1
|
Germain L, Veloso P, Lantz O, Legoux F. MAIT cells: Conserved watchers on the wall. J Exp Med 2025; 222:e20232298. [PMID: 39446132 PMCID: PMC11514058 DOI: 10.1084/jem.20232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
Collapse
Affiliation(s)
- Lilou Germain
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Pablo Veloso
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| |
Collapse
|
2
|
Mak JYW, Rivero RJD, Hoang HN, Lim XY, Deng J, McWilliam HEG, Villadangos JA, McCluskey J, Corbett AJ, Fairlie DP. Potent Immunomodulators Developed from an Unstable Bacterial Metabolite of Vitamin B2 Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202400632. [PMID: 38679861 DOI: 10.1002/anie.202400632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1. This culminated in the discovery of new water-stable compounds with extremely powerful and distinctive immunological functions. We report their capacity to bind MR1 inside APCs, triggering its expression on the cell surface (EC50 17 nM), and their potent activation (EC50 56 pM) or inhibition (IC50 80 nM) of interacting MAIT cells. We further derivatize compounds with diazirine-alkyne, biotin, or fluorophore (Cy5 or AF647) labels for detecting, monitoring, and studying cellular MR1. Computer modeling casts new light on the molecular mechanism of activation, revealing that potent activators are first captured in a tyrosine- and serine-lined cleft in MR1 via specific pi-interactions and H-bonds, before more tightly attaching via a covalent bond to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact with T cells to induce immunity, and offers novel clues for developing new vaccine adjuvants, immunotherapeutics, and anticancer drugs.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ryan J D Rivero
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huy N Hoang
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Department of Biochemistry and Pharmacology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
3
|
Chauffier J, Berger de Gallardo H, Chevalier MF, Kante A, Lambert M, Cabrol X, Aldersons E, Mouly S, Champion K, Amador-Borrero B, Burlacu R, Bigot W, Adle-Biassete H, Kaci R, Selvanadin A, Cohen-Solal M, Coudert A, Caillat-Zucman S, Sène D, Comarmond C. Role of mucosal-associated invariant T cells dynamics in pathogenesis of Sjögren syndrome. Sci Rep 2024; 14:17256. [PMID: 39060324 PMCID: PMC11282087 DOI: 10.1038/s41598-024-67901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Sjögren syndrome (SS) is an autoimmune disease characterized by chronic inflammatory infiltrates in the salivary and lacrimal glands. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T-cells, predominantly found in mucosal tissues with crucial role in epithelial homeostasis. Thus, MAIT cells may be implicated in mucosal alterations of SS patients. Activation markers, inflammatory and cytotoxic cytokines were examined in 23 SS patients and compared to 23 healthy controls (HC). Tissular MAIT cells in salivary gland (SG) biopsies were also analyzed. Circulating MAIT cells were decreased in SS patients with a higher expression of CD69 and a higher CD4/CD8 ratio of MAIT cells. MAIT cells showed a higher production of IFNγ, TNFα and GzB in SS compare to HC. Tissular MAIT cells were present within inflamed SG of SS patients, while they were absent in SG of HC. Overall, circulating MAIT cells are decreased in the peripheral blood of SS albeit producing higher amounts of IFNγ, TNFα, and GzB. Tissular MAIT cells are detected in salivary glands from SS with a proinflammatory tissular cytokine environment. MAIT cells with abnormal phenotype, functions and tissular homeostasis may contribute to epithelial damage in SS.
Collapse
Affiliation(s)
- Jeanne Chauffier
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010, Paris, France
| | - Henri Berger de Gallardo
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010, Paris, France
| | - Mathieu F Chevalier
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010, Paris, France
| | - Aïcha Kante
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Marion Lambert
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010, Paris, France
| | - Xavier Cabrol
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Elisa Aldersons
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Stéphane Mouly
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
- Hôpital Fernand Widal, INSERM UMR-S 1144, Université Paris Cité, 75010, Paris, France
| | - Karine Champion
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Blanca Amador-Borrero
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Ruxandra Burlacu
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
| | - William Bigot
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Homa Adle-Biassete
- Department of Pathology, Lariboisière Hospital, Université Paris Cité, 75010, Paris, France
| | - Rachid Kaci
- Department of Pathology, Lariboisière Hospital, Université Paris Cité, 75010, Paris, France
| | - Aurélie Selvanadin
- Department of Pathology, Lariboisière Hospital, Université Paris Cité, 75010, Paris, France
| | | | - Amélie Coudert
- INSERM U1132 Bioscar Université de Paris Cité, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010, Paris, France
| | - Damien Sène
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010, Paris, France
| | - Cloé Comarmond
- Department of Internal Medicine, Hôpital Lariboisière, Université Paris Cité, 2 Rue Ambroise Paré, 75010, Paris, France.
- INSERM UMR 976, Université Paris Cité, Institut de Recherche Saint-Louis (IRSL), 75010, Paris, France.
| |
Collapse
|
4
|
El Morr Y, Fürstenheim M, Mestdagh M, Franciszkiewicz K, Salou M, Morvan C, Dupré T, Vorobev A, Jneid B, Premel V, Darbois A, Perrin L, Mondot S, Colombeau L, Bugaut H, du Halgouet A, Richon S, Procopio E, Maurin M, Philippe C, Rodriguez R, Lantz O, Legoux F. MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis. Sci Immunol 2024; 9:eadi8954. [PMID: 38905325 PMCID: PMC7616241 DOI: 10.1126/sciimmunol.adi8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.
Collapse
Affiliation(s)
- Yara El Morr
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Martin Mestdagh
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Marion Salou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015Paris, France
| | - Thierry Dupré
- Laboratoire de Biochimie, Hôpital Bichat AP-HP, Université de Paris, Paris, France
| | - Alexey Vorobev
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Bakhos Jneid
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Virginie Premel
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Stanislas Mondot
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Hélène Bugaut
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Emanuele Procopio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Catherine Philippe
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphael Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie clinique, Institut Curie, 75005Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- INSERM ERL1305, CNRS UMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes, Rennes, France
| |
Collapse
|
5
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Sasano H, Harada N, Harada S, Takeshige T, Sandhu Y, Tanabe Y, Ishimori A, Matsuno K, Nagaoka T, Ito J, Chiba A, Akiba H, Atsuta R, Izuhara K, Miyake S, Takahashi K. Pretreatment circulating MAIT cells, neutrophils, and periostin predicted the real-world response after 1-year mepolizumab treatment in asthmatics. Allergol Int 2024; 73:94-106. [PMID: 37336695 DOI: 10.1016/j.alit.2023.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Mepolizumab treatment improves symptom control and quality of life and reduces exacerbations in patients with severe eosinophilic asthma. However, biomarkers that predict therapeutic effectiveness must be determined for use in precision medicine. Herein, we elucidated the dynamics of various parameters before and after treatment as well as patient characteristics predictive of clinical responsiveness to mepolizumab after 1-year treatment. METHODS Twenty-seven patients with severe asthma were treated with mepolizumab for one year. Asthma control test scores, pulmonary function tests, fractional exhaled nitric oxide levels, and blood samples were evaluated. Additionally, we explored the role of CD69-positive mucosal-associated invariant T (MAIT) cells as a candidate biomarker for predicting treatment effectiveness by evaluating an OVA-induced asthma murine model using MR1 knockout mice, where MAIT cells were absent. RESULTS The frequencies of CD69-positive group 1 innate lymphoid cells, group 3 innate lymphoid cells, natural killer cells, and MAIT cells decreased after mepolizumab treatment. The frequency of CD69-positive MAIT cells and neutrophils was lower and serum periostin levels were higher in responders than in non-responders. In the OVA-induced asthma murine model, CD69-positive MAIT cell count in the whole mouse lung was significantly higher than that in the control mice. Moreover, OVA-induced eosinophilic airway inflammation was exacerbated in the MAIT cell-deficient MR1 knockout mice. CONCLUSIONS This study shows that circulating CD69-positive MAIT cells, neutrophils, and serum periostin might predict the real-world response after 1-year mepolizumab treatment. Furthermore, MAIT cells potentially have a protective role against type 2 airway inflammation.
Collapse
Affiliation(s)
- Hitoshi Sasano
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Sonoko Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomohito Takeshige
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Yuuki Sandhu
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Yuki Tanabe
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Ayako Ishimori
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Kei Matsuno
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Jun Ito
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hisaya Akiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Atsuta
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Loh L, Orlicky D, Spengler A, Levens C, Celli S, Domenico J, Klarquist J, Onyiah J, Matsuda J, Kuhn K, Gapin L. MAIT cells drive chronic inflammation in a genetically diverse murine model of spontaneous colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569225. [PMID: 38076996 PMCID: PMC10705467 DOI: 10.1101/2023.11.29.569225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Background & aims Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus. Here, we dissected the role of MAIT cells in vivo using a spontaneous colitis model in a genetically diverse mouse strain. Methods Multiparameter spectral flow cytometry and scRNAseq were used to characterize MAIT and immune cell dynamics and transcriptomic signatures respectively, in the collaborative-cross strain, CC011/Unc and CC011/Unc- Traj33 -/- . Results In contrast to many conventional mouse laboratory strains, the CC011 strain harbors a high baseline population of MAIT cells. We observed an age-related increase in colonic MAIT cells, Th17 cells, regulatory T cells, and neutrophils, which paralleled the development of spontaneous colitis. This progression manifested histological traits reminiscent of human IBD. The transcriptomic analysis of colonic MAIT cells from CC011 revealed an activation profile consistent with an inflammatory milieu, marked by an enhanced type-III response. Notably, IL-17A was abundantly secreted by MAIT cells in the colons of afflicted mice. Conversely, in the MAIT cell-deficient CC011-Traj33-/- mice, there was a notable absence of significant colonic histopathology. Furthermore, myeloperoxidase staining indicated a substantial decrease in colonic neutrophils. Conclusions Our findings suggest that MAIT cells play a pivotal role in modulating the severity of intestinal pathology, potentially orchestrating the inflammatory process by driving the accumulation of neutrophils within the colonic environment.
Collapse
|
9
|
Waterhölter A, Wunderlich M, Turner JE. MAIT cells in immune-mediated tissue injury and repair. Eur J Immunol 2023; 53:e2350483. [PMID: 37740567 DOI: 10.1002/eji.202350483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are T cells that express a semi-invariant αβ T-cell receptor (TCR), recognizing non-peptide antigens, such as microbial-derived vitamin B2 metabolites, presented by the nonpolymorphic MHC class I related-1 molecule. Like NKT cells and γδT cells, MAIT cells belong to the group of innate-like T cells that combine properties of the innate and adaptive immune systems. They account for up to 10% of the blood T-cell population in humans and are particularly abundant at mucosal sites. Beyond the emerging role of MAIT cells in antibacterial and antiviral defenses, increasing evidence suggests additional functions in noninfectious settings, including immune-mediated inflammatory diseases and tissue repair. Here, we discuss recent advances in the understanding of MAIT cell functions in sterile tissue inflammation, with a particular focus on autoimmunity, chronic inflammatory diseases, and tissue repair.
Collapse
Affiliation(s)
- Alex Waterhölter
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Wunderlich
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Wei L, Chen Z, Lv Q. Mucosal-associated invariant T cells display both pathogenic and protective roles in patients with inflammatory bowel diseases. Amino Acids 2023; 55:1819-1827. [PMID: 37819474 DOI: 10.1007/s00726-023-03344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
An important subtype of the innate-like T lymphocytes is mucosal-associated invariant T (MAIT) cells expressing a semi-invariant T cell receptor α (TCR-α) chain. MAIT cells could be activated mainly by TCR engagement or cytokines. They have been found to have essential roles in various immune mediated. There have been growing preclinical and clinical findings that show an association between MAIT cells and the physiopathology of inflammatory bowel diseases (IBD). Of note, published reports demonstrate contradictory findings regarding the role of MAIT cells in IBD patients. A number of reports suggests a protective effect, whereas others show a pathogenic impact. The present review article aimed to explore and discuss the findings of experimental and clinical investigations evaluating the effects of MAIT cells in IBD subjects and animal models. Findings indicate that MAIT cells could exert opposite effects in the course of IBD, including an anti-inflammatory protective effect of blood circulating MAIT cells and an effector pathogenic effect of colonic MAIT cells. Another important finding is that blood levels of MAIT cells can be considered as a potential biomarker in IBD patients.
Collapse
Affiliation(s)
- Lei Wei
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Zhigang Chen
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Qiang Lv
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China.
| |
Collapse
|
11
|
Mortier C, Quintelier K, De Craemer AS, Renson T, Deroo L, Dumas E, Verheugen E, Coudenys J, Decruy T, Lukasik Z, Van Gassen S, Saeys Y, Hoorens A, Lobatón T, Van den Bosch F, Van de Wiele T, Venken K, Elewaut D. Gut Inflammation in Axial Spondyloarthritis Patients is Characterized by a Marked Type 17 Skewed Mucosal Innate-like T Cell Signature. Arthritis Rheumatol 2023; 75:1969-1982. [PMID: 37293832 DOI: 10.1002/art.42627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Patients with spondyloarthritis (SpA) often present with microscopic signs of gut inflammation, a risk factor for progressive disease. We investigated whether mucosal innate-like T cells are involved in dysregulated interleukin-23 (IL-23)/IL-17 responses in the gut-joint axis in SpA. METHODS Ileal and colonic intraepithelial lymphocytes (IELs), lamina propria lymphocytes (LPLs), and paired peripheral blood mononuclear cells (PBMCs) were isolated from treatment-naive patients with nonradiographic axial SpA with (n = 11) and without (n = 14) microscopic gut inflammation and healthy controls (n = 15) undergoing ileocolonoscopy. The presence of gut inflammation was assessed histopathologically. Immunophenotyping of innate-like T cells and conventional T cells was performed using intracellular flow cytometry. Unsupervised clustering analysis was done by FlowSOM technology. Serum IL-17A levels were measured via Luminex. RESULTS Microscopic gut inflammation in nonradiographic axial SpA was characterized by increased ileal intraepithelial γδ-hi T cells, a γδ-T cell subset with elevated γδ-T cell receptor expression. γδ-hi T cells were also increased in PBMCs of patients with nonradiographic axial SpA versus healthy controls and were strongly associated with Ankylosing Spondylitis Disease Activity Score. The abundance of mucosal-associated invariant T cells and invariant natural killer T cells was unaltered. Innate-like T cells in the inflamed gut showed increased RORγt, IL-17A, and IL-22 levels with loss of T-bet, a signature that was less pronounced in conventional T cells. Presence of gut inflammation was associated with higher serum IL-17A levels. In patients treated with tumor necrosis factor blockade, the proportion of γδ-hi cells and RORγt expression in blood was completely restored. CONCLUSION Intestinal innate-like T cells display marked type 17 skewing in the inflamed gut mucosa of patients with nonradiographic axial SpA. γδ-hi T cells are linked to intestinal inflammation and disease activity in SpA.
Collapse
Affiliation(s)
- Céline Mortier
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Katrien Quintelier
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium, Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium, and Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ann-Sophie De Craemer
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Thomas Renson
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Liselotte Deroo
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Emilie Dumas
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Eveline Verheugen
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Julie Coudenys
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tine Decruy
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Zuzanna Lukasik
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sofie Van Gassen
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University and Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University and Data Mining and Modeling for Biomedicine group, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Triana Lobatón
- Department of Internal Medicine and Pediatrics, Ghent University and Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Filip Van den Bosch
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University and Unit for Molecular Immunology and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
12
|
Wang X, Liang M, Song P, Guan W, Shen X. Mucosal-associated invariant T cells in digestive tract: Local guardians or destroyers? Immunology 2023; 170:167-179. [PMID: 37132045 DOI: 10.1111/imm.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Mucosa-associated invariant T cells (MAIT) are a class of innate-like T lymphocytes mainly presenting CD8+ phenotype with a semi-invariant αβ T-cell receptor, which specifically recognises MR1-presented biosynthetic derivatives of riboflavin synthesis produced by various types of microbiomes. As innate-like T lymphocytes, MAIT can be activated by a variety of cytokines, leading to immediate immune responses to infection and tumour cues. As an organ that communicates with the external environment, the digestive tract, especially the gastrointestinal tract, contains abundant microbial populations. Communication between MAIT and local microbiomes is important for the homeostasis of mucosal immunity. In addition, accumulating evidence suggests changes in the abundance and structure of the microbial community during inflammation and tumorigenesis plays a critical role in disease progress partly through their impact on MAIT development and function. Therefore, it is essential for the understanding of MAIT response and their interaction with microbiomes in the digestive tract. Here, we summarised MAIT characteristics in the digestive tract and its alteration facing inflammation and tumour, raising that targeting MAIT can be a candidate for treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Mengjie Liang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Song
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
13
|
Williams KG, Kongala R, Shows DM, Konecny AJ, Hindmarch DC, Clarke AS, Lord JD. T Cell Repertoire Homogeneity and Blood-Gut Overlap in Patients With Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2023; 17:119-130. [PMID: 37714427 PMCID: PMC10665937 DOI: 10.1016/j.jcmgh.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) causes a marked increase in the number of T cells in the intestinal mucosa. Debate exists about whether these excess cells arise from local clonal proliferation or recruitment from the periphery. METHODS CD8+ T cells were sorted from colon biopsy specimens and blood for T-cell receptor (TCR) β-chain sequencing. Biopsy specimens from inflamed or uninflamed colon from ulcerative colitis or Crohn's disease cohorts were compared with colon biopsy specimens from people without IBD, as well as with autologous blood α4β7+, α4β7- effector/memory, terminal effector/memory CD45RA+ T cell, and mucosal-associated invariant T-cell CD8 subpopulations. RESULTS CD8 TCR diversity in mucosa and blood did not correlate with inflammation. Repertoire overlap between any 2 distinct locations of a given person's colon was consistently high, although often lower between inflamed and uninflamed sites. CD8 TCR repertoires overlapped between the colon and each peripheral blood subpopulation studied, with the highest overlap seen for integrin α4β7+ T cells. Inflamed tissue consistently overlapped more than uninflamed tissue with each blood subpopulation. CONCLUSIONS CD8 T-cell clones are spread homogenously throughout the length of the colon. Although TCR repertoire overlap is greater within than between inflamed and uninflamed colon segments, a similar TCR diversity in both argues against local clonal expansion being the main source of excess cytotoxic T cells in inflamed mucosa. Rather, the increased TCR overlap observed between blood and inflamed mucosa supports the significance of T-cell trafficking in IBD pathogenesis, particularly concerning α4β7+ T-cell populations.
Collapse
Affiliation(s)
- Kyle G Williams
- Translational Research Division, Benaroya Research Institute, Seattle, Washington; University of Colorado, School of Medicine, Denver, Colorado
| | - Ramya Kongala
- Translational Research Division, Benaroya Research Institute, Seattle, Washington
| | - Donna M Shows
- Translational Research Division, Benaroya Research Institute, Seattle, Washington
| | - Andrew J Konecny
- Department of Immunology, University of Washington, Seattle, Washington
| | - Duncan C Hindmarch
- Translational Research Division, Benaroya Research Institute, Seattle, Washington
| | | | - James D Lord
- Translational Research Division, Benaroya Research Institute, Seattle, Washington; Division of Gastroenterology, Virginia Mason Medical Center, Seattle, Washington.
| |
Collapse
|
14
|
Mann JE, Lucca L, Austin MR, Merkin RD, Robert ME, Al Bawardy B, Raddassi K, Aizenbud L, Joshi NS, Hafler DA, Abraham C, Herold KC, Kluger HM. ScRNA-seq defines dynamic T-cell subsets in longitudinal colon and peripheral blood samples in immune checkpoint inhibitor-induced colitis. J Immunother Cancer 2023; 11:e007358. [PMID: 37586769 PMCID: PMC10432652 DOI: 10.1136/jitc-2023-007358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are increasingly being used to manage multiple tumor types. Unfortunately, immune-related adverse events affect up to 60% of recipients, often leading to treatment discontinuation in settings where few alternative cancer therapies may be available. Checkpoint inhibitor induced colitis (ICI-colitis) is a common toxicity for which the underlying mechanisms are poorly defined. To better understand the changing colon-specific and peripheral immune environments over the course of progression and treatment of colitis, we collected blood and colon tissue from a patient with Merkel cell carcinoma who developed colitis on treatment with pembrolizumab. We performed single-cell RNA sequencing and T-cell receptor sequencing on samples collected before, during and after pembrolizumab and after various interventions to mitigate toxicity. We report T-cells populations defined by cytotoxicity, memory, and proliferation markers at various stages of colitis. We show preferential depletion of CD8+ T cells with biologic therapy and nominate both circulating and colon-resident T-cell subsets as potential drivers of inflammation and response to immune suppression. Our findings highlight the need for further exploration of the colon immune environment and rationalize future studies evaluating biologics for ICI-colitis, including in the context of ICI re-challenge.
Collapse
Affiliation(s)
- Jacqueline E Mann
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Liliana Lucca
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew R Austin
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Ross D Merkin
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Marie E Robert
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Badr Al Bawardy
- Department of Internal Medicine (Digestive Diseases), Yale University, New Haven, Connecticut, USA
| | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lilach Aizenbud
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Clara Abraham
- Department of Internal Medicine (Digestive Diseases), Yale University, New Haven, Connecticut, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Harriet M Kluger
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
New insights into MAIT cells in autoimmune diseases. Biomed Pharmacother 2023; 159:114250. [PMID: 36652733 DOI: 10.1016/j.biopha.2023.114250] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are resident T cells that express semi-invariant TCR chains and are restricted by monomorphic major histocompatibility complex (MHC) class I-related molecules (MR1). MAIT cells can be activated by microbial-specific metabolites (MR1-dependent mode) or cytokines (MR1-independent mode). Activated MAIT cells produce chemokines, cytotoxic molecules (granzyme B and perforin), and proinflammatory cytokines (IFN-γ, TNF-α, and IL-17), to clear pathogens and target infected cells involved in the pro-inflammatory, migratory, and cytolytic properties of MAIT cells. MAIT cells produce pro-inflammatory cytokines in the target organs of autoimmune diseases and contribute to the development and progression of autoimmune diseases. This article reviews the biological characteristics, activation mechanism, dynamic migration, and dual functions of MAIT cells, and focuses on the mechanism and potential application of MAIT cells in the early diagnosis, disease activity monitoring, and therapeutic targets of autoimmune diseases, to lay a foundation for future research.
Collapse
|
16
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
17
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
18
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
19
|
Tang JS, Cait A, White RM, Arabshahi HJ, O’Sullivan D, Gasser O. MR1-dependence of unmetabolized folic acid side-effects. Front Immunol 2022; 13:946713. [PMID: 36016938 PMCID: PMC9395688 DOI: 10.3389/fimmu.2022.946713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
The fortification of flour with folic acid for the prevention of neural tube defects (NTD) is currently mandated in over eighty countries worldwide, hence compelling its consumption by the greater part of the world’s population. Notwithstanding its beneficial impact on rates of NTD, pervasive folic acid supplementation has invariably led to additive daily intakes reaching well beyond their original target, resulting in the circulation of unmetabolized folic acid. Associated idiopathic side-effects ranging from allergies to cancer have been suggested, albeit inconclusively. Herein, we hypothesize that their inconsistent detection and elusive etiology are linked to the in vivo generation of the immunosuppressive folic acid metabolite 6-formylpterin, which interferes with the still emerging and varied functions of Major Histocompatibility Complex-related molecule 1 (MR1)-restricted T cells. Accordingly, we predict that fortification-related adverse health outcomes can be eliminated by substituting folic acid with the bioequivalent folate vitamer 5-methyltetrahydrofolate, which does not break down into 6-formylpterin.
Collapse
Affiliation(s)
- Jeffry S. Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Reuben M. White
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - David O’Sullivan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- *Correspondence: Olivier Gasser,
| |
Collapse
|
20
|
Su B, Kong D, Yang X, Zhang T, Kuang YQ. Mucosal-associated invariant T cells: a cryptic coordinator in HIV-infected immune reconstitution. J Med Virol 2022; 94:3043-3053. [PMID: 35243649 DOI: 10.1002/jmv.27696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection causes considerable morbidity and mortality worldwide. Although antiretroviral therapy (ART) has largely transformed HIV infection from a fatal disease to a chronic condition, approximately 10%~40% of HIV-infected individuals who receive effective ART and sustain long-term viral suppression still cannot achieve optimal immune reconstitution. These patients are called immunological non-responders, a state associated with poor clinical prognosis. Mucosal-associated invariant T (MAIT) cells are an evolutionarily conserved unconventional T cell subset defined by expression of semi-invariant αβ T cell receptor (TCR), which recognizes metabolites derived from the riboflavin biosynthetic pathway presented on major histocompatibility complex (MHC)-related protein-1 (MR1). MAIT cells, which are considered to act as a bridge between innate and adaptive immunity, produce a wide range of cytokines and cytotoxic molecules upon activation through TCR-dependent and TCR-independent mechanisms, which is of major importance in defense against a variety of pathogens. In addition, MAIT cells are involved in autoimmune and immune-mediated diseases. The number of MAIT cells is dramatically and irreversibly decreased in the early stage of HIV infection and is not fully restored even after long-term suppressive ART. In light of the important role of MAIT cells in mucosal immunity and because microbial translocation is inversely associated with CD4+ T cell counts, we propose that MAIT cells participate in the maintenance of intestinal barrier integrity and microbial homeostasis, thus further affecting immune reconstitution in HIV-infected individuals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.,Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
21
|
Chiba A, Murayama G, Miyake S. Characteristics of mucosal-associated invariant T cells and their roles in immune diseases. Int Immunol 2021; 33:775-780. [PMID: 34508634 DOI: 10.1093/intimm/dxab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that express a semi-invariant T cell receptor and are restricted by the molecule major histocompatibility complex class I-related molecule 1 (MR1). MAIT cells recognize biosynthetic derivatives of the riboflavin synthesis pathway present in microbes. MAIT cells have attracted increased interest related to various immune responses because of their unique features including their abundance in humans, nonpeptidic antigens, and ability to respond to antigenic and non-antigenic stimuli. The numbers of circulating MAIT cells are decreased in many immune diseases such as multiple sclerosis, systemic lupus erythematosus, and inflammatory bowel diseases. However, the remaining MAIT cells have an increased cytokine-producing capacity and activated status, which is related to disease activity. Additionally, MAIT cells have been observed at sites of inflammation including the kidneys, synovial fluid and intestinal mucosa. These findings suggest their involvement in the pathogenesis of immune diseases. In this mini-review, we summarize the recent findings of MAIT cells in human immune diseases and animal models, and discuss their role and potential as a therapeutic target.
Collapse
Affiliation(s)
- Asako Chiba
- Department of Immunology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|