1
|
Ji DN, Jin SD, Jiang Y, Xu FY, Fan SW, Zhao YL, Liu XQ, Sun H, Cheng WZ, Zhang XY, Guan XX, Zhang BW, Du ZM, Wang Y, Wang N, Zhang R, Zhang MY, Xu CQ. CircNSD1 promotes cardiac fibrosis through targeting the miR-429-3p/SULF1/Wnt/β-catenin signaling pathway. Acta Pharmacol Sin 2024; 45:2092-2106. [PMID: 38760544 PMCID: PMC11420342 DOI: 10.1038/s41401-024-01296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-β1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/β-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.
Collapse
Affiliation(s)
- Dong-Ni Ji
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Sai-di Jin
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Yuan Jiang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Fei-Yong Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Shu-Wei Fan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Lin Zhao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xin-Qi Liu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Hao Sun
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Wen-Zheng Cheng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yue Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Xiang Guan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhi-Min Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ning Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Rong Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| | - Ming-Yu Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| | - Chao-Qian Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Del Franco A, Ruggieri R, Pieroni M, Ciabatti M, Zocchi C, Biagioni G, Tavanti V, Del Pace S, Leone O, Favale S, Guaricci AI, Udelson J, Olivotto I. Atlas of Regional Left Ventricular Scar in Nonischemic Cardiomyopathies: Substrates and Etiologies. JACC. ADVANCES 2024; 3:101214. [PMID: 39246577 PMCID: PMC11380395 DOI: 10.1016/j.jacadv.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/10/2024]
Abstract
Most acquired and inherited cardiomyopathies are characterized by regional left ventricular involvement and nonischemic myocardial scars, often with a disease-specific pattern. Irrespective of the etiology and pathophysiological mechanisms, myocardial disorders are invariably associated with cardiac fibrosis, which contributes to dysfunction and electrical instability. Accordingly, cardiac magnetic resonance plays a central role in the diagnostic work-up and prognostic risk stratification of cardiomyopathies, particularly with the increasing correlation between genetic background and specific disease phenotype. Starting from pattern and distribution of myocardial fibrosis at cardiac magnetic resonance, we provide a practical regional atlas of nonischemic myocardial scar to guide the diagnostic approach to nonischemic cardiomyopathies.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Zocchi
- Cardiovascular Department, San Donato Hospital, Arezzo, Italy
| | - Giulia Biagioni
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | | | - Stefano Del Pace
- Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy
| | - Ornella Leone
- Department of Pathology, Cardiovascular and Cardiac Transplant Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Favale
- Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - James Udelson
- Division of Cardiology and The CardioVascular Center, Tufts Medical Center, and the Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
- Cardiology Unit, Meyer University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Byun JW, Paeng JC, Kim YJ, Lee SP, Lee YS, Choi H, Kang KW, Cheon GJ. Evaluation of Fibroblast Activation Protein Expression Using 68Ga-FAPI46 PET in Hypertension-Induced Tissue Changes. J Nucl Med 2024:jnumed.124.267489. [PMID: 39327013 DOI: 10.2967/jnumed.124.267489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic hypertension leads to injury and fibrosis in major organs. Fibroblast activation protein (FAP) is one of key molecules in tissue fibrosis, and 68Ga-labeled FAP inhibitor-46 (FAPI46) PET is a recently developed method for evaluating FAP. The aim of this study was to evaluate FAP expression and fibrosis in a hypertension model and to test the feasibility of 68Ga-FAPI46 PET in hypertension. Methods: Hypertension was induced in mice by angiotensin II infusion for 4 wk. 68Ga-FAPI46 biodistribution studies and PET scanning were conducted at 1, 2, and 4 wk after hypertension modeling, and uptake in the major organs was measured. The FAP expression and fibrosis formation of the heart and kidney tissues were analyzed and compared with 68Ga-FAPI46 uptake. Subgroups of the hypertension model underwent angiotensin receptor blocker administration and high-dose FAPI46 blocking, for comparison. As a preliminary human study, 68Ga-FAPI46 PET images of lung cancer patients were analyzed and compared between hypertension and control groups. Results: Uptake of 68Ga-FAPI46 in the heart and kidneys was significantly higher in the hypertension group than in the sham group as early as week 1 and decreased after week 2. The uptake was specifically blocked in the high-dose blocking study. Immunohistochemistry also revealed FAP expression in both heart and kidney tissues. However, overt fibrosis was observed in the heart, whereas it was absent from the kidneys. The angiotensin receptor blocker-treated group showed lower uptake in the heart and kidneys than did the hypertension group. In the pilot human study, renal uptake of 68Ga-FAPI46 significantly differed between the hypertension and control groups. Conclusion: In hypertension, FAP expression is increased in the heart and kidneys from the early phases and decreases over time. FAP expression appears to represent fibrosis activity preceding or underlying fibrotic tissue formation. 68Ga-FAPI46 PET has potential as an effective imaging method for evaluating FAP expression in progressive fibrosis by hypertension.
Collapse
Affiliation(s)
- Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea;
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Ju Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seung-Pyo Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; and
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Telli T, Hosseini A, Settelmeier S, Kersting D, Kessler L, Weber WA, Rassaf T, Herrmann K, Varasteh Z. Imaging of Cardiac Fibrosis: How Far Have We Moved From Extracellular to Cellular? Semin Nucl Med 2024; 54:686-700. [PMID: 38493001 DOI: 10.1053/j.semnuclmed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Myocardial fibrosis plays an important role in adverse outcomes such as heart failure and arrhythmias. As the pathological response and degree of scarring, and therefore clinical presentation varies from patient to patient, early detection of fibrosis is crucial for identifying the appropriate treatment approach and forecasting the progression of a disease along with the likelihood of disease-related mortality. Current imaging modalities provides information about either decreased function or extracellular signs of fibrosis. Targeting activated fibroblasts represents a burgeoning approach that could offer insights prior to observable functional alterations, presenting a promising focus for potential anti-fibrotic therapeutic interventions at cellular level. In this article, we provide an overview of imaging cardiac fibrosis and discuss the role of different advanced imaging modalities with the focus on novel non-invasive imaging of activated fibroblasts.
Collapse
Affiliation(s)
- Tugce Telli
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Atefeh Hosseini
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Stephan Settelmeier
- Westgerman Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Tienush Rassaf
- Westgerman Heart- and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Zohreh Varasteh
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|
5
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
6
|
Gissler MC, Antiochos P, Ge Y, Heydari B, Gräni C, Kwong RY. Cardiac Magnetic Resonance Evaluation of LV Remodeling Post-Myocardial Infarction: Prognosis, Monitoring and Trial Endpoints. JACC Cardiovasc Imaging 2024:S1936-878X(24)00127-X. [PMID: 38819335 DOI: 10.1016/j.jcmg.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 06/01/2024]
Abstract
Adverse left ventricular remodeling (ALVR) and subsequent heart failure after myocardial infarction (MI) remain a major cause of patient morbidity and mortality worldwide. Overt inflammation has been identified as the common pathway underlying myocardial fibrosis and development of ALVR post-MI. With its ability to simultaneously provide information about cardiac structure, function, perfusion, and tissue characteristics, cardiac magnetic resonance (CMR) is well poised to inform prognosis and guide early surveillance and therapeutics in high-risk cohorts. Further, established and evolving CMR-derived biomarkers may serve as clinical endpoints in prospective trials evaluating the efficacy of novel anti-inflammatory and antifibrotic therapies. This review provides an overview of post-MI ALVR and illustrates how CMR may help clinical adoption of novel therapies via mechanistic or prognostic imaging markers.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Panagiotis Antiochos
- Cardiology and Cardiac MR Centre, University Hospital Lausanne, Lausanne, Switzerland
| | - Yin Ge
- Division of Cardiology, St Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Bobak Heydari
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raymond Y Kwong
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Boschi A, Urso L, Uccelli L, Martini P, Filippi L. 99mTc-labeled FAPI compounds for cancer and inflammation: from radiochemistry to the first clinical applications. EJNMMI Radiopharm Chem 2024; 9:36. [PMID: 38695960 PMCID: PMC11065808 DOI: 10.1186/s41181-024-00264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND In recent years, fibroblast activating protein (FAP), a biomarker overexpressed by cancer-associated fibroblasts, has emerged as one of the most promising biomarkers in oncology. Similarly, FAP overexpression has been detected in various fibroblast-mediated inflammatory conditions such as liver cirrhosis and idiopathic pulmonary fibrosis. Along this trajectory, FAP-targeted positron emission tomography (PET), utilizing FAP inhibitors (FAPi) labeled with positron emitters, has gained traction as a powerful imaging approach in both cancer and inflammation. However, PET represents a high-cost technology, and its widespread adoption is still limited compared to the availability of gamma cameras. To address this issue, several efforts have been made to explore the potential of [99mTc]Tc-FAPi tracers as molecular probes for imaging with gamma cameras and single photon emission computed tomography (SPECT). MAIN BODY Several approaches have been investigated for labeling FAPi-based compounds with 99mTc. Specifically, the mono-oxo, tricarbonyl, isonitrile, and HYNIC strategies have been applied to produce [99mTc]Tc-FAPi tracers, which have been tested in vitro and in animal models. Overall, these labeling approaches have demonstrated high efficiency and strong binding. The resulting [99mTc]Tc-FAPi tracers have shown high specificity for FAP-positive cells and xenografts in both in vitro and animal model studies, respectively. However, the majority of [99mTc]Tc-FAPi tracers have exhibited variable levels of lipophilicity, leading to preferential excretion through the hepatobiliary route and undesirable binding to lipoproteins. Consequently, efforts have been made to synthesize more hydrophilic FAPi-based compounds to improve pharmacokinetic properties and achieve a more favorable biodistribution, particularly in the abdominal region. SPECT imaging with [99mTc]Tc-FAPi has yielded promising results in patients with gastrointestinal tumors, demonstrating comparable or superior diagnostic performance compared to other imaging modalities. Similarly, encouraging outcomes have been observed in subjects with gliomas, lung cancer, breast cancer, and cervical cancer. Beyond oncological applications, [99mTc]Tc-FAPi-based imaging has been successfully employed in myocardial and idiopathic pulmonary fibrosis. CONCLUSIONS This overview focuses on the various radiochemical strategies for obtaining [99mTc]Tc-FAPi tracers, highlighting the main challenges encountered and possible solutions when applying each distinct approach. Additionally, it covers the preclinical and initial clinical applications of [99mTc]Tc-FAPi in cancer and inflammation.
Collapse
Affiliation(s)
- Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara, 70 c/o viale Eliporto, 44121, Ferrara, Italy
- Nuclear Medicine Unit, Ferrara Hospital, Via A. Moro, 8, 44124, Ferrara, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara, 70 c/o viale Eliporto, 44121, Ferrara, Italy.
- Nuclear Medicine Unit, Ferrara Hospital, Via A. Moro, 8, 44124, Ferrara, Italy.
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari, 46 44121, Ferrara, Italy.
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
8
|
Esmel-Vilomara R, Riaza L, Costa-Comellas L, Sabaté-Rotés A, Gran F. Asymmetric Myocardial Involvement as an Early Indicator of Cardiac Dysfunction in Pediatric Dystrophinopathies: A Study on Cardiac Magnetic Resonance (CMR) Parametric Mappings. Pediatr Cardiol 2024:10.1007/s00246-024-03488-8. [PMID: 38687374 DOI: 10.1007/s00246-024-03488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Dystrophinopathies, such as Duchenne and Becker muscular dystrophy, frequently lead to cardiomyopathy, being its primary cause of mortality. Detecting cardiac dysfunction early is crucial, but current imaging methods lack insight into microstructural remodeling. This study aims to assess the potential of cardiac magnetic resonance (CMR) parametric mappings for early detection of myocardial involvement in dystrophinopathies and explores whether distinct involvement patterns may indicate impending dysfunction. In this prospective study, 23 dystrophinopathy patients underwent CMR with tissue mappings. To establish a basis for comparison, a control group of 173 subjects was analyzed. CMR protocols included SSFP, T2-weighted and T1-weighted sequences pre and post gadolinium, and tissue mappings for native T1 (nT1), extracellular volume (ECV), and T2 relaxation times. The difference between the left ventricular posterior wall and the interventricular septum was calculated to reveal asymmetric myocardial involvement. Significant differences in LV ejection fraction (LVEF), myocardial mass, and late gadolinium enhancement confirmed abnormalities in patients. Tissue mappings: nT1 (p < 0.001) and ECV (p = 0.002), but not T2, displayed substantial variations, suggesting sensitivity to myocardial involvement. Asymmetric myocardial involvement in nT1 (p = 0.01) and ECV (p = 0.012) between septal and LV posterior wall regions was significant. While higher mapping values didn't correlate with dysfunction, asymmetric involvement in nT1 (ρ=-0.472, p = 0.023) and ECV (ρ=-0.460, p = 0.049) exhibited a significant negative correlation with LVEF. CMR mappings show promise in early myocardial damage detection in dystrophinopathies. Although mapping values may not directly correspond to dysfunction, the negative correlation between asymmetric involvement in nT1 and ECV with LVEF suggests their potential as early biomarkers. Larger, longitudinal studies are needed for a comprehensive understanding and improved risk stratification in dystrophinopathies.
Collapse
Affiliation(s)
- Roger Esmel-Vilomara
- Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Pediatric Cardiology, Vall d'Hebron Hospital Campus, Carrer Sant Quintí 89, Barcelona, 08041, Spain.
- Pediatric Cardiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain.
| | - Lucía Riaza
- Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Radiology, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Laura Costa-Comellas
- Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Neurology, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - Anna Sabaté-Rotés
- Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Cardiology, Vall d'Hebron Hospital Campus, Carrer Sant Quintí 89, Barcelona, 08041, Spain
| | - Ferran Gran
- Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Cardiology, Vall d'Hebron Hospital Campus, Carrer Sant Quintí 89, Barcelona, 08041, Spain
| |
Collapse
|
9
|
Jiang Y, Ye J, Yang Y, Zhang Y, Yan X, Qiang W, Chen H, Xu S, Zhou L, Qi R, Zhang Q. Prognostic value of measurement of myocardial extracellular volume using dual-energy CT in heart failure with preserved ejection fraction. Sci Rep 2024; 14:7504. [PMID: 38553622 PMCID: PMC10980678 DOI: 10.1038/s41598-024-58271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Diffuse myocardial fibrosis is associated with adverse outcomes in heart failure with preserved ejection fraction (HFpEF). Dual-energy CT (DECT) can noninvasively assess myocardial fibrosis by quantification of extracellular volume (ECV) fraction. This study evaluated the association between ECV measured by DECT and clinical outcomes in patients with HFpEF. 125 hospitalized HFpEF patients were enrolled in this retrospective cohort study. ECV was measured using DECT with late iodine enhancement. The composite endpoint was defined as HFpEF hospitalization and all-cause mortality during the follow-up. During the median follow-up of 10.4 months, 34 patients (27.20%) experienced the composite outcomes, including 5 deaths; and 29 HFpEF hospitalizations. The higher DECT-ECV group had higher rates of composite outcomes than the low ECV group (log-rank X2 = 6.818, P = 0.033). In multivariate Cox regression analysis, the ECV (HR 1.17, 95% CI 1.06-1.30, P = 0.001) and NT-pro BNP (HR 2.83, 95% CI 1.16-6.88, P = 0.022) were independent risk factors for the adverse outcomes. Myocardial ECV measured using DECT was an independent risk factor for adverse outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Ying Jiang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Jiaqi Ye
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Yang Yang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Ying Zhang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Xiaoyun Yan
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Wenhui Qiang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Haixiao Chen
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Shuang Xu
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Rongxing Qi
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China.
| | - Qing Zhang
- Department of General Practice, The Second Affiliated Hospital of Nantong University, Shengli Road No.666, Nantong, 226001, China.
| |
Collapse
|
10
|
Yang W, Wang Y, Li H, Liao F, Peng Y, Lu A, Tan L, Qu H, Long L, Fu C. Enhanced TfR1 Recognition of Myocardial Injury after Acute Myocardial Infarction with Cardiac Fibrosis via Pre-Degrading Excess Fibrotic Collagen. BIOLOGY 2024; 13:213. [PMID: 38666825 PMCID: PMC11048469 DOI: 10.3390/biology13040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The fibrosis process after myocardial infarction (MI) results in a decline in cardiac function due to fibrotic collagen deposition and contrast agents' metabolic disorders, posing a significant challenge to conventional imaging strategies in making heart damage clear in the fibrosis microenvironment. To address this issue, we developed an imaging strategy. Specifically, we pretreated myocardial fibrotic collagen with collagenase I combined with human serum albumin (HSA-C) and subsequently visualized the site of cardiac injury by near-infrared (NIR) fluorescence imaging using an optical contrast agent (CI, CRT-indocyanine green) targeting transferrin receptor 1 peptides (CRT). The key point of this strategy is that pretreatment with HSA-C can reduce background signal interference in the fibrotic tissue while enhancing CI uptake at the heart lesion site, making the boundary between the injured heart tissue and the normal myocardium clearer. Our results showed that compared to that in the untargeted group, the normalized fluorescence intensity of cardiac damage detected by NIR in the targeted group increased 1.28-fold. The normalized fluorescence intensity increased 1.21-fold in the pretreatment group of the targeted groups. These data demonstrate the feasibility of applying pretreated fibrotic collagen and NIR contrast agents targeting TfR1 to identify ferroptosis at sites of cardiac injury, and its clinical value in the management of patients with MI needs further study.
Collapse
Affiliation(s)
- Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongzheng Li
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Feifei Liao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuxuan Peng
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Aimei Lu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ling Tan
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hua Qu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Linzi Long
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Changgeng Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
11
|
Engel M, Shiel EA, Chelko SP. Basic and translational mechanisms in inflammatory arrhythmogenic cardiomyopathy. Int J Cardiol 2024; 397:131602. [PMID: 37979796 DOI: 10.1016/j.ijcard.2023.131602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a familial, nonischemic heart disease typically inherited via an autosomal dominant pattern (Nava et al., [1]; Wlodarska et al., [2]). Often affecting the young and athletes, early diagnosis of ACM can be complicated as incomplete penetrance with variable expressivity are common characteristics (Wlodarska et al., [2]; Corrado et al., [3]). That said, of the five desmosomal genes implicated in ACM, pathogenic variants in desmocollin-2 (DSC2) and desmoglein-2 (DSG2) have been discovered in both an autosomal-recessive and autosomal-dominant pattern (Wong et al., [4]; Qadri et al., [5]; Chen et al., [6]). Originally known as arrhythmogenic right ventricular dysplasia (ARVD), due to its RV prevalence and manifesting in the young, the disease was first described in 1736 by Giovanni Maria Lancisi in his book "De Motu Cordis et Aneurysmatibus" (Lancisi [7]). However, the first comprehensive clinical description and recognition of this dreadful disease was by Guy Fontaine and Frank Marcus in 1982 (Marcus et al., [8]). These two esteemed pathologists evaluated twenty-two (n = 22/24) young adult patients with recurrent ventricular tachycardia (VT) and RV dysplasia (Marcus et al., [8]). Initially, ARVD was thought to be the result of partial or complete congenital absence of ventricular myocardium during embryonic development (Nava et al., [9]). However, further research into the clinical and pathological manifestations revealed acquired progressive fibrofatty replacement of the myocardium (McKenna et al., [10]); and, in 1995, ARVD was classified as a primary cardiomyopathy by the World Health Organization (Richardson et al., [11]). Thus, now classifying ACM as a cardiomyopathy (i.e., ARVC) rather than a dysplasia (i.e., ARVD). Even more recently, ARVC has shifted from its recognition as a primarily RV disease (i.e., ARVC) to include left-dominant (i.e., ALVC) and biventricular subtypes (i.e., ACM) as well (Saguner et al., [12]), prompting the use of the more general term arrhythmogenic cardiomyopathy (ACM). This review aims to discuss pathogenesis, clinical and pathological phenotypes, basic and translational research on the role of inflammation, and clinical trials aimed to prevent disease onset and progression.
Collapse
Affiliation(s)
- Morgan Engel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America; Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, United States of America
| | - Emily A Shiel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America
| | - Stephen P Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
12
|
Spampinato RA, Marin-Cuartas M, van Kampen A, Fahr F, Sieg F, Strotdrees E, Jahnke C, Klaeske K, Wiesner K, Morningstar JE, Nagata Y, Izquierdo-Garcia D, Dieterlen MT, Norris RA, Levine RA, Paetsch I, Borger MA. Left ventricular fibrosis and CMR tissue characterization of papillary muscles in mitral valve prolapse patients. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:213-224. [PMID: 37891450 DOI: 10.1007/s10554-023-02985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE Mitral valve prolapse (MVP) is associated with left ventricle (LV) fibrosis, including the papillary muscles (PM), which is in turn linked to malignant arrhythmias. This study aims to evaluate comprehensive tissue characterization of the PM by cardiovascular magnetic resonance (CMR) imaging and its association with LV fibrosis observed by intraoperative biopsies. METHODS MVP patients with indication for surgery due to severe mitral regurgitation (n = 19) underwent a preoperative CMR with characterization of the PM: dark-appearance on cine, T1 mapping, conventional bright blood (BB) and dark blood (DB) late gadolinium enhancement (LGE). CMR T1 mapping was performed on 21 healthy volunteers as controls. LV inferobasal myocardial biopsies were obtained in MVP patients and compared to CMR findings. RESULTS MVP patients (54 ± 10 years old, 14 male) had a dark-appearance of the PM with higher native T1 and extracellular volume (ECV) values compared with healthy volunteers (1096 ± 78ms vs. 994 ± 54ms and 33.9 ± 5.6% vs. 25.9 ± 3.1%, respectively, p < 0.001). Seventeen MVP patients (89.5%) had fibrosis by biopsy. BB-LGE + in LV and PM was identified in 5 (26.3%) patients, while DB-LGE + was observed in LV in 9 (47.4%) and in PM in 15 (78.9%) patients. DB-LGE + in PM was the only technique that showed no difference with detection of LV fibrosis by biopsy. Posteromedial PM was more frequently affected than the anterolateral (73.7% vs. 36.8%, p = 0.039) and correlated with biopsy-proven LV fibrosis (Rho 0.529, p = 0.029). CONCLUSIONS CMR imaging in MVP patients referred for surgery shows a dark-appearance of the PM with higher T1 and ECV values compared with healthy volunteers. The presence of a positive DB-LGE at the posteromedial PM by CMR may serve as a better predictor of biopsy-proven LV inferobasal fibrosis than conventional CMR techniques.
Collapse
Affiliation(s)
- Ricardo A Spampinato
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany.
| | - Mateo Marin-Cuartas
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Antonia van Kampen
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Fahr
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Franz Sieg
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Elfriede Strotdrees
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Cosima Jahnke
- Department of Cardiology and Electrophysiology, Leipzig Heart Center, Leipzig, Germany
| | - Kristin Klaeske
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Karoline Wiesner
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Jordan E Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yasufumi Nagata
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Izquierdo-Garcia
- The Institute for Innovation in Imaging, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ingo Paetsch
- Department of Cardiology and Electrophysiology, Leipzig Heart Center, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, University, Leipzig Heart Center, Struempellstrasse 39, 04289, Leipzig, Germany
| |
Collapse
|
13
|
Meng Y, Xi T, Fan J, Yang Q, Ouyang J, Yang J. The inhibition of FTO attenuates the antifibrotic effect of leonurine in rat cardiac fibroblasts. Biochem Biophys Res Commun 2024; 693:149375. [PMID: 38128243 DOI: 10.1016/j.bbrc.2023.149375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Myocardial fibrosis (MF) is a common pathological condition in cardiovascular diseases that often causes severe cardiac dysfunction. MF is characterized by changes in cardiomyocytes, cardiac fibroblasts (CFs), levels of collagen (Col) -1, -3, and overdeposition of the extracellular matrix. Our previous research showed that leonurine (LE) effectively inhibits collagen synthesis and differentiation of CFs, but the mechanism is not fully elucidated. Recent evidence indicates that fat mass and obesity-associated proteins (FTO) regulates the occurrence and development of MF. This study aimed to explore the role of FTO in the antifibrotic effects of LE. METHODS Neonatal rat CFs were isolated, and induced using angiotensin II (Ang II) to establish a cell model of MF. Cell viability, wound healing and transwell assays were used to detect cell activity and migration ability. The protein and mRNA levels of MF-related factors were measured following stimulation with Ang II and LE under normal conditions or after FTO knockdown. The RNA methylation level was measured by dot blot assay. RESULTS The results showed that LE (20, 40 μM) was not toxic to normal CFs. LE reduced the proliferation, migration and collagen synthesis of Ang II-induced CFs. Further investigation showed that FTO was downregulated by Ang II stimulation, whereas LE reversed this effect. FTO knockdown facilitated the migration of CFs, upregulated the protein levels of Col-3, α-SMA and Col-1 in Ang II and LE-stimulated CFs, and enhanced the fluorescence intensity of α-SMA. Furthermore, LE reduced N6-methyladenosine (m6A) RNA methylation, which was partially blocked by FTO knockdown. FTO knockdown also reduced the expression levels of p53 protein in Ang II and LE-stimulated CFs. CONCLUSIONS Our findings suggest that the inhibition of FTO may attenuate the antifibrotic effect of LE in CFs, suggesting that FTO may serve as a key protein for anti-MF of LE.
Collapse
Affiliation(s)
- Yuwei Meng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Zhang H, Guo H, Liu G, Wu C, Ma Y, Li S, Zheng Y, Zhang J. CT for the evaluation of myocardial extracellular volume with MRI as reference: a systematic review and meta-analysis. Eur Radiol 2023; 33:8464-8476. [PMID: 37378712 DOI: 10.1007/s00330-023-09872-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Myocardial extracellular volume (ECV) fraction is an important imaging biomarker in clinical decision-making. CT-ECV is a potential alternative to MRI for ECV quantification. We conducted a meta-analysis to comprehensively assess the reliability of CT for ECV quantification with MRI as a reference. METHODS We systematically searched PubMed, EMBASE, and the Cochrane Library for relevant articles published since the establishment of the database in July 2022. The articles comparing CT-ECV with MRI as a reference were included. Meta-analytic methods were applied to determine the pooled weighted bias, limits of agreement (LOA), and correlation coefficient (r) between CT-ECV and MRI-ECV. RESULTS Seventeen studies with a total of 459 patients and 2231 myocardial segments were included. The pooled mean difference (MD), LOA, and r for ECV quantification at the per-patient level was (0.07%; 95% LOA: - 0.42 to 0.55%) and 0.89 (95% CI: 0.86-0.91), respectively, while on the per-segment level was (0.44%; 95% LOA: 0.16-0.72%) and 0.84 (95% CI: 0.82-0.85), respectively. The pooled r from studies with the ECViodine method for ECV quantification was significantly higher compared to those with the ECVsub method (0.94 (95% CI: 0.91-0.96) vs. 0.84 (95% CI: 0.80-0.88), respectively, p = 0.03). The pooled r from septal segments was significantly higher than those from non-septal segments (0.88 (95% CI: 0.86-0.90) vs. 0.76 (95% CI: 0.71-0.90), respectively, p = 0.009). CONCLUSION CT showed a good agreement and excellent correlation with MRI for ECV quantification and is a potentially attractive alternative to MRI. CLINICAL RELEVANCE STATEMENT The myocardial extracellular volume fraction can be acquired using a CT scan, which is not only a viable alternative to myocardial extracellular volume fraction derived from MRI but is also less time-consuming and costly for patients. KEY POINTS • Noninvasive CT-ECV is a viable alternative to MRI-ECV for ECV quantification. • CT-ECV using the ECViodine method showed more accurate myocardial ECV quantification than ECVsub. • Septal myocardial segments showed lower measurement variability than non-septal segments for the ECV quantification.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Huimin Guo
- Department of Radiology, Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450003, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Chuang Wu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Yurong Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Shilan Li
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Yurong Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, No.82 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China.
| |
Collapse
|
15
|
Zeng X, Zhao R, Wu Z, Ma Z, Cen C, Gao S, Hong W, Yao Y, Wen K, Ding S, Wang J, Lu W, Wang X, Wang T. [ 18 F] -FAPI-42 PET/CT assessment of Progressive right ventricle fibrosis under pressure overload. Respir Res 2023; 24:270. [PMID: 37932744 PMCID: PMC10626814 DOI: 10.1186/s12931-023-02565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Right heart failure (RHF) is a complication of pulmonary hypertension (PH) and increases the mortality independently of the underlying disease. However, the process of RHF development and progression is not fully understood. We aimed to develop effective approaches for early diagnosis and precise evaluation of RHF. METHODS Right ventricle (RV) pressure overload was performed via pulmonary artery banding (PAB) surgery in Sprague-Dawley (SD) rats to induce RHF. Echocardiography, right heart catheterization, histological staining, fibroblast activation protein (FAP) immunofluorescence and 18 F-labelled FAP inhibitor-42 ([18 F] -FAPI-42) positron emission tomography/computed tomography (PET/CT) were performed at day 3, week 1, 2, 4 and 8 after PAB. RNA sequencing was performed to explore molecular alterations between PAB and sham group at week 2 and week 4 after PAB respectively. RESULTS RV hemodynamic disorders were aggravated, and RV function was declined based on right heart catheterization and echocardiography at week 2, 4 and 8 after PAB. Progressive cardiac hypertrophy, fibrosis and capillary rarefaction could be observed in RV from 2 to 8 weeks after PAB. RNA sequencing indicated 80 upregulated genes and 43 downregulated genes in the RV at both week 2 and week 4 after PAB; Gene Ontology (GO) analysis revealed that fibrosis as the most significant biological process in the RV under pressure overload. Immunofluorescence indicated that FAP was upregulated in the RV from week 2 to week 8 after PAB; and [18 F] -FAPI-42 PET/CT revealed FAPI uptake was significantly higher in RV at week 2 and further increased at week 4 and 8 after PAB. CONCLUSION RV function is progressively declined with fibrosis as the most prominent molecular change after pressure overload, and [18 F] -FAPI-42 PET/CT is as sensitive and accurate as histopathology in RV fibrosis evaluation.
Collapse
Affiliation(s)
- Xiaohui Zeng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhixiong Wu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuoji Ma
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxian Cen
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Gao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wanxian Hong
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanrong Yao
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kexin Wen
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shangwei Ding
- Department of Ultrasound, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinlu Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Kamimura D, Hall ME. Can Any Electrocardiographic Indicators Reflect Myocardial Fibrosis? Am J Cardiol 2023; 206:372-374. [PMID: 37689495 DOI: 10.1016/j.amjcard.2023.08.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Affiliation(s)
- Daisuke Kamimura
- Department of Clinical Laboratory, Yokohama City University Hospital, Yokohama, Japan; Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
17
|
Wagdy R, Fathy A, Elnekidy A, Salaheldin G, Nazir H, Fahmy R, Elkafrawy H, Elkafrawy F. Evaluation of cardiac fibrosis and subclinical cardiac changes in children with sickle cell disease using magnetic resonance imaging, echocardiography, and serum galectin-3. Pediatr Radiol 2023; 53:2515-2527. [PMID: 37715793 PMCID: PMC10635955 DOI: 10.1007/s00247-023-05750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Myocardial fibrosis has recently been proposed as one of the contributing factors to the diverse pathogenicity of cardiomyopathy in sickle cell disease. OBJECTIVE In this study, cardiac fibrosis and subclinical cardiac changes in children with sickle cell disease were evaluated using cardiac magnetic resonance imaging (MRI), tissue Doppler echocardiography and serum galectin-3. MATERIALS AND METHODS The study included 34 children with sickle cell disease who were compared with a similar number of healthy controls. Cardiac MRI was used to evaluate late gadolinium enhancement, native T1 mapping, extracellular volume, and T2* for estimation of iron load. Cardiac function and myocardial performance index (MPI, evaluated by tissue Doppler echocardiography) and serum galectin-3 were compared to controls. RESULTS The mean age of the included patients was 13.3 ± 3.2 years. Myocardial iron load by T2* was normal. The mean level of extracellular volume (35.41 ± 5.02%) was significantly associated with the frequency of vaso-occlusive crises (P = 0.017) and negatively correlated with hemoglobin levels (P = 0.005). Galectin-3 levels were significantly higher among cases than controls (P = 0.00), at a cutoff value on the receiver operating characteristic curve of 6.5 ng/ml, sensitivity of 82.5% and specificity of 72.8%. The extracellular volume was significantly higher in cases, with a MPI > 0.4. CONCLUSION Diffuse interstitial myocardial fibrosis can be detected early in children with sickle cell disease using T1 mapping and is associated with a high frequency of vaso-occlusive crisis. MPI of the left ventricle and serum galectin-3 are recommended screening tools for subclinical cardiac abnormalities.
Collapse
Affiliation(s)
- Reham Wagdy
- Department of Pediatrics, Pediatrics Cardiology Unit, Faculty of Medicine, Alexandria University, Alexandria, 21648, Egypt.
| | - Alaa Fathy
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Abdelaziz Elnekidy
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Geylan Salaheldin
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hanan Nazir
- Department of Pediatrics, Faculty of Medicine, Hematology Unit, Alexandria University, Alexandria, Egypt
| | - Rana Fahmy
- Department of Pediatrics, Pediatrics Cardiology Unit, Faculty of Medicine, Alexandria University, Alexandria, 21648, Egypt
| | - Hagar Elkafrawy
- Department of Medial Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma Elkafrawy
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Xie B, Li L, Lin M, Nanna M, Su Y, Hua C, Leng C, Gan Q, Xi XY, Wang Y, Yao D, Wang L, Yu L, Zhao L, Zhang YP, Dou K, Su P, Lv X, Jia B, Yang MF. 99mTc-HFAPi imaging identifies early myocardial fibrosis in the hypertensive heart. J Hypertens 2023; 41:1645-1652. [PMID: 37642593 DOI: 10.1097/hjh.0000000000003517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND This study aimed to explore whether 99mTc-radiolabeled fibroblast activation protein inhibitor (99mTc-HFAPi) imaging can detect early myocardial fibrosis in the hypertensive heart. METHODS In the experimental model, spontaneously hypertensive rats (SHRs) and age-matched Wistar Kyoto rats (WKYs) were randomly divided into three groups (8, 16, and 28 weeks). The animals underwent 99mTc-HFAPi imaging and echocardiography. Autoradiography and histological analyses were performed in the left ventricle. The mRNA and protein expression level of the fibroblast activation protein (FAP) and collagen I were measured using quantitative PCR and western blot. In the clinical investigation, a total of 106 patients with essential hypertension and 20 gender-matched healthy controls underwent 99mTc-HFAPi imaging and echocardiography. RESULTS In-vivo and in-vitro autographic images demonstrated diffusely enhanced 99mTc-HFAPi uptake in the SHR heart starting at week 8, before irreversible collagen deposition. The mRNA and protein levels of FAP in SHRs began to increase from week 8, whereas changes in collagen I levels were not detected until week 28. In the clinical investigation, even in hypertensive patients with normal diastolic indicators, normal left ventricular geometry, and normal global longitudinal strain (GLS), the prevalence of increased 99mTc-HFAPi uptake reached 34, 41, and 20%, respectively, indicating that early fibrogenesis precedes structural and functional myocardial abnormalities. CONCLUSION In hypertension, 99mTc-HFAPi imaging can detect early fibrotic process before myocardial functional and structural changes.
Collapse
Affiliation(s)
- Boqia Xie
- Department of Cardiology, Cardiovascular Imaging Center
| | - Lina Li
- Department of Nuclear Medicine
| | - Mingming Lin
- Department of Echocardiography, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Michele Nanna
- Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, USA
| | - Yao Su
- Department of Nuclear Medicine
| | - Cuncun Hua
- Department of Cardiology, Cardiovascular Imaging Center
| | - Chenlei Leng
- Department of Echocardiography, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | - Yidan Wang
- Department of Cardiology, Cardiovascular Imaging Center
| | | | - Li Wang
- Department of Nuclear Medicine
| | - Liping Yu
- Department of Cardiology, Cardiovascular Imaging Center
| | - Lei Zhao
- Department of Cardiology, Cardiovascular Imaging Center
| | - Ye-Ping Zhang
- Department of Cardiology, Cardiovascular Imaging Center
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Pixiong Su
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University
| | - Xiuzhang Lv
- Department of Echocardiography, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | | |
Collapse
|
19
|
Kasa G, Bayes-Genis A, Delgado V. Latest Updates in Heart Failure Imaging. Heart Fail Clin 2023; 19:407-418. [PMID: 37714583 DOI: 10.1016/j.hfc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Heart failure (HF), a challenging and heterogeneous syndrome, still remains a major health problem worldwide, despite all the advances in prevention, diagnosis, and treatment of cardiovascular disease. Cardiac imaging plays a pivotal role in the classification of HF, accurate diagnosis of underlying etiology and decision-making. Integration of other imaging techniques such as cardiac magnetic resonance, nuclear imaging, and exercise imaging testing is important to characterize HF accurately. This article reviews the role of multimodality imaging to diagnose patients with HF.
Collapse
Affiliation(s)
- Gizem Kasa
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Antoni Bayes-Genis
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Victoria Delgado
- Cardiovascular Imaging Section, Department of Cardiology, Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
20
|
Mpanya D, Sathekge M, Klug E, Damelin J, More S, Hadebe B, Vorster M, Tsabedze N. Gallium-68 fibroblast activation protein inhibitor positron emission tomography in cardiovascular disease. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1224905. [PMID: 39355018 PMCID: PMC11440833 DOI: 10.3389/fnume.2023.1224905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 10/03/2024]
Abstract
Gallium-68 fibroblast activation protein inhibitor [(68Ga)Ga-FAPI] is a new radiopharmaceutical positioning itself as the preferred agent in patients with malignant tumours, competing with 2-Deoxy-2-[18F]fluoro-d-glucose [2-(18F)FDG] using positron emission tomography (PET). While imaging oncology patients with [68Ga]Ga-FAPI PET, incidental uptake of [68Ga]Ga-FAPI has been detected in the myocardium. This review summarises original research studies associating the visualisation of FAPI-based tracers in the myocardium with underlying active cardiovascular disease.
Collapse
Affiliation(s)
- Dineo Mpanya
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
- Nuclear Medicine Research Infrastructure, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Eric Klug
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Netcare Sunninghill, Sunward Park Hospitals, Johannesburg, South Africa
| | - Jenna Damelin
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stuart More
- Division of Nuclear Medicine, Department of Radiation Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bawinile Hadebe
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
- Department of Nuclear Medicine, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
- Department of Nuclear Medicine, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Nqoba Tsabedze
- Division of Cardiology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Neuber S, Ermer MR, Emmert MY, Nazari-Shafti TZ. Treatment of Cardiac Fibrosis with Extracellular Vesicles: What Is Missing for Clinical Translation? Int J Mol Sci 2023; 24:10480. [PMID: 37445658 PMCID: PMC10342089 DOI: 10.3390/ijms241310480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Heart failure is the leading cause of morbidity and mortality and currently affects more than 60 million people worldwide. A key feature in the pathogenesis of almost all forms of heart failure is cardiac fibrosis, which is characterized by excessive accumulation of extracellular matrix components in the heart. Although cardiac fibrosis is beneficial in the short term after acute myocardial injury to preserve the structural and functional integrity of the heart, persistent cardiac fibrosis contributes to pathological cardiac remodeling, leading to mechanical and electrical dysfunction of the heart. Despite its high prevalence, standard therapies specifically targeting cardiac fibrosis are not yet available. Cell-based approaches have been extensively studied as potential treatments for cardiac fibrosis, but several challenges have been identified during clinical translation. The observation that extracellular vesicles (EVs) derived from stem and progenitor cells exhibit some of the therapeutic effects of the parent cells has paved the way to overcome limitations associated with cell therapy. However, to make EV-based products a reality, standardized methods for EV production, isolation, characterization, and storage must be established, along with concrete evidence of their safety and efficacy in clinical trials. This article discusses EVs as novel therapeutics for cardiac fibrosis from a translational perspective.
Collapse
Affiliation(s)
- Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
| | - Miriam R. Ermer
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
- Institute for Regenerative Medicine, University of Zurich, 8044 Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (M.R.E.); (M.Y.E.); (T.Z.N.-S.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13353 Berlin, Germany
| |
Collapse
|
22
|
Raman SV, Chandrashekhar Y. Myocardial Fibrosis: A Viable Imaging Target in Diastolic Dysfunction and Heart Failure? JACC Cardiovasc Imaging 2023; 16:870-872. [PMID: 37286275 DOI: 10.1016/j.jcmg.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
23
|
Mayola MF, Thackeray JT. The Potential of Fibroblast Activation Protein-Targeted Imaging as a Biomarker of Cardiac Remodeling and Injury. Curr Cardiol Rep 2023; 25:515-523. [PMID: 37126137 PMCID: PMC10188581 DOI: 10.1007/s11886-023-01869-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease features adverse fibrotic processes within the myocardium, leading to contractile dysfunction. Activated cardiac fibroblasts play a pivotal role in the remodeling and progression of heart failure, but conventional diagnostics struggle to identify early changes in cardiac fibroblast dynamics. Emerging imaging methods visualize fibroblast activation protein (FAP) as a marker of activated fibroblasts, enabling non-invasive quantitative measurement of early cardiac remodeling. RECENT FINDINGS Retrospective analysis of oncology patient cohorts has identified cardiac uptake of FAP radioligands in response to various cardiovascular conditions. Small scale studies in dedicated cardiac populations have revealed FAP upregulation in injured myocardium, wherein the area of upregulation predicts subsequent ventricle dysfunction. Recent studies have demonstrated that silencing of FAP-expressing fibroblasts can reverse cardiac fibrosis in disease models. The parallel growth of FAP-targeted imaging and therapy provides the opportunity for imaging-based monitoring and refinement of treatments targeting cardiac fibroblast activation.
Collapse
Affiliation(s)
- Maday Fernandez Mayola
- Department of Nuclear Medicine, Hannover Medical School, Translational Cardiovascular Molecular Imaging, Carl Neuberg Str 1, 30625, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Translational Cardiovascular Molecular Imaging, Carl Neuberg Str 1, 30625, Hannover, Germany.
| |
Collapse
|
24
|
Spampinato RA, Marin-Cuartas M, Kampen A, Fahr F, Sieg F, Strotdrees E, Jahnke C, Klaeske K, Wiesner K, Morningstar JE, Nagata Y, Izquierdo-Garcia D, Dieterlen MT, Norris RA, Levine RA, Paetsch I, Borger MA. Left Ventricular Fibrosis and CMR Tissue Characterization of Papillary Muscles in Mitral Valve Prolapse Patients. RESEARCH SQUARE 2023:rs.3.rs-2936590. [PMID: 37292932 PMCID: PMC10246246 DOI: 10.21203/rs.3.rs-2936590/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose Mitral valve prolapse (MVP) is associated with left ventricle (LV) fibrosis, including the papillary muscles (PM), which is in turn linked to malignant arrhythmias. This study aims to evaluate comprehensive tissue characterization of the PM by cardiovascular magnetic resonance (CMR) imaging and its association with LV fibrosis observed by intraoperative biopsies. Methods MVP patients with indication for surgery due to severe mitral regurgitation (n=19) underwent a preoperative CMR with characterization of the PM: dark-appearance on cine, T1 mapping, conventional bright blood (BB) and dark blood (DB) late gadolinium enhancement (LGE). CMR T1 mapping was performed on 21 healthy volunteers as controls. LV inferobasal myocardial biopsies were obtained in MVP patients and compared to CMR findings. Results MVP patients (54±10 years old, 14 male) had a dark-appearance of the PM with higher native T1 and extracellular volume (ECV) values compared with healthy volunteers (1096±78ms vs 994±54ms and 33.9±5.6% vs 25.9±3.1%, respectively, p<0.001). Seventeen MVP patients (89.5%) had fibrosis by biopsy. BB-LGE+ in LV and PM was identified in 5 (26.3%) patients, while DB-LGE+ was observed in LV in 9 (47.4%) and in PM in 15 (78.9%) patients. DB-LGE+ in PM was the only technique that showed no difference with detection of LV fibrosis by biopsy. Posteromedial PM was more frequently affected than the anterolateral (73.7% vs 36.8%, p=0.039) and correlated with biopsy-proven LV fibrosis (Rho 0.529, p=0.029). Conclusions CMR imaging in MVP patients referred for surgery shows a dark-appearance of the PM with higher T1 and ECV values compared with healthy volunteers. The presence of a positive DB-LGE at the posteromedial PM by CMR may serve as a better predictor of biopsy-proven LV inferobasal fibrosis than conventional CMR techniques.
Collapse
|
25
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
26
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
27
|
Dieterlen MT, Klaeske K, Spampinato R, Marin-Cuartas M, Wiesner K, Morningstar J, Norris RA, Melnitchouk S, Levine RA, van Kampen A, Borger MA. Histopathological insights into mitral valve prolapse-induced fibrosis. Front Cardiovasc Med 2023; 10:1057986. [PMID: 36960475 PMCID: PMC10028262 DOI: 10.3389/fcvm.2023.1057986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Mitral valve prolapse (MVP) is a cardiac valve disease that not only affects the mitral valve (MV), provoking mitral regurgitation, but also leads to maladaptive structural changes in the heart. Such structural changes include the formation of left ventricular (LV) regionalized fibrosis, especially affecting the papillary muscles and inferobasal LV wall. The occurrence of regional fibrosis in MVP patients is hypothesized to be a consequence of increased mechanical stress on the papillary muscles and surrounding myocardium during systole and altered mitral annular motion. These mechanisms appear to induce fibrosis in valve-linked regions, independent of volume-overload remodeling effects of mitral regurgitation. In clinical practice, quantification of myocardial fibrosis is performed with cardiovascular magnetic resonance (CMR) imaging, even though CMR has sensitivity limitations in detecting myocardial fibrosis, especially in detecting interstitial fibrosis. Regional LV fibrosis is clinically relevant because even in the absence of mitral regurgitation, it has been associated with ventricular arrhythmias and sudden cardiac death in MVP patients. Myocardial fibrosis may also be associated with LV dysfunction following MV surgery. The current article provides an overview of current histopathological studies investigating LV fibrosis and remodeling in MVP patients. In addition, we elucidate the ability of histopathological studies to quantify fibrotic remodeling in MVP and gain deeper understanding of the pathophysiological processes. Furthermore, molecular changes such as alterations in collagen expression in MVP patients are reviewed.
Collapse
Affiliation(s)
- Maja-Theresa Dieterlen
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Kristin Klaeske
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Ricardo Spampinato
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Mateo Marin-Cuartas
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Karoline Wiesner
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| | - Jordan Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Antonia van Kampen
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael A. Borger
- University Department of Cardiac Surgery, Heart Center Leipzig, HELIOS Clinic, Leipzig, Germany
| |
Collapse
|
28
|
Clinical Utility of Strain Imaging in Assessment of Myocardial Fibrosis. J Clin Med 2023; 12:jcm12030743. [PMID: 36769393 PMCID: PMC9917743 DOI: 10.3390/jcm12030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Myocardial fibrosis (MF) is a non-reversible process that occurs following acute or chronic myocardial damage. MF worsens myocardial deformation, remodels the heart and raises myocardial stiffness, and is a crucial pathological manifestation in patients with end-stage cardiovascular diseases and closely related to cardiac adverse events. Therefore, early quantitative analysis of MF plays an important role in risk stratification, clinical decision, and improvement in prognosis. With the advent and development of strain imaging modalities in recent years, MF may be detected early in cardiovascular diseases. This review summarizes the clinical usefulness of strain imaging techniques in the non-invasive assessment of MF.
Collapse
|
29
|
Proteomic Insights into Cardiac Fibrosis: From Pathophysiological Mechanisms to Therapeutic Opportunities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248784. [PMID: 36557919 PMCID: PMC9781843 DOI: 10.3390/molecules27248784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic process in nearly all forms of heart disease which refers to excessive deposition of extracellular matrix proteins by cardiac fibroblasts. Activated fibroblasts are the central cellular effectors in cardiac fibrosis, and fibrotic remodelling can cause several cardiac dysfunctions either by reducing the ejection fraction due to a stiffened myocardial matrix, or by impairing electric conductance. Recently, there is a rising focus on the proteomic studies of cardiac fibrosis for pathogenesis elucidation and potential biomarker mining. This paper summarizes the current knowledge of molecular mechanisms underlying cardiac fibrosis, discusses the potential of imaging and circulating biomarkers available to recognize different phenotypes of this lesion, reviews the currently available and potential future therapies that allow individualized management in reversing progressive fibrosis, as well as the recent progress on proteomic studies of cardiac fibrosis. Proteomic approaches using clinical specimens and animal models can provide the ability to track pathological changes and new insights into the mechanisms underlining cardiac fibrosis. Furthermore, spatial and cell-type resolved quantitative proteomic analysis may also serve as a minimally invasive method for diagnosing cardiac fibrosis and allowing for the initiation of prophylactic treatment.
Collapse
|
30
|
Zhu L, Wang Y, Zhao S, Lu M. Detection of myocardial fibrosis: Where we stand. Front Cardiovasc Med 2022; 9:926378. [PMID: 36247487 PMCID: PMC9557071 DOI: 10.3389/fcvm.2022.926378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial fibrosis, resulting from the disturbance of extracellular matrix homeostasis in response to different insults, is a common and important pathological remodeling process that is associated with adverse clinical outcomes, including arrhythmia, heart failure, or even sudden cardiac death. Over the past decades, multiple non-invasive detection methods have been developed. Laboratory biomarkers can aid in both detection and risk stratification by reflecting cellular and even molecular changes in fibrotic processes, yet more evidence that validates their detection accuracy is still warranted. Different non-invasive imaging techniques have been demonstrated to not only detect myocardial fibrosis but also provide information on prognosis and management. Cardiovascular magnetic resonance (CMR) is considered as the gold standard imaging technique to non-invasively identify and quantify myocardial fibrosis with its natural ability for tissue characterization. This review summarizes the current understanding of the non-invasive detection methods of myocardial fibrosis, with the focus on different techniques and clinical applications of CMR.
Collapse
Affiliation(s)
- Leyi Zhu
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yining Wang
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shihua Zhao
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Minjie Lu
| |
Collapse
|
31
|
Upadhyaya A, Bhandiwad A, Lang J, Sadhu JS, Barrs C, Jain S, Brown DL, Peterson LR, Dehdashti F, Gropler RJ, Schindler TH. Coronary circulatory function with increasing obesity: A complex U-turn. Eur J Clin Invest 2022; 52:e13755. [PMID: 35103996 DOI: 10.1111/eci.13755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this investigation was to explore and characterize alterations in coronary circulatory function in function of increasing body weight with medically controlled cardiovascular risk factors and, thus, "metabolically" unhealthy obesity. MATERIALS AND METHODS We prospectively enrolled 106 patients with suspected CAD but with normal stress-rest myocardial perfusion on 13 N-ammonia PET/CT and with medically controlled or no cardiovascular risk factors. 13 N-ammonia PET/CT concurrently determined myocardial blood flow (MBF) during pharmacologically induced hyperaemia and at rest. Based on body mass index (BMI), patients were grouped into normal weight (BMI: 20.0-24.9 kg/m2 , n = 22), overweight (BMI: 25.0-29.9 kg/m2 , n = 27), obese (BMI: 30.0-39.9 kg/m2 , n = 31), and morbidly obese (BMI ≥ 40kg/m2 , n = 26). RESULTS Resting MBF was comparable among groups (1.09 ± 0.18 vs. 1.00 ± 0.15 vs. 0.96 ± 0.18 vs.. 1.06 ± 0.31 ml/g/min; p = .279 by ANOVA). Compared to normal weight individuals, the hyperaemic MBF progressively decreased in in overweight and obese groups, respectively (2.54 ± 0.48 vs. 2.02 ± 0.27 and 1.75 ± 0.39 ml/g/min; p < .0001), while it increased again in the group of morbidly obese individuals comparable to normal weight (2.44 ± 0.41 vs. 2.54 ± 0.48 ml/g/min, p = .192). The BMI of the study population correlated with the hyperaemic MBF in a quadratic or U-turn fashion (r = .34, SEE = 0.46; p ≤ .002). CONCLUSIONS The U-turn of hyperaemic MBF from obesity to morbid obesity is likely to reflect contrasting effects of abdominal versus subcutaneous adipose tissue on coronary circulatory function indicative of two different disease entities, but needing further investigations.
Collapse
Affiliation(s)
- Anand Upadhyaya
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anita Bhandiwad
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jordan Lang
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin S Sadhu
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chadwick Barrs
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sudhir Jain
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David L Brown
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda R Peterson
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Farrokh Dehdashti
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert J Gropler
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas Hellmuth Schindler
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Schindler TH, Valenta I. Another Step Toward Integrated MR/PET as Favored Imaging Modality in Cardiac Sarcoidosis. JACC Cardiovasc Imaging 2022; 15:457-459. [PMID: 35272810 DOI: 10.1016/j.jcmg.2021.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Thomas H Schindler
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St Louis, St Louis, Missouri, USA.
| | - Ines Valenta
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
33
|
Xie B, Wang J, Xi XY, Guo X, Chen BX, Li L, Hua C, Zhao S, Su P, Chen M, Yang MF. Fibroblast activation protein imaging in reperfused ST-elevation myocardial infarction: comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2022; 49:2786-2797. [PMID: 34984503 DOI: 10.1007/s00259-021-05674-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to explore the correlation of 18F-labeled fibroblast activation protein inhibitor (FAPI) and cardiovascular magnetic resonance (CMR) parameters in ST-elevation myocardial infarction (STEMI) patients with successful primary percutaneous coronary intervention (PPCI) and to investigate the value of FAPI imaging in predicting cardiac functional recovery, as well as the correlation between FAPI activity and circulating fibroblast activation protein (FAP) and inflammatory biomarkers. METHODS Fourteen first-time STEMI patients (11 men, mean age: 62 ± 11 years) after PPCI and 14 gender-matched healthy volunteers (10 men, mean age: 50 ± 14 years) who had completed FAPI imaging and blood sample collection were prospectively recruited. All patients underwent baseline FAPI imaging (6 ± 2 days post-MI) and CMR (8 ± 2 days post-MI). Ten patients had follow-up CMR (84 ± 4 days post-MI). Myocardial FAPI activity was analyzed for extent (the percentage of FAPI uptake volume over the left ventricular volume, FAPI%), intensity (target-to-background uptake ratio, TBRmax), and amount (FAPI% × TBRmax). Late gadolinium enhancement (LGE), T2-weighted imaging (T2WI), extracellular volume (ECV), microvascular obstruction (MVO), and cardiac function from CMR imaging were analyzed. Blood samples obtained on the day of FAPI imaging were used to assess circulating FAP, TGF-β1, TNF-α, IL-6, and hsCRP in STEMI patients and controls. RESULTS Localized but inhomogeneous FAPI uptake was observed in STEMI patients, which was larger than the edematous and infarcted myocardium, whereas no uptake was detected in controls. The MVO area showed lower FAPI uptake compared with the surrounding myocardium. FAPI activity was associated with the myocardial injury biomarkers T2WI, LGE, and ECV at both per-patient and per-segment levels (all p < 0.05), but was not associated with circulating FAP, TGF-β1, TNF-α, IL-6, or hsCRP. Among the CMR parameters, T2WI had the greatest correlation coefficient with both FAPI% and FAPI% × TBRmax. Baseline TBRmax was inversely correlated with the follow-up left ventricular ejection fraction (LVEF) (r = - 0.73, p = 0.02). CONCLUSION FAPI imaging detects more involved myocardium than CMR in reperfused STEMI, and is associated with myocardial damage and follow-up LVEF.
Collapse
Affiliation(s)
- Boqia Xie
- Cardiac Center, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Jiaxin Wang
- MR Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiao-Ying Xi
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Xiaojuan Guo
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Bi-Xi Chen
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Lina Li
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Cuncun Hua
- Cardiac Center, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Shihua Zhao
- MR Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Pixiong Su
- Cardiac Center, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Mulei Chen
- Cardiac Center, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| | - Min-Fu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
34
|
Wang H, Ding L, Tian L, Tian Y, Liao L, Zhao J. Empagliflozin reduces diffuse myocardial fibrosis by extracellular volume mapping: A meta-analysis of clinical studies. Front Endocrinol (Lausanne) 2022; 13:917761. [PMID: 36034443 PMCID: PMC9404239 DOI: 10.3389/fendo.2022.917761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of the study was to evaluate the effect of empagliflozin on diffuse myocardial fibrosis by cardiac magnetic resonance (CMR) T1 mapping. RESEARCH METHODS AND PROCEDURES Databases including PubMed, Cochrane library, Embase, and Sinomed for clinical studies of empagliflozin on myocardial fibrosis were searched. Two authors extracted the data and evaluated study quality independently. Weighted mean difference (WMD) and 95% confidence intervals (CI) were used for continuous variables. Review Manager 5.3 was used to performed the analysis. RESULTS Six studies were included in this meta-analysis. One of the six studies was assessed as poor quality by the assessment of methodological quality; however, the remaining five studies were considered good. The WMD value of △extracellular volume (ECV) was merged by the fixed-effect model, and the pooled effect size was -1.48 (95% CI -1.76 to -1.21, P < 0.00001), which means in favor of empagliflozin. Heterogeneity analysis did not find any heterogeneity (chi2 = 0.39, P = 0.82, I 2 = 0%). In addition, empagliflozin had a tendency to reduce ECV compared to treatment before with no statistical significance (WMD = -0.29, 95% CI -1.26 to 0.67, P = 0.55; heterozygosity test, chi2 = 2.66, P = 0.45, I 2 = 0%). The WMD value of △native T1 was also merged by the fixed-effect model, but the pooled effect size showed neither statistical difference between empagliflozin and placebo treatment (WMD = -5.40, 95% CI -21.63 to 10.83, P = 0.51) nor heterogeneity (chi2 = 0.05, P = 0.83, I 2 = 0%). CONCLUSIONS Empagliflozin has cardiovascular benefits by reducing diffuse myocardial fibrosis. ECV could act as a non-invasive imaging tool to assess diffuse myocardial fibrosis and monitor disease progression. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=324804, identifier: CRD42022324804.
Collapse
Affiliation(s)
- Haipeng Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, China
| | - Lin Ding
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liwen Tian
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Ji’nan, China
| | - Yutian Tian
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Liao, ; Junyu Zhao,
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lin Liao, ; Junyu Zhao,
| |
Collapse
|
35
|
Giordano C, Francone M, Cundari G, Pisano A, d'Amati G. Myocardial fibrosis: morphologic patterns and role of imaging in diagnosis and prognostication. Cardiovasc Pathol 2021; 56:107391. [PMID: 34601072 DOI: 10.1016/j.carpath.2021.107391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial fibrosis is defined as an increased amount of collagen in the myocardium relative to cardiac myocytes. Two main morphologic patterns are recognized: 1) replacement fibrosis, which occurs in response to myocyte necrosis (myocardial scarring); and 2) interstitial fibrosis, which is usually a diffuse process and has been shown to be reversible and treatable. Replacement and interstitial fibrosis often coexist and are a constant feature of pathologic cardiac remodeling. In the last twenty years, there has been significant interest in developing objective non-invasive methods to identify and quantitatively assess myocardial fibrosis in vivo, both for diagnostic purposes and to improve stratification of patients. The present Review focuses on the morphologic patterns of myocardial fibrosis observed either at autopsy and heart transplant, or in vivo by non-invasive imaging techniques. Main aim is to provide clues for the differential diagnosis, with emphasis on entities whose diagnosis may be challenging. An update on the diagnostic and prognostic role of imaging, along with recent data on available biomarkers, is also proposed.
Collapse
Affiliation(s)
- Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy.
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy
| | - Giulia Cundari
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Annalinda Pisano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|