1
|
Li L, Yi Y, Shu X, Li J, Kang H, Chang Y. The Correlation Between Serum Copper and Non-alcoholic Fatty Liver Disease in American Adults: an Analysis Based on NHANES 2011 to 2016. Biol Trace Elem Res 2024; 202:4398-4409. [PMID: 38168830 DOI: 10.1007/s12011-023-04029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Copper functions as an essential micronutrient influencing diverse metabolic processes in mammals, encompassing oxidative stress responses, lipid metabolism, and participation in enzymatic reactions. However, the impact of serum copper on non-alcoholic fatty liver disease (NAFLD) remains controversial. Our aim was to explore the precise correlation between serum copper and NAFLD in a large-scale population-based study. A total of 1377 participants from the National Health and Nutrition Examination Survey (NHANES) 2011-2016 were included in our study. The diagnosis of NAFLD and its progress to advanced liver fibrosis were based on serological indexes. One-way ANOVA, Kruskal-Wallis H test, and Chi-square test were used to access variations between quartiles groups of serum copper. We conducted multivariate-adjusted logistic regression models and subgroup analyses to investigate the association between serum copper and NAFLD, along with several metabolic diseases. Among the 1377 participants, 661 were diagnosed with NAFLD, and 141 of whom were classified into advanced liver fibrosis. Higher serum copper levels (≥ 21.00 μmol/L) were associated with an increased incidence of NAFLD (odds ratio (OR) = 2.07 (1.38-3.10), p < 0.001), as well as advanced liver fibrosis (OR = 2.40 (1.17-5.19), p = 0.025). Moreover, serum copper exhibited a positive correlation with hypertension, overweight, and abdominal obesity, all of which have been identified as risk factors of NAFLD. Additionally, female participants, under the age of 60, and with a higher body mass index (BMI) (> 24.9 kg/m2) emerged as the most vulnerable subgroup concerning the relationship between serum copper and NAFLD. In the U.S. population, a notable association has been identified, linking elevated serum copper to an increased susceptibility for both the onset and progression of NAFLD, along with several metabolic disorders associated with NAFLD. The adverse effects of excess copper warrant attention in the context of public health considerations.
Collapse
Affiliation(s)
- Lurao Li
- Department of Gastroenterology, Zhong Nan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yun Yi
- Department of Gastroenterology, Zhong Nan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiawen Shu
- Department of Gastroenterology, Zhong Nan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhong Nan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hui Kang
- Department of Gastroenterology, Zhong Nan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhong Nan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
2
|
Fontes A, Pierson H, Bierła JB, Eberhagen C, Kinschel J, Akdogan B, Rieder T, Sailer J, Reinold Q, Cielecka-Kuszyk J, Szymańska S, Neff F, Steiger K, Seelbach O, Zibert A, Schmidt HH, Hauck SM, von Toerne C, Michalke B, Semrau JD, DiSpirito AM, Ramalho-Santos J, Kroemer G, Polishchuk R, Azul AM, DiSpirito A, Socha P, Lutsenko S, Zischka H. Copper impairs the intestinal barrier integrity in Wilson disease. Metabolism 2024; 158:155973. [PMID: 38986805 DOI: 10.1016/j.metabol.2024.155973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
In Wilson disease (WD), liver copper (Cu) excess, caused by mutations in the ATPase Cu transporting beta (ATP7B), has been extensively studied. In contrast, in the gastrointestinal tract, responsible for dietary Cu uptake, ATP7B malfunction is poorly explored. We therefore investigated gut biopsies from WD patients and compared intestines from two rodent WD models and from human ATP7B knock-out intestinal cells to their respective wild-type controls. We observed gastrointestinal (GI) inflammation in patients, rats and mice lacking ATP7B. Mitochondrial alterations and increased intestinal leakage were observed in WD rats, Atp7b-/- mice and human ATP7B KO Caco-2 cells. Proteome analyses of intestinal WD homogenates revealed profound alterations of energy and lipid metabolism. The intestinal damage in WD animals and human ATP7B KO cells did not correlate with absolute Cu elevations, but likely reflects intracellular Cu mislocalization. Importantly, Cu depletion by the high-affinity Cu chelator methanobactin (MB) restored enterocyte mitochondria, epithelial integrity, and resolved gut inflammation in WD rats and human WD enterocytes, plausibly via autophagy-related mechanisms. Thus, we report here before largely unrecognized intestinal damage in WD, occurring early on and comprising metabolic and structural tissue damage, mitochondrial dysfunction, and compromised intestinal barrier integrity and inflammation, that can be resolved by high-affinity Cu chelation treatment.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; DCV-Department of Life Sciences, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | - Hannah Pierson
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Joanna B Bierła
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jennifer Kinschel
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Judith Sailer
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Quirin Reinold
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Joanna Cielecka-Kuszyk
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Sylwia Szymańska
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | - Katja Steiger
- Comparative Experimental Pathology Department, Institute for General Pathology and Pathological Anatomy, Technical University of Munich (TUM), Germany
| | - Olga Seelbach
- Comparative Experimental Pathology Department, Institute for General Pathology and Pathological Anatomy, Technical University of Munich (TUM), Germany
| | - Andree Zibert
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H Schmidt
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109-2125, USA
| | - Ana M DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; DCV-Department of Life Sciences, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Alan DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany.
| |
Collapse
|
3
|
Li Y, Qi P, Song SY, Wang Y, Wang H, Cao P, Liu Y, Wang Y. Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease. Biomed Pharmacother 2024; 174:116585. [PMID: 38615611 DOI: 10.1016/j.biopha.2024.116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Emerging research into metabolic dysfunction-associated steatotic liver disease (MASLD) up until January 2024 has highlighted the critical role of cuproptosis, a unique cell death mechanism triggered by copper overload, in the disease's development. This connection offers new insights into MASLD's complex pathogenesis, pointing to copper accumulation as a key factor that disrupts lipid metabolism and insulin sensitivity. The identification of cuproptosis as a significant contributor to MASLD underscores the potential for targeting copper-mediated pathways for novel therapeutic approaches. This promising avenue suggests that managing copper levels could mitigate MASLD progression, offering a fresh perspective on treatment strategies. Further investigations into how cuproptosis influences MASLD are essential for unraveling the detailed mechanisms at play and for identifying effective interventions. The focus on copper's role in liver health opens up the possibility of developing targeted therapies that address the underlying causes of MASLD, moving beyond symptomatic treatment to tackle the root of the problem. The exploration of cuproptosis in the context of MASLD exemplifies the importance of understanding metal homeostasis in metabolic diseases and represents a significant step forward in the quest for more effective treatments. This research direction lights path for innovative MASLD management and reversal.
Collapse
Affiliation(s)
- Yamei Li
- Department of Rehabilitation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu'e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
4
|
Teschke R, Eickhoff A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. Int J Mol Sci 2024; 25:4753. [PMID: 38731973 PMCID: PMC11084815 DOI: 10.3390/ijms25094753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic steps, such as the generation of reactive oxygen species (ROS) and cuproptosis causing a copper dependent cell death. In the liver of patients with Wilson disease, also, increased iron deposits were found that may lead to iron-related ferroptosis responsible for phospholipid peroxidation within membranes of subcellular organelles. All topics are covered in this review article, in addition to the diagnostic and therapeutic issues of Wilson disease. Excess Cu2+ primarily leads to the generation of reactive oxygen species (ROS), as evidenced by early experimental studies exemplified with the detection of hydroxyl radical formation using the electron spin resonance (ESR) spin-trapping method. The generation of ROS products follows the principles of the Haber-Weiss reaction and the subsequent Fenton reaction leading to copper-related cuproptosis, and is thereby closely connected with ROS. Copper accumulation in the liver is due to impaired biliary excretion of copper caused by the inheritable malfunctioning or missing ATP7B protein. As a result, disturbed cellular homeostasis of copper prevails within the liver. Released from the liver cells due to limited storage capacity, the toxic copper enters the circulation and arrives at other organs, causing local accumulation and cell injury. This explains why copper injures not only the liver, but also the brain, kidneys, eyes, heart, muscles, and bones, explaining the multifaceted clinical features of Wilson disease. Among these are depression, psychosis, dysarthria, ataxia, writing problems, dysphagia, renal tubular dysfunction, Kayser-Fleischer corneal rings, cardiomyopathy, cardiac arrhythmias, rhabdomyolysis, osteoporosis, osteomalacia, arthritis, and arthralgia. In addition, Coombs-negative hemolytic anemia is a key feature of Wilson disease with undetectable serum haptoglobin. The modified Leipzig Scoring System helps diagnose Wilson disease. Patients with Wilson disease are well-treated first-line with copper chelators like D-penicillamine that facilitate the removal of circulating copper bound to albumin and increase in urinary copper excretion. Early chelation therapy improves prognosis. Liver transplantation is an option viewed as ultima ratio in end-stage liver disease with untreatable complications or acute liver failure. Liver transplantation finally may thus be a life-saving approach and curative treatment of the disease by replacing the hepatic gene mutation. In conclusion, Wilson disease is a multifaceted genetic disease representing a molecular and clinical challenge.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| |
Collapse
|
5
|
Wooton-Kee CR. Therapeutic implications of impaired nuclear receptor function and dysregulated metabolism in Wilson's disease. Pharmacol Ther 2023; 251:108529. [PMID: 37741465 PMCID: PMC10841433 DOI: 10.1016/j.pharmthera.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Copper is an essential trace element that is required for the activity of many enzymes and cellular processes, including energy homeostasis and neurotransmitter biosynthesis; however, excess copper accumulation results in significant cellular toxicity. The liver is the major organ for maintaining copper homeostasis. Inactivating mutations of the copper-transporting P-type ATPase, ATP7B, result in Wilson's disease, an autosomal recessive disorder that requires life-long medicinal therapy or liver transplantation. Current treatment protocols are limited to either sequestration of copper via chelation or reduction of copper absorption in the gut (zinc therapy). The goal of these strategies is to reduce free copper, redox stress, and cellular toxicity. Several lines of evidence in Wilson's disease animal models and patients have revealed altered hepatic metabolism and impaired hepatic nuclear receptor activity. Nuclear receptors are transcription factors that coordinate hepatic metabolism in normal and diseased livers, and several hepatic nuclear receptors have decreased activity in Wilson's disease and Atp7b-/- models. In this review, we summarize the basic physiology that underlies Wilson's disease pathology, Wilson's disease animal models, and the possibility of targeting nuclear receptor activity in Wilson's disease patients.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Baylor College of Medicine, Department of Pediatrics-Nutrition, Children's Nutrition Research Center, Houston, TX, United States of America.
| |
Collapse
|
6
|
Sarode GV, Mazi TA, Neier K, Shibata NM, Jospin G, Harder NH, Caceres A, Heffern MC, Sharma AK, More SK, Dave M, Schroeder SM, Wang L, LaSalle JM, Lutsenko S, Medici V. The role of intestine in metabolic dysregulation in murine Wilson disease. Hepatol Commun 2023; 7:e0247. [PMID: 37695076 PMCID: PMC10497250 DOI: 10.1097/hc9.0000000000000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, but little is known about other tissue involvement regarding metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B affects metabolic dysregulation in WD. We tested this hypothesis by evaluating the gut microbiota and lipidome in 2 mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in the intestine. METHODS Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice (Atp7bΔIEC) were generated and characterized using targeted lipidome analysis following a high-fat diet challenge. RESULTS Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated triglyceride and diglyceride, phospholipid, and sphingolipid metabolism in WD models. However, Atp7bΔIEC mice did not show gut microbiome differences compared to wild type. When challenged with a high-fat diet, Atp7bΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. CONCLUSIONS Gut microbiome and lipidome underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge but not the microbiome profile, at least at early stages. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence the phenotype and the lipidome profile.
Collapse
Affiliation(s)
- Gaurav V. Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Tagreed A. Mazi
- Department of Community Health Sciences - Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kari Neier
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Genome Center, MIND Institute, Davis, California, USA
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | | | - Nathaniel H.O. Harder
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Amanda Caceres
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Marie C. Heffern
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Ashok K. Sharma
- Department of Gastroenterology, Inflammatory Bowel & Immunology Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Shyam K. More
- Cedars Sinai Medical Center, F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maneesh Dave
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Shannon M. Schroeder
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Li Wang
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Genome Center, MIND Institute, Davis, California, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| |
Collapse
|
7
|
Affiliation(s)
- Eve A Roberts
- From the Departments of Paediatrics, Medicine, and Pharmacology and Toxicology, University of Toronto, and the Hospital for Sick Children Research Institute - both in Toronto; and the History of Science and Technology Programme, University of King's College, Halifax, NS, Canada (E.A.R.); and the Departments of Medicine and Surgery, Yale University School of Medicine, New Haven, CT (M.L.S.)
| | - Michael L Schilsky
- From the Departments of Paediatrics, Medicine, and Pharmacology and Toxicology, University of Toronto, and the Hospital for Sick Children Research Institute - both in Toronto; and the History of Science and Technology Programme, University of King's College, Halifax, NS, Canada (E.A.R.); and the Departments of Medicine and Surgery, Yale University School of Medicine, New Haven, CT (M.L.S.)
| |
Collapse
|
8
|
Maares M, Haupt A, Schüßler C, Kulike-Koczula M, Hackler J, Keil C, Mohr I, Schomburg L, Süssmuth RD, Zischka H, Merle U, Haase H. A fluorometric assay to determine labile copper(II) ions in serum. Sci Rep 2023; 13:12807. [PMID: 37550465 PMCID: PMC10406877 DOI: 10.1038/s41598-023-39841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
Labile copper(II) ions (Cu2+) in serum are considered to be readily available for cellular uptake and to constitute the biologically active Cu2+ species in the blood. It might also be suitable to reflect copper dyshomeostasis during diseases such as Wilson's disease (WD) or neurological disorders. So far, no direct quantification method has been described to determine this small Cu2+ subset. This study introduces a fluorometric high throughput assay using the novel Cu2+ binding fluoresceine-peptide sensor FP4 (Kd of the Cu2+-FP4-complex 0.38 pM) to determine labile Cu2+ in human and rat serum. Using 96 human serum samples, labile Cu2+was measured to be 0.14 ± 0.05 pM, showing no correlation with age or other serum trace elements. No sex-specific differences in labile Cu2+ concentrations were noted, in contrast to the total copper levels in serum. Analysis of the effect of drug therapy on labile Cu2+ in the sera of 19 patients with WD showed a significant decrease in labile Cu2+ following copper chelation therapy, suggesting that labile Cu2+ may be a specific marker of disease status and that the assay could be suitable for monitoring treatment progress.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Alessia Haupt
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Christoph Schüßler
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Marcel Kulike-Koczula
- Department of Organic and Biological Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Isabelle Mohr
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Roderich D Süssmuth
- Department of Organic and Biological Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- School of Medicine, Institute of Toxicology and Environmental Hygiene, Technical University Munich, Biedersteiner Strasse 29, 80802, Munich, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
9
|
Einer C, Munk DE, Park E, Akdogan B, Nagel J, Lichtmannegger J, Eberhagen C, Rieder T, Vendelbo MH, Michalke B, Wimmer R, Blutke A, Feuchtinger A, Dershwitz P, DiSpirito AM, Islam T, Castro RE, Min BK, Kim T, Choi S, Kim D, Jung C, Lee H, Park D, Im W, Eun SY, Cho YH, Semrau JD, Rodrigues CMP, Hohenester S, Damgaard Sandahl T, DiSpirito AA, Zischka H. ARBM101 (Methanobactin SB2) Drains Excess Liver Copper via Biliary Excretion in Wilson's Disease Rats. Gastroenterology 2023; 165:187-200.e7. [PMID: 36966941 DOI: 10.1053/j.gastro.2023.03.216] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND & AIMS Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.
Collapse
Affiliation(s)
- Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Eok Park
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea; Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralf Wimmer
- Department of Medicine II, Ludwig Maximilian University Munich, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Philip Dershwitz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Ana M DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Tawhidul Islam
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Byong-Keol Min
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - TaeWon Kim
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seoyoung Choi
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dasol Kim
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Chunwon Jung
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hongjae Lee
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dongsik Park
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Weonbin Im
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - So-Young Eun
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Simon Hohenester
- Department of Medicine II, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany.
| |
Collapse
|
10
|
Schwarz M, Meyer CE, Löser A, Lossow K, Hackler J, Ott C, Jäger S, Mohr I, Eklund EA, Patel AAH, Gul N, Alvarez S, Altinonder I, Wiel C, Maares M, Haase H, Härtlova A, Grune T, Schulze MB, Schwerdtle T, Merle U, Zischka H, Sayin VI, Schomburg L, Kipp AP. Excessive copper impairs intrahepatocyte trafficking and secretion of selenoprotein P. Nat Commun 2023; 14:3479. [PMID: 37311819 DOI: 10.1038/s41467-023-39245-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Selenium homeostasis depends on hepatic biosynthesis of selenoprotein P (SELENOP) and SELENOP-mediated transport from the liver to e.g. the brain. In addition, the liver maintains copper homeostasis. Selenium and copper metabolism are inversely regulated, as increasing copper and decreasing selenium levels are observed in blood during aging and inflammation. Here we show that copper treatment increased intracellular selenium and SELENOP in hepatocytes and decreased extracellular SELENOP levels. Hepatic accumulation of copper is a characteristic of Wilson's disease. Accordingly, SELENOP levels were low in serum of Wilson's disease patients and Wilson's rats. Mechanistically, drugs targeting protein transport in the Golgi complex mimicked some of the effects observed, indicating a disrupting effect of excessive copper on intracellular SELENOP transport resulting in its accumulation in the late Golgi. Our data suggest that hepatic copper levels determine SELENOP release from the liver and may affect selenium transport to peripheral organs such as the brain.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Caroline E Meyer
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Kristina Lossow
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Christiane Ott
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Susanne Jäger
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Isabelle Mohr
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Ella A Eklund
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Angana A H Patel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Nadia Gul
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Samantha Alvarez
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Ilayda Altinonder
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Clotilde Wiel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Maares
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Food Chemistry and Toxicology, Technical University Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Hajo Haase
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Food Chemistry and Toxicology, Technical University Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, 41345, Gothenburg, Sweden
- The Institute of Medical Microbiology and Hygiene, University Medical Centre Freiburg, Freiburg, Germany
| | - Tilman Grune
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Matthias B Schulze
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteinerstraße 29, 80802, Munich, Germany
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Anna P Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany.
| |
Collapse
|
11
|
Zhao Y, Jiao F, Tang T, Wu S, Wang F, Zhao X. Adverse effects and potential mechanisms of fluxapyroxad in Xenopus laevis on carbohydrate and lipid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121710. [PMID: 37137408 DOI: 10.1016/j.envpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
Fungicides are one of significant contributing factors to the rapid decline of amphibian species worldwide. Fluxapyroxad (FLX), an effective and broad-spectrum succinate dehydrogenase inhibitor fungicide, has attracted major concerns due to its long-lasting in the environment. However, the potential toxicity of FLX in the development of amphibians remains mostly unknown. In this research, the potential toxic effects and mechanisms of FLX on Xenopus laevis were investigated. In the acute toxicity test, the 96 h median lethal concentration (LC50) of FLX to X. laevis tadpoles was 1.645 mg/L. Based on the acute toxicity result, tadpoles at the stage 51 were exposed to 0, 0.00822, 0.0822, and 0.822 mg/L FLX during 21 days. Results demonstrated that FLX exposure led to an apparent delay in the growth and development of tadpoles and associated with severe liver injury. Additionally, FLX induced glycogen depletion and lipid accumulation in the liver of X. laevis. The biochemical analysis of plasma and liver indicated that FLX exposure could perturb liver glucose and lipid homeostasis by altering enzyme activity related to glycolysis, gluconeogenesis, fatty acid synthesis, and oxidation. Consistent with the biochemical result, FLX exposure altered the liver transcriptome profile, and the enrichment analysis of differential expression genes highlighted the adverse effects of FLX exposure on steroid biosynthesis, PPAR signaling pathway, glycolysis/gluconeogenesis, and fatty acid metabolism in the tadpole liver. Overall, our study was the first to reveal that sub-lethal concentrations of FLX could induce liver damage and produce obvious interference effects on carbohydrate and lipid metabolism of Xenopus, providing new insight into the potential chronic hazards of FLX for amphibians.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
12
|
Stewart A, Dershwitz P, Stewart C, Sawaya MR, Yeates TO, Semrau JD, Zischka H, DiSpirito AA, Bobik TA. Crystal structure of MbnF: an NADPH-dependent flavin monooxygenase from Methylocystis strain SB2. Acta Crystallogr F Struct Biol Commun 2023; 79:111-118. [PMID: 37158309 PMCID: PMC10167746 DOI: 10.1107/s2053230x23003035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
Methanobactins (MBs) are ribosomally produced and post-translationally modified peptides (RiPPs) that are used by methanotrophs for copper acquisition. The signature post-translational modification of MBs is the formation of two heterocyclic groups, either an oxazolone, pyrazinedione or imidazolone group, with an associated thioamide from an X-Cys dipeptide. The precursor peptide (MbnA) for MB formation is found in a gene cluster of MB-associated genes. The exact biosynthetic pathway of MB formation is not yet fully understood, and there are still uncharacterized proteins in some MB gene clusters, particularly those that produce pyrazinedione or imidazolone rings. One such protein is MbnF, which is proposed to be a flavin monooxygenase (FMO) based on homology. To help to elucidate its possible function, MbnF from Methylocystis sp. strain SB2 was recombinantly produced in Escherichia coli and its X-ray crystal structure was resolved to 2.6 Å resolution. Based on its structural features, MbnF appears to be a type A FMO, most of which catalyze hydroxylation reactions. Preliminary functional characterization shows that MbnF preferentially oxidizes NADPH over NADH, supporting NAD(P)H-mediated flavin reduction, which is the initial step in the reaction cycle of several type A FMO enzymes. It is also shown that MbnF binds the precursor peptide for MB, with subsequent loss of the leader peptide sequence as well as the last three C-terminal amino acids, suggesting that MbnF might be needed for this process to occur. Finally, molecular-dynamics simulations revealed a channel in MbnF that is capable of accommodating the core MbnA fragment minus the three C-terminal amino acids.
Collapse
Affiliation(s)
- Andrew Stewart
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-3260, USA
| | - Philip Dershwitz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-3260, USA
| | - Charles Stewart
- Macromolecular X-ray Crystallography Facility, Office of Biotechnology, Iowa State University, Ames, IA 50011-3260, USA
| | - Michael R. Sawaya
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Todd O. Yeates
- UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Jeremy D. Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- School of Medicine, Institute of Toxicology and Environmental Hygiene, Technical University Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Alan A. DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-3260, USA
| | - Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011-3260, USA
| |
Collapse
|
13
|
Raji-Amirhasani A, Khaksari M, Soltani Z, Saberi S, Iranpour M, Darvishzadeh Mahani F, Hajializadeh Z, Sabet N. Beneficial effects of time and energy restriction diets on the development of experimental acute kidney injury in Rat: Bax/Bcl-2 and histopathological evaluation. BMC Nephrol 2023; 24:59. [PMID: 36941590 PMCID: PMC10026443 DOI: 10.1186/s12882-023-03104-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
People's lifestyles and, especially, their eating habits affect their health and the functioning of the organs in their bodies, including the kidneys. One's diet influences the cells' responses to stressful conditions such as acute kidney injury (AKI). This study aims to determine the preconditioning effects of four different diets: energy restriction (ER) diet, time restriction (TR) eating, intermittent fasting (IF), and high-fat diet (HF) on histopathological indices of the kidney as well as the molecules involved in apoptosis during AKI. Adult male rats underwent ER, TR, IF, and HF diets for eight weeks. Then, AKI was induced, and renal function indices, histopathological indices, and molecules involved in apoptosis were measured. In animals with AKI, urinary albumin excretion, serum urea, creatinine and, Bax/Bcl-2 ratio increased in the kidney, while renal eGFR decreased. ER and TR diets improved renal parameters and prevented an increase in the Bax/Bcl-2 ratio. The IF diet improved renal parameters but had no effect on the Bax/Bcl-2 ratio. On the other hand, the HF diet worsened renal function and increased the Bax/Bcl-2 ratio. Histopathological examination also showed improved kidney conditions in the ER and TR groups and more damage in the HF group. This study demonstrated that ER and TR diets have renoprotective effects on AKI and possibly cause the resistance of kidney cells to damage by reducing the Bax/Bcl-2 ratio and improving apoptotic conditions.
Collapse
Affiliation(s)
- Alireza Raji-Amirhasani
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pathology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Sarode GV, Mazi TA, Neier K, Shibata NM, Jospin G, Harder NHO, Heffern MC, Sharma AK, More SK, Dave M, Schroeder SM, Wang L, LaSalle JM, Lutsenko S, Medici V. The role of intestine in metabolic dysregulation in murine Wilson disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524009. [PMID: 36711483 PMCID: PMC9882126 DOI: 10.1101/2023.01.13.524009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background and aims Major clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, and little is known about other tissues involvement in metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B could contribute to metabolic dysregulation in WD. We tested this hypothesis by evaluating gut microbiota and lipidome in two mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in intestine. Methods Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice ( Atp7b ΔIEC ) was generated using B6.Cg-Tg(Vil1-cre)997Gum/J mice and Atp7b Lox/Lox mice, and characterized using targeted lipidome analysis following a high-fat diet challenge. Results Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated tri- and diglyceride, phospholipid, and sphingolipid metabolism in WD models. When challenged with a high-fat diet, Atp7b ΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. Conclusion Coordinated changes of gut microbiome and lipidome analyses underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence phenotypic presentations.
Collapse
|
15
|
Hizarcıoğlu-Gülşen H, Onat PŞ, Yıldırım D, Demirtaş D, Boyraz MS, Göktaş MA, Demir H, Özen H, Saltık-Temizel İN, Saltik Temizel IN. Is Prolonged Copper Restriction Needed in Pediatric Wilson's Disease? THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:80-86. [PMID: 36511610 PMCID: PMC9984943 DOI: 10.5152/tjg.2022.22216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dietary copper restriction in Wilson's disease is recommended mostly for 1 year or until showing normal liver enzymes. Little is known about the effect of long-term copper restriction on copper and nutritional status in the body. The relationship between daily copper consumption and serum and urine copper parameters, liver enzymes, and dietary contents was investigated. METHODS In this study, 32 pediatric Wilson's disease patients who had been on treatment at least for 12 months were included. Clinical features, liver enzymes, serum total copper concentrations, non-ceruloplasmin bound copper concentrations, adjusted copper concentrations, 24-hour urine copper excretions, and macro- and micronutrient consumptions were analyzed. RESULTS In total, 27 patients reported following copper-restricted diets, while daily copper consumption was low only in 7 patients (21.9%). Total copper concentrations and non-ceruloplasmin-bound copper concentrations were low at 78.1% and 53.1%, respectively. All but one adjusted copper concentration were within normal limits. Total copper concentrations, adjusted copper concentration, and non-ceruloplasmin-bound copper concentrations correlated with each other but none correlated with urine copper excretions. Daily copper consumption was inversely correlated with total copper concentrations (P = .041, r = -0.363) but not correlated with non-cerulo plasmin-bound copper concentrations and adjusted copper concentrations. There was no relationship between liver enzymes and daily copper consumption and serum and urine copper parameters. High fat consumption with low fiber and vitamin B6 was more common in low daily copper consumption group (P = .033, P = .029, P = .007, respectively). CONCLUSIONS Daily copper consumption may be the least effective or non-effective factor on liver enzymes in Wilson's disease. Prolonged copper restriction may result in unintentional dietary imbalance. Avoidance of undernutrition and high-fat meals, as well as enrichment of the meals with vitamin B6 and fiber, should be encouraged during copper-restricted diets.
Collapse
Affiliation(s)
- Hayriye Hizarcıoğlu-Gülşen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey,Corresponding author: Hayriye Hizarcıoğlu-Gülşen, e-mail:
| | - Pınar Şimşek Onat
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Damla Yıldırım
- Department of Dietetics and Nutrition, İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Turkey
| | - Duygu Demirtaş
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey,Department of Pediatric Gastroenterology, Sağlık Bilimleri University, Van Training and Research Hospital, Van, Turkey
| | - Meryem S. Boyraz
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey,Department of Pediatric Gastroenterology, Sağlık Bilimleri University, Başakşehir Çam ve Sakura City Hospital, İstanbul, Turkey
| | - Mehmet A. Göktaş
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey,Department of Pediatric Gastroenterology, Sağlık Bilimleri University, Başakşehir Çam ve Sakura City Hospital, İstanbul, Turkey
| | - Hülya Demir
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hasan Özen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İnci Nur Saltık-Temizel
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li WJ, Chen HL, Wang B, Yao L, Wang XP. Wilson's disease: Food therapy out of trace elements. Front Cell Dev Biol 2022; 10:1091580. [PMID: 36619859 PMCID: PMC9812428 DOI: 10.3389/fcell.2022.1091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatolenticular degeneration, also known as Wilson's disease (WD), is an autosomal recessive inheritance nervous disorder of copper metabolism. The treatment of hepatolenticular degeneration emphasizes the combination of medical therapy and dietary therapy, such as a high zinc, low copper and sulfhydryl rich diet. Food therapy of WD based on trace elements is presented in this paper.
Collapse
Affiliation(s)
- Wen-Jie Li
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Ningbo First Hospital, Ningbo, China
| | - Huan-Ling Chen
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yao
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,International Academician Station JiangQiao, Shanghai, China,*Correspondence: Xiao-Ping Wang,
| |
Collapse
|
17
|
Different Response Behavior to Therapeutic Approaches in Homozygotic Wilson's Disease Twins with Clinical Phenotypic Variability: Case Report and Literature Review. Genes (Basel) 2022; 13:genes13071217. [PMID: 35885998 PMCID: PMC9318625 DOI: 10.3390/genes13071217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Wilson’s disease (WD) is an autosomal-recessive disorder of copper deposition caused by pathogenic variants in the copper-transporting ATP7B gene. There is not a clear correlation between genotype and phenotype in WD regarding symptom manifestations. This is supported by the presentation of genetically identical WD twins with phenotypic discordance and different response behavior to WD-specific therapy. Case Presentation: One of the female homozygous twins (age: 26 yrs) developed writing, speaking, swallowing and walking deficits which led to in-patient examination without conclusive results but recommended genetic testing. Both sisters were tested and were heterozygous for the C.2304dupC;p(Met769Hisf*26) and the C.3207C>A;p(His1069Gln) mutation. Self-medication of the affected sibling with 450 mg D-penicillamine (DPA) did not prevent further deterioration. She developed a juvenile parkinsonian syndrome and became wheelchair-bound and anarthric. A percutaneous endoscopic gastrostomy was applied. Her asymptomatic sister helped her with her daily life. Despite the immediate increase of the DPA dose (up to 1800 mg within 3 weeks) in the severely affected patient and the initiation of DPA therapy (up to 600 mg within 2 weeks) in the asymptomatic patient after the first visit in our institution, liver function tests further deteriorated in both patients. After 2 months, the parkinsonian patient started to improve and walk again, but experienced several falls, broke her right shoulder and underwent two necessary surgical interventions. With further consequent copper elimination therapy, liver dysfunction improved in both patients, without need for orthotopic liver transplantation (LTX) in the severely affected patient. Her excellent recovery of liver and brain dysfunction was only transiently interrupted by the development of a nephrotic syndrome which disappeared after switching to Cuprior®. Unfortunately, she died from fulminant pneumonia. Conclusion: Despite identical genetic disposition, WD symptom presentations may develop differently in monozygotic twins, and they may need to be placed on a very different therapeutical regimen. The underlying gene-environment interaction is unclear so far.
Collapse
|
18
|
Dev S, Kruse RL, Hamilton JP, Lutsenko S. Wilson Disease: Update on Pathophysiology and Treatment. Front Cell Dev Biol 2022; 10:871877. [PMID: 35586338 PMCID: PMC9108485 DOI: 10.3389/fcell.2022.871877] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Wilson disease (WD) is a potentially fatal genetic disorder with a broad spectrum of phenotypic presentations. Inactivation of the copper (Cu) transporter ATP7B and Cu overload in tissues, especially in the liver, are established causes of WD. However, neither specific ATP7B mutations nor hepatic Cu levels, alone, explain the diverse clinical presentations of WD. Recently, the new molecular details of WD progression and metabolic signatures of WD phenotypes began to emerge. Studies in WD patients and animal models revealed the contributions of non-parenchymal liver cells and extrahepatic tissues to the liver phenotype, and pointed to dysregulation of nuclear receptors (NR), epigenetic modifications, and mitochondria dysfunction as important hallmarks of WD pathogenesis. This review summarizes recent advances in the characterization of WD pathophysiology and discusses emerging targets for improving WD diagnosis and treatment.
Collapse
Affiliation(s)
- Som Dev
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, United States
| | - Robert L. Kruse
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - James P. Hamilton
- Department of Medicine, Johns Hopkins Medical Institutes, Baltimore, MD, United States
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, United States
- *Correspondence: Svetlana Lutsenko,
| |
Collapse
|
19
|
Harder NHO, Lee HP, Flood VJ, San Juan JA, Gillette SK, Heffern MC. Fatty Acid Uptake in Liver Hepatocytes Induces Relocalization and Sequestration of Intracellular Copper. Front Mol Biosci 2022; 9:863296. [PMID: 35480878 PMCID: PMC9036104 DOI: 10.3389/fmolb.2022.863296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential metal micronutrient with biological roles ranging from energy metabolism to cell signaling. Recent studies have shown that copper regulation is altered by fat accumulation in both rodent and cell models with phenotypes consistent with copper deficiency, including the elevated expression of the copper transporter, ATP7B. This study examines the changes in the copper trafficking mechanisms of liver cells exposed to excess fatty acids. Fatty acid uptake was induced in liver hepatocarcinoma cells, HepG2, by treatment with the saturated fatty acid, palmitic acid. Changes in chaperones, transporters, and chelators demonstrate an initial state of copper overload in the cell that over time shifts to a state of copper deficiency. This deficiency is due to sequestration of copper both into the membrane-bound copper protein, hephaestin, and lysosomal units. These changes are independent of changes in copper concentration, supporting perturbations in copper localization at the subcellular level. We hypothesize that fat accumulation triggers an initial copper miscompartmentalization within the cell, due to disruptions in mitochondrial copper balance, which induces a homeostatic response to cytosolic copper overload. This leads the cell to activate copper export and sequestering mechanisms that in turn induces a condition of cytosolic copper deficiency. Taken together, this work provides molecular insights into the previously observed phenotypes in clinical and rodent models linking copper-deficient states to obesity-associated disorders.
Collapse
|
20
|
Multidisciplinary lifestyle intervention is associated with improvements in liver damage and in surrogate scores of NAFLD and liver fibrosis in morbidly obese patients. Eur J Nutr 2022; 61:2725-2735. [PMID: 35277756 PMCID: PMC9279260 DOI: 10.1007/s00394-022-02846-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Particularly morbidly obese patients are at risk of developing progressive liver disease. Nutritional and lifestyle intervention is recommended as the standard of care in NAFLD. However, there is a striking lack of evidence to support the efficacy of lifestyle intervention to treat NAFLD in morbidly obese patients. Here, we aimed to assess the impact of lifestyle intervention on NAFLD in the morbidly obese in a real-world setting. Methods 136 obese patients were included in an industry-independent, multiprofessional lifestyle intervention program with a lead-in phase of 12 weeks of formula diet and a total of 48 weeks intensive counselling. Body weight and markers of the metabolic syndrome were analyzed. Presence of NAFLD was screened for by use of non-invasive markers of fatty liver, non-alcoholic steatohepatitis and liver fibrosis. Results Weight loss goals (i.e. > 5% or > 10% of initial body weight, respectively, depending on baseline BMI) were achieved in 89.7% of subjects in the intention-to-treat analysis and 93.9% in the per-protocol analysis. This was associated with a pronounced improvement in serum ALT values. The percentage of subjects who fulfilled non-invasive criteria for fatty liver dropped from 95.2 to 54.8%. Risk of NASH improved and the number of patients at risk of liver fibrosis declined by 54.1%. Conclusion Lifestyle intervention was associated with a marked improvement of serum ALT and an improvement of surrogate scores indicative of NAFLD and, importantly, advanced fibrosis, in a real-world cohort of morbidly obese patients. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02846-7.
Collapse
|
21
|
Raji-Amirhasani A, Khaksari M, Shahrokhi N, Soltani Z, Nazari-Robati M, Mahani FD, Hajializadeh Z, Sabet N. Comparison of the effects of different dietary regimens on susceptibility to experimental acute kidney injury: the role of SIRT1 and TGF-β1. Nutrition 2022; 96:111588. [DOI: 10.1016/j.nut.2022.111588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
|
22
|
Gottlieb A, Dev S, DeVine L, Gabrielson KL, Cole RN, Hamilton JP, Lutsenko S. Hepatic Steatosis in the Mouse Model of Wilson Disease Coincides with a Muted Inflammatory Response. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:146-159. [PMID: 34627751 PMCID: PMC8759043 DOI: 10.1016/j.ajpath.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
Wilson disease (WND) is caused by inactivation of the copper transporter ATP7B and copper accumulation in tissues. WND presentations vary from liver steatosis to inflammation, fibrosis, and liver failure. Diets influence the liver phenotype in WND, but findings are inconsistent. To better understand the impact of excess calories on liver phenotype in WND, the study compared C57BL/6J Atp7b-/- and C57BL/6J mice fed for 12 weeks with Western diet or normal chow. Serum and liver metabolites, body fat content, liver histology, hepatic proteome, and copper content were analyzed. Wild-type and Atp7b-/- livers showed striking similarities in their responses to Western diet, most notably down-regulation of cholesterol biosynthesis, altered nuclear receptor signaling, and changes in cytoskeleton. Western diet increased body fat content and induced liver steatosis in males and females regardless of genotype; however, the effects were less pronounced in Atp7b-/- mice compared with those in the wild type mice. Although hepatic copper remained elevated in Atp7b-/- mice, liver inflammation was reduced. The diet diminished signaling by Rho GTPases, integrin, IL8, and reversed changes in cell cycle machinery and cytoskeleton. Overall, high calories decreased inflammatory response in favor of steatosis without improving markers of cell viability. Similar changes of cellular pathways during steatosis development in wild-type and Atp7b-/- mice explain histologic overlap between WND and non-alcoholic fatty liver disease despite opposite copper changes in these disorders.
Collapse
Affiliation(s)
- Aline Gottlieb
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Som Dev
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren DeVine
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert N Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James P Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
23
|
Borchard S, Raschke S, Zak KM, Eberhagen C, Einer C, Weber E, Müller SM, Michalke B, Lichtmannegger J, Wieser A, Rieder T, Popowicz GM, Adamski J, Klingenspor M, Coles AH, Viana R, Vendelbo MH, Sandahl TD, Schwerdtle T, Plitz T, Zischka H. Bis-choline tetrathiomolybdate prevents copper-induced blood-brain barrier damage. Life Sci Alliance 2021; 5:5/3/e202101164. [PMID: 34857647 PMCID: PMC8675913 DOI: 10.26508/lsa.202101164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
The blood–brain barrier endothelial cell monolayer becomes permeable to elevated copper loosely bound to albumin, which can be avoided by a high-affinity copper chelator but not by D-penicillamine. In Wilson disease, excessive copper accumulates in patients’ livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood–brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood–brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.
Collapse
Affiliation(s)
- Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-Deutsche Forschungsgemeinschaft Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (Forschungsgruppe 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Krzysztof M Zak
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Elisabeth Weber
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra M Müller
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Albrecht Wieser
- Institute of Radiation Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Lehrstuhl für Experimentelle Genetik, Technical University Munich, Freising-Weihenstephan, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany.,Else-Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | | | - Ruth Viana
- Alexion AstraZeneca Rare Disease, Boston, MA, USA
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine and Positron Emission Tomography Centre, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Thomas D Sandahl
- Medical Department Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-Deutsche Forschungsgemeinschaft Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (Forschungsgruppe 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | | | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany .,Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| |
Collapse
|
24
|
Wilson's Disease: An Update on the Diagnostic Workup and Management. J Clin Med 2021; 10:jcm10215097. [PMID: 34768617 PMCID: PMC8584493 DOI: 10.3390/jcm10215097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
Wilson's disease (WD) is a rare autosomal recessive disorder of hepatocellular copper deposition. The diagnostic approach to patients with WD may be challenging and is based on a complex set of clinical findings that derive from patient history, physical examination, as well as laboratory and imaging testing. No single examination can unequivocally confirm or exclude the disease. Timely identification of signs and symptoms using novel biomarkers and modern diagnostic tools may help to reduce treatment delays and improve patient prognosis. The proper way of approaching WD management includes, firstly, early diagnosis and prompt treatment introduction; secondly, careful and lifelong monitoring of patient compliance and strict adherence to the treatment; and, last but not least, screening for adverse effects and evaluation of treatment efficacy. Liver transplantation is performed in about 5% of WD patients who present with acute liver failure at first disease presentation or with signs of decompensation in the course of liver cirrhosis. Increasing awareness of this rare inherited disease among health professionals, emphasizing their training to consider early signs and symptoms of the illness, and strict monitoring are vital strategies for the patient safety and efficacy of WD therapy.
Collapse
|
25
|
Kabiri Y, Fuhrmann A, Becker A, Jedermann L, Eberhagen C, König AC, Silva TB, Borges F, Hauck SM, Michalke B, Knolle P, Zischka H. Mitochondrial Impairment by MitoBloCK-6 Inhibits Liver Cancer Cell Proliferation. Front Cell Dev Biol 2021; 9:725474. [PMID: 34616733 PMCID: PMC8488156 DOI: 10.3389/fcell.2021.725474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023] Open
Abstract
Augmenter of liver regeneration (ALR) is a critical multi-isoform protein with its longer isoform, located in the mitochondrial intermembrane space, being part of the mitochondrial disulfide relay system (DRS). Upregulation of ALR was observed in multiple forms of cancer, among them hepatocellular carcinoma (HCC). To shed light into ALR function in HCC, we used MitoBloCK-6 to pharmacologically inhibit ALR, resulting in profound mitochondrial impairment and cancer cell proliferation deficits. These effects were mostly reversed by supplementation with bioavailable hemin b, linking ALR function to mitochondrial iron homeostasis. Since many tumor cells are known for their increased iron demand and since increased iron levels in cancer are associated with poor clinical outcome, these results help to further advance the intricate relation between iron and mitochondrial homeostasis in liver cancer.
Collapse
Affiliation(s)
- Yaschar Kabiri
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anna Fuhrmann
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anna Becker
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Luisa Jedermann
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ann-Christine König
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tiago Barros Silva
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
26
|
Diagnosis of Wilson Disease and Its Phenotypes by Using Artificial Intelligence. Biomolecules 2021; 11:biom11081243. [PMID: 34439909 PMCID: PMC8394607 DOI: 10.3390/biom11081243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023] Open
Abstract
WD is caused by ATP7B variants disrupting copper efflux resulting in excessive copper accumulation mainly in liver and brain. The diagnosis of WD is challenged by its variable clinical course, onset, morbidity, and ATP7B variant type. Currently it is diagnosed by a combination of clinical symptoms/signs, aberrant copper metabolism parameters (e.g., low ceruloplasmin serum levels and high urinary and hepatic copper concentrations), and genetic evidence of ATP7B mutations when available. As early diagnosis and treatment are key to favorable outcomes, it is critical to identify subjects before the onset of overtly detrimental clinical manifestations. To this end, we sought to improve WD diagnosis using artificial neural network algorithms (part of artificial intelligence) by integrating available clinical and molecular parameters. Surprisingly, WD diagnosis was based on plasma levels of glutamate, asparagine, taurine, and Fischer's ratio. As these amino acids are linked to the urea-Krebs' cycles, our study not only underscores the central role of hepatic mitochondria in WD pathology but also that most WD patients have underlying hepatic dysfunction. Our study provides novel evidence that artificial intelligence utilized for integrated analysis for WD may result in earlier diagnosis and mechanistically relevant treatments for patients with WD.
Collapse
|
27
|
Quarles CD, Macke M, Michalke B, Zischka H, Karst U, Sullivan P, Field MP. LC-ICP-MS method for the determination of "extractable copper" in serum. Metallomics 2021; 12:1348-1355. [PMID: 32789408 DOI: 10.1039/d0mt00132e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper is an essential element for biological functions within humans and animals. There are several known diseases associated with Cu deficiency or overload, such as Menkes disease and Wilson disease, respectively. A common clinical method for determining extractable Cu levels in serum, which is thought to be potentially dangerous if in excess, is to subtract the value of tightly incorporated Cu in ceruloplasmin from total serum Cu. In this work, an automated sample preparation and liquid chromatography (LC) system was combined with inductively coupled plasma-mass spectrometry (ICP-MS) to determine bound Cu and extractable Cu in serum. This LC-ICP-MS method took 250 s for sample preparation and analysis, followed by a column recondition/system reset, thus, a 6 minute sample-to-sample time including sample preparation. The method was validated using serum collected from either control (Atp7b+/-) or Wilson disease rats (Atp7b-/-). The extractable Cu was found to be 4.0 ± 2.3 μM Cu in healthy control rats, but 2.1 ± 0.6 μM Cu in healthy Wilson rats, and 27 ± 16 μM Cu in diseased Wilson rats, respectively. In addition, the extractable Cu/bound Cu ratio was found to be 6.4 ± 3.5%, 38 ± 29%, and 34 ± 22%, respectively. These results suggest that the developed method could be of diagnostic value for Wilson disease, and possibly other copper related diseases.
Collapse
Affiliation(s)
- C Derrick Quarles
- Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, NE, USA.
| | - Marcel Macke
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstrasse 30, 48149 Münster, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany and Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Uwe Karst
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstrasse 30, 48149 Münster, Germany
| | - Patrick Sullivan
- Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, NE, USA.
| | - M Paul Field
- Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, NE, USA.
| |
Collapse
|
28
|
Copper and lipid metabolism: A reciprocal relationship. Biochim Biophys Acta Gen Subj 2021; 1865:129979. [PMID: 34364973 DOI: 10.1016/j.bbagen.2021.129979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Copper and lipid metabolism are intimately linked, sharing a complex, inverse relationship in the periphery (outside of the central nervous system), which remains to be fully elucidated. SCOPE Copper and lipids have independently been implicated in the pathogenesis of diseases involving dyslipidaemia, including obesity, cardiovascular disease and non-alcoholic fatty liver disease and also in Wilson disease, an inherited disorder of copper overload. Here we review the relationship between copper and lipid regulatory pathways, which are potential druggable targets for therapeutic intervention. MAJOR CONCLUSIONS While the inverse relationship between copper and lipids is apparent, tissue-specific roles for the copper regulatory protein, ATP7B provide further insight into the association between copper and lipid metabolism. GENERAL SIGNIFICANCE Understanding the relationship between copper and lipid metabolism is important for identifying druggable targets for diseases with disrupted copper and/or lipid metabolism; and may reveal similar connections within the brain and in neurological diseases with impaired copper and lipid transport.
Collapse
|
29
|
White Button Mushroom Extracts Modulate Hepatic Fibrosis Progression, Inflammation, and Oxidative Stress In Vitro and in LDLR-/- Mice. Foods 2021; 10:foods10081788. [PMID: 34441565 PMCID: PMC8392037 DOI: 10.3390/foods10081788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Liver fibrosis can be caused by non-alcoholic steatohepatitis (NASH), among other conditions. We performed a study to analyze the effects of a nontoxic, water-soluble extract of the edible mushroom Agaricus bisporus (AB) as a potential inhibitor of fibrosis progression in vitro using human hepatic stellate cell (LX2) cultures and in vivo in LDLR-/- mice. Treatment of LX2 cells with the AB extract reduced the levels of fibrotic and oxidative-related markers and increased the levels of GATA4 expression. In LDLR-/- mice with high-fat diet (HFD)-induced liver fibrosis and inflammation, the progression of fibrosis, oxidative stress, inflammation, and apoptosis were prevented by AB extract treatment. Moreover, in the mouse model, AB extract could exert an antiatherogenic effect. These data suggest that AB mushroom extract seems to exert protective effects by alleviating inflammation and oxidative stress during the progression of liver fibrosis, possibly due to a decrease in Toll-like receptor 4 (TLR4) expression and a reduction in Nod-like receptor protein 3 (NLRP3) inflammasome activation. In addition, we observed a potential atheroprotective effect in our mouse model.
Collapse
|
30
|
Kabiri Y, Eberhagen C, Schmitt S, Knolle PA, Zischka H. Isolation and Electron Microscopic Analysis of Liver Cancer Cell Mitochondria. Methods Mol Biol 2021; 2277:277-287. [PMID: 34080157 DOI: 10.1007/978-1-0716-1270-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Isolation of mitochondria is a crucial method for examining molecular details of this organelle's manifold functions. Historically, mitochondrial isolations required large amounts of sample material which impeded their isolation from cultured cells. We have therefore developed a method allowing for controlled and reproducible isolation of intact and functional mitochondria from diverse cell types in culture. Here we provide a methodological update of this approach together with a protocol for the subsequent analysis of such isolated mitochondria by electron microscopy. Combining the isolation procedure with this powerful imaging method can reveal ultrastructural mitochondrial peculiarities in disease settings that might not be evident in intact cells and allows for assessment of mitochondrial membrane integrity and sample purity.
Collapse
Affiliation(s)
- Yaschar Kabiri
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Oncology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany. .,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
31
|
Fanni D, Gerosa C, Nurchi VM, Cappai R, Mureddu M, Eyken PV, Saba L, Manchia M, Faa G. Copper-Induced Epigenetic Changes Shape the Clinical Phenotype in Wilson's Disease. Curr Med Chem 2021; 28:2707-2716. [PMID: 32744959 DOI: 10.2174/0929867327666200730214757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Wilson's disease is a congenital disorder of copper metabolism whose pathogenesis remains, at least in part, unknown. Subjects carrying the same genotype may show completely different phenotypes, differing for the age at illness onset or for the hepatic, neurologic or psychiatric clinical presentation. The inability to find a unequivocal correlation between the type of mutation in the ATPase copper transporting beta (ATP7B) gene and the phenotypic manifestation, has encouraged many authors to look for epigenetic factors interacting with the genetic changes. Here, the evidences regarding the ability of copper overload to change the global DNA methylation status are discussed.
Collapse
Affiliation(s)
- Daniela Fanni
- Section of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Section of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Valeria Marina Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Rosita Cappai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Mureddu
- Section of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Peter Van Eyken
- Department of Pathology, UZ Genk Regional Hospital, Genk, Belgium
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Section of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
32
|
Sarode GV, Neier K, Shibata NM, Shen Y, Goncharov DA, Goncharova EA, Mazi TA, Joshi N, Settles ML, LaSalle JM, Medici V. Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation. Cell Mol Gastroenterol Hepatol 2021; 12:1457-1477. [PMID: 34098115 PMCID: PMC8487080 DOI: 10.1016/j.jcmgh.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The pathogenesis of Wilson disease (WD) involves hepatic and brain copper accumulation resulting from pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior methylome investigations in human WD liver and blood and in the Jackson Laboratory (Bar Harbor, ME) C3He-Atp7btx-j/J (tx-j) WD mouse model revealed an epigenetic signature of WD, including changes in histone deacetylase (HDAC) 5. We tested the hypothesis that histone acetylation is altered with respect to copper overload and aberrant DNA methylation in WD. METHODS We investigated class IIa HDAC4 and HDAC5 and H3K9/H3K27 histone acetylation in tx-j mouse livers compared with C3HeB/FeJ (C3H) control in response to 3 treatments: 60% kcal fat diet, D-penicillamine (copper chelator), and choline (methyl group donor). Experiments with copper-loaded hepatoma G2 cells were conducted to validate in vivo studies. RESULTS In 9-week tx-j mice, HDAC5 levels increased significantly after 8 days of a 60% kcal fat diet compared with chow. In 24-week tx-j mice, HDAC4/5 levels were reduced 5- to 10-fold compared with C3H, likely through mechanisms involving HDAC phosphorylation. HDAC4/5 levels were affected by disease progression and accompanied by increased acetylation. D-penicillamine and choline partially restored HDAC4/5 and H3K9ac/H3K27ac to C3H levels. Integrated RNA and chromatin immunoprecipitation sequencing analyses revealed genes regulating energy metabolism and cellular stress/development, which, in turn, were regulated by histone acetylation in tx-j mice compared with C3H mice, with Pparα and Pparγ among the most relevant targets. CONCLUSIONS These results suggest dietary modulation of class IIa HDAC4/5, and subsequent H3K9/H3K27 acetylation/deacetylation can regulate gene expression in key metabolic pathways in the pathogenesis of WD.
Collapse
Affiliation(s)
| | - Kari Neier
- Department of Medical Microbiology and Immunology, Genome Center, Davis, California
| | | | - Yuanjun Shen
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Dmitry A. Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Tagreed A. Mazi
- Department of Nutrition, Davis, California,Department of Community Health Sciences–Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nikhil Joshi
- Bioinformatics Core Facility, University of California–Davis, Davis, California
| | - Matthew L. Settles
- Bioinformatics Core Facility, University of California–Davis, Davis, California
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, Davis, California
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Davis, California,Correspondence Address correspondence to: Valentina Medici, MD, FAASLD, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California–Davis, 4150 V Street, Patient Support Services Building (PSSB) Suite 3500, Sacramento, California 95817. fax: (916) 734-7908.
| |
Collapse
|
33
|
Chen C, Zhou Q, Yang R, Wu Z, Yuan H, Zhang N, Zhi M, Zhang Y, Ni X, Wang Z, Gao D, Zhu X, Cai J, Yang Z, Sun L. Copper exposure association with prevalence of non-alcoholic fatty liver disease and insulin resistance among US adults (NHANES 2011-2014). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112295. [PMID: 33962276 DOI: 10.1016/j.ecoenv.2021.112295] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive copper (Cu) has risky effect on insulin resistance (IR), oxidative stress and inflammation. Instead, some studies reported serum Cu to be protective for non-alcoholic fatty liver disease (NAFLD). The aim of this study was to reevaluate the evidence for a potential risky correlation of serum Cu to NAFLD in large-scale and non-institutionalized American subjects. METHODS A cross-sectional study of 3211 subjects was from the National Health and Nutrition Examination Survey (NHANES). Logistic regression and cubic spline-based curve-fitting analyses were used to estimate the independent risky effect of Cu to hepatic steatosis index (HSI), US fatty liver index (USFLI) and NAFLD and their dose-effect relationship. Moreover, this association was analyzed in stratification of HOMA-IR, Metabolic syndrome (MetS) and severity of NAFLD, besides age and gender. RESULTS The average level of serum Cu was 18.67 μmol/L and the prevalence of NAFLD was 54.53% and 32.60%, respectively defined by HSI and USFLI. Generally, the level of Cu was higher in females than males. Serum Cu was positively associated with higher HSI, USFLI index and risk of NAFLD. In fully adjusted models, compared with the lowest quartile, the risk of NAFLD increased 97% in the highest quartile of Cu. Interestingly, stratified analysis showed that the risky effect of Cu to NAFLD was more prominent in the middle-aged, females and subjects with improved status of IR (lower HOMA-IR and non-Mets) compared with their counterparts. Moreover, we further found that circulating copper was correlated to severity of NAFLD only in males. CONCLUSION Excess serum Cu is significantly associated with risk of NAFLD, which is prominent in females, middle-aged and subjects with improved status of IR, and seems to be related to the severity of NAFLD, additionally. It is necessary to be cautious of the toxic effect of Cu and prospective cohort and mechanism studies are needed to verify the causal effect of Cu to NAFLD.
Collapse
Affiliation(s)
- Chen Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China.
| | - Ruiyue Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Zhu Wu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Nan Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Mingchun Zhi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Ying Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, PR China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; The NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, PR China.
| |
Collapse
|
34
|
Leung M, Aronowitz PB, Medici V. The Present and Future Challenges of Wilson's Disease Diagnosis and Treatment. Clin Liver Dis (Hoboken) 2021; 17:267-270. [PMID: 33968387 PMCID: PMC8087914 DOI: 10.1002/cld.1041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marcia Leung
- Department of Internal MedicineUniversity of California DavisSacramentoCA
| | - Paul B. Aronowitz
- Department of Internal MedicineUniversity of California DavisSacramentoCA
| | - Valentina Medici
- Department of Internal MedicineDivision of Gastroenterology and HepatologyUniversity of California DavisSacramentoCA
| |
Collapse
|
35
|
Moini M, To U, Schilsky ML. Recent advances in Wilson disease. Transl Gastroenterol Hepatol 2021; 6:21. [PMID: 33824925 DOI: 10.21037/tgh-2020-02] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Wilson disease (WD) is rare genetic disorder that presents with varied phenotype that can at times make the diagnosis challenging. Medical treatments are available, but there are still unmet needs for patients. Since life-long therapy is necessary, adherence to medical therapy and best practices for monitoring and individualizing therapy continue to evolve. Studies are ongoing that address some of these issues. In the current review we focused our attention to recent advances in the diagnosis of WD, current medical treatments, future potential therapies and treatment monitoring. We include discussion of new methodology for detection and quantitation of ophthalmologic signs of WD, new brain imaging modalities for early detection of neurologic involvement in patients and potential new diagnostic methodology using blood samples that may be applicable to newborn screening and adult disease diagnosis. In addition, there are new strategies aimed at improving adherence and outcomes with currently available therapies, including once daily chelation dosing and discussion of the efficacy of different zinc salt compounds. With respect to new therapies with different mechanisms of action, we discuss studies on Bis-choline tetrathiomolybdate (TTM) in patients, pre-clinical studies of a novel chelator methanobactin and other animal studies exploring cures for WD with gene therapy using adeno-associated vectors (AAVs) that introduce ATP7B into liver cells. There are also promising advances in the more accurate measurement of non-ceruloplasmin bound copper and exchangeable copper in the circulation which would potentially help with monitoring and individualization of treatment and possibly play a role in future disease diagnosis.
Collapse
Affiliation(s)
- Maryam Moini
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Division of Gastroenterology, University of Toronto, Toronto, Canada
| | - Uyen To
- Department of Medicine and Surgery, Division of Digestive Diseases and Transplantation and Immunology, Yale University, New Haven CT, USA
| | - Michael L Schilsky
- Department of Medicine and Surgery, Division of Digestive Diseases and Transplantation and Immunology, Yale University, New Haven CT, USA
| |
Collapse
|
36
|
Hohenester S, Kanitz V, Schiergens T, Einer C, Nagel J, Wimmer R, Reiter FP, Gerbes AL, De Toni EN, Bauer C, Holdt L, Mayr D, Rust C, Schnurr M, Zischka H, Geier A, Denk G. IL-18 but Not IL-1 Signaling Is Pivotal for the Initiation of Liver Injury in Murine Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21228602. [PMID: 33202693 PMCID: PMC7696705 DOI: 10.3390/ijms21228602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rising in prevalence, and a better pathophysiologic understanding of the transition to its inflammatory phenotype (NASH) is key to the development of effective therapies. To evaluate the contribution of the NLRP3 inflammasome and its downstream effectors IL-1 and IL-18 in this process, we applied the true-to-life “American lifestyle-induced obesity syndrome” (ALiOS) diet mouse model. Development of obesity, fatty liver and liver damage was investigated in mice fed for 24 weeks according to the ALiOS protocol. Lipidomic changes in mouse livers were compared to human NAFLD samples. Receptor knockout mice for IL-1 and IL-18 were used to dissect the impact of downstream signals of inflammasome activity on the development of NAFLD. The ALiOS diet induced obesity and liver steatosis. The lipidomic changes closely mimicked changes in human NAFLD. A pro-inflammatory gene expression pattern in liver tissue and increased serum liver transaminases indicated early liver damage in the absence of histological evidence of NASH. Mechanistically, Il-18r−/−- but not Il-1r−/− mice were protected from early liver damage, possibly due to silencing of the pro-inflammatory gene expression pattern. Our study identified NLRP3 activation and IL-18R-dependent signaling as potential modulators of early liver damage in NAFLD, preceding development of histologic NASH.
Collapse
Affiliation(s)
- Simon Hohenester
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (J.N.); (R.W.); (F.P.R.); (A.L.G.); (E.N.D.T.); (G.D.)
- Correspondence:
| | - Veronika Kanitz
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; (V.K.); (D.M.)
| | - Tobias Schiergens
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (C.E.); (H.Z.)
| | - Jutta Nagel
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (J.N.); (R.W.); (F.P.R.); (A.L.G.); (E.N.D.T.); (G.D.)
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (J.N.); (R.W.); (F.P.R.); (A.L.G.); (E.N.D.T.); (G.D.)
| | - Florian P. Reiter
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (J.N.); (R.W.); (F.P.R.); (A.L.G.); (E.N.D.T.); (G.D.)
| | - Alexander L. Gerbes
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (J.N.); (R.W.); (F.P.R.); (A.L.G.); (E.N.D.T.); (G.D.)
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (J.N.); (R.W.); (F.P.R.); (A.L.G.); (E.N.D.T.); (G.D.)
| | - Christian Bauer
- Division of Gastroenterology, Endocrinology, Infectiology and Metabolism, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, 35043 Marburg, Germany;
| | - Lesca Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; (V.K.); (D.M.)
| | - Christian Rust
- Department of Medicine I, Hospital Barmherzige Brüder, 80639 Munich, Germany;
| | - Max Schnurr
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (C.E.); (H.Z.)
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, 80802 Munich, Germany
| | - Andreas Geier
- Division of Hepatology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Gerald Denk
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (J.N.); (R.W.); (F.P.R.); (A.L.G.); (E.N.D.T.); (G.D.)
- Transplantation Center Munich, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
37
|
Medici V, Sarode GV, Napoli E, Song GY, Shibata NM, Guimarães AO, Mordaunt CE, Kieffer DA, Mazi TA, Czlonkowska A, Litwin T, LaSalle JM, Giulivi C. mtDNA depletion-like syndrome in Wilson disease. Liver Int 2020; 40:2776-2787. [PMID: 32996699 PMCID: PMC8079140 DOI: 10.1111/liv.14646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, with its main pathology attributed to copper-mediated oxidative damage. The limited therapeutic effect of copper chelators and the early occurrence of mitochondrial deficits, however, undermine the prevalence of this mechanism. METHODS We characterized mitochondrial DNA copy number and mutations as well as bioenergetic deficits in blood from patients with WD and in livers of tx-j mice, a mouse model of hepatic copper accumulation. In vitro experiments with hepatocytes treated with CuSO4 were conducted to validate in vivo studies. RESULTS Here, for the first time, we characterized the bioenergetic deficits in WD as consistent with a mitochondrial DNA depletion-like syndrome. This is evidenced by enriched DNA synthesis/replication pathways in serum metabolomics and decreased mitochondrial DNA copy number in blood of WD patients as well as decreased mitochondrial DNA copy number, increased citrate synthase activity, and selective Complex IV deficit in livers of the tx-j mouse model of WD. Tx-j mice treated with the copper chelator penicillamine, methyl donor choline or both ameliorated mitochondrial DNA damage but further decreased mitochondrial DNA copy number. Experiments with copper-loaded HepG2 cells validated the concept of a direct copper-mitochondrial DNA interaction. CONCLUSIONS This study underlines the relevance of targeting the copper-mitochondrial DNA pool in the treatment of WD separate from the established copper-induced oxidative stress-mediated damage.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, University of California Davis, Sacramento, CA 95616,Correspondence: Authors share co-senior authorship, Valentina Medici, M.D., Professor, University of California Davis, Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, Sacramento, California 95817, ; Cecilia Giulivi, Ph.D., Professor, University of California Davis, Department of Molecular Biosciences, School of Veterinary Medicine, Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, 1089 Veterinary Dr., 3017 Vet Med 3B, Davis, California 95616,
| | - Gaurav Vilas Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, University of California Davis, Sacramento, CA 95616
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616
| | - Gyu-Young Song
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, University of California Davis, Sacramento, CA 95616
| | - Andre Oliveira Guimarães
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616,Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ, Brazil
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, University of California Davis, Davis, CA 95616,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, 2825 50 St, University of California Davis, Davis, CA 95817
| | - Dorothy A. Kieffer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, University of California Davis, Sacramento, CA 95616
| | - Tagreed A. Mazi
- Department of Nutrition, University of California Davis, Davis, CA 95616,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anna Czlonkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, University of California Davis, Davis, CA 95616,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, 2825 50 St, University of California Davis, Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, 2825 50 St, University of California Davis, Davis, CA 95817,Correspondence: Authors share co-senior authorship, Valentina Medici, M.D., Professor, University of California Davis, Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, Sacramento, California 95817, ; Cecilia Giulivi, Ph.D., Professor, University of California Davis, Department of Molecular Biosciences, School of Veterinary Medicine, Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, 1089 Veterinary Dr., 3017 Vet Med 3B, Davis, California 95616,
| |
Collapse
|
38
|
Pietrocola F, Castoldi F, Zischka H, Kroemer G. Extending the mode of action of triethylenetetramine (trientine): Autophagy besides copper chelation. J Hepatol 2020; 73:970-972. [PMID: 32684364 DOI: 10.1016/j.jhep.2020.05.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Federico Pietrocola
- Department of Bioscience and Nutrition, Karolinska Institute, Huddinge, Sweden.
| | - Francesca Castoldi
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Team "Metabolism, Cancer & Immunity", Sorbonne Université, Université de Paris, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
39
|
Kim H, Jeon BT, Kim IM, Bennett SJ, Lorch CM, Viana MP, Myers JF, Trupp CJ, Whipps ZT, Kundu M, Chung S, Sun X, Khalimonchuk O, Lee J, Ro SH. Sestrin2 Phosphorylation by ULK1 Induces Autophagic Degradation of Mitochondria Damaged by Copper-Induced Oxidative Stress. Int J Mol Sci 2020; 21:ijms21176130. [PMID: 32854424 PMCID: PMC7504119 DOI: 10.3390/ijms21176130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress.
Collapse
Affiliation(s)
- Heejeong Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Byeong Tak Jeon
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Isaac M. Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Sydney J. Bennett
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Carolyn M. Lorch
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
- Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Jacob F. Myers
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
- Department of Chemistry, The University of Scranton, Scranton, PA 18510, USA
| | - Caroline J. Trupp
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Zachary T. Whipps
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Mondira Kundu
- Departments of Pathology and Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA;
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
- Correspondence: ; Tel.: +1-402-472-5424
| |
Collapse
|
40
|
Sapuppo A, Pavone P, Praticò AD, Ruggieri M, Bertino G, Fiumara A. Genotype-phenotype variable correlation in Wilson disease: clinical history of two sisters with the similar genotype. BMC MEDICAL GENETICS 2020; 21:128. [PMID: 32532207 PMCID: PMC7291468 DOI: 10.1186/s12881-020-01062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Background Wilson disease (WD) is an Autosomal-Recessive disorder due to mutations of ATP7B gene on chromosome 13q14.3. Inadequate protein function leads to low ceruloplasmin blood levels and copper accumulation in liver, basal ganglia and chornea. Main clinical manifestations are hypertransaminasemia, tremors, dysarthria, dystonia and psychiatric symptoms. The phenotypic variability in WD is considerable and its onset can be heterogeneous: the most common type in childhood is the hepatic involvement, followed by the neurological one or others. The presence of a genotype-phenotype correlation has not yet been fully demonstrated. The phenotypic variability may be explained by the intervention of other modifier genes regulating copper metabolism in the presence of mutations ATP7B. Case presentation A streaking phenotypic variability was observed in two Sicilian sisters carrying the same genotype for ATB7B gene [c.3207C > A / c.3904-2A > G]. Although both started to present signs at age 10 years, onset was characterized by neurological signs in the first (tremors, motor incoordination, language and cognitive impairment), while liver involvement has been the only sign in the other. They started the same chelation therapy. After a 20-year follow-up the former is severely affected (MRI evidence of basal ganglia copper deposits and hyperchogenic liver, thrombocytopenia), while the latter presents only a moderate liver enlargement. In literature, the splice mutation c.3904-2A > G is also reported in Egypt population, associated with acute liver failure or chronic hepatic disease, and it could be typical of Mediterranean area, not being reported in other geographical zones. Conclusion Based on our clinical experience in Eastern Sicily, there is a considerable phenotypic variability in WD, even in the presence of an identical genotype. The mutation c.3904-2A > G could be associated with this phenotypic variability in Mediterranean population, but further studies should be conducted. This condition could be explained by the intervention of modifier genes regulating copper metabolism in the presence of defective ATP7B protein function. Further investigations on their role by Next Generation Sequencing or Whole Exome Analysis might have a profound impact on patients’ management and in particular on therapy.
Collapse
Affiliation(s)
- Annamaria Sapuppo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| | - Piero Pavone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gaetano Bertino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Fiumara
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
41
|
Chemical activation of SAT1 corrects diet-induced metabolic syndrome. Cell Death Differ 2020; 27:2904-2920. [PMID: 32376874 DOI: 10.1038/s41418-020-0550-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
The pharmacological targeting of polyamine metabolism is currently under the spotlight for its potential in the prevention and treatment of several age-associated disorders. Here, we report the finding that triethylenetetramine dihydrochloride (TETA), a copper-chelator agent that can be safely administered to patients for the long-term treatment of Wilson disease, exerts therapeutic benefits in animals challenged with hypercaloric dietary regimens. TETA reduced obesity induced by high-fat diet, excessive sucrose intake, or leptin deficiency, as it reduced glucose intolerance and hepatosteatosis, but induced autophagy. Mechanistically, these effects did not involve the depletion of copper from plasma or internal organs. Rather, the TETA effects relied on the activation of an energy-consuming polyamine catabolism, secondary to the stabilization of spermidine/spermine N1-acetyltransferase-1 (SAT1) by TETA, resulting in enhanced enzymatic activity of SAT. All the positive effects of TETA on high-fat diet-induced metabolic syndrome were lost in SAT1-deficient mice. Altogether, these results suggest novel health-promoting effects of TETA that might be taken advantage of for the prevention or treatment of obesity.
Collapse
|
42
|
Guttmann S, Nadzemova O, Grünewald I, Lenders M, Brand E, Zibert A, Schmidt HH. ATP7B knockout disturbs copper and lipid metabolism in Caco-2 cells. PLoS One 2020; 15:e0230025. [PMID: 32155648 PMCID: PMC7064347 DOI: 10.1371/journal.pone.0230025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/18/2020] [Indexed: 12/30/2022] Open
Abstract
Intestinal cells control delivery of lipids to the body by adsorption, storage and secretion. Copper (Cu) is an important trace element and has been shown to modulate lipid metabolism. Mutation of the liver Cu exporter ATP7B is the cause of Wilson disease and is associated with Cu accumulation in different tissues. To determine the relationship of Cu and lipid homeostasis in intestinal cells, a CRISPR/Cas9 knockout of ATP7B (KO) was introduced in Caco-2 cells. KO cells showed increased sensitivity to Cu, elevated intracellular Cu storage, and induction of genes regulating oxidative stress. Chylomicron structural protein ApoB48 was significantly downregulated in KO cells by Cu. Apolipoproteins ApoA1, ApoC3 and ApoE were constitutively induced by loss of ATP7B. Formation of small sized lipid droplets (LDs) was enhanced by Cu, whereas large sized LDs were reduced. Cu reduced triglyceride (TG) storage and secretion. Exposure of KO cells to oleic acid (OA) resulted in enhanced TG storage. The findings suggest that Cu represses intestinal TG lipogenesis, while loss of ATP7B results in OA-induced TG storage.
Collapse
Affiliation(s)
- Sarah Guttmann
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Oksana Nadzemova
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Inga Grünewald
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Münster, Germany
| | - Malte Lenders
- Department of Nephrology, Hypertension and Rheumatology, Internal Medicine D, University Hospital Muenster, Münster, Germany
| | - Eva Brand
- Department of Nephrology, Hypertension and Rheumatology, Internal Medicine D, University Hospital Muenster, Münster, Germany
| | - Andree Zibert
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H. Schmidt
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
43
|
Abstract
Copper accumulation and deficiency are reciprocally connected to lipid metabolism. In Wilson disease (WD), which is caused by a genetic loss of function of the copper-transporting P-type ATPase beta, copper accumulates mainly in the liver and lipid metabolism is dysregulated. The underlying mechanisms linking copper and lipid metabolism in WD are not clear. Copper may impair metabolic machinery by direct binding to protein and lipid structures or by generating reactive oxygen species with consequent damage to cellular organelles vital to energy metabolism. In the liver, copper overload results in mitochondrial impairment, down-regulation of lipid metabolism, and the development of steatosis with an etiology not fully elucidated. Little is known regarding the effect of copper overload on extrahepatic energy homeostasis. This review aims to discuss alterations in hepatic energy metabolism associated with WD, highlights potential mechanisms involved in the development of hepatic and systemic dysregulation of lipid metabolism, and reviews current knowledge on the effects of copper overload on extrahepatic energy metabolism.
Collapse
Affiliation(s)
- Tagreed A. Mazi
- Department of Nutrition, University of California Davis, Davis, CA, USA,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA, USA,Corresponding author. (V. Medici)
| |
Collapse
|
44
|
Xiao T, Liang X, Liu H, Zhang F, Meng W, Hu F. Mitochondrial stress protein HSP60 regulates ER stress-induced hepatic lipogenesis. J Mol Endocrinol 2020; 64:67-75. [PMID: 31804966 PMCID: PMC6993205 DOI: 10.1530/jme-19-0207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are associated with hepatic steatosis and insulin resistance. Molecular mechanisms underlying ER stress and/or mitochondrial dysfunction that cause metabolic disorders and hepatic steatosis remain to be fully understood. Here, we found that a high fat diet (HFD) or chemically induced ER stress can stimulate mitochondrial stress protein HSP60 expression, impair mitochondrial respiration, and decrease mitochondrial membrane potential in mouse hepatocytes. HSP60 overexpression promotes ER stress and hepatic lipogenic protein expression and impairs insulin signaling in mouse hepatocytes. Mechanistically, HSP60 regulates ER stress-induced hepatic lipogenesis via the mTORC1-SREBP1 signaling pathway. These results suggest that HSP60 is an important ER and mitochondrial stress cross-talking protein and may control ER stress-induced hepatic lipogenesis and insulin resistance.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiuci Liang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Zhang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Meng
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Correspondence should be addressed to F Hu: or to W Meng:
| | - Fang Hu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Metabolic Syndrome Research Center, Central South University, Changsha, Hunan, China
- Correspondence should be addressed to F Hu: or to W Meng:
| |
Collapse
|
45
|
Wooton-Kee CR, Robertson M, Zhou Y, Dong B, Sun Z, Kim KH, Liu H, Xu Y, Putluri N, Saha P, Coarfa C, Moore DD, Nuotio-Antar AM. Metabolic dysregulation in the Atp7b-/- Wilson's disease mouse model. Proc Natl Acad Sci U S A 2020; 117:2076-2083. [PMID: 31924743 PMCID: PMC6994990 DOI: 10.1073/pnas.1914267117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inactivating mutations in the copper transporter Atp7b result in Wilson's disease. The Atp7b-/- mouse develops hallmarks of Wilson's disease. The activity of several nuclear receptors decreased in Atp7b-/- mice, and nuclear receptors are critical for maintaining metabolic homeostasis. Therefore, we anticipated that Atp7b-/- mice would exhibit altered progression of diet-induced obesity, fatty liver, and insulin resistance. Following 10 wk on a chow or Western-type diet (40% kcal fat), parameters of glucose and lipid homeostasis were measured. Hepatic metabolites were measured by liquid chromatography-mass spectrometry and correlated with transcriptomic data. Atp7b-/- mice fed a chow diet presented with blunted body-weight gain over time, had lower fat mass, and were more glucose tolerant than wild type (WT) littermate controls. On the Western diet, Atp7b-/- mice exhibited reduced body weight, adiposity, and hepatic steatosis compared with WT controls. Atp7b-/- mice fed either diet were more insulin sensitive than WT controls; however, fasted Atp7b-/- mice exhibited hypoglycemia after administration of insulin due to an impaired glucose counterregulatory response, as evidenced by reduced hepatic glucose production. Coupling gene expression with metabolomic analyses, we observed striking changes in hepatic metabolic profiles in Atp7b-/- mice, including increases in glycolytic intermediates and components of the tricarboxylic acid cycle. In addition, the active phosphorylated form of AMP kinase was significantly increased in Atp7b-/- mice relative to WT controls. Alterations in hepatic metabolic profiles and nuclear receptor signaling were associated with improved glucose tolerance and insulin sensitivity as well as with impaired fasting glucose production in Atp7b-/- mice.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
| | - Matthew Robertson
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Zhen Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Hailan Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Pradip Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
46
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:E2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
47
|
Antioxidant Versus Pro-Apoptotic Effects of Mushroom-Enriched Diets on Mitochondria in Liver Disease. Int J Mol Sci 2019; 20:ijms20163987. [PMID: 31426291 PMCID: PMC6720908 DOI: 10.3390/ijms20163987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a central role in non-alcoholic fatty liver disease (NAFLD) progression and in the control of cell death signalling during the progression to hepatocellular carcinoma (HCC). Associated with the metabolic syndrome, NAFLD is mostly driven by insulin-resistant white adipose tissue lipolysis that results in an increased hepatic fatty acid influx and the ectopic accumulation of fat in the liver. Upregulation of beta-oxidation as one compensatory mechanism leads to an increase in mitochondrial tricarboxylic acid cycle flux and ATP generation. The progression of NAFLD is associated with alterations in the mitochondrial molecular composition and respiratory capacity, which increases their vulnerability to different stressors, including calcium and pro-inflammatory molecules, which result in an increased generation of reactive oxygen species (ROS) that, altogether, may ultimately lead to mitochondrial dysfunction. This may activate further pro-inflammatory pathways involved in the progression from steatosis to steatohepatitis (NASH). Mushroom-enriched diets, or the administration of their isolated bioactive compounds, have been shown to display beneficial effects on insulin resistance, hepatic steatosis, oxidative stress, and inflammation by regulating nutrient uptake and lipid metabolism as well as modulating the antioxidant activity of the cell. In addition, the gut microbiota has also been described to be modulated by mushroom bioactive molecules, with implications in reducing liver inflammation during NAFLD progression. Dietary mushroom extracts have been reported to have anti-tumorigenic properties and to induce cell-death via the mitochondrial apoptosis pathway. This calls for particular attention to the potential therapeutic properties of these natural compounds which may push the development of novel pharmacological options to treat NASH and HCC. We here review the diverse effects of mushroom-enriched diets in liver disease, emphasizing those effects that are dependent on mitochondria.
Collapse
|
48
|
A Case for Not Going Global: "Americanization" of Diet Accelerates Hepatic Mitochondrial Injury in a Model of Wilson Disease. Cell Mol Gastroenterol Hepatol 2019; 7:684-685. [PMID: 30707887 PMCID: PMC6477543 DOI: 10.1016/j.jcmgh.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023]
|