1
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
La Monica MB, Raub B, Hartshorn S, Gustat AL, Grdic J, Kirby TO, Townsend JR, Sandrock J, Ziegenfuss TN. The effects of AG1® supplementation on the gut microbiome of healthy adults: a randomized, double-blind, placebo-controlled clinical trial. J Int Soc Sports Nutr 2024; 21:2409682. [PMID: 39352252 PMCID: PMC11445888 DOI: 10.1080/15502783.2024.2409682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/21/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND This study aimed to examine the effect of a commercially available multi-ingredient powder (AG1Ⓡ) on the gut microbiome and assess the impact of AG1Ⓡ on GI tolerability and other clinical safety markers in healthy men and women. METHODS Using a double-blind, randomized, two-arm, placebo-controlled, parallel design, we examined a 4-week daily supplementation regimen of AG1Ⓡ vs. placebo (PL). Fifteen men and 15 women provided stool samples for microbiome analysis, questionnaires for digestive quality of life (DQLQ), and completed visual analog scales (VAS) and Bristol stool charts to assess stool consistency and bowel frequency before and after the 4-week intervention. Participant's blood work (CBC, CMP, and lipid panel) was also assessed before and after the 4-week intervention. Alpha diversity was determined by Shannon and Chao1 index scores and evaluated by a two-way ANOVA, beta diversity in taxonomic abundances and functional pathways was visualized using partial least squares-discriminant analyses and statistically evaluated by PERMANOVA. To identify key biomarkers, specific feature differences in taxonomic relative abundance and normalized functional pathway counts were analyzed by linear discriminant analysis (LDA) effect size (LEfSe). Questionnaires, clinical safety markers, and hemodynamics were evaluated by mixed factorial ANOVAs with repeated measures. This study was registered on clinicaltrials.gov (NCT06181214). RESULTS AG1Ⓡ supplementation enriched two probiotic taxa (Lactobacillus acidophilus and Bifidobacterium bifidum) that likely stem from the probiotics species that exist in the product, as well as L. lactis CH_LC01 and Acetatifactor sp900066565 ASM1486575v1 while reducing Clostridium sp000435835. Regarding community function, AG1Ⓡ showed an enrichment of two functional pathways while diminishing none. Alternatively, the PL enriched six, but diminished five functional pathways. Neither treatment negatively impacted the digestive quality of life via DQLQ, bowel frequency via VAS, or stool consistency via VAS and Bristol. However, there may have been a greater improvement in the DQLQ score (+62.5%, p = 0.058, d = 0.73) after four weeks of AG1Ⓡ supplementation compared to a reduction (-50%) in PL. Furthermore, AG1Ⓡ did not significantly alter clinical safety markers following supplementation providing evidence for its safety profile. CONCLUSIONS AG1Ⓡ can be consumed safely by healthy adults over four weeks with a potential beneficial impact in their digestive symptom quality of life.
Collapse
Affiliation(s)
| | - Betsy Raub
- The Center for Applied Health Sciences, Canfield, OH, USA
| | | | | | - Jodi Grdic
- The Center for Applied Health Sciences, Canfield, OH, USA
| | - Trevor O. Kirby
- AG1, Research, Nutrition, and Innovation, Carson City, NV, USA
| | - Jeremy R. Townsend
- AG1, Research, Nutrition, and Innovation, Carson City, NV, USA
- Concordia University Chicago, Health & Human Performance, River Forest, IL, USA
| | - Jen Sandrock
- The Center for Applied Health Sciences, Canfield, OH, USA
| | | |
Collapse
|
3
|
Wolff R, Garud NR. Pervasive selective sweeps across human gut microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573162. [PMID: 38187688 PMCID: PMC10769429 DOI: 10.1101/2023.12.22.573162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human gut microbiome is composed of a highly diverse consortia of species which are continually evolving within and across hosts. The ability to identify adaptations common to many human gut microbiomes would not only reveal shared selection pressures across hosts, but also key drivers of functional differentiation of the microbiome that may affect community structure and host traits. However, to date there has not been a systematic scan for adaptations that have spread across human gut microbiomes. Here, we develop a novel selection scan statistic named the integrated Linkage Disequilibrium Score (iLDS) that can detect the spread of adaptive haplotypes across host microbiomes via migration and horizontal gene transfer. Specifically, iLDS leverages signals of hitchhiking of deleterious variants with the beneficial variant. Application of the statistic to ~30 of the most prevalent commensal gut species from 24 populations around the world revealed more than 300 selective sweeps across species. We find an enrichment for selective sweeps at loci involved in carbohydrate metabolism-potentially indicative of adaptation to features of host diet-and we find that the targets of selection significantly differ between Westernized and non-Westernized populations. Underscoring the potential role of diet in driving selection, we find a selective sweep absent from non-Westernized populations but ubiquitous in Westernized populations at a locus known to be involved in the metabolism of maltodextrin, a synthetic starch that has recently become a widespread component of Western diets. In summary, we demonstrate that selective sweeps across host microbiomes are a common feature of the evolution of the human gut microbiome, and that targets of selection may be strongly impacted by host diet.
Collapse
Affiliation(s)
- Richard Wolff
- Department of Ecology and Evolutionary Biology, UCLA
| | - Nandita R. Garud
- Department of Ecology and Evolutionary Biology, UCLA
- Department of Human Genetics, UCLA
| |
Collapse
|
4
|
Walraven T, Busch M, Wang J, Donkers JM, Duijvestein M, van de Steeg E, Kramer NI, Bouwmeester H. Elevated risk of adverse effects from foodborne contaminants and drugs in inflammatory bowel disease: a review. Arch Toxicol 2024; 98:3519-3541. [PMID: 39249550 PMCID: PMC11489187 DOI: 10.1007/s00204-024-03844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this susceptible subgroup of the population in future toxicological assessments.
Collapse
Affiliation(s)
- Tom Walraven
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Gupta E, Conway AE, Verdi M, Groetch M, Anagnostou A, Abrams EM, Nowak-Wegrzyn A, Bukstein D, Madan JC, Hand M, Garnaat SL, Shaker MS. Food Allergy, Nutrition, Psychology, and Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024:S2213-2198(24)01053-5. [PMID: 39393524 DOI: 10.1016/j.jaip.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
This article explores food allergy and the nascent field of nutritional psychiatry. Individuals with food allergy experience lower levels of "food freedom" than their nonallergic counterparts, which can create cognitive, emotional, social, nutritional, and financial burdens. Patterns of food avoidance may influence neuroinflammatory states and the gut microbiome; these changes may be associated with neuropsychiatric symptoms. Food restriction may promote disruption of the microbiome neuroimmune axis, which has been linked to various allergic diseases. Targeted psychological counseling strategies can provide benefit. Food allergy and restricted diets may impact dietary health benefits.
Collapse
Affiliation(s)
- Elena Gupta
- Geisel School of Medicine at Dartmouth, Hanover, NH
| | | | | | - Marion Groetch
- Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aikaterini Anagnostou
- Department of Pediatrics, Division of Allergy and Immunology, Baylor College of Medicine, Houston, Texas
| | - Elissa M Abrams
- Section of Allergy and Clinical Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Anna Nowak-Wegrzyn
- Department of Population Health, NYU Grossman School of Medicine, New York, NY; Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Don Bukstein
- Allergy, Asthma, and Sinus Center, Milwaukee, Wis
| | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH; Departments of Pediatrics and Psychiatry, Division of Child Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Matthew Hand
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH; Section of Pediatric Nephrology, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Sarah L Garnaat
- Department of Psychiatry, Geisel School of Medicine, Hanover, NH; Department of Psychiatry, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Marcus S Shaker
- Section of Allergy and Immunology, Dartmouth-Hitchcock Medical Center, Lebanon, NH; Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH.
| |
Collapse
|
6
|
Wang H, Bai J, Miao P, Wei Y, Chen X, Lan H, Qing Y, Zhao M, Li Y, Tang R, Yang X. The key to intestinal health: a review and perspective on food additives. Front Nutr 2024; 11:1420358. [PMID: 39360286 PMCID: PMC11444971 DOI: 10.3389/fnut.2024.1420358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
In this review, we explore the effects of food additives on intestinal health. Food additives, such as preservatives, antioxidants and colorants, are widely used to improve food quality and extend shelf life. However, their effects on intestinal microecology May pose health risks. Starting from the basic functions of food additives and the importance of intestinal microecology, we analyze in detail how additives affect the diversity of intestinal flora, oxidative stress and immune responses. Additionally, we examine the association between food additives and intestinal disorders, including inflammatory bowel disease and irritable bowel syndrome, and how the timing, dosage, and individual differences affect the body's response to additives. We also assess the safety and regulatory policies of food additives and explore the potential of natural additives. Finally, we propose future research directions, emphasizing the refinement of risk assessment methods and the creation of safer, innovative additives.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Junyi Bai
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Pengyu Miao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Wei
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | | - Haibo Lan
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yong Qing
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Meizhu Zhao
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Yanyu Li
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | - Rui Tang
- Chengdu Anorectal Hospital, Chengdu, Sichuan, China
| | | |
Collapse
|
7
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
8
|
Wu S, Yang Z, Liu S, Zhang Q, Zhang S, Zhu S. Ultra-Processed Food Consumption and Long-Term Risk of Irritable Bowel Syndrome: A Large-Scale Prospective Cohort Study. Clin Gastroenterol Hepatol 2024; 22:1497-1507.e5. [PMID: 38522476 DOI: 10.1016/j.cgh.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND & AIMS The considerable disease burden of irritable bowel syndrome (IBS) has coincided with the increase of ultraprocessed food (UPF) consumption over the past few decades. However, epidemiologic evidence for an association is lacking. We aimed to examine the long-term risk of IBS associated with UPF consumption in a large-scale prospective cohort. METHODS Participants who completed 24-hour dietary recalls during 2009 to 2012 from the UK Biobank, and free of IBS, celiac disease, inflammatory bowel disease, and any cancer at baseline, were included (N = 178,711; 53.1% female). UPF consumption was defined according to the NOVA food classification system, expressed as a percentage of UPF content in the total diet intake (as grams per day). The primary outcome was incident IBS. A Cox proportional hazard model was performed to estimate associated risk. RESULTS The mean UPF consumption was 21.0% (SD, 11.0%) of the total diet. During a median of 11.3 years of follow-up, 2690 incident IBS cases were identified. An 8% higher risk of IBS (hazard ratio, 1.08; 95% CI, 1.04-1.12) was associated with every 10% increment of UPF consumption. Compared with the lowest quartile of UPF consumption, the highest quartile was associated with a significantly increased risk of incident IBS (hazard ratio, 1.19; 95% CI, 1.07-1.33; Ptrend < .001). Subgroup analyses by age, sex, body mass index, smoking, and alcohol drinking status also showed similar results, except for the never/previous drinking subgroup. Further sensitivity analyses confirmed the positive association with a higher UPF consumption. CONCLUSIONS Our findings provide evidence that a higher UPF consumption is associated with an increased risk of incident IBS, with a significant dose-response relationship.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; State Key Laboratory for Digestive Health, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhirong Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Primary Care Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; State Key Laboratory for Digestive Health, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; State Key Laboratory for Digestive Health, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; State Key Laboratory for Digestive Health, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; State Key Laboratory for Digestive Health, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
9
|
Fitzpatrick JA, Gibson PR, Taylor KM, Halmos EP. Development of Novel High and Low Emulsifier Diets Based upon Emulsifier Distribution in the Australian Food Supply for Intervention Studies in Crohn's Disease. Nutrients 2024; 16:1922. [PMID: 38931276 PMCID: PMC11206755 DOI: 10.3390/nu16121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The aims of this study were to develop and evaluate a high/low-emulsifier diet and compare emulsifier content with preclinical studies that have associated Crohn's disease with emulsifiers. METHODS Supermarkets were audited with a seven-day high- (HED) and low-emulsifier diet (LED) meal plan developed. The emulsifier content of food was sought from food manufacturers, compared to acceptable daily intake (ADI), and doses were provided in trials. Nutritional composition analysis was completed. Healthy adults ate these diets for seven days in a randomized single-blinded cross-over feeding study to assess palatability, tolerability, satiety, food variety, dietary adherence, blinding and the ease of following the meal plan via visual analogue scale. RESULTS A database of 1680 foods was created. There was no difference in nutritional content between the HED and LED, except HED had a higher ultra-processed food content (p < 0.001). The HED contained 41 emulsifiers, with 53% of the products able to be quantified for emulsifiers (2.8 g/d), which did not exceed the ADI, was similar to that in observational studies, and was exceeded by doses used in experimental studies. In ten participants, diets were rated similarly in palatability-HED mean 62 (5% CI 37-86) mm vs. LED 68 (54-82) mm-in tolerability-HED 41 (20-61) mm vs. LED 55 (37-73) mm-and in satiety HED 57 (32-81) mm vs. LED 49 (24-73) mm. The combined diets were easy to follow (82 (67-97) mm) with good variety (65 (47-81)) and excellent adherence. CONCLUSION Nutritionally well-matched HED and LED were successfully developed, palatable and well tolerated.
Collapse
Affiliation(s)
- Jessica A. Fitzpatrick
- Department of Gastroenterology, School of Translational Medicine, Monash University, Melbourne 3004, Australia; (P.R.G.); (E.P.H.)
| | - Peter R. Gibson
- Department of Gastroenterology, School of Translational Medicine, Monash University, Melbourne 3004, Australia; (P.R.G.); (E.P.H.)
| | - Kirstin M. Taylor
- Department of Gastroenterology, Alfred Health, Melbourne 3004, Australia
| | - Emma P. Halmos
- Department of Gastroenterology, School of Translational Medicine, Monash University, Melbourne 3004, Australia; (P.R.G.); (E.P.H.)
| |
Collapse
|
10
|
Whelan K, Bancil AS, Lindsay JO, Chassaing B. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:406-427. [PMID: 38388570 DOI: 10.1038/s41575-024-00893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Ultra-processed foods (UPFs) and food additives have become ubiquitous components of the modern human diet. There is increasing evidence of an association between diets rich in UPFs and gut disease, including inflammatory bowel disease, colorectal cancer and irritable bowel syndrome. Food additives are added to many UPFs and have themselves been shown to affect gut health. For example, evidence shows that some emulsifiers, sweeteners, colours, and microparticles and nanoparticles have effects on a range of outcomes, including the gut microbiome, intestinal permeability and intestinal inflammation. Broadly speaking, evidence for the effect of UPFs on gut disease comes from observational epidemiological studies, whereas, by contrast, evidence for the effect of food additives comes largely from preclinical studies conducted in vitro or in animal models. Fewer studies have investigated the effect of UPFs or food additives on gut health and disease in human intervention studies. Hence, the aim of this article is to critically review the evidence for the effects of UPF and food additives on gut health and disease and to discuss the clinical application of these findings.
Collapse
Affiliation(s)
- Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK.
| | - Aaron S Bancil
- Department of Nutritional Sciences, King's College London, London, UK
| | - James O Lindsay
- Blizard Institute, Queen Mary University of London, Barts and the London School of Medicine, London, UK
| | | |
Collapse
|
11
|
Frascatani R, Mattogno A, Iannucci A, Marafini I, Monteleone G. Reduced Taurine Serum Levels in Inflammatory Bowel Disease. Nutrients 2024; 16:1593. [PMID: 38892527 PMCID: PMC11173840 DOI: 10.3390/nu16111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Taurine is a semi-essential micronutrient that acts as an anti-inflammatory molecule. The oral administration of taurine to colitic mice attenuates ongoing mucosal inflammation. This study aimed to determine whether inflammatory bowel diseases (IBDs) are marked by changes in the circulating levels of taurine. We measured the serum concentrations of taurine in 92 IBD patients [46 with ulcerative colitis (UC) and 46 with Crohn's disease (CD)] and 33 healthy controls with a commercial ELISA kit. The taurine levels were significantly decreased in both patients with UC and patients with CD compared to the controls, while there was no difference between CD and UC. Taurine levels declined with age in healthy controls but not in IBDs. IBD patients younger than 50 years had levels of taurine reduced compared to their age-matched controls. In the IBD group, taurine levels were not influenced by the body mass index of the patients and the consumption of taurine-rich nutrients, while they were significantly reduced in UC patients with clinically active disease compared to those in clinical remission. These findings indicate that IBDs are marked by serum taurine deficiency, which would seem to reflect the activity of the disease, at least in UC.
Collapse
Affiliation(s)
- Rachele Frascatani
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | | | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Irene Marafini
- Policlinico Universitario Tor Vergata, 00133 Rome, Italy (I.M.)
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Policlinico Universitario Tor Vergata, 00133 Rome, Italy (I.M.)
| |
Collapse
|
12
|
Zhu M, Cheng Y, Tang Y, Li S, Rao P, Zhang G, Xiao L, Liu J. Nanoparticles alleviate non-alcoholic steatohepatitis via ER stress sensor-mediated intestinal barrier damage and gut dysbiosis. Front Microbiol 2024; 14:1271835. [PMID: 38516345 PMCID: PMC10956414 DOI: 10.3389/fmicb.2023.1271835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 03/23/2024] Open
Abstract
Introduction The gut microbiota plays an important role in the development of non-alcoholic steatohepatitis (NASH), but the underlying mechanism is unclear. It has been found that the transcription factor XBP1s plays an important role in regulating inflammation and lipid metabolism and maintaining the integrity of intestinal barrier. However, whether XBP1s modulates the development of NASH by regulating the integrity of the intestinal barrier and altering the composition of the gut microbiota remains unknown. Methods Mice fed with a fat-, fructose-, cholesterol-rich (FFC) diet for 24 weeks successfully established the NASH model, as demonstrated by significant hepatic steatosis, inflammation, hepatocyte injury and fibrosis. The profile of gut microbiota dynamically changed with the different stages of NAFLD via 16S rDNA sequencing the feces from mice fed with FFC diet for 0, 12, or 24 weeks or NASH mice treated with siRNA-loaded folic acid-modified TPGS (hereafter named FT@XBP1). Results NASH mice had significantly higher abundance of Firmicutes, Blautia and Bacteroides, and lower abundance of Bifidobacterium and GCA-900066575. FT@XBP1 supplementation had a significantly attenuated effect on FFC diet-induced weight gain, hepatic fat accumulation, dyslipidemia, inflammatory cytokines, ER stress and fibrosis. In particularly, FT@XBP1 modulates the composition of the intestinal flora; for example, NASH mice demonstrated higher abundance of Blautia and Bacteroides, and lower abundance of Actinobacteriota, Muribaculaceae and Bifidobacterium, which were partially restored by FT@XBP1 treatment. Mechanistically, FT@XBP1 increased the expression of ZO-1 in the intestine and had the potential to restore intestinal barrier integrity and improve antimicrobial defense to alleviate enterogenic endotoxemia and activation of inflammatory signaling pathways. Discussion Regulation of the key transcription factor XBP1s can partially restore the intestinal microbiota structure, maintain the integrity of intestinal mucosal barrier, and prevent the progression of NASH, providing new evidence for treating NASH.
Collapse
Affiliation(s)
- Manman Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Cheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yue Tang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Shuojiao Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Peng Rao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lei Xiao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
14
|
Martins-Gomes C, Nunes FM, Silva AM. Natural Products as Dietary Agents for the Prevention and Mitigation of Oxidative Damage and Inflammation in the Intestinal Barrier. Antioxidants (Basel) 2024; 13:65. [PMID: 38247489 PMCID: PMC10812469 DOI: 10.3390/antiox13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Food intake is a basic need to sustain life, but foodborne pathogens and food-related xenobiotics are also the main health concerns regarding intestinal barrier homeostasis. With a predominant role in the well-being of the entire human body, intestinal barrier homeostasis is strictly regulated by epithelial and immune cells. These cells are also the main intervenients in oxidative stress and inflammation-related diseases in the intestinal tract, triggered, for example, by genetic/epigenetic factors, food additives, pesticides, drugs, pathogens, and their metabolites. Nevertheless, the human diet can also be seen as a solution for the problem, mainly via the inclusion of functional foods or nutraceuticals that may act as antioxidant/anti-inflammatory agents to prevent and mitigate acute and chronic oxidative damage and inflammation. A literature analysis of recent advances in this topic highlights the significant role of Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways in these biological processes, with many natural products and phytochemicals targeting endogenous antioxidant systems and cytokine production and balance. In this review, we summarized and discussed studies using in vitro and in vivo models of the intestinal tract used to reproduce oxidative damage and inflammatory events, as well as the role of natural products as modulators of Nrf2 and NK-kB pathways.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
15
|
Nayyar D, Yan X, Xu G, Shi M, Garnham AP, Mathai ML, McAinch AJ. Gynostemma Pentaphyllum Increases Exercise Performance and Alters Mitochondrial Respiration and AMPK in Healthy Males. Nutrients 2023; 15:4721. [PMID: 38004115 PMCID: PMC10675532 DOI: 10.3390/nu15224721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
This research aimed to determine the effects of Gynostemma pentaphyllum (G. pentaphyllum) on exercise performance, AMP-activated protein kinase (AMPK), and mitochondrial signaling in human muscle. This randomized double-blind placebo control crossover study provided placebo or 450 mg of G. pentaphyllum dried leaf extract equivalent to 2.25 g of dry leaf per day for four weeks to 16 healthy untrained young males, separated by four weeks wash-out. Following 4-week supplementation with G. pentaphyllum, participants had significantly lower leptin and blood glucose levels and improved time trial performance over 20 km, which corresponded with a higher muscle oxygen flux compared to placebo. Muscle AMPK Thr172 phosphorylation significantly increased after 60 min exercise following G. pentaphyllum supplementation. AMPK Thr172 phosphorylation levels relative to total AMPK increased earlier following exercise with G. pentaphyllum compared to placebo. Total ACC-α was lower following G. pentaphyllum supplementation compared to placebo. While further research is warranted, G. pentaphyllum supplementation improved exercise performance in healthy untrained males, which corresponded with improved mitochondrial respiration, altered AMPK and ACC, and decreased plasma leptin and glucose levels.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Xu Yan
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China;
| | - Min Shi
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Andrew P. Garnham
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Michael L. Mathai
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
16
|
Van Puyvelde S, de Block T, Sridhar S, Bawn M, Kingsley RA, Ingelbeen B, Beale MA, Barbé B, Jeon HJ, Mbuyi-Kalonji L, Phoba MF, Falay D, Martiny D, Vandenberg O, Affolabi D, Rutanga JP, Ceyssens PJ, Mattheus W, Cuypers WL, van der Sande MAB, Park SE, Kariuki S, Otieno K, Lusingu JPA, Mbwana JR, Adjei S, Sarfo A, Agyei SO, Asante KP, Otieno W, Otieno L, Tahita MC, Lompo P, Hoffman IF, Mvalo T, Msefula C, Hassan-Hanga F, Obaro S, Mackenzie G, Deborggraeve S, Feasey N, Marks F, MacLennan CA, Thomson NR, Jacobs J, Dougan G, Kariuki S, Lunguya O. A genomic appraisal of invasive Salmonella Typhimurium and associated antibiotic resistance in sub-Saharan Africa. Nat Commun 2023; 14:6392. [PMID: 37872141 PMCID: PMC10593746 DOI: 10.1038/s41467-023-41152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2023] [Indexed: 10/25/2023] Open
Abstract
Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa's most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures.
Collapse
Affiliation(s)
- Sandra Van Puyvelde
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| | | | - Sushmita Sridhar
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich, UK
- Earlham Institute, Norwich, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich, UK
- School of Biological Science, University of East Anglia, Norwich, UK
| | - Brecht Ingelbeen
- Institute of Tropical Medicine, Antwerp, Belgium
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mathew A Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Hyon Jin Jeon
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- International Vaccine Institute, 1 Gwanak-ro, Seoul, 08826, Republic of Korea
- Madagascar Institute for Vaccine Research, University of Antananarivo, Antananarivo, Madagascar
| | - Lisette Mbuyi-Kalonji
- Department of Medical Biology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
- National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Marie-France Phoba
- Department of Medical Biology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
- National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Dadi Falay
- Department of Pediatrics, University Hospital of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
- Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Olivier Vandenberg
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles-Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, UK
| | - Dissou Affolabi
- Centre National Hospitalier Universitaire Hubert Koutoukou Maga, Cotonou, Benin
| | - Jean Pierre Rutanga
- Institute of Tropical Medicine, Antwerp, Belgium
- College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Pieter-Jan Ceyssens
- National Reference Center for Salmonella, Unit of Human Bacterial Diseases, Sciensano, J. Wytsmanstraat 14, B-1050, Brussels, Belgium
| | - Wesley Mattheus
- National Reference Center for Salmonella, Unit of Human Bacterial Diseases, Sciensano, J. Wytsmanstraat 14, B-1050, Brussels, Belgium
| | - Wim L Cuypers
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Marianne A B van der Sande
- Institute of Tropical Medicine, Antwerp, Belgium
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Se Eun Park
- International Vaccine Institute, 1 Gwanak-ro, Seoul, 08826, Republic of Korea
- Yonsei University Graduate School of Public Health, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Simon Kariuki
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - Kephas Otieno
- Kenya Medical Research Institute/Centre for Global Health Research, Kisumu, Kenya
| | - John P A Lusingu
- National Institute for Medical Research, Tanga, Tanzania
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, København, Denmark
| | - Joyce R Mbwana
- National Institute for Medical Research, Tanga, Tanzania
| | - Samuel Adjei
- University of Health & Allied Sciences, Ho, Volta Region, Ghana
| | - Anima Sarfo
- University of Health & Allied Sciences, Ho, Volta Region, Ghana
| | - Seth O Agyei
- University of Health & Allied Sciences, Ho, Volta Region, Ghana
| | - Kwaku P Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ho, Volta Region, Ghana
| | | | | | - Marc C Tahita
- Institut de Recherche en Science de la Santé, Direction Régionale du Centre-Ouest/ClinicalResearch Unit of Nanoro, Nanoro, Burkina Faso
| | - Palpouguini Lompo
- Institut de Recherche en Science de la Santé, Direction Régionale du Centre-Ouest/ClinicalResearch Unit of Nanoro, Nanoro, Burkina Faso
| | | | - Tisungane Mvalo
- University of North Carolina Project, Lilongwe, Malawi
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chisomo Msefula
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Fatimah Hassan-Hanga
- Department of Paediatrics, Bayero University, Kano, Nigeria
- Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Stephen Obaro
- University of Nebraska Medical Center, Omaha, NE, USA
- International Foundation Against Infectious Diseases in Nigeria (IFAIN), Abuja, Nigeria
| | - Grant Mackenzie
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, UK
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | | | - Nicholas Feasey
- University of North Carolina Project, Lilongwe, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Florian Marks
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- International Vaccine Institute, 1 Gwanak-ro, Seoul, 08826, Republic of Korea
- Madagascar Institute for Vaccine Research, University of Antananarivo, Antananarivo, Madagascar
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Calman A MacLennan
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Nicholas R Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, UK
| | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Octavie Lunguya
- Department of Medical Biology, University Teaching Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
- National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
17
|
Monteleone G, Moscardelli A, Colella A, Marafini I, Salvatori S. Immune-mediated inflammatory diseases: Common and different pathogenic and clinical features. Autoimmun Rev 2023; 22:103410. [PMID: 37597601 DOI: 10.1016/j.autrev.2023.103410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The term "immune-mediated inflammatory diseases (IMIDs)" refers to several inflammatory pathologies of multifactorial etiology and involving either simultaneously or sequentially more organs. IMIDs share some common pathogenic mechanisms, which account for some similarities in the clinical course and the impact that these diseases may have on other organs and systems of the body. However, there are some differences in the IMID-associated pathological process, including the synthesis and function of multiple inflammatory cytokines, which are supposed to perpetuate the tissue-damaging inflammation. This justifies the different indications and responsiveness to corticosteroids, immunosuppressors, small molecules, and biologics. Many individuals with IMIDs are, however, intolerant, or unresponsive to the current drugs, thus suggesting the necessity of novel therapeutic approaches, such as the combination of compounds that either inhibit more immuno-inflammatory networks selectively or simultaneously suppress inflammatory signals and activate counter-regulatory pathways. In this article, we highlight the most relevant features of IMIDs and discuss how clinicians can combat the detrimental immune response in such disorders.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy; Department of Systems Medicine, University of "Tor Vergata", Rome, Italy.
| | | | - Alice Colella
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy
| | - Irene Marafini
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy
| | - Silvia Salvatori
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy; Department of Systems Medicine, University of "Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Narula N, Chang NH, Mohammad D, Wong ECL, Ananthakrishnan AN, Chan SSM, Carbonnel F, Meyer A. Food Processing and Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol 2023; 21:2483-2495.e1. [PMID: 36731590 DOI: 10.1016/j.cgh.2023.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Several studies have been published on the association between food processing and risks of Crohn's disease (CD) and ulcerative colitis (UC), with some variability in results. We performed a systematic literature review and meta-analysis to study this association. METHODS From PubMed, Medline, and Embase until October 2022, we identified cohort studies that studied the association between food processing and the risk of CD or UC. Risk of bias of the included studies was assessed by the Newcastle-Ottawa scale. We computed pooled hazard ratios (HRs) and 95% confidence intervals (CIs) using random-effects meta-analysis based on estimates and standard errors. RESULTS A total of 1,068,425 participants were included (13,594,422 person-years) among 5 cohort studies published between 2020 and 2022. Four of the 5 included studies were scored as high quality. The average age of participants ranged from 43 to 56 years; 55%-83% were female. During follow-up, 916 participants developed CD, and 1934 developed UC. There was an increased risk for development of CD for participants with higher consumption of ultra-processed foods compared with those with lower consumption (HR, 1.71; 95% CI, 1.37-2.14; I2 = 0%) and a lower risk of CD for participants with higher consumption of unprocessed/minimally processed foods compared with those with lower consumption (HR, 0.71; 95% CI, 0.53-0.94; I2 = 11%). There was no association between risk of UC and ultra-processed foods (HR, 1.17; 95% CI, 0.86-1.61; I2 = 74%) or unprocessed/minimally processed foods (HR, 0.84; 95% CI, 0.68-1.02; I2 = 0%). CONCLUSIONS Higher ultra-processed food and lower unprocessed/minimally processed food intakes are associated with higher risk of CD but not UC.
Collapse
Affiliation(s)
- Neeraj Narula
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.
| | - Nicole H Chang
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Danah Mohammad
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Emily C L Wong
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Simon S M Chan
- Department of Gastroenterology, Norfolk and Norwich University Hospital and Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Franck Carbonnel
- Department of Gastroenterology, University Hospital of Bicêtre, Assistance Publique-Hôpitaux de Paris and Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Antoine Meyer
- Department of Gastroenterology, University Hospital of Bicêtre, Assistance Publique-Hôpitaux de Paris and Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
19
|
Jadhav A, Bajaj A, Xiao Y, Markandey M, Ahuja V, Kashyap PC. Role of Diet-Microbiome Interaction in Gastrointestinal Disorders and Strategies to Modulate Them with Microbiome-Targeted Therapies. Annu Rev Nutr 2023; 43:355-383. [PMID: 37380178 PMCID: PMC10577587 DOI: 10.1146/annurev-nutr-061121-094908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Diet is an important determinant of health and consequently is often implicated in the development of disease, particularly gastrointestinal (GI) diseases, given the high prevalence of meal-related symptoms. The mechanisms underlying diet-driven pathophysiology are not well understood, but recent studies suggest that gut microbiota may mediate the effect of diet on GI physiology. In this review, we focus primarily on two distinct GI diseases where the role of diet has been best studied: irritable bowel syndrome and inflammatory bowel disease. We discuss how the concurrent and sequential utilization of dietary nutrients by the host and gut microbiota determines the eventual bioactive metabolite profiles in the gut and the biological effect of these metabolites on GI physiology. We highlight several concepts that can be gleaned from these findings, such as how distinct effects of an individual metabolite can influence diverse GI diseases, the effect of similar dietary interventions on multiple disease states, and the need for extensive phenotyping and data collection to help make personalized diet recommendations.
Collapse
Affiliation(s)
- Ajita Jadhav
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| | - Aditya Bajaj
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Yang Xiao
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| | - Manasvini Markandey
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India;
| | - Purna C Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA;
| |
Collapse
|
20
|
Stolfi C, Pacifico T, Monteleone G, Laudisi F. Impact of Western Diet and Ultra-Processed Food on the Intestinal Mucus Barrier. Biomedicines 2023; 11:2015. [PMID: 37509654 PMCID: PMC10377275 DOI: 10.3390/biomedicines11072015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal epithelial barrier plays a key role in the absorption of nutrients and water, in the regulation of the interactions between luminal contents and the underlying immune cells, and in the defense against enteric pathogens. Additionally, the intestinal mucus layer provides further protection due to mucin secretion and maturation by goblet cells, thus representing a crucial player in maintaining intestinal homeostasis. However, environmental factors, such as dietary products, can disrupt this equilibrium, leading to the development of inflammatory intestinal disorders. In particular, ultra-processed food, which is broadly present in the Western diet and includes dietary components containing food additives and/or undergoing multiple industrial processes (such as dry heating cooking), was shown to negatively impact intestinal health. In this review, we summarize and discuss current knowledge on the impact of a Western diet and, in particular, ultra-processed food on the mucus barrier and goblet cell function, as well as potential therapeutic approaches to maintain and restore the mucus layer under pathological conditions.
Collapse
Affiliation(s)
- Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
21
|
Markandey M, Bajaj A, Verma M, Virmani S, Singh MK, Gaur P, Das P, Srikanth C, Makharia G, Kedia S, Ahuja V. Fecal microbiota transplantation refurbishes the crypt-associated microbiota in ulcerative colitis. iScience 2023; 26:106738. [PMID: 37216124 PMCID: PMC10192942 DOI: 10.1016/j.isci.2023.106738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
A crypt autochthonous microbial population called crypt-associated microbiota (CAM) is localized intimately with gut regenerative and immune machinery. The present report utilizes laser capture microdissection coupled with 16S amplicon sequencing to characterize the CAM in patients with ulcerative colitis (UC) before and after fecal microbiota transplantation with anti-inflammatory diet (FMT-AID). Compositional differences in CAM and its interactions with mucosa-associated microbiota (MAM) were compared between the non-IBD controls and in patients with UC pre- and post-FMT (n = 26). Distinct from the MAM, CAM is dominated by aerobic members of Actinobacteria and Proteobacteria and exhibits resilience of diversity. CAM underwent UC-associated dysbiosis and demonstrated restoration post-FMT-AID. These FMT-restored CAM taxa correlated negatively with disease activity in patients with UC. The positive effects of FMT-AID extended further in refurbishing CAM-MAM interactions, which were obliterated in UC. These results encourage investigation into host-microbiome interactions established by CAM, to understand their role in disease pathophysiology.
Collapse
Affiliation(s)
- Manasvini Markandey
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Bajaj
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahak Verma
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Shubi Virmani
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar Singh
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Preksha Gaur
- Regional Centre for Biotechnology, 3rd Milestone Gurugram-Faridabad Expressway, Faridabad 121001, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - C.V. Srikanth
- Regional Centre for Biotechnology, 3rd Milestone Gurugram-Faridabad Expressway, Faridabad 121001, India
| | - Govind Makharia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Yuan Z, Yang M, Liang Z, Yang C, Kong X, Wu Y, Wang S, Fan H, Ning C, Xiao W, Sun Z, Wu J. PI3K/AKT/mTOR, NF-κB and ERS pathway participated in the attenuation of H 2O 2-induced IPEC-J2 cell injury by koumine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116028. [PMID: 36529250 DOI: 10.1016/j.jep.2022.116028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Koumine, an indole alkaloid extracted from Gelsemium elegans Benth, exerts anti-inflammation and antioxidant activities. However, the effects of koumine on intestinal injury induced by H2O2 and its potential molecular mechanisms need larger studies. AIM OF THE STUDY We established an IPEC-J2 cell damage model induced by H2O2 to explore the protective mechanism of koumine on intestinal injury. MATERIALS AND METHODS In the experiment, cell damage models were made with hydrogen peroxide. To assess the protective effect of koumine on H2O2-induced IPEC-J2 cell injury, CCK-8, the release of LDH and ROS, transmission electron microscopy and Annexin V-FITC/PI were employed. Western Blot and Quantitative Real-time PCR were used to determine the potential alleviated mechanism of koumine on H2O2-trigged IPEC-J2 cell damage. RESULTS The results of CCK-8 and LDH implied that koumine has a mitigative effect on H2O2-induced cell damage via upregulating cell viability and suppressing cell membrane fragmentation. Simultaneously, koumine notably inhibited the level of pro-inflammatory factors (IL-1β, IL-6, IL-8, TNF-α and TGF-β), the over-production of ROS along with decreasing the injury of mitochondrion, endoplasmic reticulum and lysosome induced by H2O2. Moreover, koumine dramatically attenuated H2O2-triggered IPEC-J2 cell apoptosis and autophagy. Subsequently, Western blot analysis identified NF-ΚB, PI3K and ERS as possible pathway responsible for the protective effect of koumine on H2O2-stimulated IPEC-J2 cell inflammation. CONCLUSIONS This in vitro experimental study suggests that koumine suppresses the H2O2-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy, which provide a rationale for therapeutically use in major intestinal diseases.
Collapse
Affiliation(s)
- Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - Mengran Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410128, PR China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China
| | - Zhiliang Sun
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China; Hunan Engineering Research Center of Veterinary Drug, Hunan Agricultural University, Changsha, 410128, PR China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, PR China.
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, PR China.
| |
Collapse
|
23
|
Wiącek J, Karolkiewicz J. Different Approaches to Ergogenic, Pre-, and Probiotic Supplementation in Sports with Different Metabolism Characteristics: A Mini Review. Nutrients 2023; 15:nu15061541. [PMID: 36986269 PMCID: PMC10056922 DOI: 10.3390/nu15061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Sport disciplines with different metabolic characteristics require different dietary approaches. Bodybuilders or sprinters ("anaerobic" athletes) need a high-protein diet (HPD) in order to activate muscle protein synthesis after exercise-induced muscle damage and use nitric oxide enhancers (such as citrulline and nitrates) to increase vasodilatation, whereas endurance athletes, such as runners or cyclists ("aerobic" athletes), prefer a high-carbohydrate diet (HCHD), which aims to restore the intramuscular glycogen, and supplements containing buffering agents (such as sodium bicarbonate and beta-alanine). In both cases, nutrient absorption, neurotransmitter and immune cell production and muscle recovery depend on gut bacteria and their metabolites. However, there is still insufficient data on the impact of an HPD or HCHD in addition to supplements on "anaerobic" and "aerobic" athletes' gut microbiota and how this impact could be affected by nutritional interventions such as pre- and probiotic therapy. Additionally, little is known about the role of probiotics in the ergogenic effects of supplements. Based on the results of our previous research on an HPD in amateur bodybuilders and an HCHD in amateur cyclists, we reviewed human and animal studies on the effects of popular supplements on gut homeostasis and sport performance.
Collapse
Affiliation(s)
- Jakub Wiącek
- Food and Nutrition Department, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Joanna Karolkiewicz
- Food and Nutrition Department, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| |
Collapse
|
24
|
ERdj5 protects goblet cells from endoplasmic reticulum stress-mediated apoptosis under inflammatory conditions. Exp Mol Med 2023; 55:401-412. [PMID: 36759578 PMCID: PMC9981579 DOI: 10.1038/s12276-023-00945-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
Endoplasmic reticulum stress is closely associated with the onset and progression of inflammatory bowel disease. ERdj5 is an endoplasmic reticulum-resident protein disulfide reductase that mediates the cleavage and degradation of misfolded proteins. Although ERdj5 expression is significantly higher in the colonic tissues of patients with inflammatory bowel disease than in healthy controls, its role in inflammatory bowel disease has not yet been reported. In the current study, we used ERdj5-knockout mice to investigate the potential roles of ERdj5 in inflammatory bowel disease. ERdj5 deficiency causes severe inflammation in mouse colitis models and weakens gut barrier function by increasing NF-κB-mediated inflammation. ERdj5 may not be indispensable for goblet cell function under steady-state conditions, but its deficiency induces goblet cell apoptosis under inflammatory conditions. Treatment of ERdj5-knockout mice with the chemical chaperone ursodeoxycholic acid ameliorated severe colitis by reducing endoplasmic reticulum stress. These findings highlight the important role of ERdj5 in preserving goblet cell viability and function by resolving endoplasmic reticulum stress.
Collapse
|
25
|
Parrón-Ballesteros J, Gordo RG, López-Rodríguez JC, Olmo N, Villalba M, Batanero E, Turnay J. Beyond allergic progression: From molecules to microbes as barrier modulators in the gut-lung axis functionality. FRONTIERS IN ALLERGY 2023; 4:1093800. [PMID: 36793545 PMCID: PMC9923236 DOI: 10.3389/falgy.2023.1093800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The "epithelial barrier hypothesis" states that a barrier dysfunction can result in allergy development due to tolerance breakdown. This barrier alteration may come from the direct contact of epithelial and immune cells with the allergens, and indirectly, through deleterious effects caused by environmental changes triggered by industrialization, pollution, and changes in the lifestyle. Apart from their protective role, epithelial cells can respond to external factors secreting IL-25 IL-33, and TSLP, provoking the activation of ILC2 cells and a Th2-biased response. Several environmental agents that influence epithelial barrier function, such as allergenic proteases, food additives or certain xenobiotics are reviewed in this paper. In addition, dietary factors that influence the allergenic response in a positive or negative way will be also described here. Finally, we discuss how the gut microbiota, its composition, and microbe-derived metabolites, such as short-chain fatty acids, alter not only the gut but also the integrity of distant epithelial barriers, focusing this review on the gut-lung axis.
Collapse
Affiliation(s)
- Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rubén García Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom,The Francis Crick Institute, London, United Kingdom
| | - Nieves Olmo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Eva Batanero
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain,Correspondence: Javier Turnay
| |
Collapse
|
26
|
Kwon YH, Banskota S, Wang H, Rossi L, Grondin JA, Syed SA, Yousefi Y, Schertzer JD, Morrison KM, Wade MG, Holloway AC, Surette MG, Steinberg GR, Khan WI. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun 2022; 13:7617. [PMID: 36539404 PMCID: PMC9768151 DOI: 10.1038/s41467-022-35309-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.
Collapse
Affiliation(s)
- Yun Han Kwon
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Suhrid Banskota
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Huaqing Wang
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Laura Rossi
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Jensine A. Grondin
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Saad A. Syed
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Yeganeh Yousefi
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Jonathan D. Schertzer
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Katherine M. Morrison
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Michael G. Wade
- grid.57544.370000 0001 2110 2143Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Alison C. Holloway
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON Canada
| | - Michael G. Surette
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Gregory R. Steinberg
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Waliul I. Khan
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| |
Collapse
|
27
|
Kedia S, Virmani S, K Vuyyuru S, Kumar P, Kante B, Sahu P, Kaushal K, Farooqui M, Singh M, Verma M, Bajaj A, Markandey M, Sachdeva K, Das P, Makharia GK, Ahuja V. Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet alone is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: a randomised controlled trial. Gut 2022; 71:2401-2413. [PMID: 35973787 DOI: 10.1136/gutjnl-2022-327811] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/31/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Microbiome and dietary manipulation therapies are being explored for treating ulcerative colitis (UC). We aimed to examine the efficacy of multidonor faecal microbiota transplantation (FMT) and anti-inflammatory diet in inducing remission followed by long-term maintenance with anti-inflammatory diet in patients with mild-moderate UC. DESIGN This open-labelled randomised controlled trial (RCT) randomised patients with mild-moderate (Simple Clinical Colitis Activity Index (SCCAI) 3-9) endoscopically active UC (Ulcerative Colitis Endoscopic Index of Severity (UCEIS)>1) on stable baseline medications in 1:1 ratio to FMT and anti-inflammatory diet (FMT-AID) versus optimised standard medical therapy (SMT). The FMT-AID arm received seven weekly colonoscopic infusions of freshly prepared FMT from multiple rural donors(weeks 0-6) with anti-inflammatory diet. Baseline medications were optimised in the SMT arm. Clinical responders (decline in SCCAI>3) at 8 weeks in both arms were followed until 48 weeks on baseline medications (with anti-inflammatory diet in the FMT-AID arm). Primary outcome measures were clinical response and deep remission (clinical-SCCAI <2; and endoscopic-UCEIS <1) at 8 weeks, and deep remission and steroid-free clinical remission at 48 weeks. RESULTS Of the 113 patients screened, 73 were randomised, and 66 were included in (35-FMT-AID; 31-SMT) modified intention-to-treat analysis (age-35.7±11.1 years; male-60.1%; disease duration-48 (IQR 24-84) months; pancolitis-34.8%; SCCAI-6 (IQR 5-7); UCEIS-4 (IQR 3-5)). Baseline characteristics were comparable. FMT-AID was superior to SMT in inducing clinical response (23/35 (65.7%) vs 11/31 (35.5%), p=0.01, OR 3.5 (95% CI 1.3 to 9.6)), remission (21/35 (60%) vs 10/31 (32.3%), p=0.02, OR 3.2 (95% CI 1.1 to 8.7)) and deep remission (12/33 (36.4%) vs 2/23 (8.7%), p=0.03, OR 6.0 (95% CI 1.2 to 30.2)) at 8 weeks. Anti-inflammatory diet was superior to SMT in maintaining deep remission until 48 weeks (6/24 (25%) vs 0/27, p=0.007). CONCLUSION Multidonor FMT with anti-inflammatory diet effectively induced deep remission in mild-moderate UC which was sustained with anti-inflammatory diet over 1 year. TRIAL REGISTRATION NUMBER ISRCTN15475780.
Collapse
Affiliation(s)
- Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Shubi Virmani
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Sudheer K Vuyyuru
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Peeyush Kumar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Bhaskar Kante
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Pabitra Sahu
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Kanav Kaushal
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Mariyam Farooqui
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Mukesh Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Mahak Verma
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Aditya Bajaj
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Manasvini Markandey
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Karan Sachdeva
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, Delhi, India
| |
Collapse
|
28
|
Abstract
The diet and gut microbiota have been extensively interrogated as a fuel for gut inflammation in inflammatory bowel diseases (IBDs) in the last few years. Here, we review how specific nutrients, typically enriched in a Western diet, instigate or deteriorate experimental gut inflammation in a genetically susceptible host and we discuss microbiota-dependent and independent mechanisms. We depict the study landscape of nutritional trials in paediatric and adult IBD and delineate common grounds for dietary advice. Conclusively, the diet reflects a critical rheostat of microbial dysbiosis and gut inflammation in IBD. Dietary restriction by exclusive enteral nutrition, with or without a specific exclusion diet, is effectively treating paediatric Crohn's disease, while adult IBD trials are less conclusive. Insights into molecular mechanisms of nutritional therapy will change the perception of IBD and will allow us to enter the era of precision nutrition. To achieve this, we discuss the need for carefully designed nutritional trials with scientific rigour comparable to medical trials, which also requires action from stake holders. Establishing evidence-based dietary therapy for IBD does not only hold promise to avoid long-term immunosuppression, but to provide a widely accessible therapy at low cost. Identification of dietary culprits disturbing gut health also bears the potential to prevent IBD and allows informed decision making in food politics.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Medicine I, Gastroenterology, Hepatology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW An epidemic of age-associated cognitive decline, most commonly ascribed to neurodegenerative conditions such as Alzheimer's and Parkinson's disease, is causing healthcare costs to soar and devastating caregivers. An estimated 6.5 million Americans are living today with Alzheimer's disease, with 13.8 million cases projected by mid-century. Although genetic mutations are known to cause neurodegeneration, autosomal dominant disease is very rare and most sporadic cases can be attributed, at least in part, to modifiable risk factors. RECENT FINDINGS Diet is a potential modifiable risk factor in cognitive decline. Food communicates with the brain through a complex signaling web involving multiple cells, mediators and receptors. Gut-brain communication is modulated by microorganisms including bacteria, archaea, viruses, and unicellular eukaryotes, which together constitute the microbiota. Microbes not only play major roles in the digestion and fermentation of the food, providing nutrients and bioactive metabolites, but also reflect the type and amount of food consumed and food-borne toxic exposures. Food components modify the diversity and abundance of the microbial populations, maintain the integrity of the gut barrier, and regulate the passage of microbes and their metabolites into the blood stream where they modulate the immune system and communicate with body systems including the brain. This paper will focus on selected mechanisms through which interactions between diet and the gut microbiota can modify brain integrity and cognitive function with emphasis on the pathogenesis of the most common dementia, Alzheimer's disease.
Collapse
Affiliation(s)
- Susan Ettinger
- Interdisciplinary Health Sciences, New York Institute of Technology, New York, USA.
| |
Collapse
|
30
|
Tang Y, Zhou X, Cao T, Chen E, Li Y, Lei W, Hu Y, He B, Liu S. Endoplasmic Reticulum Stress and Oxidative Stress in Inflammatory Diseases. DNA Cell Biol 2022; 41:924-934. [PMID: 36356165 DOI: 10.1089/dna.2022.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
31
|
Wang Y, Wang K, Du M, Khandpur N, Rossato SL, Lo CH, VanEvery H, Kim DY, Zhang FF, Chavarro JE, Sun Q, Huttenhower C, Song M, Nguyen LH, Chan AT. Maternal consumption of ultra-processed foods and subsequent risk of offspring overweight or obesity: results from three prospective cohort studies. BMJ 2022; 379:e071767. [PMID: 36198411 PMCID: PMC9533299 DOI: 10.1136/bmj-2022-071767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess whether maternal ultra-processed food intake during peripregnancy and during the child rearing period is associated with offspring risk of overweight or obesity during childhood and adolescence. DESIGN Population based prospective cohort study. SETTING The Nurses' Health Study II (NHSII) and the Growing Up Today Study (GUTS I and II) in the United States. PARTICIPANTS 19 958 mother-child (45% boys, aged 7-17 years at study enrollment) pairs with a median follow-up of 4 years (interquartile range 2-5 years) until age 18 or the onset of overweight or obesity, including a subsample of 2925 mother-child pairs with information on peripregnancy diet. MAIN OUTCOME MEASURES Multivariable adjusted, log binomial models with generalized estimating equations and an exchangeable correlation structure were used to account for correlations between siblings and to estimate the relative risk of offspring overweight or obesity defined by the International Obesity Task Force. RESULTS 2471 (12.4%) offspring developed overweight or obesity in the full analytic cohort. After adjusting for established maternal risk factors and offspring's ultra-processed food intake, physical activity, and sedentary time, maternal consumption of ultra-processed foods during the child rearing period was associated with overweight or obesity in offspring, with a 26% higher risk in the group with the highest maternal ultra-processed food consumption (group 5) versus the lowest consumption group (group 1; relative risk 1.26, 95% confidence interval 1.08 to 1.47, P for trend<0.001). In the subsample with information on peripregnancy diet, while rates were higher, peripregnancy ultra-processed food intake was not significantly associated with an increased risk of offspring overweight or obesity (n=845 (28.9%); group 5 v group 1: relative risk 1.17, 95% confidence interval 0.89 to 1.53, P fortrend=0.07). These associations were not modified by age, sex, birth weight, and gestational age of offspring or maternal body weight. CONCLUSIONS Maternal consumption of ultra-processed food during the child rearing period was associated with an increased risk of overweight or obesity in offspring, independent of maternal and offspring lifestyle risk factors. Further study is needed to confirm these findings and to understand the underlying biological mechanisms and environmental determinants. These data support the importance of refining dietary recommendations and the development of programs to improve nutrition for women of reproductive age to promote offspring health.
Collapse
Affiliation(s)
- Yiqing Wang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mengxi Du
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Neha Khandpur
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Center for Epidemiological Studies in Health and Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sinara Laurini Rossato
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Institute of Geography, Graduation course of Collective Health, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Chun-Han Lo
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Hannah VanEvery
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Y Kim
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fang Fang Zhang
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Ettinger S. Diet Strategies for the Patient with Chronic Kidney Disease. PHYSICIAN ASSISTANT CLINICS 2022. [DOI: 10.1016/j.cpha.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Di Dio M, Calella P, Cerullo G, Pelullo CP, Di Onofrio V, Gallè F, Liguori G. Effects of Probiotics Supplementation on Risk and Severity of Infections in Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11534. [PMID: 36141804 PMCID: PMC9517237 DOI: 10.3390/ijerph191811534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this review was to appraise the literature on the effects of probiotics supplementation on gastrointestinal (GI) and upper respiratory tract infection (URTI) risk and prognosis in athletes. The search was conducted using the following electronic databases: MEDLINE (PubMed); Web of Science; Scopus; and SPORTDiscus (EBSCO). According to the PRISMA guidelines, randomized controlled studies performed on healthy athletes with a note dose of probiotics supplementation were considered. From the 2304 articles found, after eliminating reviews and studies on animals and unhealthy subjects and after screening of titles and abstracts, 403 studies were considered eligible. From these, in accordance with the inclusion and exclusion criteria, 16 studies were selected, ten of which concerned endurance athletes. The majority of the studies reported beneficial effects of probiotics in reducing the risk of developing the examined infections or the severity of related symptoms. However, due to the differences in formulations used and populations analyzed in the available studies, further research is needed in this field to achieve stronger and more specific evidence.
Collapse
Affiliation(s)
- Mirella Di Dio
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Patrizia Calella
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Concetta Paola Pelullo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| |
Collapse
|
34
|
Almutairi R, Basson AR, Wearsh P, Cominelli F, Rodriguez-Palacios A. Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials. Eur J Nutr 2022; 61:2853-2871. [PMID: 35230477 PMCID: PMC9835112 DOI: 10.1007/s00394-022-02802-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
PURPOSE Maltodextrin (MDX) is a polysaccharide food additive commonly used as oral placebo/control to investigate treatments/interventions in humans. The aims of this study were to appraise the MDX effects on human physiology/gut microbiota, and to assess the validity of MDX as a placebo-control. METHODS We performed a systematic review of randomized-placebo-controlled clinical trials (RCTs) where MDX was used as an orally consumed placebo. Data were extracted from study results where effects (physiological/microbial) were attributed (or not) to MDX, and from study participant outcomes data, before-and-after MDX consumption, for post-publication 're-analysis' using paired-data statistics. RESULTS Of two hundred-sixteen studies on 'MDX/microbiome', seventy RCTs (n = 70) were selected for analysis. Supporting concerns regarding the validity of MDX as a placebo, the majority of RCTs (60%, CI 95% = 0.48-0.76; n = 42/70; Fisher-exact p = 0.001, expected < 5/70) reported MDX-induced physiological (38.1%, n = 16/42; p = 0.005), microbial metabolite (19%, n = 8/42; p = 0.013), or microbiome (50%, n = 21/42; p = 0.0001) effects. MDX-induced alterations on gut microbiome included changes in the Firmicutes and/or Bacteroidetes phyla, and Lactobacillus and/or Bifidobacterium species. Effects on various immunological, inflammatory markers, and gut function/permeability were also documented in 25.6% of the studies (n = 10/42). Notably, there was considerable variability in the direction of effects (decrease/increase), MDX dose, form (powder/pill), duration, and disease/populations studied. Overall, only 20% (n = 14/70; p = 0.026) of studies cross-referenced MDX as a justifiable/innocuous placebo, while 2.9% of studies (n = 2/70) acknowledged their data the opposite. CONCLUSION Orally-consumed MDX often (63.9% of RCTs) induces effects on human physiology/gut microbiota. Such effects question the validity of MDX as a placebo-control in human clinical trials.
Collapse
Affiliation(s)
- Rawan Almutairi
- Department of Pathology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH, 44106, USA
| | - Abigail Raffner Basson
- Department of Medicine and Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Pamela Wearsh
- Department of Pathology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH, 44106, USA
| | - Fabio Cominelli
- Department of Medicine and Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- University Hospitals Research and Education Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Department of Medicine and Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Germ-Free and Gut Microbiome Core, Cleveland Digestive Diseases Research Core Center, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH, USA.
- University Hospitals Research and Education Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
35
|
Grey MJ, De Luca H, Ward DV, Kreulen IA, Bugda Gwilt K, Foley SE, Thiagarajah JR, McCormick BA, Turner JR, Lencer WI. The epithelial-specific ER stress sensor ERN2/IRE1β enables host-microbiota crosstalk to affect colon goblet cell development. J Clin Invest 2022; 132:e153519. [PMID: 35727638 PMCID: PMC9435652 DOI: 10.1172/jci153519] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial cells lining mucosal surfaces of the gastrointestinal and respiratory tracts uniquely express ERN2/IRE1β, a paralogue of the most evolutionarily conserved endoplasmic reticulum stress sensor, ERN1/IRE1α. How ERN2 functions at the host-environment interface and why a second paralogue evolved remain incompletely understood. Using conventionally raised and germ-free Ern2-/- mice, we found that ERN2 was required for microbiota-induced goblet cell maturation and mucus barrier assembly in the colon. This occurred only after colonization of the alimentary tract with normal gut microflora, which induced Ern2 expression. ERN2 acted by splicing Xbp1 mRNA to expand ER function and prevent ER stress in goblet cells. Although ERN1 can also splice Xbp1 mRNA, it did not act redundantly to ERN2 in this context. By regulating assembly of the colon mucus layer, ERN2 further shaped the composition of the gut microbiota. Mice lacking Ern2 had a dysbiotic microbial community that failed to induce goblet cell development and increased susceptibility to colitis when transferred into germ-free WT mice. These results show that ERN2 evolved at mucosal surfaces to mediate crosstalk between gut microbes and the colonic epithelium required for normal homeostasis and host defense.
Collapse
Affiliation(s)
- Michael J. Grey
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Heidi De Luca
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Irini A.M. Kreulen
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sage E. Foley
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jerrold R. Turner
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I. Lencer
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Silva AR, Bernardo A, de Mesquita MF, Vaz-Patto J, Moreira P, Silva ML, Padrão P. An anti-inflammatory and low fermentable oligo, di, and monosaccharides and polyols diet improved patient reported outcomes in fibromyalgia: A randomized controlled trial. Front Nutr 2022; 9:856216. [PMID: 36091254 PMCID: PMC9450131 DOI: 10.3389/fnut.2022.856216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFibromyalgia (FM) has been associated with dysbiosis and low-grade inflammation. Studies have reported that diet influences clinical features in FM.ObjectiveTo evaluate the effect of an anti-inflammatory and low fermentable oligo, di, and monosaccharides and polyols (FODMAP) diet on clinical outcomes of patients with FM.MethodsThis two arms Randomized Controlled Trial (NCT04007705) included 46 female patients with FM. The intervention group (n = 22) adopted an anti-inflammatory diet for 3 months, excluding gluten, dairy, added sugar, and ultra-processed foods, along with a low FODMAPs diet in the first month. The control group (n = 24) followed general healthy eating recommendations. Both diets were applied by a certified dietitian. Before and after the intervention, participants were assessed regarding pain, fatigue, gastrointestinal symptoms, quality of sleep, and quality of life, through the Revised Fibromyalgia Impact Questionnaire (FIQR), Visual Analogue Pain Scale (VAS), Visual Analog Scale from gastrointestinal symptoms (VAS GI), Brief Pain Inventory (BPI), Pittsburg Sleep Quality Index (PSQI), Fatigue Severity Survey (FSS), and The Short Form Health Survey (SF-36). A blood sample was collected and high-sensitive C-Reactive Protein and Erythrocyte Sedimentation Rate were quantified. Paired Samples t-test/Wilcoxon and independent samples t-test/Mann−Whitney were used to compare variables between groups.ResultsAfter intervention, there was an improvement in intervention group scores of FIQR (p = 0.001), VAS (p = 0.002), BPI (p = 0.011), FSS (p = 0.042), VAS_GI (p = 0.002), PSQI (p = 0.048), and SF36 (p = 0.045) compared to control group. Inflammatory biomarkers (hs-CRP, ESR) did not change in both groups. The intervention was beneficial in the intervention group, regardless of age, disease duration, body mass index variation, and body fat change between baseline and post-intervention.ConclusionAn anti-inflammatory and low-FODMAP diet improved clinical features in patients with FM and may be useful as a complement to pharmacological therapy.Clinical Trial Registration[https://clinicaltrials.gov/ct2/show/NCT04007705], identifier [NCT04007705].
Collapse
Affiliation(s)
- Ana Rita Silva
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Almada, Portugal
- *Correspondence: Ana Rita Silva,
| | - Alexandra Bernardo
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Almada, Portugal
| | - Maria Fernanda de Mesquita
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Almada, Portugal
| | | | - Pedro Moreira
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional, Porto, Portugal
- Centro de Investigação em Atividade Física, Saúde e Lazer, Universidade do Porto, Porto, Portugal
| | - Maria Leonor Silva
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Almada, Portugal
| | - Patrícia Padrão
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional, Porto, Portugal
| |
Collapse
|
37
|
Liu C, Zhan S, Tian Z, Li N, Li T, Wu D, Zeng Z, Zhuang X. Food Additives Associated with Gut Microbiota Alterations in Inflammatory Bowel Disease: Friends or Enemies? Nutrients 2022; 14:nu14153049. [PMID: 35893902 PMCID: PMC9330785 DOI: 10.3390/nu14153049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the 21st century, the incidence and prevalence of inflammatory bowel disease (IBD) is rising globally. Despite the pathogenesis of IBD remaining largely unclear, the interactions between environmental exposure, host genetics and immune response contribute to the occurrence and development of this disease. Growing evidence implicates that food additives might be closely related to IBD, but the involved molecular mechanisms are still poorly understood. Food additives may be categorized as distinct types in accordance with their function and property, including artificial sweeteners, preservatives, food colorant, emulsifiers, stabilizers, thickeners and so on. Various kinds of food additives play a role in modifying the interaction between gut microbiota and intestinal inflammation. Therefore, this review comprehensively synthesizes the current evidence on the interplay between different food additives and gut microbiome alterations, and further elucidates the potential mechanisms of food additives–associated microbiota changes involved in IBD.
Collapse
Affiliation(s)
- Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhenyi Tian
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Tong Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Dongxuan Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| |
Collapse
|
38
|
Gut Microbiota in Psoriasis. Nutrients 2022; 14:nu14142970. [PMID: 35889927 PMCID: PMC9321451 DOI: 10.3390/nu14142970] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with autoimmune pathogenic characteristics and is caused by chronic inflammation, which results in uncontrolled keratinocyte growth and defective differentiation. The link between the gut microbiota and immune system regulation opened a novel angle to understand the pathogenesis of many chronic multifactorial diseases, including psoriasis. Current evidence suggests that modulation of the gut microbiota, both through dietary approaches and through supplementation with probiotics and prebiotics, could represent a novel therapeutic approach. The present work aims to highlight the latest scientific evidence regarding the microbiome alterations of psoriatic patients, as well as state of the art insights in terms of microbiome-targeted therapies as promising preventive and therapeutic tools for psoriasis.
Collapse
|
39
|
Konstanti P, van Splunter M, van den Brink E, Belzer C, Nauta A, van Neerven RJJ, Smidt H. The Effect of Nutritional Intervention with Lactoferrin, Galactooligosacharides and Vitamin D on the Gut Microbiota Composition of Healthy Elderly Women. Nutrients 2022; 14:2468. [PMID: 35745198 PMCID: PMC9228949 DOI: 10.3390/nu14122468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Nutritional supplements, such as bovine lactoferrin (bLF), have been studied for their immunomodulatory properties, but little is known of their effect on the gut microbiota composition of the elderly when supplemented alone or combined with other nutritional supplements such as prebiotics and micronutrients. In the present study, fecal samples from a double-blind, placebo-controlled nutritional intervention study were analysed. At baseline (T1), 25 elderly women were distributed into two groups receiving dietary intervention (n = 12) or placebo treatment (n = 13) for 9 weeks. During the first 3 weeks of the study (T2), the intervention group consumed 1 g/day bLF, followed by 3 weeks (T3) of 1 g/day bLF and 2.64 g/day active galactooligosaccharides (GOS), and 3 weeks (T4) of 1 g/day bLF, 2.64 g/day GOS and 20 μg/day of vitamin D. The placebo group received maltodextrin, in dosages matching those of the intervention group. Fecal bacterial composition was profiled using partial 16S rRNA gene amplicon sequencing. Short-chain fatty acids (SCFA) were determined in fecal water as were levels of calprotectin, zonulin, and alpha-1-antitrypsin, as markers of gastrointestinal barrier and inflammation. Results: A significant increase was observed in the relative abundance of the genus Holdemanella (p < 0.01) in the intervention group compared to the placebo at T1. During T2, Bifidobacterium relative abundance increased significantly (p < 0.01) in the intervention group compared to the placebo, and remained significantly higher until the end of the study. No other effect was reported during T3. Furthermore, concentrations of SCFAs and calprotectin, zonulin and alpha-1-antitrypsin did not change during the intervention, although zonulin levels increased significantly within the placebo group by the end of the intervention. Conclusions: We conclude that supplementation of bLF enhanced the relative abundance of Holdemanella in the fecal microbiota of healthy elderly women, and further addition of GOS enhanced the relative abundance of Bifidobacterium.
Collapse
Affiliation(s)
- Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University & Research, 6700 EH Wageningen, The Netherlands; (C.B.); (H.S.)
| | - Marloes van Splunter
- Cell Biology & Immunology, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.v.S.); (E.v.d.B.); (R.J.J.v.N.)
| | - Erik van den Brink
- Cell Biology & Immunology, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.v.S.); (E.v.d.B.); (R.J.J.v.N.)
- Aquaculture and Fisheries, Wageningen University & Research, 6700 AH Wageningen, The Netherlands;
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, 6700 EH Wageningen, The Netherlands; (C.B.); (H.S.)
| | - Arjen Nauta
- Aquaculture and Fisheries, Wageningen University & Research, 6700 AH Wageningen, The Netherlands;
| | - R. J. Joost van Neerven
- Cell Biology & Immunology, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.v.S.); (E.v.d.B.); (R.J.J.v.N.)
- FrieslandCampina, 3818 LA Amersfoort, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6700 EH Wageningen, The Netherlands; (C.B.); (H.S.)
| |
Collapse
|
40
|
Zhao L, Liang J, Liu H, Gong C, Huang X, Hu Y, Liu Q, He Z, Zhang X, Yang S, Rahimnejad S. Yinchenhao Decoction ameliorates the high-carbohydrate diet induced suppression of immune response in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2022; 125:141-151. [PMID: 35569775 DOI: 10.1016/j.fsi.2022.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Yinchenhao Decoction (YD), a Chinese herbal medicine, has been traditionally used for treatment of metabolic liver diseases. A 10-week feeding trail was carried out to examine the effects of YD supplementation in a high carbohydrate diet (HCD) on liver histopathology, immune response, disease resistance, and expression of genes associated with endoplasmic reticulum stress, autophagy, apoptosis, necroptosis and inflammation in juvenile largemouth. A diet containing 9% carbohydrate was used as a low carbohydrate diet (LCD), and a HCD was formulated to contain 18% carbohydrate and supplemented with 0, 0.5, 1, 2 or 4% YD (HCD, HCD+0.5YD, HCD+1YD, HCD+2YD and HCD+4YD). Triplicate groups of fish (5.6 ± 0.2 g) were feed the test diets to visual satiety for 10 weeks. The highest survival rate after Nocardia seriolae challenge was recorded for the HCD+4YD group. YD application led to reduced ACP, AKP, AST and ALT activities. HCD-induced cells swelling, ruptured cell membrane, migrated nuclei and increasing inflammatory cells in hepatocytes were mitigated by YD addition. Moreover, YD decreased the expressions of pro-inflammation genes (TNF-α, IL-1β, IL-8, hepcidin1, NF-κB, COX2, CD80 and CD83) and increased the mRNA levels of anti-inflammation genes (IL-10 and IKBα). The mode of liver cell death was preferably changed to programed apoptosis rather than uncontrolled necroptosis by application of YD in HCD. Furthermore, the expression of UPR genes (IRE1, Eif2α, ATF6, XBP1 and GRP78/Bip) and autophagy genes (LC3-2, BNIP3 and P62) was increased by YD supplementation. In summary, our results demonstrated that YD addition in HCD enhances UPR, autophagy and programed apoptosis maintaining the homeostasis, and decreases uncontrolled necroptosis and inflammation, ultimately leading to improved immune response in largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Chenxin Gong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
41
|
Lo CH, Khandpur N, Rossato SL, Lochhead P, Lopes EW, Burke KE, Richter JM, Song M, Korat AVA, Sun Q, Fung TT, Khalili H, Chan AT, Ananthakrishnan AN. Ultra-processed Foods and Risk of Crohn's Disease and Ulcerative Colitis: A Prospective Cohort Study. Clin Gastroenterol Hepatol 2022; 20:e1323-e1337. [PMID: 34461300 PMCID: PMC8882700 DOI: 10.1016/j.cgh.2021.08.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The rising incidence of inflammatory bowel disease in regions undergoing Westernization has coincided with the increase in ultra-processed food (UPF) consumption over the past few decades. We aimed to examine the association between consumption of UPFs and the risk of Crohn's disease (CD) and ulcerative colitis (UC). METHODS We performed a prospective cohort study of 3 nationwide cohorts of health professionals in the United States-the Nurses' Health Study (1986-2014), the Nurses' Health Study II (1991-2017), and the Health Professionals Follow-up Study (1986-2012). We employed Cox proportional hazards models with adjustment for confounders to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for CD and UC according to self-reported consumption of UPFs. RESULTS The study included 245,112 participants. Over 5,468,444 person-years of follow-up, we documented 369 incident cases of CD and 488 incident cases of UC. The median age at diagnosis was 56 years (range, 29-85 years). Compared with participants in the lowest quartile of simple updated UPF consumption, those in the highest quartile had a significantly increased risk of CD (HR, 1.70; 95% CI, 1.23-2.35; Ptrend = .0008). Among different UPF subgroups, ultra-processed breads and breakfast foods; frozen or shelf-stable ready-to-eat/heat meals; and sauces, cheeses, spreads, and gravies showed the strongest positive associations with CD risk (HR per 1 standard deviation increase in intake, 1.18 [95% CI, 1.07-1.29], 1.11 [95% CI, 1.01-1.22], and 1.14 [95% CI, 1.02-1.27], respectively). There was no consistent association between UPF intake and UC risk. CONCLUSIONS Higher UPF intake was associated with an increased risk of incident CD. Further studies are needed to identify specific contributory dietary components.
Collapse
Affiliation(s)
- Chun-Han Lo
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Neha Khandpur
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil,Center for Epidemiological Studies in Health and Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| | - Sinara Laurini Rossato
- Graduation course in Public Health, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Paul Lochhead
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emily W. Lopes
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristin E. Burke
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - James M. Richter
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andres Victor Ardisson Korat
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Teresa T. Fung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Simmons University, Boston, Massachusetts, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ashwin N. Ananthakrishnan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Olendzki B, Bucci V, Cawley C, Maserati R, McManus M, Olednzki E, Madziar C, Chiang D, Ward DV, Pellish R, Foley C, Bhattarai S, McCormick BA, Maldonado-Contreras A. Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes 2022; 14:2046244. [PMID: 35311458 PMCID: PMC8942410 DOI: 10.1080/19490976.2022.2046244] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal microbiome. A microbiome "imbalance" or dysbiosis in inflammatory bowel disease (IBD) is linked to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed dietary intake throughout the study. We applied advanced computational approaches to define and model complex interactions between the foods reported and the microbiome. A dense dataset comprising 553 dietary records and 340 stool samples was obtained from 22 participants. Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive analytics, this study represents the first steps to detangle diet-microbiome and diet-immune interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.
Collapse
Affiliation(s)
- Barbara Olendzki
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rene Maserati
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Margaret McManus
- Center for Clinical and Translational Science, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Effie Olednzki
- Center for Applied Nutrition, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Camilla Madziar
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David Chiang
- Department of Medicine,University of Massachusetts Medical SchoolWorcester, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Randall Pellish
- UMass Memorial Medical Center University Campus, Department of Gastroenterology
| | - Christine Foley
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shakti Bhattarai
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA,CONTACT Ana Maldonado-Contreras Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics, 368 Plantation Street, Albert Sherman Center, Office AS.81045, Worcester, Massachusetts, 01605, Worcester, Massachusetts, USA
| |
Collapse
|
43
|
Ostrowski MP, La Rosa SL, Kunath BJ, Robertson A, Pereira G, Hagen LH, Varghese NJ, Qiu L, Yao T, Flint G, Li J, McDonald SP, Buttner D, Pudlo NA, Schnizlein MK, Young VB, Brumer H, Schmidt TM, Terrapon N, Lombard V, Henrissat B, Hamaker B, Eloe-Fadrosh EA, Tripathi A, Pope PB, Martens EC. Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota. Nat Microbiol 2022; 7:556-569. [PMID: 35365790 PMCID: PMC11537241 DOI: 10.1038/s41564-022-01093-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Processed foods often include food additives such as xanthan gum, a complex polysaccharide with unique rheological properties, that has established widespread use as a stabilizer and thickening agent. Xanthan gum's chemical structure is distinct from those of host and dietary polysaccharides that are more commonly expected to transit the gastrointestinal tract, and little is known about its direct interaction with the gut microbiota, which plays a central role in digestion of other dietary fibre polysaccharides. Here we show that the ability to digest xanthan gum is common in human gut microbiomes from industrialized countries and appears contingent on a single uncultured bacterium in the family Ruminococcaceae. Our data reveal that this primary degrader cleaves the xanthan gum backbone before processing the released oligosaccharides using additional enzymes. Some individuals harbour Bacteroides intestinalis that is incapable of consuming polymeric xanthan gum but grows on oligosaccharide products generated by the Ruminococcaceae. Feeding xanthan gum to germfree mice colonized with a human microbiota containing the uncultured Ruminococcaceae supports the idea that the additive xanthan gum can drive expansion of the primary degrader Ruminococcaceae, along with exogenously introduced B. intestinalis. Our work demonstrates the existence of a potential xanthan gum food chain involving at least two members of different phyla of gut bacteria and provides an initial framework for understanding how widespread consumption of a recently introduced food additive influences human microbiomes.
Collapse
Affiliation(s)
- Matthew P Ostrowski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Benoit J Kunath
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Andrew Robertson
- Life Sciences Institute: Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel Pereira
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Ling Qiu
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Tianming Yao
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | - Gabrielle Flint
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - James Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean P McDonald
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Duna Buttner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Infectious Diseases Division, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas M Schmidt
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Nicolas Terrapon
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Marseille, France
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Marseille, France
| | - Vincent Lombard
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Marseille, France
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Marseille, France
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Technical University of Denmark, DTU Bioengineering, Lyngby, Denmark
| | - Bruce Hamaker
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | | | - Ashootosh Tripathi
- Life Sciences Institute: Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Zangara MT, Ponti AK, Miller ND, Engelhart MJ, Ahern PP, Sangwan N, McDonald C. Maltodextrin Consumption Impairs the Intestinal Mucus Barrier and Accelerates Colitis Through Direct Actions on the Epithelium. Front Immunol 2022; 13:841188. [PMID: 35359925 PMCID: PMC8963984 DOI: 10.3389/fimmu.2022.841188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Food additives are common components of processed foods consumed in a Western diet. In inflammatory bowel disease patients, some diets that exclude food additives improved clinical disease parameters, suggesting a link between food additives and disease pathogenesis. Food additives also enhanced disease severity in mouse colitis models through incompletely described mechanisms. This study examined the mechanisms by which the food additive maltodextrin (MDX) alters the development of colitis in a murine model. Interleukin-10 knockout (IL10KO) mice were fed diets supplemented with MDX or carboxymethyl cellulose (CMC) to determine their impact on colitis onset and severity; microbiome composition, function, and location; colonic immune cell infiltrates; and mucus layer integrity. Primary IL10KO colonic epithelial monolayers were used to dissect the impact of MDX directly on epithelial differentiation and mucus production. MDX or CMC consumption increased the incidence and severity of colitis, as well as decreased microbiome diversity, altered microbial composition, and decreased fecal acetic acid levels. The number of mucus producing cells were decreased in food additive fed mice and resulted in increased microbial proximity to the intestinal epithelium. Additionally, MDX supplementation resulted in crypt hyperplasia and expansion of the HopX+ injury renewal stem cell niche. In primary intestinal epithelial-derived monolayers devoid of microbes and immune cells, MDX exposure decreased goblet cell number and mucus production in association with downregulated expression of the transcription factor Klf4, a marker of terminally differentiated goblet cells. These results suggest MDX disrupts the balance of epithelial cell differentiation and proliferation to contribute to disease pathogenesis through direct and indirect actions on the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - András K. Ponti
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Noah D. Miller
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biology, John Carroll University, University Heights, OH, United States
| | - Morgan J. Engelhart
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Philip P. Ahern
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Microbiome Composition and Analytics Cores, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christine McDonald
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
45
|
Richey Levine A, Picoraro JA, Dorfzaun S, LeLeiko NS. Emulsifiers and Intestinal Health: An Introduction. J Pediatr Gastroenterol Nutr 2022; 74:314-319. [PMID: 35226642 DOI: 10.1097/mpg.0000000000003361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Food additives in general, and emulsifiers in particular, are considered to be important dietary components with a potential to harm the intestine, in part by promoting intestinal inflammation. There is inadequate objective information about the specific nature and the magnitude of the problem.The Food and Drug Administration (FDA) has recognized approximately 450 items added to our foods as being generally regarded as safe and has placed them on a generally regarded as safe (GRAS) list. Additionally, it has also approved approximately 3000 "food additives." There is a general lack of transparency as to how either of these selections were and continue to be made. Once items are officially designated by the FDA as "food additives" or placed on the GRAS list, there is no regulatory mechanism for the ongoing monitoring of their safety.The most widely used emulsifier is "lecithin," which is biochemically identified as phosphatidylcholine (PC). Regulatory guidelines allow manufacturers to use the label "lecithin" to be applied to emulsifiers that contain PC plus other phospholipids in a variety of unspecified concentrations. The PC used in experiments cited in the literature, is unlikely to be the same thing as the "lecithin" in our diets.The objective of this introduction to emulsifiers is to raise awareness of the current state of food additives in the USA and to encourage thoughtful approaches to the study of all additives found in our diets. The overriding goal should be to assure the safety of what we eat. As examples we discuss eight widely distributed food additives; four "natural" emulsifiers that are classified as GRAS as well as an additional emulsifier-associated food additive that is also on the GRAS list, and three synthetic emulsifying agents that are FDA approved as "food additives."
Collapse
Affiliation(s)
| | - Joseph A Picoraro
- Pediatric IBD Program, Assistant Professor, Department of Pediatrics, Columbia University Irving Medical Center
| | - Sally Dorfzaun
- Pediatric IBD Program, Columbia University Irving Medical Center
| | - Neal S LeLeiko
- Pediatric IBD Program, Professor, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
46
|
Laudisi F, Stolfi C, Bevivino G, Maresca C, Franzè E, Troncone E, Lolli E, Marafini I, Pietrucci D, Teofani A, Di Grazia A, Di Fusco D, Colantoni A, Ortenzi A, Desideri A, Monteleone I, Monteleone G. GATA6 Deficiency Leads to Epithelial Barrier Dysfunction and Enhances Susceptibility to Gut Inflammation. J Crohns Colitis 2022; 16:301-311. [PMID: 34374415 DOI: 10.1093/ecco-jcc/jjab145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases [IBD], but the mechanisms that lead to such a defect are not fully understood. This study was aimed at characterising the factors involved in the defective barrier function in IBD. METHODS Transcriptome analysis was performed on colon samples taken from healthy controls [CTR] and IBD patients. Expression of GATA-binding factor 6 [GATA6], a transcription factor involved in intestinal epithelial cell differentiation, was evaluated in colon samples taken from CTR and IBD patients by real-time polymerase chain reaction [PCR] and immunohistochemistry. Intestinal sections of wild-type and Gata6del mice, which exhibit a conditional Gata6 deletion in intestinal epithelial cells and which are either left untreated or receive subcutaneous indomethacin or rectal trinitrobenzene sulphonic acid, were stained with haematoxylin and eosin. In parallel, some Gata6del mice received antibiotics to deplete intestinal flora. Mucosal inflammatory cell infiltration and cytokine production were evaluated by flow cytometry and real-time PCR, respectively, and tight junction proteins were examined by immunofluorescence. Intestinal barrier integrity was assessed by fluorescein isothiocyanate [FITC]-dextran assay. RESULTS Multiple genes involved in cell commitment/proliferation and wound healing were differentially expressed in IBD compared with CTR. Among these, GATA6 was significantly decreased in the IBD epithelium compared with CTR. In mice, conditional deletion of GATA6 in the intestinal epithelium induced primarily epithelial damage, diminished zonula occludens-1 expression, and enhanced intestinal permeability, ultimately resulting in bacteria-driven local immune response and enhanced susceptibility to gut inflammation. CONCLUSIONS Reduced expression of GATA6 promotes intestinal barrier dysfunction, thus amplifying intestinal inflammatory pathology.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Clinical Biochemistry and Clinical Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gerolamo Bevivino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Lolli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Pietrucci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department for Innovation in Biological, Agro-Food and Forest Systems, DIBAF, University of Tuscia, Viterbo, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
47
|
Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 2022; 10:microorganisms10010167. [PMID: 35056616 PMCID: PMC8780106 DOI: 10.3390/microorganisms10010167] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Diet is a key environmental factor in inflammatory bowel disease (IBD) and, at the same time, represents one of the most promising therapies for IBD. Our daily diet often contains food additives present in numerous processed foods and even in dietary supplements. Recently, researchers and national authorities have been paying much attention to their toxicity and effects on gut microbiota and health. This review aims to gather the latest data focusing on the potential role of food additives in the pathogenesis of IBDs through gut microbiota modulation. Some artificial emulsifiers and sweeteners can induce the dysbiosis associated with an alteration of the intestinal barrier, an activation of chronic inflammation, and abnormal immune response accelerating the onset of IBD. Even if most of these results are retrieved from in vivo and in vitro studies, many artificial food additives can represent a potential hidden driver of gut chronic inflammation through gut microbiota alterations, especially in a population with IBD predisposition. In this context, pending the confirmation of these results by large human studies, it would be advisable that IBD patients avoid the consumption of processed food containing artificial food additives and follow a personalized nutritional therapy prescribed by a clinical nutritionist.
Collapse
|
48
|
Abrahams M, O'Grady R, Prawitt J. Feasibility and acceptability of a mixed model digital study to explore the effect of a daily collagen peptide supplement on digestive symptoms in healthy females: findings from a pilot study. (Preprint). JMIR Form Res 2022; 6:e36339. [PMID: 35639457 PMCID: PMC9198822 DOI: 10.2196/36339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Objective Methods Results Conclusions Trial Registration
Collapse
|
49
|
Jarmakiewicz-Czaja S, Piątek D, Filip R. The impact of selected food additives on the gastrointestinal tract in the example of nonspecific inflammatory bowel diseases. Arch Med Sci 2022; 18:1286-1296. [PMID: 36160334 PMCID: PMC9479712 DOI: 10.5114/aoms/125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Various types of food additives are widely used in the food industry. Due to their properties extending the usefulness for consuming food products, they give them different colours, consistency, or taste. The products are marked 'E' and the code is assigned to the subscription used. Many of the supplements affect human health negatively. Emulsifiers or stabilizers can lead to epithelial loads and the development of inflammation. Sucrose and other sweeteners may change the composition of the intestinal microflora and thus lead to intestinal blockage. Some additives classified as preservatives are available and may predispose to intestinal dysbiosis. Available substances belonging to food dyes may predispose to genotoxic and cytotoxic effects and cause inflammation in the intestines. Substances added to food can also cause disorders of intestinal homeostasis.
Collapse
Affiliation(s)
| | - Dominika Piątek
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, Lublin, Poland
| | - Rafał Filip
- Department of Gastroenterology with IBD, Unit of Clinical Hospital 2, Rzeszow, Poland
- Medical College of Rzeszow University, Rzeszow, Poland
| |
Collapse
|
50
|
Mucins Dynamics in Physiological and Pathological Conditions. Int J Mol Sci 2021; 22:ijms222413642. [PMID: 34948435 PMCID: PMC8707880 DOI: 10.3390/ijms222413642] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Maintaining intestinal health requires clear segregation between epithelial cells and luminal microbes. The intestinal mucus layer, produced by goblet cells (GCs), is a key element in maintaining the functional protection of the epithelium. The importance of the gut mucus barrier is highlighted in mice lacking Muc2, the major form of secreted mucins. These mice show closer bacterial residence to epithelial cells, develop spontaneous colitis and became moribund when infected with the attaching and effacing pathogen, Citrobacter rodentium. Furthermore, numerous observations have associated GCs and mucus layer dysfunction to the pathogenesis of inflammatory bowel disease (IBD). However, the molecular mechanisms that regulate the physiology of GCs and the mucus layer remain obscured. In this review, we consider novel findings describing divergent functionality and expression profiles of GCs subtypes within intestinal crypts. We also discuss internal (host) and external (diets and bacteria) factors that modulate different aspects of the mucus layer as well as the contribution of an altered mucus barrier to the onset of IBD.
Collapse
|