1
|
Stein EJ, Linker DT. Matchmaker, Matchmaker, Find Me a Valve. Am J Cardiol 2024:S0002-9149(24)00833-6. [PMID: 39631490 DOI: 10.1016/j.amjcard.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Elliot J Stein
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - David T Linker
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
2
|
Androshchuk V, Montarello N, Lahoti N, Hill SJ, Zhou C, Patterson T, Redwood S, Niederer S, Lamata P, De Vecchi A, Rajani R. Evolving capabilities of computed tomography imaging for transcatheter valvular heart interventions - new opportunities for precision medicine. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03247-z. [PMID: 39347934 DOI: 10.1007/s10554-024-03247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The last decade has witnessed a substantial growth in percutaneous treatment options for heart valve disease. The development in these innovative therapies has been mirrored by advances in multi-detector computed tomography (MDCT). MDCT plays a central role in obtaining detailed pre-procedural anatomical information, helping to inform clinical decisions surrounding procedural planning, improve clinical outcomes and prevent potential complications. Improvements in MDCT image acquisition and processing techniques have led to increased application of advanced analytics in routine clinical care. Workflow implementation of patient-specific computational modeling, fluid dynamics, 3D printing, extended reality, extracellular volume mapping and artificial intelligence are shaping the landscape for delivering patient-specific care. This review will provide an insight of key innovations in the field of MDCT for planning transcatheter heart valve interventions.
Collapse
Affiliation(s)
- Vitaliy Androshchuk
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
- Guy's & St Thomas' NHS Foundation Trust, King's College London, St Thomas' Hospital, The Reyne Institute, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.
| | - Natalie Montarello
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Nishant Lahoti
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Samuel Joseph Hill
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Can Zhou
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Tiffany Patterson
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Simon Redwood
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Adelaide De Vecchi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ronak Rajani
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Mao Y, Zhu G, Yang T, Lange R, Noterdaeme T, Ma C, Yang J. Rapid segmentation of computed tomography angiography images of the aortic valve: the efficacy and clinical value of a deep learning algorithm. Front Bioeng Biotechnol 2024; 12:1285166. [PMID: 38872900 PMCID: PMC11169779 DOI: 10.3389/fbioe.2024.1285166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives The goal of this study was to explore the reliability and clinical value of fast, accurate automatic segmentation of the aortic root based on a deep learning tool compared with computed tomography angiography. Methods A deep learning tool for automatic 3-dimensional aortic root reconstruction, the CVPILOT system (TAVIMercy Data Technology Ltd., Nanjing, China), was trained and tested using computed tomography angiography scans collected from 183 patients undergoing transcatheter aortic valve replacement from January 2021 to December 2022. The quality of the reconstructed models was assessed using validation data sets and evaluated clinically by experts. Results The segmentation of the ascending aorta and the left ventricle attained Dice similarity coefficients (DSC) of 0.9806/0.9711 and 0.9603/0.9643 for the training and validation sets, respectively. The leaflets had a DSC of 0.8049/0.7931, and the calcification had a DSC of 0.8814/0.8630. After 6 months of application, the system modeling time was reduced to 19.83 s. Conclusion For patients undergoing transcatheter aortic valve replacement, the CVPILOT system facilitates clinical workflow. The reliable evaluation quality of the platform indicates broad clinical application prospects in the future.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tingting Yang
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruediger Lange
- Department of Cardiovascular Surgery, German Heart Center Munich, Munich, Germany
| | | | - Chenming Ma
- Nanjing Saint Medical Technology Co., Ltd., Nanjing, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Reisman Y, van Renterghem K, Meijer B, Ricapito A, Fode M, Bettocchi C. Development and validation of 3-dimensional simulators for penile prosthesis surgery. J Sex Med 2024; 21:494-499. [PMID: 38477106 DOI: 10.1093/jsxmed/qdae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The acquisition of skills in penile prosthesis surgery has many limitations mainly due to the absence of simulators and models for training. Three-dimensional (3D) printed models can be utilized for surgical simulations, as they provide an opportunity to practice before entering the operating room and provide better understanding of the surgical approach. AIM This study aimed to evaluate and validate a 3D model of human male genitalia for penile prosthesis surgery. METHODS This study included 3 evaluation and validation stages. The first stage involved verification of the 3D prototype model for anatomic landmarks compared with a cadaveric pelvis. The second stage involved validation of the improved model for anatomic accuracy and teaching purposes with the Rochester evaluation score. The third stage comprised validation of the suitability of the 3D prototype model as a surgical simulator and for skill acquisition. The third stage was performed at 3 centers using a modified version of a pre-existing, validated questionnaire and correlated with the Rochester evaluation score. OUTCOME We sought to determine the suitability of 3D model for training in penile prosthesis surgery in comparison with the available cadaveric model. RESULTS The evaluation revealed a high Pearson correlation coefficient (0.86) between questions of the Rochester evaluation score and modified validated questionnaire. The 3D model scored 4.33 ± 0.57 (on a Likert scale from 1 to 5) regarding replication of the relevant human anatomy for the penile prosthesis surgery procedure. The 3D model scored 4.33 ± 0.57 (on a Likert scale from 1 to 5) regarding its ability to improve technical skills, teach and practice the procedure, and assess a surgeon's ability. Furthermore, the experts stated that compared with the cadaver, the 3D model presented greater ethical suitability, reduced costs, and easier accessibility. CLINICAL IMPLICATIONS A validated 3D model is a suitable alternative for penile prosthesis surgery training. STRENGTHS AND LIMITATIONS This is the first validated 3D hydrogel model for penile prosthesis surgery teaching and training that experts consider suitable for skill acquisition. Because specific validated guidelines and questionnaires for the validation and verifications of 3D simulators for penile surgery are not available, a modified questionnaire was used. CONCLUSION The current 3D model for penile prosthesis surgery shows promising results regarding anatomic properties and suitability to train surgeons to perform penile implant surgery. The possibility of having an ethical, easy-to-use model with lower costs and limited consequences for the environment is encouraging for further development of the models.
Collapse
Affiliation(s)
- Yacov Reisman
- Flare-Health, Amsterdam, the Netherlands
- Reuth Rehabilitation Hospital, Tel-Aviv 67062, Israel
| | | | - Boaz Meijer
- Department of Urology, Acibadem Medical Center, 1043, HP Amsterdam, the Netherlands
| | - Anna Ricapito
- Andrology and Male Genitalia Reconstructive Surgery Unit, University of Foggia, 71122, Foggia FG, Italy
| | - Mikkel Fode
- Department of Urology, Herlev and Gentofte Hospital, University of Copenhagen, 13DK-2730, Herlev, Denmark
| | - Carlo Bettocchi
- Andrology and Male Genitalia Reconstructive Surgery Unit, University of Foggia, 71122, Foggia FG, Italy
| |
Collapse
|
5
|
Chrysostomidis G, Apostolos A, Papanikolaou A, Konstantinou K, Tsigkas G, Koliopoulou A, Chamogeorgakis T. The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future. J Pers Med 2024; 14:375. [PMID: 38673001 PMCID: PMC11051532 DOI: 10.3390/jpm14040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The personalized applications of 3D printing in interventional cardiology and cardiac surgery represent a transformative paradigm in the management of structural heart diseases. This review underscores the pivotal role of 3D printing in enhancing procedural precision, from preoperative planning to procedural simulation, particularly in valvular heart diseases, such as aortic stenosis and mitral regurgitation. The ability to create patient-specific models contributes significantly to predicting and preventing complications like paravalvular leakage, ensuring optimal device selection, and improving outcomes. Additionally, 3D printing extends its impact beyond valvular diseases to tricuspid regurgitation and non-valvular structural heart conditions. The comprehensive synthesis of the existing literature presented here emphasizes the promising trajectory of individualized approaches facilitated by 3D printing, promising a future where tailored interventions based on precise anatomical considerations become standard practice in cardiovascular care.
Collapse
Affiliation(s)
- Grigorios Chrysostomidis
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| | - Anastasios Apostolos
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippocration General Hospital, 115 27 Athens, Greece;
| | - Amalia Papanikolaou
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippocration General Hospital, 115 27 Athens, Greece;
| | - Konstantinos Konstantinou
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London 26504, UK;
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, 265 04 Patras, Greece;
| | - Antigoni Koliopoulou
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| | - Themistokles Chamogeorgakis
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| |
Collapse
|
6
|
Valvez S, Oliveira-Santos M, Gonçalves L, Amaro AM, Piedade AP. Preprocedural Planning of Left Atrial Appendage Occlusion: A Review of the Use of Additive Manufacturing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:333-346. [PMID: 38389681 PMCID: PMC10880654 DOI: 10.1089/3dp.2022.0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Stroke is a significant public health problem, with non-valvular atrial fibrillation (NVAF) being one of its main causes. This cardiovascular arrhythmia predisposes to the production of intracardiac thrombi, mostly formed in the left atrial appendage (LAA). When there are contraindications to treatment with oral anticoagulants, another therapeutic option to reduce the possibility of thrombus formation in the LAA is the implantation of an occlusion device by cardiac catheterization. The effectiveness of LAA occlusion is dependent on accurate preprocedural device sizing and proper device positioning at the LAA ostium, to ensure sufficient device anchoring and avoid peri-device leaks. Additive manufacturing, commonly known as three-dimensional printing (3DP), of LAA models is beginning to emerge in the scientific literature to address these challenges through procedural simulation. This review aims at clarifying the impact of 3DP on preprocedural planning of LAA occlusion, specifically in the training of cardiac surgeons and in the assessment of the perfect adjustment between the LAA and the biomedical implant.
Collapse
Affiliation(s)
- Sara Valvez
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| | | | - Lino Gonçalves
- CBR, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M. Amaro
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| | - Ana P. Piedade
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Liang L, Liu M, Elefteriades J, Sun W. PyTorch-FEA: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107616. [PMID: 37230048 PMCID: PMC10330852 DOI: 10.1016/j.cmpb.2023.107616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Finite-element analysis (FEA) is widely used as a standard tool for stress and deformation analysis of solid structures, including human tissues and organs. For instance, FEA can be applied at a patient-specific level to assist in medical diagnosis and treatment planning, such as risk assessment of thoracic aortic aneurysm rupture/dissection. These FEA-based biomechanical assessments often involve both forward and inverse mechanics problems. Current commercial FEA software packages (e.g., Abaqus) and inverse methods exhibit performance issues in either accuracy or speed. METHODS In this study, we propose and develop a new library of FEA code and methods, named PyTorch-FEA, by taking advantage of autograd, an automatic differentiation mechanism in PyTorch. We develop a class of PyTorch-FEA functionalities to solve forward and inverse problems with improved loss functions, and we demonstrate the capability of PyTorch-FEA in a series of applications related to human aorta biomechanics. In one of the inverse methods, we combine PyTorch-FEA with deep neural networks (DNNs) to further improve performance. RESULTS We applied PyTorch-FEA in four fundamental applications for biomechanical analysis of human aorta. In the forward analysis, PyTorch-FEA achieved a significant reduction in computational time without compromising accuracy compared with Abaqus, a commercial FEA package. Compared to other inverse methods, inverse analysis with PyTorch-FEA achieves better performance in either accuracy or speed, or both if combined with DNNs. CONCLUSIONS We have presented PyTorch-FEA, a new library of FEA code and methods, representing a new approach to develop FEA methods to forward and inverse problems in solid mechanics. PyTorch-FEA eases the development of new inverse methods and enables a natural integration of FEA and DNNs, which will have numerous potential applications.
Collapse
Affiliation(s)
- Liang Liang
- Department of Computer Science, University of Miami, Coral Gables, FL, United States.
| | - Minliang Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - John Elefteriades
- Aortic Institute, School of Medicine, Yale University, New Haven, CT, United States
| | - Wei Sun
- Sutra Medical Inc, Lake Forest, CA, United States
| |
Collapse
|
8
|
Yang T, Zhu G, Cai L, Yeo JH, Mao Y, Yang J. A benchmark study of convolutional neural networks in fully automatic segmentation of aortic root. Front Bioeng Biotechnol 2023; 11:1171868. [PMID: 37397959 PMCID: PMC10311214 DOI: 10.3389/fbioe.2023.1171868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Recent clinical studies have suggested that introducing 3D patient-specific aortic root models into the pre-operative assessment procedure of transcatheter aortic valve replacement (TAVR) would reduce the incident rate of peri-operative complications. Tradition manual segmentation is labor-intensive and low-efficient, which cannot meet the clinical demands of processing large data volumes. Recent developments in machine learning provided a viable way for accurate and efficient medical image segmentation for 3D patient-specific models automatically. This study quantitively evaluated the auto segmentation quality and efficiency of the four popular segmentation-dedicated three-dimensional (3D) convolutional neural network (CNN) architectures, including 3D UNet, VNet, 3D Res-UNet and SegResNet. All the CNNs were implemented in PyTorch platform, and low-dose CTA image sets of 98 anonymized patients were retrospectively selected from the database for training and testing of the CNNs. The results showed that despite all four 3D CNNs having similar recall, Dice similarity coefficient (DSC), and Jaccard index on the segmentation of the aortic root, the Hausdorff distance (HD) of the segmentation results from 3D Res-UNet is 8.56 ± 2.28, which is only 9.8% higher than that of VNet, but 25.5% and 86.4% lower than that of 3D UNet and SegResNet, respectively. In addition, 3D Res-UNet and VNet also performed better in the 3D deviation location of interest analysis focusing on the aortic valve and the bottom of the aortic root. Although 3D Res-UNet and VNet are evenly matched in the aspect of classical segmentation quality evaluation metrics and 3D deviation location of interest analysis, 3D Res-UNet is the most efficient CNN architecture with an average segmentation time of 0.10 ± 0.04 s, which is 91.2%, 95.3% and 64.3% faster than 3D UNet, VNet and SegResNet, respectively. The results from this study suggested that 3D Res-UNet is a suitable candidate for accurate and fast automatic aortic root segmentation for pre-operative assessment of TAVR.
Collapse
Affiliation(s)
- Tingting Yang
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Li Cai
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, China
| | - Joon Hock Yeo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yu Mao
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jian Yang
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
9
|
Prandi FR, Lerakis S, Belli M, Illuminato F, Margonato D, Barone L, Muscoli S, Chiocchi M, Laudazi M, Marchei M, Di Luozzo M, Kini A, Romeo F, Barillà F. Advances in Imaging for Tricuspid Transcatheter Edge-to-Edge Repair: Lessons Learned and Future Perspectives. J Clin Med 2023; 12:jcm12103384. [PMID: 37240489 DOI: 10.3390/jcm12103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Severe tricuspid valve (TV) regurgitation (TR) has been associated with adverse long-term outcomes in several natural history studies, but isolated TV surgery presents high mortality and morbidity rates. Transcatheter tricuspid valve interventions (TTVI) therefore represent a promising field and may currently be considered in patients with severe secondary TR that have a prohibitive surgical risk. Tricuspid transcatheter edge-to-edge repair (T-TEER) represents one of the most frequently used TTVI options. Accurate imaging of the tricuspid valve (TV) apparatus is crucial for T-TEER preprocedural planning, in order to select the right candidates, and is also fundamental for intraprocedural guidance and post-procedural follow-up. Although transesophageal echocardiography represents the main imaging modality, we describe the utility and additional value of other imaging modalities such as cardiac CT and MRI, intracardiac echocardiography, fluoroscopy, and fusion imaging to assist T-TEER. Developments in the field of 3D printing, computational models, and artificial intelligence hold great promise in improving the assessment and management of patients with valvular heart disease.
Collapse
Affiliation(s)
- Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stamatios Lerakis
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martina Belli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Illuminato
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Davide Margonato
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lucy Barone
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Saverio Muscoli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Marcello Chiocchi
- Department of Diagnostic Imaging and Interventional Radiology, Tor Vergata University, 00133 Rome, Italy
| | - Mario Laudazi
- Department of Diagnostic Imaging and Interventional Radiology, Tor Vergata University, 00133 Rome, Italy
| | - Massimo Marchei
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Marco Di Luozzo
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Annapoorna Kini
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Romeo
- Department of Departmental Faculty of Medicine, Unicamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
10
|
Liang L, Liu M, Elefteriades J, Sun W. PyTorch-FEA: Autograd-enabled Finite Element Analysis Methods with Applications for Biomechanical Analysis of Human Aorta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.533816. [PMID: 37034587 PMCID: PMC10081215 DOI: 10.1101/2023.03.27.533816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Motivation Finite-element analysis (FEA) is widely used as a standard tool for stress and deformation analysis of solid structures, including human tissues and organs. For instance, FEA can be applied at a patient-specific level to assist in medical diagnosis and treatment planning, such as risk assessment of thoracic aortic aneurysm rupture/dissection. These FEA-based biomechanical assessments often involve both forward and inverse mechanics problems. Current commercial FEA software packages (e.g., Abaqus) and inverse methods exhibit performance issues in either accuracy or speed. Methods In this study, we propose and develop a new library of FEA code and methods, named PyTorch-FEA, by taking advantage of autograd, an automatic differentiation mechanism in PyTorch. We develop a class of PyTorch-FEA functionalities to solve forward and inverse problems with improved loss functions, and we demonstrate the capability of PyTorch-FEA in a series of applications related to human aorta biomechanics. In one of the inverse methods, we combine PyTorch-FEA with deep neural networks (DNNs) to further improve performance. Results We applied PyTorch-FEA in four fundamental applications for biomechanical analysis of human aorta. In the forward analysis, PyTorch-FEA achieved a significant reduction in computational time without compromising accuracy compared with Abaqus, a commercial FEA package. Compared to other inverse methods, inverse analysis with PyTorch-FEA achieves better performance in either accuracy or speed, or both if combined with DNNs.
Collapse
|
11
|
Zhu Z, Xiong T, Chen M. Comparison of patients with bicuspid and tricuspid aortic valve in transcatheter aortic valve implantation. Expert Rev Med Devices 2023; 20:209-220. [PMID: 36815427 DOI: 10.1080/17434440.2023.2184686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) has emerged as a safe and effective alternative to surgery for aortic stenosis (AS). However, there are still differences in the procedural process and outcome of bicuspid aortic valve (BAV) treated with TAVI compared with tricuspid aortic valve. AREAS COVERED This review paper aims to summarize the main characteristics and clinical evidence of TAVI in patients with bicuspid and tricuspid aortic valves and compare the outcomes of TAVI procedure. EXPERT OPINION The use of TAVI in patients with BAV has shown similar clinical outcomes compared with tricuspid aortic valve. The efficacy of TAVI for challenging BAV anatomies remains a concern due to the lack of randomized trials. Detailed preprocedural planning is of great importance in low-surgical-risk BAV patients. A better understanding of which subtypes of BAV anatomy are at greater risk for adverse outcomes can potentially benefit the selection of TAVI or open-heart surgery in low surgical risk AS patients.
Collapse
Affiliation(s)
- Zhongkai Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianyuan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Bindschadler M, Buddhe S, Ferguson MR, Jones T, Friedman SD, Otto RK. HEARTBEAT4D: An Open-source Toolbox for Turning 4D Cardiac CT into VR/AR. J Digit Imaging 2022; 35:1759-1767. [PMID: 35614275 PMCID: PMC9712868 DOI: 10.1007/s10278-022-00659-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Four-dimensional data sets are increasingly common in MRI and CT. While clinical visualization often focuses on individual temporal phases capturing the tissue(s) of interest, it may be possible to gain additional insight through exploring animated 3D reconstructions of physiological motion made possible by augmented or virtual reality representations of 4D patient imaging. Cardiac CT acquisitions can provide sufficient spatial resolution and temporal data to support advanced visualization, however, there are no open-source tools readily available to facilitate the transformation from raw medical images to dynamic and interactive augmented or virtual reality representations. To address this gap, we developed a workflow using free and open-source tools to process 4D cardiac CT imaging starting from raw DICOM data and ending with dynamic AR representations viewable on a phone, tablet, or computer. In addition to assembling the workflow using existing platforms (3D Slicer and Unity), we also contribute two new features: 1. custom software which can propagate a segmentation created for one cardiac phase to all others and export to surface files in a fully automated fashion, and 2. a user interface and linked code for the animation and interactive review of the surfaces in augmented reality. Validation of the surface-based areas demonstrated excellent correlation with radiologists' image-based areas (R > 0.99). While our tools were developed specifically for 4D cardiac CT, the open framework will allow it to serve as a blueprint for similar applications applied to 4D imaging of other tissues and using other modalities. We anticipate this and related workflows will be useful both clinically and for educational purposes.
Collapse
Affiliation(s)
- M Bindschadler
- Department of Neurology, Seattle, WA, USA
- Department of Radiology, Seattle Childrens, Seattle, WA, USA
| | - S Buddhe
- Department of Pediatrics, Seattle Children's Heart Center and the University of Washington, Seattle, WA, USA
| | - M R Ferguson
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Radiology, Seattle Childrens, Seattle, WA, USA
| | - T Jones
- Department of Pediatrics, Seattle Children's Heart Center and the University of Washington, Seattle, WA, USA
| | - S D Friedman
- Department of Neurology, Seattle, WA, USA
- Department of Improvement and Innovation, Seattle, WA, USA
| | - R K Otto
- Department of Radiology, University of Washington, Seattle, WA, USA.
- Department of Radiology, Seattle Childrens, Seattle, WA, USA.
| |
Collapse
|
13
|
Ma Y, Mao Y, Zhu G, Yang J. Application of cardiovascular 3-dimensional printing in Transcatheter aortic valve replacement. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:35. [PMID: 36121512 PMCID: PMC9485371 DOI: 10.1186/s13619-022-00129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Transcatheter aortic valve replacement (TAVR) has been performed for nearly 20 years, with reliable safety and efficacy in moderate- to high-risk patients with aortic stenosis or regurgitation, with the advantage of less trauma and better prognosis than traditional open surgery. However, because surgeons have not been able to obtain a full view of the aortic root, 3-dimensional printing has been used to reconstruct the aortic root so that they could clearly and intuitively understand the specific anatomical structure. In addition, the 3D printed model has been used for the in vitro simulation of the planned procedures to predict the potential complications of TAVR, the goal being to provide guidance to reasonably plan the procedure to achieve the best outcome. Postprocedural 3D printing can be used to understand the depth, shape, and distribution of the stent. Cardiovascular 3D printing has achieved remarkable results in TAVR and has a great potential.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Xenofontos P, Zamani R, Akrami M. The application of 3D printing in preoperative planning for transcatheter aortic valve replacement: a systematic review. Biomed Eng Online 2022; 21:59. [PMID: 36050722 PMCID: PMC9434927 DOI: 10.1186/s12938-022-01029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, transcatheter aortic valve replacement (TAVR) has been suggested as a less invasive treatment compared to surgical aortic valve replacement, for patients with severe aortic stenosis. Despite the attention, persisting evidence suggests that several procedural complications are more prevalent with the transcatheter approach. Consequently, a systematic review was undertaken to evaluate the application of three-dimensional (3D) printing in preoperative planning for TAVR, as a means of predicting and subsequently, reducing the incidence of adverse events. METHODS MEDLINE, Web of Science and Embase were searched to identify studies that utilised patient-specific 3D printed models to predict or mitigate the risk of procedural complications. RESULTS 13 of 219 papers met the inclusion criteria of this review. The eligible studies have shown that 3D printing has most commonly been used to predict the occurrence and severity of paravalvular regurgitation, with relatively high accuracy. Studies have also explored the usefulness of 3D printed anatomical models in reducing the incidence of coronary artery obstruction, new-onset conduction disturbance and aortic annular rapture. CONCLUSION Patient-specific 3D models can be used in pre-procedural planning for challenging cases, to help deliver personalised treatment. However, the application of 3D printing is not recommended for routine clinical practice, due to practicality issues.
Collapse
Affiliation(s)
| | - Reza Zamani
- Medical School, College of Medicine and Health, Exeter, UK
| | - Mohammad Akrami
- Department of Engineering, College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
15
|
Mendez K, Kennedy DG, Wang DD, O’Neill B, Roche ET. Left Atrial Appendage Occlusion: Current Stroke Prevention Strategies and a Shift Toward Data-Driven, Patient-Specific Approaches. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2022; 1:100405. [PMID: 39131471 PMCID: PMC11308563 DOI: 10.1016/j.jscai.2022.100405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 08/13/2024]
Abstract
The left atrial appendage (LAA) is a complex structure with unknown physiologic function protruding from the main body of the left atrium. In patients with atrial fibrillation, the left atrium does not contract effectively. Insufficient atrial and LAA contractility predisposes the LAA morphology to hemostasis and thrombus formation, leading to an increased risk of cardioembolic events. Oral anticoagulation therapies are the mainstay of stroke prevention options for patients; however, not all patients are candidates for long-term oral anticoagulation. Percutaneous occlusion devices are an attractive alternative to long-term anticoagulation therapy, although they are not without limitations, such as peri-implant leakage and device-related thrombosis. Although efforts have been made to reduce these risks, significant interpatient heterogeneity inevitably yields some degree of device-anatomy mismatch that is difficult to resolve using current devices and can ultimately lead to insufficient occlusion and poor patient outcomes. In this state-of-the-art review, we evaluated the anatomy of the LAA as well as the current pathophysiologic understanding and stroke prevention strategies used in the management of the risk of stroke associated with atrial fibrillation. We highlighted recent advances in computed tomography imaging, preprocedural planning, computational modeling, and novel additive manufacturing techniques, which represent the tools needed for a paradigm shift toward patient-centric LAA occlusion. Together, we envisage that these techniques will facilitate a pipeline from the imaging of patient anatomy to patient-specific computational and bench-top models that enable customized, data-driven approaches for LAA occlusion that are engineered specifically to meet each patient's unique needs.
Collapse
Affiliation(s)
- Keegan Mendez
- Harvard/MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darragh G. Kennedy
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biomedical Engineering, Columbia University, New York, New York
| | | | | | - Ellen T. Roche
- Harvard/MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
16
|
3D-Printing to Plan Complex Transcatheter Paravalvular Leaks Closure. J Clin Med 2022; 11:jcm11164758. [PMID: 36012997 PMCID: PMC9410469 DOI: 10.3390/jcm11164758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Percutaneous closure of paravalvular leak (PVL) has emerged as an alternative to surgical management in selected cases. Achieving complete PVL occlusion, while respecting prosthesis function remains challenging. A multimodal imaging analysis of PVL morphology before and during the procedure is mandatory to select an appropriate device. We aim to explore the additional value of 3D printing in predicting device related adverse events including mechanical valve leaflet blockade, risk of device embolization and residual shunting. Methods: From the FFPP registries (NCT05089136 and NCT05117359), we included 11 transcatheter PVL closure procedures from three centers for which 3D printed models were produced. Cardiac CT was used for segmentation for 3D printed models (3D-heartmodeling, Caissargues, France). Technology used a laser to fuse very fine powders (TPU Thermoplastic polyurethane) into a final part-laser sintering technology (SLS) with an adapted elasticity. A simulation on 3D printed model was performed using a set of occluders. Results: PVLs were located around aortic prostheses in six cases, mitral prostheses in four cases and tricuspid ring in one case. The device chosen during the simulation on the 3D printed model matched the one implanted in eight cases. In the three other cases, a similar device type was chosen during the procedures but with a different size. A risk of prosthesis leaflet blockade was identified on 3D printed models in four cases. During the procedure, the occluder was removed before release in one case. In another case the device was successfully repositioned and released. In two patients, leaflet impingement was observed post-operatively and surgical device removal had to be performed. Conclusion: In a case-series of complex transcatheter PVL closure procedures, hands-on simulation testing on 3D printed models proved its usefulness to plan and facilitate these challenging procedures.
Collapse
|
17
|
Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A, Gräni C. Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31:1203-1218. [PMID: 35680498 DOI: 10.1016/j.hlc.2022.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To tailor cardiovascular interventions, the use of three-dimensional (3D), patient-specific phantoms (3DPSP) encompasses patient education, training, simulation, procedure planning, and outcome-prediction. AIM This systematic review and meta-analysis aims to investigate the current and future perspective of 3D printing for cardiovascular interventions. METHODS We systematically screened articles on Medline and EMBASE reporting the prospective use of 3DPSP in cardiovascular interventions by using combined search terms. Studies that compared intervention time depending on 3DPSP utilisation were included into a meta-analysis. RESULTS We identified 107 studies that prospectively investigated a total of 814 3DPSP in cardiovascular interventions. Most common settings were congenital heart disease (CHD) (38 articles, 6 comparative studies), left atrial appendage (LAA) occlusion (11 articles, 5 comparative, 1 randomised controlled trial [RCT]), and aortic disease (10 articles). All authors described 3DPSP as helpful in assessing complex anatomic conditions, whereas poor tissue mimicry and the non-consideration of physiological properties were cited as limitations. Compared to controls, meta-analysis of six studies showed a significant reduction of intervention time in LAA occlusion (n=3 studies), and surgery due to CHD (n=3) if 3DPSPs were used (Cohen's d=0.54; 95% confidence interval, 0.13 to 0.95; p=0.001), however heterogeneity across studies should be taken into account. CONCLUSIONS 3DPSP are helpful to plan, train, and guide interventions in patients with complex cardiovascular anatomy. Benefits for patients include reduced intervention time with the potential for lower radiation exposure and shorter mechanical ventilation times. More evidence and RCTs including clinical endpoints are needed to warrant adoption of 3DPSP into routine clinical practice.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Illi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Swiss MedTech Center, Switzerland Innovation Park Biel/Bienne AG, Switzerland
| | - Martin Gloeckler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland.
| |
Collapse
|
18
|
Islan GA, Rodenak-Kladniew B, Noacco N, Duran N, Castro GR. Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered 2022; 13:14227-14258. [PMID: 35734783 PMCID: PMC9342244 DOI: 10.1080/21655979.2022.2084498] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pigments are among the most fascinating molecules found in nature and used by human civilizations since the prehistoric ages. Although most of the bio-dyes reported in the literature were discovered around the eighties, the necessity to explore novel compounds for new biological applications has made them resurface as potential alternatives. Prodigiosin (PG) is an alkaloid red bio-dye produced by diverse microorganisms and composed of a linear tripyrrole chemical structure. PG emerges as a really interesting tool since it shows a wide spectrum of biological activities, such as antibacterial, antifungal, algicidal, anti-Chagas, anti-amoebic, antimalarial, anticancer, antiparasitic, antiviral, and/or immunosuppressive. However, PG vehiculation into different delivery systems has been proposed since possesses low bioavailability because of its high hydrophobic character (XLogP3-AA = 4.5). In the present review, the general aspects of the PG correlated with synthesis, production process, and biological activities are reported. Besides, some of the most relevant PG delivery systems described in the literature, as well as novel unexplored applications to potentiate its biological activity in biomedical applications, are proposed.
Collapse
Affiliation(s)
- German A Islan
- Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata)Laboratorio de Nanobiomateriales, Centro de Investigación y , La Plata, Argentina
| | - Boris Rodenak-Kladniew
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, La Plata, Pcia de Bueos aires, Argentina
| | - Nehuen Noacco
- Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata)Laboratorio de Nanobiomateriales, Centro de Investigación y , La Plata, Argentina
| | - Nelson Duran
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biological Institute, Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil.,Nanomedicine Research Unit (Nanomed), Federal University of Abc (Ufabc), Santo André, Brazil
| | - Guillermo R Castro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biological Institute, Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil.,. Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de RosarioMax Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Rosario, Argentina
| |
Collapse
|
19
|
Mao Y, Liu Y, Ma Y, Jin P, Li L, Yang J. Mitral Valve-in-Valve Implant of a Balloon-Expandable Valve Guided by 3-Dimensional Printing. Front Cardiovasc Med 2022; 9:894160. [PMID: 35711355 PMCID: PMC9195497 DOI: 10.3389/fcvm.2022.894160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
Background Our goal was to explore the role of 3-dimensional (3D) printing in facilitating the outcome of a mitral valve-in-valve (V-in-V) implant of a balloon-expandable valve. Methods From November 2020 to April 2021, 6 patients with degenerated mitral valves were treated by a transcatheter mitral V-in-V implant of a balloon-expandable valve. 3D printed mitral valve pre- and post-procedure models were prepared to facilitate the process by making individualized plans and evaluating the outcomes. Results Each of the 6 patients was successfully implanted with a balloon-expandable valve. From post-procedural images and the 3D printed models, we could clearly observe the valve at the ideal position, with the proper shape and no regurgitation. 3D printed mitral valve models contributed to precise decisions, the avoidance of complications, and the valuation of outcomes. Conclusions 3D printing plays an important role in guiding the transcatheter mitral V-in-V implant of a balloon-expandable valve. Clinical Trial Registration ClinicalTrials.gov Protocol Registration System (NCT02917980).
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Jianming L, Wentao Y, Wenshuo W, Wang S, Lai W. Comparison of Balloon-Expandable Valve and Self-Expandable Valve in Transcatheter Aortic Valve Replacement: A Patient-Specific Numerical Study. J Biomech Eng 2022; 144:1140206. [PMID: 35420119 DOI: 10.1115/1.4054332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 11/08/2022]
Abstract
Transcatheter aortic valve replacement (TAVR) is a minimally invasive strategy for the treatment of aortic stenosis. The complex post-operative complications of TAVR were related to the type of implanted prosthetic valve, and the deep mechanism of this relationship may guide the clinical pre-operative planning. The purpose of this study was to develop a numerical method of TAVR to compare the outcome difference between balloon-expandable valve and self-expandable valve and predict the post-operative results. A complete patient-specific aortic model was reconstructed. Two prosthetic valves (balloon-expandable valve and self-expandable valve) were introduced to simulate the implantation procedure, and post-procedural function was studied with fluid-structure interaction method, respectively. Results showed similar stress distribution for two valves, but higher peak stress for balloon-expandable valve model. Compared with the self-expandable valve, the balloon-expandable valve was associated with a better circular cross-section and smaller paravalvular gaps area. Hemodynamic parameters like cardiac output, mean transvalvular pressure difference and effective orifice area (EOA) of the balloon-expandable valve model were better than those of the self-expandable valve model. Significant outcome difference was found for two prosthetic valves. Balloon-expandable valve may effectively decrease the risk and degree of post-operative paravalvular leak, while self-expandable valve was conducive to lower stroke risk due to lower aortic stress. The numerical TAVR simulation process may become an assistant tool for prosthesis selection in pre-operative planning and post-operative prediction.
Collapse
Affiliation(s)
- Li Jianming
- Department of Aeronautics and Astronautics, Fudan University, Institute of Biomechanics, Fudan University, Shanghai, 200433, China
| | - Yan Wentao
- Department of Aeronautics and Astronautics, Fudan University, Institute of Biomechanics, Fudan University, Shanghai, 200433, China
| | - Wang Wenshuo
- Department of Cardiac Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Fudan University, Academy for Engineering and Technology, Institute of Biomedical Engineering Technology, Fudan University, Institute of Biomechanics, Fudan University, Shanghai, 200433, China
| | - Wei Lai
- Department of Cardiac Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| |
Collapse
|
21
|
Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, Fercho J, Jaguszewska K, Frankiewicz M, Pawłowska E, Targoński R, Szarpak Ł, Dądela K, Sabiniewicz R, Kwiatkowska J. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3331. [PMID: 35329016 PMCID: PMC8953417 DOI: 10.3390/ijerph19063331] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022]
Abstract
Medicine is a rapidly-evolving discipline, with progress picking up pace with each passing decade. This constant evolution results in the introduction of new tools and methods, which in turn occasionally leads to paradigm shifts across the affected medical fields. The following review attempts to showcase how 3D printing has begun to reshape and improve processes across various medical specialties and where it has the potential to make a significant impact. The current state-of-the-art, as well as real-life clinical applications of 3D printing, are reflected in the perspectives of specialists practicing in the selected disciplines, with a focus on pre-procedural planning, simulation (rehearsal) of non-routine procedures, and on medical education and training. A review of the latest multidisciplinary literature on the subject offers a general summary of the advances enabled by 3D printing. Numerous advantages and applications were found, such as gaining better insight into patient-specific anatomy, better pre-operative planning, mock simulated surgeries, simulation-based training and education, development of surgical guides and other tools, patient-specific implants, bioprinted organs or structures, and counseling of patients. It was evident that pre-procedural planning and rehearsing of unusual or difficult procedures and training of medical professionals in these procedures are extremely useful and transformative.
Collapse
Affiliation(s)
- Jarosław Meyer-Szary
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Marlon Souza Luis
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Szymon Mikulski
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Agastya Patel
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Finn Schulz
- University Clinical Centre in Gdańsk, 80-952 Gdańsk, Poland
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Justyna Fercho
- Neurosurgery Department, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Kinga Jaguszewska
- Department of Gynecology, Obstetrics and Neonatology, Division of Gynecology and Obstetrics, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Mikołaj Frankiewicz
- Department of Urology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Ewa Pawłowska
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Radosław Targoński
- 1st Department of Cardiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Łukasz Szarpak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Research Unit, Maria Sklodowska-Curie Bialystok Oncology Center, 15-027 Bialystok, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katarzyna Dądela
- Department of Pediatric Cardiology, University Children's Hospital, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Robert Sabiniewicz
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Joanna Kwiatkowska
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
22
|
|
23
|
Treatment of Bicuspid Aortic Valve Stenosis with TAVR: Filling Knowledge Gaps Towards Reducing Complications. Curr Cardiol Rep 2022; 24:33-41. [PMID: 35099762 DOI: 10.1007/s11886-021-01617-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Bicuspid aortic valve (BAV) disease is the most common congenital heart defect worldwide. When severe, symptomatic aortic stenosis ensues, the treatment has increasingly become transcatheter aortic valve replacement (TAVR). The purpose of this review is to identify BAV classification and imaging methods, outline TAVR outcomes in BAV anatomy, and discuss how computational modeling can enhance TAVR treatment in BAV patients. RECENT FINDINGS TAVR use in BAV patients, when compared to use in tricuspid aortic valves, showed lower device success rate, and there remains no long-term randomized trial data. It has been reported that BAV patients with severe calcification increase the rate of complications. Additionally, the asymmetrical morphology of BAVs often results in asymmetric stent geometries which have implications for increased thrombosis risk and decreased durability. These adverse outcomes are currently very difficult to predict from routine pre-procedural imaging alone. Recently developed patient specific experimental and computational techniques have the potential to assist in filling knowledge gaps in the mechanisms of these complications and provide more information during preclinical planning for better TAVR selection in low surgical risk BAV patients. Efficacy of TAVR for irregular BAV anatomies remains concerning due to the lack of a long-term randomized trial data, their increased rate of short-term complications, and signs that long-term durability could be an issue. More knowledge on identifying which BAV anatomies are at greater risk for these adverse outcomes can potentially improve patient selection for TAVR versus SAVR in low surgical risk BAV patients.
Collapse
|
24
|
Espinoza Rueda MA, Alcántara Meléndez MA, González RM, Jiménez Valverde AS, García García J, Rivas Gálvez RE, Esparza TH, Rodríguez G, Sandoval Castillo LD, Merino Rajme JA. Successful Closure of Paravalvular Leak Using Computed Tomography Image Fusion and Planning With 3-Dimensional Printing. JACC Case Rep 2022; 4:36-41. [PMID: 35036941 PMCID: PMC8743814 DOI: 10.1016/j.jaccas.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022]
Abstract
The presence of moderate to severe paravalvular leak increases mortality. We present a case of giant paravalvular leak closure using the 3-dimensional printing model to assess the success of the device to be used for its closure, computed tomography was performed for planning and guiding the procedure by image fusion. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Manuel A. Espinoza Rueda
- Department of Interventional Cardiology, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - Marco A. Alcántara Meléndez
- Department of Interventional Cardiology, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - Roberto Muratalla González
- Department of Interventional Cardiology, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - Arnoldo S. Jiménez Valverde
- Department of Interventional Cardiology, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - Juan.F. García García
- Department of Interventional Cardiology, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - Ronald E. Rivas Gálvez
- Department of Interventional Cardiology, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - Tomas Hernández Esparza
- Department of Interventional Cardiology, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - Gustavo Rodríguez
- Department of Echocardiography, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - Luz D. Sandoval Castillo
- Department of Cardiovascular Imaging, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| | - José A. Merino Rajme
- Department of Interventional Cardiology, National Medical Center “November 20,” Institute of Social Security and Services for State Workers, Mexico City, Mexico
| |
Collapse
|
25
|
Jaksa L, Pahr D, Kronreif G, Lorenz A. Development of a Multi-Material 3D Printer for Functional Anatomic Models. Int J Bioprint 2021; 7:420. [PMID: 34805598 PMCID: PMC8600298 DOI: 10.18063/ijb.v7i4.420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/19/2023] Open
Abstract
Anatomic models are important in medical education and pre-operative planning as they help students or doctors prepare for real scenarios in a risk-free way. Several experimental anatomic models were made with additive manufacturing techniques to improve geometric, radiological, or mechanical realism. However, reproducing the mechanical behavior of soft tissues remains a challenge. To solve this problem, multi-material structuring of soft and hard materials was proposed in this study, and a three-dimensional (3D) printer was built to make such structuring possible. The printer relies on extrusion to deposit certain thermoplastic and silicone rubber materials. Various objects were successfully printed for testing the feasibility of geometric features such as thin walls, infill structuring, overhangs, and multi-material interfaces. Finally, a small medical image-based ribcage model was printed as a proof of concept for anatomic model printing. The features enabled by this printer offer a promising outlook on mimicking the mechanical properties of various soft tissues.
Collapse
Affiliation(s)
- Laszlo Jaksa
- Austrian Center for Medical Innovation and Technology (ACMIT Gmbh), Viktor-Kaplan-Strasse 2/A, 2700 Wiener Neustadt, Austria.,Technical University of Vienna, Institute of Lightweight Design and Structural Biomechanics, Object 8, Gumpendorfer Strasse 7, 1060 Vienna, Austria
| | - Dieter Pahr
- Technical University of Vienna, Institute of Lightweight Design and Structural Biomechanics, Object 8, Gumpendorfer Strasse 7, 1060 Vienna, Austria.,Karl Landsteiner University of Health Sciences, Department of Anatomy and Biomechanics, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology (ACMIT Gmbh), Viktor-Kaplan-Strasse 2/A, 2700 Wiener Neustadt, Austria
| | - Andrea Lorenz
- Austrian Center for Medical Innovation and Technology (ACMIT Gmbh), Viktor-Kaplan-Strasse 2/A, 2700 Wiener Neustadt, Austria
| |
Collapse
|
26
|
Bezek LB, Chatham CA, Dillard DA, Williams CB. Mechanical properties of tissue-mimicking composites formed by material jetting additive manufacturing. J Mech Behav Biomed Mater 2021; 125:104938. [PMID: 34740012 DOI: 10.1016/j.jmbbm.2021.104938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Capitalizing on features including high resolution, smooth surface finish, large build volume, and simultaneous multi-color/multi-material printing, material jetting additive manufacturing enables the fabrication of full-scale anatomic models. The ability to print materials that resemble relevant, compliant tissues has especially motivated implementation of material jetting for patient-specific surgical planning or training models. In an effort to broaden the material selection for the material jetting process, and to provide materials that more closely mimic the functional needs for a wider variety of tissues, a composite material system is explored that uses non-curing fluid dispersed into a photo-curable medium. The material properties of the composites are examined through both thermal and mechanical analysis (dynamic mechanical analysis, Shore hardness testing, puncture testing, and tensile testing). Higher contributions of non-curing fluid generally reduce part strength and stiffness, and exponential and second-order polynomial expressions are appropriate fits for many of the mechanical properties as functions of non-curing fluid concentration. Through the fundamental exploration of the impact of an added diluent on material properties, the study advances knowledge on the process-property relationship for multi-material jetting. Additionally, better understanding of the mechanical property space offered by these materials will expand the capabilities of material jetting in the context of biomedical applications. The collection of mechanical properties serve as reference data sets to facilitate quicker screening for tissue-mimicking, medical models.
Collapse
Affiliation(s)
- Lindsey B Bezek
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Camden A Chatham
- Macromolecular Science & Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - David A Dillard
- Macromolecular Science & Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Christopher B Williams
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecular Science & Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
27
|
Chen J, Xie Y, Wang K, Zhang C, Vannan MA, Wang B, Qian Z. Active Image Synthesis for Efficient Labeling. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021; 43:3770-3781. [PMID: 32406823 DOI: 10.1109/tpami.2020.2993221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The great success achieved by deep neural networks attracts increasing attention from the manufacturing and healthcare communities. However, the limited availability of data and high costs of data collection are the major challenges for the applications in those fields. We propose in this work AISEL, an active image synthesis method for efficient labeling, to improve the performance of the small-data learning tasks. Specifically, a complementary AISEL dataset is generated, with labels actively acquired via a physics-based method to incorporate underlining physical knowledge at hand. An important component of our AISEL method is the bidirectional generative invertible network (GIN), which can extract interpretable features from the training images and generate physically meaningful virtual images. Our AISEL method then efficiently samples virtual images not only further exploits the uncertain regions but also explores the entire image space. We then discuss the interpretability of GIN both theoretically and experimentally, demonstrating clear visual improvements over the benchmarks. Finally, we demonstrate the effectiveness of our AISEL framework on aortic stenosis application, in which our method lowers the labeling cost by 90 percent while achieving a 15 percent improvement in prediction accuracy.
Collapse
|
28
|
Three-dimensional printing to plan intracardiac operations. JTCVS Tech 2021; 9:101-108. [PMID: 34647075 PMCID: PMC8500990 DOI: 10.1016/j.xjtc.2021.02.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
|
29
|
Cernica D, Benedek I, Polexa S, Tolescu C, Benedek T. 3D Printing-A Cutting Edge Technology for Treating Post-Infarction Patients. Life (Basel) 2021; 11:910. [PMID: 34575059 PMCID: PMC8468787 DOI: 10.3390/life11090910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing complexity of cardiovascular interventions requires advanced peri-procedural imaging and tailored treatment. Three-dimensional printing technology represents one of the most significant advances in the field of cardiac imaging, interventional cardiology or cardiovascular surgery. Patient-specific models may provide substantial information on intervention planning in complex cardiovascular diseases, and volumetric medical imaging from CT or MRI can be translated into patient-specific 3D models using advanced post-processing applications. 3D printing and additive manufacturing have a great variety of clinical applications targeting anatomy, implants and devices, assisting optimal interventional treatment and post-interventional evaluation. Although the 3D printing technology still lacks scientific evidence, its benefits have been shown in structural heart diseases as well as for treatment of complex arrhythmias and corrective surgery interventions. Recent development has enabled transformation of conventional 3D printing into complex 3D functional living tissues contributing to regenerative medicine through engineered bionic materials such hydrogels, cell suspensions or matrix components. This review aims to present the most recent clinical applications of 3D printing in cardiovascular medicine, highlighting also the potential for future development of this revolutionary technology in the medical field.
Collapse
Affiliation(s)
- Daniel Cernica
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Imre Benedek
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Stefania Polexa
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Cosmin Tolescu
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Theodora Benedek
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| |
Collapse
|
30
|
Celi S, Gasparotti E, Capellini K, Vignali E, Fanni BM, Ali LA, Cantinotti M, Murzi M, Berti S, Santoro G, Positano V. 3D Printing in Modern Cardiology. Curr Pharm Des 2021; 27:1918-1930. [PMID: 32568014 DOI: 10.2174/1381612826666200622132440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND 3D printing represents an emerging technology in the field of cardiovascular medicine. 3D printing can help to perform a better analysis of complex anatomies to optimize intervention planning. METHODS A systematic review was performed to illustrate the 3D printing technology and to describe the workflow to obtain 3D printed models from patient-specific images. Examples from our laboratory of the benefit of 3D printing in planning interventions were also reported. RESULTS 3D printing technique is reliable when applied to high-quality 3D image data (CTA, CMR, 3D echography), but it still needs the involvement of expert operators for image segmentation and mesh refinement. 3D printed models could be useful in interventional planning, although prospective studies with comprehensive and clinically meaningful endpoints are required to demonstrate the clinical utility. CONCLUSION 3D printing can be used to improve anatomy understanding and surgical planning.
Collapse
Affiliation(s)
- Simona Celi
- BioCardioLab, Fondazione Toscana "G. Monasterio", Massa, Italy
| | | | - Katia Capellini
- BioCardioLab, Fondazione Toscana "G. Monasterio", Massa, Italy
| | | | - Benigno M Fanni
- BioCardioLab, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Lamia A Ali
- Pediatric Cardiology Unit, Fondazione Toscana "G. Monasterio" Massa, Italy
| | | | - Michele Murzi
- Adult Cardiosurgery Unit, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Sergio Berti
- Adult Interventional Cardiology Unit, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Giuseppe Santoro
- Pediatric Cardiology Unit, Fondazione Toscana "G. Monasterio" Massa, Italy
| | | |
Collapse
|
31
|
Borracci RA, Ferreira LM, Alvarez Gallesio JM, Tenorio Núñez OM, David M, Eyheremendy EP. Three-dimensional virtual and printed models for planning adult cardiovascular surgery. Acta Cardiol 2021; 76:534-543. [PMID: 33283655 DOI: 10.1080/00015385.2020.1852754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The objective of this study was to explore the usefulness of virtual models and three-dimensional (3D) printing technologies for planning complex non-congenital cardiovascular surgery. METHODS Between July 2018 and December 2019, adult patients with different cardiovascular structural diseases were included in a clinical protocol to explore the usefulness of Standard Tessellation Language (STL)-based virtual models and 3D printing for prospectively planning surgery. A qualitative descriptive analysis from the surgeon's viewpoint was done based on the characteristics, advantages and usefulness of 3D models for guiding, planning and simulating the surgical procedures. RESULTS A total of 14 custom 3D-printed heart and great vessel replicas with their corresponding 3D virtual models were created for preoperative surgical planning. Six of 14 models helped to redefine the surgical approach, 3 were useful to verify device delivery, while the rest did not change the surgical decision. In all open surgery cases, cardiac and vascular anatomy accuracy of virtual and physical 3D replicas was validated by direct visualisation of the organs during surgery. Printing was achieved through an external provider associated with the Hospital, who printed the final prototype in 5-7 days. Printed production cost was between 100 and 500 USD per model. CONCLUSIONS In the current study, the selected 3D printed models presented different advantages (visual, tactile, and instrumental) over the traditional flat anatomical images when simulating and planning some complex types of surgery. Notwithstanding 3D printing advantages, STL-based virtual models were pre-printing useful tools when instrumentation on a physical replica was not required.
Collapse
Affiliation(s)
- Raul A. Borracci
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | - Luis M. Ferreira
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | | | | | - Michel David
- Department of Cardiovascular Surgery, Deutsches Hospital, Buenos Aires, Argentina
| | | |
Collapse
|
32
|
Gharleghi R, Dessalles CA, Lal R, McCraith S, Sarathy K, Jepson N, Otton J, Barakat AI, Beier S. 3D Printing for Cardiovascular Applications: From End-to-End Processes to Emerging Developments. Ann Biomed Eng 2021; 49:1598-1618. [PMID: 34002286 PMCID: PMC8648709 DOI: 10.1007/s10439-021-02784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
3D printing as a means of fabrication has seen increasing applications in medicine in the last decade, becoming invaluable for cardiovascular applications. This rapidly developing technology has had a significant impact on cardiovascular research, its clinical translation and education. It has expanded our understanding of the cardiovascular system resulting in better devices, tools and consequently improved patient outcomes. This review discusses the latest developments and future directions of generating medical replicas ('phantoms') for use in the cardiovascular field, detailing the end-to-end process from medical imaging to capture structures of interest, to production and use of 3D printed models. We provide comparisons of available imaging modalities and overview of segmentation and post-processing techniques to process images for printing, detailed exploration of latest 3D printing methods and materials, and a comprehensive, up-to-date review of milestone applications and their impact within the cardiovascular domain across research, clinical use and education. We then provide an in-depth exploration of future technologies and innovations around these methods, capturing opportunities and emerging directions across increasingly realistic representations, bioprinting and tissue engineering, and complementary virtual and mixed reality solutions. The next generation of 3D printing techniques allow patient-specific models that are increasingly realistic, replicating properties, anatomy and function.
Collapse
Affiliation(s)
- Ramtin Gharleghi
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Ronil Lal
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | - Sinead McCraith
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Nigel Jepson
- Prince of Wales Hospital, Sydney, Australia
- Prince of Wales Clinical School of Medicine, UNSW, Sydney, Australia
| | - James Otton
- Department of Cardiology, Liverpool Hospital, Sydney, Australia
| | | | - Susann Beier
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia.
| |
Collapse
|
33
|
Michiels C, Jambon E, Sarrazin J, Boulenger de Hauteclocque A, Ricard S, Grenier N, Faessel M, Bos F, Bernhard JC. [Comprehensive review of 3D printing use in medicine: Comparison with practical applications in urology]. Prog Urol 2021; 31:762-771. [PMID: 34154961 DOI: 10.1016/j.purol.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Over the past few years, 3D printing has evolved rapidly. This has resulted in an increasing number of scientific publications reporting on the medical use of 3D printing. These applications can range from patient information, preoperative planning, education, or 3D printing of patient-specific surgical implants. The objective of this review was to give an overview of the different applications in urology and other disciplines based on a selection of publications. METHODS In the current narrative review the Medline database was searched to identify all the related reports discussing the use of 3D printing in the medical field and more specifically in Urology. 3D printing applications were categorized so they could be searched more thoroughly within the Medline database. RESULTS Three-dimensional printing can help improve pre-operative patient information, anatomy and medical trainee education. The 3D printed models may assist the surgeon in preoperative planning or become patient-specific surgical simulation models. In urology, kidney cancer surgery is the most concerned by 3D printing-related publications, for preoperative planning, but also for surgical simulation and surgical training. CONCLUSION 3D printing has already proven useful in many medical applications, including urology, for patient information, education, pre-operative planning and surgical simulation. All areas of urology are involved and represented in the literature. Larger randomized controlled studies will certainly allow 3D printing to benefit patients in routine clinical practice.
Collapse
Affiliation(s)
- C Michiels
- Service de chirurgie urologique et transplantation rénale, CHU Bordeaux, place Amélie Raba Léon, 33076 Bordeaux cedex, France.
| | - E Jambon
- Service d'imagerie et radiologie interventionnelle, CHU Bordeaux, France.
| | - J Sarrazin
- Fablab et Technoshop Coh@bit, IUT, Université de Bordeaux, France.
| | - A Boulenger de Hauteclocque
- Service de chirurgie urologique et transplantation rénale, CHU Bordeaux, place Amélie Raba Léon, 33076 Bordeaux cedex, France.
| | - S Ricard
- Service de chirurgie urologique et transplantation rénale, CHU Bordeaux, place Amélie Raba Léon, 33076 Bordeaux cedex, France; Réseau français de recherche sur le cancer du rein UroCCR, Bordeaux, France
| | - N Grenier
- Service d'imagerie et radiologie interventionnelle, CHU Bordeaux, France
| | - M Faessel
- Fablab et Technoshop Coh@bit, IUT, Université de Bordeaux, France.
| | - F Bos
- Fablab et Technoshop Coh@bit, IUT, Université de Bordeaux, France.
| | - J C Bernhard
- Service de chirurgie urologique et transplantation rénale, CHU Bordeaux, place Amélie Raba Léon, 33076 Bordeaux cedex, France; Réseau français de recherche sur le cancer du rein UroCCR, Bordeaux, France.
| |
Collapse
|
34
|
Ma Y, Ding P, Li L, Liu Y, Jin P, Tang J, Yang J. Three-dimensional printing for heart diseases: clinical application review. Biodes Manuf 2021; 4:675-687. [PMID: 33948306 PMCID: PMC8085656 DOI: 10.1007/s42242-021-00125-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/05/2021] [Indexed: 11/03/2022]
Abstract
Heart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Peng Ding
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Lanlan Li
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Airforce Medical University, Xi’an, 710032 China
| |
Collapse
|
35
|
Wiktorowicz A, Wit A, Malinowski KP, Dziewierz A, Rzeszutko L, Dudek D, Kleczynski P. Paravalvular leak prediction after transcatheter aortic valve replacement with self-expandable prosthesis based on quantitative aortic calcification analysis. Quant Imaging Med Surg 2021; 11:652-664. [PMID: 33532265 DOI: 10.21037/qims-20-669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Paravalvular leak (PVL) is one of the most common complications of transcatheter aortic valve replacement (TAVR) and affects short- and long-term outcomes. The aim of this study was to identify the computed tomography (CT) imaging biomarkers that allow PVL after TAVR to be predicted. Methods Patients were included who had severe aortic valve stenosis, had undergone TAVR with a self-expanding valve, and had undergone a pre-procedural CT scan. Data on baseline characteristics, procedural and long-term outcomes were collected retrospectively. We used MATLAB software with a self-developed algorithm for CT scan analysis and found parameters that quantified aortic valve calcifications (AVC) in detail. Results Fifty patients were included. The identified CT-derived parameters included AVC size, volume, thickness and density, as well as calcium radial distribution. The volume of the largest calcium block, calcium perimeter and calcium size (assessed by Feret's diameter) showed a strong association with PVL occurrence after TAVR (P=0.012, P=0.001 and P=0.045, respectively). The prognostic model showed that a 10 mm2 increase in the local AVC amount in each valve section was associated with a 9.8% (95% CI: 2-18%; P=0.019) increase in the risk of PVL occurrence in the corresponding area after TAVR. ROC analysis revealed that the cut-off point of the AVC area was 96.5 mm2 in the polar coordinate system presentation. Kaplan-Meier curves showed worse PVL-free survival in patients with more than 96.5 mm2 of calcium area (P=0.013; log-rank). Conclusions Quantitative AVC assessment for PVL prediction may play an important role in screening before TAVR. In future, the use of quantitative AVC assessment as an imaging biomarker in TAVR candidates and the creation and extension of an online database containing quantitative AVC parameters may help to identify high PVL risk patients.
Collapse
Affiliation(s)
- Agata Wiktorowicz
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, 2 Department of Cardiology, 30-688, Krakow, Poland
| | - Adrian Wit
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Krzysztof Piotr Malinowski
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, 2 Department of Cardiology, 30-688, Krakow, Poland
| | - Artur Dziewierz
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, 2 Department of Cardiology, 30-688, Krakow, Poland
| | - Lukasz Rzeszutko
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, 2 Department of Cardiology, 30-688, Krakow, Poland
| | - Dariusz Dudek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, 2 Department of Cardiology, 30-688, Krakow, Poland
| | - Pawel Kleczynski
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Cardiology, Department of Interventional Cardiology, John Paul II Hospital, 31-202 Krakow, Poland
| |
Collapse
|
36
|
Kovarovic BJ, Rotman OM, Parikh P, Slepian MJ, Bluestein D. Patient-specific in vitro testing for evaluating TAVR clinical performance-A complementary approach to current ISO standard testing. Artif Organs 2020; 45:E41-E52. [PMID: 33031563 DOI: 10.1111/aor.13841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
Following in vitro tests established for surgical prosthetic heart valves, transcatheter aortic valves (TAV) are similarly tested in idealized geometries-excluding effects that may hamper TAVR performance in situ. Testing in vitro in pulse duplicator systems that incorporated patient-specific replicas would enhance the testing veracity by bringing it closer to the clinical scenario. To that end we compare TAV hemodynamic performance tested in idealized geometries according to the ISO standard (baseline performance) to that obtained by testing the TAVs following deployment in patient-specific replicas. Balloon-expandable (n = 2) and self-expandable (n = 3) TAVs were tested in an idealized geometry in mock-circulation system (following ISO 5840-3 guidelines) and compared to the measurements in a dedicated mock-circulation system adapted for the five patient-specific replicas. Patient-specific deployments resulted in a decline in performance as compared to the baseline idealized testing, as well as a variation in performance that depended on the design features of each device that was further correlated with the radial expansion and eccentricity of the deployed TAV stent (obtained with CT-scans of the deployed valves). By excluding the deployment effects in irregular geometries, the current idealized ISO testing is limited to characterize the baseline device performance. Utilizing patient-specific anatomic contours provides performance indicators under more stringent conditions likely encountered in vivo. It has the potential to enhance testing and development complementary to the ISO standard, for improved TAV safety and effectiveness.
Collapse
Affiliation(s)
- Brandon J Kovarovic
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Oren M Rotman
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Puja Parikh
- Division of Cardiovascular Medicine, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Danny Bluestein
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
37
|
Modelling and manufacturing of 3D-printed, patient-specific, and anthropomorphic gastric phantoms: a pilot study. Sci Rep 2020; 10:18976. [PMID: 33149133 PMCID: PMC7643145 DOI: 10.1038/s41598-020-74110-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022] Open
Abstract
Interventional devices including intragastric balloons are widely used to treat obesity. This study aims to develop 3D-printed, patient-specific, and anthropomorphic gastric phantoms with mechanical properties similar to those of human stomach. Using computed tomography gastrography (CTG) images of three patients, gastric phantoms were modelled through shape registration to align the stomach shapes of three different phases. Shape accuracies of the original gastric models versus the 3D-printed phantoms were compared using landmark distances. The mechanical properties (elongation and tensile strength), number of silicone coatings (0, 2, and 8 times), and specimen hardness (50, 60, and 70 Shore A) of three materials (Agilus, Elastic, and Flexa) were evaluated. Registration accuracy was significantly lower between the arterial and portal phases (3.16 ± 0.80 mm) than that between the portal and delayed phases (8.92 ± 0.96 mm). The mean shape accuracy difference was less than 10 mm. The mean elongations and tensile strengths of the Agilus, Elastic, and Flexa were 264%, 145%, and 146% and 1.14, 1.59, and 2.15 MPa, respectively, and their mechanical properties differed significantly (all p < 0.05). Elongation and tensile strength assessments, CTG image registration and 3D printing resulted in highly realistic and patient-specific gastric phantoms with reasonable shape accuracies.
Collapse
|
38
|
Wang DD, Qian Z, Vukicevic M, Engelhardt S, Kheradvar A, Zhang C, Little SH, Verjans J, Comaniciu D, O'Neill WW, Vannan MA. 3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease. JACC Cardiovasc Imaging 2020; 14:41-60. [PMID: 32861647 DOI: 10.1016/j.jcmg.2019.12.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023]
Abstract
Structural heart disease (SHD) is a new field within cardiovascular medicine. Traditional imaging modalities fall short in supporting the needs of SHD interventions, as they have been constructed around the concept of disease diagnosis. SHD interventions disrupt traditional concepts of imaging in requiring imaging to plan, simulate, and predict intraprocedural outcomes. In transcatheter SHD interventions, the absence of a gold-standard open cavity surgical field deprives physicians of the opportunity for tactile feedback and visual confirmation of cardiac anatomy. Hence, dependency on imaging in periprocedural guidance has led to evolution of a new generation of procedural skillsets, concept of a visual field, and technologies in the periprocedural planning period to accelerate preclinical device development, physician, and patient education. Adaptation of 3-dimensional (3D) printing in clinical care and procedural planning has demonstrated a reduction in early-operator learning curve for transcatheter interventions. Integration of computation modeling to 3D printing has accelerated research and development understanding of fluid mechanics within device testing. Application of 3D printing, computational modeling, and ultimately incorporation of artificial intelligence is changing the landscape of physician training and delivery of patient-centric care. Transcatheter structural heart interventions are requiring in-depth periprocedural understanding of cardiac pathophysiology and device interactions not afforded by traditional imaging metrics.
Collapse
Affiliation(s)
- Dee Dee Wang
- Center for Structural Heart Disease, Division of Cardiology, Henry Ford Health System, Detroit, Michigan, USA.
| | - Zhen Qian
- Hippocrates Research Lab, Tencent America, Palo Alto, California, USA
| | - Marija Vukicevic
- Department of Cardiology, Methodist DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Sandy Engelhardt
- Artificial Intelligence in Cardiovascular Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Kheradvar
- Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California, USA
| | - Chuck Zhang
- H. Milton Stewart School of Industrial & Systems Engineering and Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta Georgia, USA
| | - Stephen H Little
- Department of Cardiology, Methodist DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Johan Verjans
- Australian Institute for Machine Learning, University of Adelaide, Adelaide South Australia, Australia
| | - Dorin Comaniciu
- Siemens Healthineers, Medical Imaging Technologies, Princeton, New Jersey, USA
| | - William W O'Neill
- Center for Structural Heart Disease, Division of Cardiology, Henry Ford Health System, Detroit, Michigan, USA
| | - Mani A Vannan
- Hippocrates Research Lab, Tencent America, Palo Alto, California, USA
| |
Collapse
|
39
|
Chen J, Mak S, Joseph VR, Zhang C. Function-on-Function Kriging, With Applications to Three-Dimensional Printing of Aortic Tissues. Technometrics 2020. [DOI: 10.1080/00401706.2020.1801255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jialei Chen
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA
| | - Simon Mak
- Department of Statistical Science, Duke University, Durham, NC
| | - V. Roshan Joseph
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Chuck Zhang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
40
|
Utility of Three-Dimensional (3D) Modeling for Planning Structural Heart Interventions (with an Emphasis on Valvular Heart Disease). Curr Cardiol Rep 2020; 22:125. [PMID: 32789652 DOI: 10.1007/s11886-020-01354-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Advanced imaging has played a vital role in the contemporary, rapid rise of structural heart interventions. 3D modeling and printing has emerged as one of the most recent imaging tools and the implementation of 3D modeling is expected to increase with further advances in imaging, print hardware, and materials. RECENT FINDINGS 3D modeling can be used to educate patients and clinical teams, provide ex vivo procedural simulation, and improve outcomes. Intra-procedural success rates may be improved, and post-procedural complications can be predicted more robustly with appropriate application of 3D modeling. Recent advances in technology have increased the availability of this tool, such that there can be more ready adoption into a routine clinical workflow. Familiarity with 3D modeling and its current utilization and role in structural interventions will help inform how to approach and adapt this exciting new technology.
Collapse
|
41
|
Haghiashtiani G, Qiu K, Zhingre Sanchez JD, Fuenning ZJ, Nair P, Ahlberg SE, Iaizzo PA, McAlpine MC. 3D printed patient-specific aortic root models with internal sensors for minimally invasive applications. SCIENCE ADVANCES 2020; 6:eabb4641. [PMID: 32923641 PMCID: PMC7455187 DOI: 10.1126/sciadv.abb4641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Minimally invasive surgeries have numerous advantages, yet complications may arise from limited knowledge about the anatomical site targeted for the delivery of therapy. Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure for treating aortic stenosis. Here, we demonstrate multimaterial three-dimensional printing of patient-specific soft aortic root models with internally integrated electronic sensor arrays that can augment testing for TAVR preprocedural planning. We evaluated the efficacies of the models by comparing their geometric fidelities with postoperative data from patients, as well as their in vitro hemodynamic performances in cases with and without leaflet calcifications. Furthermore, we demonstrated that internal sensor arrays can facilitate the optimization of bioprosthetic valve selections and in vitro placements via mapping of the pressures applied on the critical regions of the aortic anatomies. These models may pave exciting avenues for mitigating the risks of postoperative complications and facilitating the development of next-generation medical devices.
Collapse
Affiliation(s)
- Ghazaleh Haghiashtiani
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kaiyan Qiu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jorge D. Zhingre Sanchez
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J. Fuenning
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Paul A. Iaizzo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C. McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Bezek LB, Cauchi MP, De Vita R, Foerst JR, Williams CB. 3D printing tissue-mimicking materials for realistic transseptal puncture models. J Mech Behav Biomed Mater 2020; 110:103971. [PMID: 32763836 DOI: 10.1016/j.jmbbm.2020.103971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
Applications of additive manufacturing (commonly referred to as 3D printing) in direct fabrication of models for pre-surgical planning, functional testing, and medical training are on the rise. However, one current limitation to the accuracy of models for cardiovascular procedural training is a lack of printable materials that accurately mimic human tissue. Most of the available elastomeric materials lack mechanical properties representative of human tissues. To address the gap, the authors explore the multi-material capability of material jetting additive manufacturing to combine non-curing and photo-curing inks to achieve material properties that more closely replicate human tissues. The authors explore the impact of relative material concentration on tissue-relevant properties from puncture and tensile testing under submerged conditions. Further, the authors demonstrate the ability to mimic the mechanical properties of the fossa ovalis, which proves beneficial for accurately simulating transseptal punctures. A fossa ovalis mimic was printed and assembled within a full patient-specific heart model for validation, where it exhibited accuracy in both mechanical properties and geometry. The explored material combination provides the opportunity to fabricate future medical models that are more realistic and better suited for pre-surgical planning and medical student training. This will ultimately guide safer, more efficient practices.
Collapse
Affiliation(s)
- Lindsey B Bezek
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Raffaella De Vita
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jason R Foerst
- Section of Interventional and Structural Cardiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | | |
Collapse
|
43
|
|
44
|
Gatti M, Cosentino A, Cura Stura E, Bergamasco L, Garabello D, Pennisi G, Puppo M, Salizzoni S, Veglia S, Davini O, Rinaldi M, Fonio P, Faletti R. Accuracy of cardiac magnetic resonance generated 3D models of the aortic annulus compared to cardiovascular computed tomography generated 3D models. Int J Cardiovasc Imaging 2020; 36:2007-2015. [PMID: 32472299 DOI: 10.1007/s10554-020-01902-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
To evaluate the accuracy of 3D models of the aortic-root generated from non-contrast cardiac magnetic resonance (CMR). Data were retrospectively collected from 30 consecutive patients who underwent surgical aortic valve replacement and had available records of both intra-operative assessment and pre-surgery annulus assessment by cardiovascular computed tomography (CCT) and CMR. The 3D models were independently segmented, modelled and printed by two blinded "manufacturers". The measurements on the models were carried out by two cardiac surgeons with Hegar dilator. Data were analyzed with non-parametric tests. There was no significant intra- or inter-observer variability (p ≥ 0.13). The agreement between the diameter of the 3D model derived from CMR images and either the anatomical reference of the intraoperative measurement (p = 0.10, r = 0.97) or the radiological reference of the 3D model generated from CCT (p = 0.71, r = 0.92) was very good. The process of segmentation plus the post-processing was about 17 ± 2 min for a model created by CMR, significantly higher than a model created from CCT (7 ± 2 min; p < 0.001). The printing time for a single model did not differ between the two modalities (p = 0.61) and was less than 60 min. The cost for a single model was approximately 0.5 €. 3D models generated from non-contrast CMR performed well when compared to the anatomical reference standard and are comparable to the pair CCT derived models.
Collapse
Affiliation(s)
- Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy.
| | - Aurelio Cosentino
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy
| | - Erik Cura Stura
- Division of Cardiac Surgery, Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Laura Bergamasco
- Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Domenica Garabello
- Department of Radiodiagnostic, S.C. Radiodiagnostica Ospedaliera, Torino, Italy
| | - Giovanni Pennisi
- Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Mattia Puppo
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy
| | - Stefano Salizzoni
- Division of Cardiac Surgery, Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Simona Veglia
- Department of Radiodiagnostic, S.C. Radiodiagnostica Ospedaliera, Torino, Italy
| | - Ottavio Davini
- Department of Radiodiagnostic, S.C. Radiodiagnostica Ospedaliera, Torino, Italy
| | - Mauro Rinaldi
- Division of Cardiac Surgery, Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Paolo Fonio
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, Via Genova 3, 10126, Torino, Italy
| |
Collapse
|
45
|
Cardiovascular Imaging Through the Prism of Modern Metrics. JACC Cardiovasc Imaging 2020; 13:1256-1269. [DOI: 10.1016/j.jcmg.2020.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
|
46
|
Abstract
Heart valve diseases are common disorders with five million annual diagnoses being made in the United States alone. All heart valve disorders alter cardiac hemodynamic performance; therefore, treatments aim to restore normal flow. This paper reviews the state-of-the-art clinical and engineering advancements in heart valve treatments with a focus on hemodynamics. We review engineering studies and clinical literature on the experience with devices for aortic valve treatment, as well as the latest advancements in mitral valve treatments and the pulmonic and tricuspid valves on the right side of the heart. Upcoming innovations will potentially revolutionize treatment of heart valve disorders. These advancements, and more gradual enhancements in the procedural techniques and imaging modalities, could improve the quality of life of patients suffering from valvular disease who currently cannot be treated.
Collapse
Affiliation(s)
- Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv Israel
- To whom correspondence should be addressed. E-mail:
| | - Shmuel Einav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Reiff C, Zhingre Sanchez JD, Mattison LM, Iaizzo PA, Garcia S, Raveendran G, Gurevich S. 3-Dimensional printing to predict paravalvular regurgitation after transcatheter aortic valve replacement. Catheter Cardiovasc Interv 2020; 96:E703-E710. [PMID: 32077222 DOI: 10.1002/ccd.28783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND There is no effective method to predict paravalvular regurgitation prior to transcatheter aortic valve replacement (TAVR). METHODS We retrospectively analyzed pre-TAVR computed tomography (CT) scans of 20 patients who underwent TAVR for severe, calcific aortic stenosis and subsequently printed 3-dimensional (3D) aortic root models of each patient. Models were printed using Ninjaflex thermoplastic polyurethane (TPU) (Ninjatek Manheim, PA) and TPU 95A (Ultimaker, Netherlands) on Ultimaker 3 Extended 3D printer (Ultimaker, Netherlands). The models were implanted at nominal pressure with same sized Sapien balloon-expandable frames (Edwards Lifesciences, CA) as received in-vivo. Ex-vivo implanted TAVR models (eTAVR) were scanned using Siemens SOMATOM flash dual source CT (Siemens, Malvern, PA) and then analyzed with Mimics software (Materialize NV, Leuven, Belgium) to evaluate relative stent appositions. eTAVR were then compared to post-TAVR echocardiograms for each patient to assess for correlations of identified and predicted paravalvular leak (PVL) locations. RESULTS A total of 20 patients (70% male) were included in this study. The median age was 77.5 (74-83.5) years. Ten patients were characterized to elicit mild (9/10) or moderate (1/10) PVL, and 10 patients presented no PVL. In patients with echocardiographic PVL, eTAVR 3D model analyses correctly identified the site of PVL in 8/10 cases. In patients without echocardiographic PVL, eTAVR 3D model analyses correctly predicted the lack of PVL in 9/10 cases. CONCLUSION 3D printing may help predict the potential locations of associated PVL post-TAVR, which may have implications for optimizing valve selection and sizing.
Collapse
Affiliation(s)
- Christopher Reiff
- University of Minnesota Fairview Medical Center, Minneapolis, Minnesota
| | - Jorge D Zhingre Sanchez
- Department of Surgery, The Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Lars M Mattison
- Department of Surgery, The Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Paul A Iaizzo
- Department of Surgery, The Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Santiago Garcia
- University of Minnesota Fairview Medical Center, Minneapolis, Minnesota.,Minneapolis Heart Institute, Minneapolis, Minnesota
| | - Ganesh Raveendran
- University of Minnesota Fairview Medical Center, Minneapolis, Minnesota
| | - Sergey Gurevich
- University of Minnesota Fairview Medical Center, Minneapolis, Minnesota
| |
Collapse
|
48
|
Levin D, Mackensen GB, Reisman M, McCabe JM, Dvir D, Ripley B. 3D Printing Applications for Transcatheter Aortic Valve Replacement. Curr Cardiol Rep 2020; 22:23. [PMID: 32067112 DOI: 10.1007/s11886-020-1276-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW A combination of evolving 3D printing technologies, new 3D printable materials, and multi-disciplinary collaborations have made 3D printing applications for transcatheter aortic valve replacement (TAVR) a promising tool to promote innovation, increase procedural success, and provide a compelling educational tool. This review synthesizes the knowledge via publications and our group's experience in this area that exemplify uses of 3D printing for TAVR. RECENT FINDINGS Patient-specific 3D-printed models have been used for TAVR pre-procedural device sizing, benchtop prediction of procedural complications, planning for valve-in-valve and bicuspid aortic valve procedures, and more. Recent publications also demonstrate how 3D printing can be used to test assumptions about why certain complications occur during THV implantation. Finally, new materials and combinations of existing materials are starting to bridge the large divide between current 3D material and cardiac tissue properties. Several studies have demonstrated the utility of 3D printing in understanding challenges of TAVR. Innovative approaches to benchtop testing and multi-material printing have brought us closer to being able to predict how a THV will interact with a specific patient's aortic anatomy. This work to date is likely to open the door for advancements in other areas of structural heart disease, such as interventions involving the mitral valve, tricuspid valve, and left atrial appendage.
Collapse
Affiliation(s)
- Dmitry Levin
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - G Burkhard Mackensen
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Mark Reisman
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James M McCabe
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Danny Dvir
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Beth Ripley
- Department of Radiology, University of Washington, Seattle, WA, USA. .,Department of Radiology, VA Puget Sound Health Care System, Seattle, WA, USA.
| |
Collapse
|
49
|
Hussein N, Voyer-Nguyen P, Portnoy S, Peel B, Schrauben E, Macgowan C, Yoo SJ. Simulation of semilunar valve function: computer-aided design, 3D printing and flow assessment with MR. 3D Print Med 2020; 6:2. [PMID: 32016687 PMCID: PMC6998846 DOI: 10.1186/s41205-020-0057-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The structure of the valve leaflets and sinuses are crucial in supporting the proper function of the semilunar valve and ensuring leaflet durability. Therefore, an enhanced understanding of the structural characteristics of the semilunar valves is fundamental to the evaluation and staging of semilunar valve pathology, as well as the development of prosthetic or bioprosthetic valves. This paper illustrates the process of combining computer-aided design (CAD), 3D printing and flow assessment with 4-dimensional flow magnetic resonance imaging (MRI) to provide detailed assessment of the structural and hemodynamic characteristics of the normal semilunar valve. METHODS Previously published geometric data on the aortic valve was used to model the 'normal' tricuspid aortic valve with a CAD software package and 3D printed. An MRI compatible flow pump with the capacity to mimic physiological flows was connected to the phantom. A peak flow rate of 100 mL/s and heart rate of 60 beats per minute were used. MRI measurements included cine imaging, 2D and 4D phase-contrast imaging to assess valve motion, flow velocity and complex flow patterns. RESULTS Cine MRI data showed normal valve function and competency throughout the cardiac cycle in the 3D-printed phantom. Quantitative analysis of 4D Flow data showed net flow through 2D planes proximal and distal to the valve were very consistent (26.03 mL/s and 26.09 mL/s, respectively). Measurements of net flow value agreed closely with the flow waveform provided to the pump (27.74 mL/s), confirming 4D flow acquisition in relation to the pump output. Peak flow values proximal and distal to the valve were 78.4 mL/s and 63.3 mL/s, respectively. Particle traces of flow from 4D-phase contrast MRI data demonstrated flow through the valve into the ascending aorta and vortices within the aortic sinuses, which are expected during ventricular diastole. CONCLUSION In this proof of concept study, we have demonstrated the ability to generate physiological 3D-printed aortic valve phantoms and evaluate their function with cine- and 4D Flow MRI. This technology can work synergistically with promising tissue engineering research to develop optimal aortic valve replacements, which closely reproduces the complex function of the normal aortic valve.
Collapse
Affiliation(s)
- Nabil Hussein
- Division of Cardiology, Department of Paediatrics and Division of Cardiovascular Surgery, Department of Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Pascal Voyer-Nguyen
- Center for Image-Guided Innovation and Therapeutic Intervention (CIGITI), Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sharon Portnoy
- Medical Biophysics & Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Peel
- Center for Image-Guided Innovation and Therapeutic Intervention (CIGITI), Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Eric Schrauben
- Medical Biophysics & Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Macgowan
- Medical Biophysics & Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shi-Joon Yoo
- Department of Diagnostic Imaging and Division of Cardiology, Department of Paediatrics Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, M5G1X8, Canada.
| |
Collapse
|
50
|
|