provide a theoretical support for its industrial application.
Collapse
Affiliation(s)
- Xiaojian Wang
- Shanghai Tobacco Group Co. LTD, Shanghai, 200082, People's Republic of China
| | - Xiaomin Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Quanzhong Zhao
- Inner Mongolia Power Research Institute Branch, Inner Mongolia Power (Group) Co., Ltd., Hohhot, 010020, People's Republic of China
| | - Jinxing Mi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Huating Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Shengli Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Hui Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Hao Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Multi-Media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
17
|
Li H, Xu M, Zhang T. g-C 3N 4 modified with non-precious metal Al with LSPR as an efficient visible light catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16795-16804. [PMID: 38324156 DOI: 10.1007/s11356-024-32017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
The issue of water pollution has emerged as a formidable challenge, prompting a pressing need for solutions. The utilization of metal nanoparticles with surface plasmon resonance and semiconductor composite photocatalysts is regarded as a highly effective approach to solve this problem. g-C3N4 is an effective catalyst for the degradation of organic pollutants. Its photocatalytic performance is usually enhanced by the use of the noble metal Au Ag. However, the high cost of these materials limits their application. In this study, we present the synthesis of Al NPs/g-C3N4 nanocomposites using the bridging effect of ligands. The characterized of transmission electron microscopy (TEM), X-ray diffractometer (XRD) and ultraviolet-visible spectroscopy (UV-Vis) proved that Al NPs/g-C3N4 with a wider light absorption range were successfully synthesized. The effects of ligands, (glutathione (GSH), glutamic acid (GAG), and cysteine (CYS)), Al diameter (40 to 200 nm) and the ratio of Al to g-C3N4 (1:1 to 5:1) on the photocatalytic degradation of methylene blue (MB) by Al NPs/g-C3N4 were also evaluated. The results showed that the optimum degradation efficiency of Al NPs/g-C3N4 for MB at 5 mg/L reached 100% within 60 min, which was 11 times higher than that of pure g-C3N4. The principal analysis of Al enhancing the photocatalytic performance of g-C3N4 was studied through transient photocurrent spectroscopy (TPC), electrochemical impedance spectroscopy (EIS), and steady-state transient fluorescence spectroscopy (PL). The results confirmed that hot carriers generated by localized surface plasmon resonance (LSPR) of Al nanoparticles increase the carrier concentration. In addition, the Schottky barrier generated by Al and g-C3N4 could also improve the carrier separation rate and increase the carrier lifetime. This work is expected to solve the problem of organic wastewater treatment and lay the foundation for subsequent research on photocatalysis.
Collapse
Affiliation(s)
- Haiyu Li
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Mingze Xu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Tingsong Zhang
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| |
Collapse
|
18
|
Zheng Z, Mao J, Tan X, Jia L, Liu T. Catalytic hydrolysis of monochlorodifluoromethane over ZnO/ZrO 2 catalysts at low temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19348-19362. [PMID: 38358630 DOI: 10.1007/s11356-024-32265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Monochlorodifluoromethane (HCFC-22) has been identified as a significant contributor to the depletion of the Earth's ozone layer, garnering considerable attention within the scientific community. Consequently, the investigation of Freon degradation has become a central focus of current research efforts. In this study, we opted to employ catalytic hydrolysis as it offers numerous advantages for the degradation of HCFC-22. Specifically, we prepared ZnO/ZrO2 catalysts with hexahedral rod-like structures through citric acid complexation. We examined the impact of various preparation conditions (such as the molar ratio of ZnO to ZrO2, calcination temperature, and calcination time) as well as catalytic hydrolysis conditions (including the amount of catalyst, total flow rate, and catalytic hydrolysis temperature) on the hydrolysis rate of HCFC-22. Characterization of the catalysts was performed using techniques such as XRD, SEM, EDS, TG-DTG, FTIR, N2 adsorption-desorption, CO2-TPD, and NH3-TPD. Our experimental findings revealed the optimal preparation conditions: a catalytic hydrolysis temperature of 100 °C, a molar ratio of ZnO to ZrO2 of 0.7, a water bath temperature of 90 °C, a roasting temperature of 400 °C, and a roasting time of 4 h. At a catalytic hydrolysis temperature of 100 °C, the hydrolysis rate of HCFC-22 reached 99.81%, with the main hydrolyzed products being HCl, HF, and CO2.
Collapse
Affiliation(s)
- Zhen Zheng
- College of Chemistry and Environment, Yunnan Minzu University, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Kunming, 650504, Yunnan, China
| | - Junhao Mao
- College of Chemistry and Environment, Yunnan Minzu University, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Kunming, 650504, Yunnan, China
| | - Xiaofang Tan
- College of Chemistry and Environment, Yunnan Minzu University, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Kunming, 650504, Yunnan, China
| | - Lijuan Jia
- College of Chemistry and Environment, Yunnan Minzu University, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Kunming, 650504, Yunnan, China
| | - Tiancheng Liu
- College of Chemistry and Environment, Yunnan Minzu University, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Kunming, 650504, Yunnan, China.
| |
Collapse
|