1
|
Ishii K, Naito K, Tanaka D, Koto Y, Kurata K, Shimizu H. Molecular Mechanisms of Skatole-Induced Inflammatory Responses in Intestinal Epithelial Caco-2 Cells: Implications for Colorectal Cancer and Inflammatory Bowel Disease. Cells 2024; 13:1730. [PMID: 39451248 PMCID: PMC11505633 DOI: 10.3390/cells13201730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), in intestinal epithelial cells significantly contribute to inflammatory bowel disease (IBD) and colorectal cancer (CRC). Given our previous findings that TNF-α is upregulated in intestinal epithelial Caco-2 cells induced by skatole, a tryptophan-derived gut microbiota metabolite, the present study aimed to explore the relationship between skatole and IL-6, alongside TNF-α. Skatole elevated the promoter activity of IL-6 as well as TNF-α, and increased IL-6 mRNA expression and protein secretion. In addition to activating NF-κB, the NF-κB inhibitor BAY 11-7082 reduced skatole-induced cell survival and the mRNA expression of IL-6 and TNF-α. NF-κB activation was attenuated by the extracellular signal-regulated kinase (ERK) pathway inhibitor U0126 and the p38 inhibitor SB203580, but not by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. U126 and SB203580 also decreased the skatole-induced increase in IL-6 expression. When skatole-induced AhR activation was inhibited by CH223191, in addition to promoting NF-κB activation, IL-6 expression was enhanced in a manner similar to that previously reported for TNF-α. Taken together, these results suggest that skatole-elicited NF-κB activation induces IL-6 and TNF-α expression, although AhR activation partially suppresses this process. The ability of skatole to increase the expression of IL-6 and TNF-α may significantly affect the development and progression of these diseases. Moreover, the balance between NF-κB and AhR activation appears to govern the skatole-induced increases in IL-6 and TNF-α expression. Therefore, the present findings provide new insights into the mechanisms linking tryptophan-derived gut microbiota metabolites with colorectal disease.
Collapse
Affiliation(s)
- Katsunori Ishii
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Kazuma Naito
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Dai Tanaka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Yoshihito Koto
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Koichi Kurata
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Hidehisa Shimizu
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Estuary Research Center, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| |
Collapse
|
2
|
Ameri A, Pourseyedi F, Davoodian P, Safa O, Hassanipour S, Fathalipour M. Efficacy and safety of deferoxamine in moderately ill COVID-19 patients: An open label, randomized controlled trial. Medicine (Baltimore) 2024; 103:e39142. [PMID: 39183421 PMCID: PMC11346869 DOI: 10.1097/md.0000000000039142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Deferoxamine is a potent iron chelator that could remove iron from the virus, and severe acute respiratory syndrome coronavirus 2 requires iron to replication. Also, deferoxamine has antioxidant and cytokine-modulating effects. Therefore, we evaluated the efficacy and safety of deferoxamine in patients with moderate coronavirus disease 2019 (COVID-19). METHODS In this randomized controlled trial, patients with moderate COVID-19 were randomly assigned in a 1:1 ratio to the deferoxamine group (received a solution of 500 mg deferoxamine divided into 4 doses a day through a nebulizer for 7 days) and the control group. The main outcomes were viral clearance, oxygen saturation (SPO2), body temperature, and respiratory rate (RR). Intensive care unit admission, hospital length of stay, and hospital mortality were also assessed. RESULTS A total of 62 patients, with 30 in the deferoxamine group and 32 in the control group, were randomly assigned. There was no statistically significant improvement in viral clearance after the intervention ended in the deferoxamine group (36.7%) compared to the control group (34.4%). The results showed there was no significant difference between the analyzed groups in terms of SPO2, body temperature, RR, and the number of patients with a worse prognosis (SPO2 < 96%, temperature ≥ 37.5 °C, or RR ≥ 16/min) at the end of the study. There were no significant differences seen between the groups in terms of intensive care unit admission, hospital length of stay, hospital mortality, and the occurrence of adverse medication events during the follow-up period. CONCLUSION Deferoxamine had no significant impact on improving moderately ill patients with COVID-19. However, it was well-tolerated in the patients, and this intervention demonstrated a safe profile of adverse events.
Collapse
Affiliation(s)
- Ali Ameri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farnaz Pourseyedi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parivash Davoodian
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Endocrinology and Metabolic Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
3
|
Noordine ML, Seyoum Y, Bruneau A, Baye K, Lefebvre T, Cherbuy C, Canonne-Hergaux F, Nicolas G, Humblot C, Thomas M. The microbiota and the host organism switch between cooperation and competition based on dietary iron levels. Gut Microbes 2024; 16:2361660. [PMID: 38935764 PMCID: PMC11212566 DOI: 10.1080/19490976.2024.2361660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.
Collapse
Affiliation(s)
- Marie-Louise Noordine
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Yohannes Seyoum
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier Cedex, France
| | - Aurélia Bruneau
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thibaud Lefebvre
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
- Institut National de la Santé et de la Recherche Médicale, U1149, Centre de Recherches sur l’Inflammation, Paris, France
| | - Claire Cherbuy
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - François Canonne-Hergaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- U1188 DéTROI, Université de La Réunion, Paris, France
| | - Gaël Nicolas
- Institut National de la Santé et de la Recherche Médicale, U1149, Centre de Recherches sur l’Inflammation, Paris, France
- Université Paris Diderot, site Bichat, Sorbonne Paris Cité, Paris, Ile-de-France, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier Cedex, France
| | - Muriel Thomas
- Micalis Institute, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, UMR1319, Jouy-en-Josas, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| |
Collapse
|
4
|
Cheng J, Sun Y, Zhao Y, Guo Q, Wang Z, Wang R. Research Progress on the Mechanism of Intestinal Barrier Damage and Drug Therapy in a High Altitude Environment. Curr Drug Deliv 2024; 21:807-816. [PMID: 36892115 DOI: 10.2174/1567201820666230309090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 03/10/2023]
Abstract
The plateau is a typical extreme environment with low temperature, low oxygen and high ultraviolet rays. The integrity of the intestinal barrier is the basis for the functioning of the intestine, which plays an important role in absorbing nutrients, maintaining the balance of intestinal flora, and blocking the invasion of toxins. Currently, there is increasing evidence that high altitude environment can enhance intestinal permeability and disrupt intestinal barrier integrity. This article mainly focuses on the regulation of the expression of HIF and tight junction proteins in the high altitude environment, which promotes the release of pro-inflammatory factors, especially the imbalance of intestinal flora caused by the high altitude environment. The mechanism of intestinal barrier damage and the drugs to protect the intestinal barrier are reviewed. Studying the mechanism of intestinal barrier damage in high altitude environment is not only conducive to understanding the mechanism of high altitude environment affecting intestinal barrier function, but also provides a more scientific medicine treatment method for intestinal damage caused by the special high altitude environment.
Collapse
Affiliation(s)
- Junfei Cheng
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuemei Sun
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - Yilan Zhao
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianwen Guo
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - ZiHan Wang
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
| | - Rong Wang
- PLA Key Laboratory of Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, 730050, China
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Tsujikawa R, Thapa J, Okubo T, Nakamura S, Zhang S, Furuta Y, Higashi H, Yamaguchi H. Chlamydia trachomatis L2/434/Bu Favors Hypoxia for its Growth in Human Lymphoid Jurkat Cells While Maintaining Production of Proinflammatory Cytokines. Curr Microbiol 2022; 79:265. [PMID: 35859064 DOI: 10.1007/s00284-022-02961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
The role of lymphocytes as a cornerstone of the inflammatory response in the invasive pathogenesis of Chlamydia trachomatis (Ct) LGV (L1-3) infection is unclear. Therefore, we assessed whether the adaptation of CtL2 to immortal lymphoid Jurkat cells under hypoxic conditions occurred through proinflammatory cytokine profile modification. The quantities of inclusion-forming units with chlamydial 16S rDNA confirmed that CtL2 grew well under hypoxic rather than normoxic conditions in the cells. Confocal microscopic imaging and transmission electron microscopy revealed the presence of bacterial progeny in the inclusions and showed that the inclusions were larger under hypoxic rather than normoxic conditions; this was supported by the results of 3D image construction. Furthermore, PCR-based analysis of proinflammatory cytokines revealed that the gene expression levels under hypoxic conditions were significantly higher than those under normoxic conditions. In particular, the expression of two genes (CXCL8 and CXCR3) was significantly diminished under normoxic conditions. Taken together, the results indicated that hypoxia promoted CtL2 growth in Jurkat cells while maintaining the levels of proinflammatory cytokines. Thus, Ct LGV infection in lymphocytes under hypoxic conditions might be crucial to a complete understanding of the invasive pathogenesis.
Collapse
Affiliation(s)
- Ryoya Tsujikawa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kitaku, Sapporo, Hokkaido, 060-0812, Japan
| | - Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, North-20, West-10, Kita-ku, Sapporo, 001-0020, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kitaku, Sapporo, Hokkaido, 060-0812, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, and Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Saicheng Zhang
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kitaku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, North-20, West-10, Kita-ku, Sapporo, 001-0020, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, North-20, West-10, Kita-ku, Sapporo, 001-0020, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kitaku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
6
|
The ROS/GRK2/HIF-1α/NLRP3 Pathway Mediates Pyroptosis of Fibroblast-Like Synoviocytes and the Regulation of Monomer Derivatives of Paeoniflorin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4566851. [PMID: 35132350 PMCID: PMC8817856 DOI: 10.1155/2022/4566851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Hypoxia is an important factor in the development of synovitis in rheumatoid arthritis (RA). The previous study of the research group found that monomeric derivatives of paeoniflorin (MDP) can alleviate joint inflammation in adjuvant-induced arthritis (AA) rats by inhibiting macrophage pyroptosis. This study revealed increased levels of hypoxia-inducible factor- (HIF-) 1α and N-terminal p30 fragment of GSDMD (GSDMD-N) in fibroblast-like synoviocytes (FLS) of RA patients and AA rats, while MDP significantly inhibited their expression. Subsequently, FLS were exposed to a hypoxic environment or treated with cobalt ion in vitro. Western blot and immunofluorescence analysis showed increased expression of G protein-coupled receptor kinase 2 (GRK2), HIF-1α, nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3), ASC, caspase-1, cleaved-caspase-1, and GSDMD-N. Electron microscopy revealed FLS pyroptosis after exposure in hypoxia. Next, corresponding shRNAs were transferred into FLS to knock down hypoxia-inducible factor- (HIF-) 1α, and in turn, NLRP3 and western blot results confirmed the same. The enhanced level of GSDMD was reversed under hypoxia by inhibiting NLRP3 expression. Knockdown and overexpression of GRK2 in FLS revealed GRK2 to be a positive regulator of HIF-1α. Levels of GRK2 and HIF-1α were inhibited by eliminating excess reactive oxygen species (ROS). Furthermore, MDP reduced FLS pyroptosis through targeted inhibition of GRK2 phosphorylation. According to these findings, hypoxia induces FLS pyroptosis through the ROS/GRK2/HIF-1α/NLRP3 pathway, while MDP regulates this pathway to reduce FLS pyroptosis.
Collapse
|
7
|
Mohanty S, Kamolvit W, Zambrana S, Gonzales E, Tovi J, Brismar K, Östenson CG, Brauner A. HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients. J Mol Med (Berl) 2021; 100:101-113. [PMID: 34651203 PMCID: PMC8724101 DOI: 10.1007/s00109-021-02134-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Abstract Infections are common in patients with diabetes, but increasing antibiotic resistance hampers successful bacterial clearance and calls for alternative treatment strategies. Hypoxia-inducible factor 1 (HIF-1) is known to influence the innate immune defense and could therefore serve as a possible target. However, the impact of high glucose on HIF-1 has received little attention and merits closer investigation. Here, we show that higher levels of proinflammatory cytokines and CAMP, encoding for the antimicrobial peptide cathelicidin, LL-37, correlate with HIF-1 in type 2 diabetic patients. Chemical activation of HIF-1 further enhanced LL-37, IL-1β, and IL-8 in human uroepithelial cells exposed to high glucose. Moreover, HIF-1 activation of transurethrally infected diabetic mice resulted in lower bacterial load. Drugs activating HIF-1 could therefore in the future potentially have a therapeutic role in clearing bacteria in diabetic patients with infections where antibiotic treatment failed. Key messages • Mohanty et al. “HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients.” • Our study highlights induction of the antimicrobial peptide, LL-37, and strengthening of the innate immunity through hypoxia-inducible factor 1 (HIF-1) in diabetes. • Our key observations are: 1. HIF-1 activation increased LL-37 expression in human urothelial cells treated with high glucose. In line with that, we demonstrated that patients with type 2 diabetes living at high altitude had increased levels of the LL-37. 2. HIF-1 activation increased IL-1β and IL-8 in human uroepithelial cells treated with high glucose concentration. 3. Pharmacological activation of HIF-1 decreased bacterial load in the urinary bladder of mice with hereditary diabetes. • We conclude that enhancing HIF-1 may along with antibiotics in the future contribute to the treatment in selected patient groups where traditional therapy is not possible. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02134-7.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Silvia Zambrana
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Area de Farmacologia, Facultad de Ciencias Farmacéuticas Y Bioquimicas, Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Eduardo Gonzales
- Area de Farmacologia, Facultad de Ciencias Farmacéuticas Y Bioquimicas, Instituto de Investigaciones Farmaco Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | | | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
8
|
Zhang J, Lu X, Wang S, Li H. Neutrophil-to-Lymphocyte Ratio and Erythropoietin Resistance among Maintenance Hemodialysis Patients. Blood Purif 2021; 51:708-713. [PMID: 34649238 DOI: 10.1159/000519644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Neutrophil lymphocyte ratio (NLR) and platelet lymphocyte ratio (PLR) are recent prognostic biomarkers associated with inflammation. Increased erythropoiesis resistance index (ERI) may predict the risk of all-cause and cardiovascular mortality in hemodialysis (HD) patients. However, the roles of NLR and PLR in erythropoietin (EPO) responsiveness remain unclear in HD patients. This study aims to investigate the relationship between NLR and PLR and EPO responsiveness in maintenance HD patients. METHODS A total of 299 HD patients were included in this survey. Laboratory data and demographic details were collected. EPO responsiveness was evaluated by ERI. Pearson correlation analysis and logistic regressions were conducted to evaluate the factors that may be associated with EPO responsiveness. RESULTS The EPO responsiveness was positively related to ferritin and negatively related to serum albumin, lymphocytes, and hemoglobin. A multivariate linear regression revealed that only NLR (standardized β = 0.13, p = 0.024) but not PLR (standardized β = 0.107, p = 0.063) was correlated with a higher ERI. CONCLUSION A higher NLR level was shown to be a cheaper method to predict worse EPO responsiveness in HD patients.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China,
| | - Xiangxue Lu
- Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Simmen S, Maane M, Rogler S, Baebler K, Lang S, Cosin-Roger J, Atrott K, Frey-Wagner I, Spielmann P, Wenger RH, Weder B, Zeitz J, Vavricka SR, Rogler G, de Vallière C, Hausmann M, Ruiz PA. Hypoxia Reduces the Transcription of Fibrotic Markers in the Intestinal Mucosa. Inflamm Intest Dis 2021; 6:87-100. [PMID: 34124180 DOI: 10.1159/000513061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction Intestinal fibrosis, characterized by excessive deposition of extracellular matrix proteins, is a common and severe clinical complication of inflammatory bowel disease (IBD). However, the mechanisms underlying fibrosis remain elusive, and currently, there are limited effective pharmacologic treatments that target the development of fibrosis. Hypoxia is one of the key microenvironmental factors influencing intestinal inflammation and has been linked to fibrosis. Objective In the present study, we sought to elucidate the impact of hypoxia on fibrotic gene expression in the intestinal mucosa. Methods Human volunteers, IBD patients, and dextran sulphate sodium-treated mice were exposed to hypoxia, and colonic biopsies were collected. The human intestinal epithelial cell line Caco-2, human THP-1 macrophages, and primary human gut fibroblasts were subjected to hypoxia, and changes in fibrotic gene expression were assessed. Results Human volunteers subjected to hypoxia presented reduced transcriptional levels of fibrotic and epithelial-mesenchymal transition markers in the intestinal mucosa. IBD patients showed a trend towards a decrease in tissue inhibitor of metalloproteinase 1 protein expression. In mice, hypoxic conditions reduced the colonic expression of several collagens and matrix metalloproteinases. Hypoxic Caco-2 cells, THP-1 cells, and primary gut fibroblasts showed a significant downregulation in the expression of fibrotic and tissue remodelling factors. Conclusions Stabilization of hypoxia-inducible factors might represent a novel therapeutic approach for the treatment of IBD-associated fibrosis.
Collapse
Affiliation(s)
- Simona Simmen
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Max Maane
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Sarah Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Katherina Baebler
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Partick Spielmann
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Jonas Zeitz
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland.,Center of Gastroenterology, Clinic Hirslanden, Zurich, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Willie CK, Patrician A, Hoiland RL, Williams AM, Gasho C, Subedi P, Anholm J, Drane A, Tymko MM, Nowak-Flück D, Plato S, McBride E, Varoli G, Binsted G, Eller LK, Reimer RA, MacLeod DB, Stembridge M, Ainslie PN. Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050 m. J Physiol 2021; 599:1685-1708. [PMID: 33442904 DOI: 10.1113/jp281114] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Iron acts as a cofactor in the stabilization of the hypoxic-inducible factor family, and plays an influential role in the modulation of hypoxic pulmonary vasoconstriction. It is uncertain whether iron regulation is altered in lowlanders during either (1) ascent to high altitude, or (2) following partial acclimatization, when compared to high-altitude adapted Sherpa. During ascent to 5050 m, the rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders; however, upon arrival to 5050 m, PASP levels were comparable in both groups, but the reduction in iron bioavailability was more prevalent in lowlanders compared to Sherpa. Following partial acclimatization to 5050 m, there were differential influences of iron status manipulation (via iron infusion or chelation) at rest and during exercise between lowlanders and Sherpa on the pulmonary vasculature. ABSTRACT To examine the adaptational role of iron bioavailability on the pulmonary vascular responses to acute and chronic hypobaric hypoxia, the haematological and cardiopulmonary profile of lowlanders and Sherpa were determined during: (1) a 9-day ascent to 5050 m (20 lowlanders; 12 Sherpa), and (2) following partial acclimatization (11 ± 4 days) to 5050 m (18 lowlanders; 20 Sherpa), where both groups received an i.v. infusion of either iron (iron (iii)-hydroxide sucrose) or an iron chelator (desferrioxamine). During ascent, there were reductions in iron status in both lowlanders and Sherpa; however, Sherpa appeared to demonstrate a more efficient capacity to mobilize stored iron, compared to lowlanders, when expressed as a Δhepcidin per unit change in either body iron or the soluble transferrin receptor index, between 3400-5050 m (P = 0.016 and P = 0.029, respectively). The rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders during ascent; however, PASP was comparable in both groups upon arrival to 5050 m. Following partial acclimatization, despite Sherpa demonstrating a blunted hypoxic ventilatory response and greater resting hypoxaemia, they had similar hypoxic pulmonary vasoconstriction when compared to lowlanders at rest. Iron-infusion attenuated PASP in both groups at rest (P = 0.005), while chelation did not exaggerate PASP in either group at rest or during exaggerated hypoxaemia ( P I O 2 = 67 mmHg). During exercise at 25% peak wattage, PASP was only consistently elevated in Sherpa, which persisted following both iron infusion or chelation. These findings provide new evidence on the complex interplay of iron regulation on pulmonary vascular regulation during acclimatization and adaptation to high altitude.
Collapse
Affiliation(s)
- Christopher K Willie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Alexander Patrician
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexandra M Williams
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Gasho
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Prajan Subedi
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James Anholm
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Aimee Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael M Tymko
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Neurovascular Health Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Daniela Nowak-Flück
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Sawyer Plato
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Emily McBride
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Giovanfrancesco Varoli
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Gordon Binsted
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Lindsay K Eller
- Faculty of Kinesiology and Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology and Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Philip N Ainslie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
11
|
High Erythropoiesis Resistance Index Is a Significant Predictor of Cardiovascular and All-Cause Mortality in Chinese Maintenance Hemodialysis Patients. Mediators Inflamm 2020; 2020:1027230. [PMID: 33293895 PMCID: PMC7714563 DOI: 10.1155/2020/1027230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
Background Renal anemia is a common complication of hemodialysis patients. Erythropoietin (EPO) hyporesponsiveness has been recognized as an important factor to poor efficacy of recombinant human erythropoietin in the treatment of renal anemia. More importantly, increased erythropoiesis resistance index (ERI) may be associated with inflammation and increased mortality. Objective The objective of this research was to investigate correlated factors of EPO responsiveness and to clarify the relationships between EPO hyporesponsiveness and cardiovascular mortality and all-cause mortality among maintenance hemodialysis patients. Methods This prospective cohort study enrolled 276 maintenance hemodialysis patients for a 55-month follow-up to investigate the factors related to ERI and its relationship to all-cause mortality and cardiovascular mortality. Results ERI was positively correlated with predialysis serum high-sensitivity C-reactive protein (r = 0.234, p < 0.001), alkaline phosphatase (r = 0.134, p = 0.028), and ferritin (r = 0.155, p = 0.010) and negatively correlated with albumin (r = −0.206, p < 0.001) and creatinine (r = −0.232, p < 0.001). As multiple linear regression showed, predialysis serum albumin, high-sensitivity C-reactive protein, ferritin, and creatinine were independent correlated factors of ERI (p < 0.05). Kaplan–Meier curves showed that the cumulative incidences of both cardiovascular mortality and all-cause mortality were significantly higher in patients with ERI > 11.04 IU/kg/w/g/dL (both p < 0.01). The high ERI group was significantly associated with higher risk for all-cause mortality (OR 1.781, 95% CI 1.091 to 2.910, p = 0.021) and cardiovascular mortality (OR 1.972, 95% CI 1.139 to 3.417, p = 0.015) after adjusting for confounders. Conclusions Predialysis serum albumin, high-sensitivity C-reactive protein, ferritin, and creatinine were independent correlated factors of EPO responsiveness among maintenance hemodialysis patients. Patients with higher ERI values had a higher all-cause mortality rate and cardiovascular mortality rate.
Collapse
|
12
|
Kiefer MC, Motyka NI, Clements JD, Bitoun JP. Enterotoxigenic Escherichia coli Heat-Stable Toxin Increases the Rate of Zinc Release from Metallothionein and Is a Zinc- and Iron-Binding Peptide. mSphere 2020; 5:e00146-20. [PMID: 32238569 PMCID: PMC7113584 DOI: 10.1128/msphere.00146-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies have identified heat-stable enterotoxin (ST)-producing ETEC as one of the major diarrhea-causing pathogens in children younger than five years. In this study, we examined iron and zinc binding by both human and porcine ST variants and determined how host metallothionein could detoxify ST. We found that ST purified from ETEC culture supernatants eluted as a doublet during C18 reverse-phase chromatography. Leading edge fractions of the ST doublet were found to be devoid of iron, while trailing edge fractions of the ST doublet were found to contain measurable iron. Next, we found that purified ST could be reconstituted with iron under reducing and anaerobic conditions, and iron-bound ST attenuated the induction of cGMP in T84 epithelial cells. Moreover, we demonstrated that supernatants of ETEC 214-4 grown under increasing iron concentrations were only able to induce cGMP at iron concentrations greater than 5 μM. In vitro studies also demonstrated that ST binds zinc, and once bound, zinc removal from ST required denaturing conditions. Zinc-bound ST also failed to induce cGMP. We found that ST contributes disulfide bonds to the perceived oxidized glutathione pool, increases the rate of zinc release from metallothionein, and can be detoxified by metallothionein. Lastly, we showed ST induces transcriptional changes in genes previously shown to be regulated by deferoxamine. These studies demonstrate ST ETEC pathogenesis may be tied intimately to host mucosal metal status.IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries, deployed military personnel, and travelers to regions of endemicity. The heat-stable toxin (ST) is a small nonimmunogenic secreted peptide with 3 disulfide bonds. It has been appreciated that dietary disulfides modulate intestinal redox potential and that ST could be detoxified using exogenous reductants. Using biochemical and spectroscopic approaches, we demonstrated that ST can separately bind iron and zinc under reducing conditions, thereby reducing ST toxicity. Moreover, we demonstrated that ST modulates the glutathione (GSH)/oxidized glutathione (GSSG) ratio and that ST should be considered a toxin oxidant. ST can be detoxified by oxidizing zinc-loaded metallothionine, causing free zinc to be released. These studies help lay a foundation to understand how diarrheal pathogens modulate intestinal redox potential and may impact how we design therapeutics and/or vaccines for the pathogens that produce them.
Collapse
Affiliation(s)
- Mallory C Kiefer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Natalya I Motyka
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jacob P Bitoun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Guo YL, Feng L, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhou XQ. Dietary iron deficiency impaired intestinal immune function of on-growing grass carp under the infection of Aeromonas hydrophila: Regulation of NF-κB and TOR signaling. FISH & SHELLFISH IMMUNOLOGY 2019; 93:669-682. [PMID: 31408728 DOI: 10.1016/j.fsi.2019.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Iron is an important mineral element for fish. In this study, we investigated the influences of dietary iron deficiency on intestinal immune function as well as underlying signaling of on-growing grass carp (Ctenopharyngodon idella). Fish were fed with six graded level of dietary iron for sixty days, and a fourteen days' challenge test under infection of Aeromonas hydrophila thereafter. Results showed that compared with optimal iron level, iron deficiency increased enteritis morbidity, decreased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) concentrations and down-regulated mRNA levels of hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, Mucin2, β-defensin-1, anti-inflammatory cytokines transforming growth factor β1 (TGF-β1), TGF-β2, interleukin 4/13A (IL-4/13A), IL-4/13B, IL-10, IL-11 and IL-15, inhibitor of κBα (IκBα), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), whereas up-regulated mRNA levels of pro-inflammatory cytokines IL-1β, interferon γ2 (IFN-γ2), IL-8, IL-12p35, IL-12p40 and IL-17D, nuclear factor kappa B (NF-κB) p65, IκB kinases α (IKKα), IKKβ and eIF4E-binding protein (4E-BP) in intestine of on-growing grass carp, indicating that iron deficiency impaired intestinal immune function of fish under infection of A. hydrophila. Besides, iron excess also increased enteritis morbidity and impaired immune function of fish under infection of A. hydrophila. In addition, the effect of ferrous fumarate on intestinal immune function of on-growing grass carp is more efficient than ferrous sulfate. Finally, based on ability against enteritis, LZ activities in mid intestine and distal intestine, we recommended adding 83.37, 86.71 and 85.39 mg iron/kg into diet, respectively.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|