1
|
Sookhak Lari K, Davis GB, Rayner JL, Bastow TP. Advective and diffusive gas phase transport in vadose zones: Importance for defining vapour risks and natural source zone depletion of petroleum hydrocarbons. WATER RESEARCH 2024; 255:121455. [PMID: 38527413 DOI: 10.1016/j.watres.2024.121455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Quantifying the interlinked behaviour of the soil microbiome, fluid flow, multi-component transport and partitioning, and biodegradation is key to characterising vapour risks and natural source zone depletion (NSZD) of light non-aqueous phase liquid (LNAPL) petroleum hydrocarbons. Critical to vapour transport and NSZD is transport of gases through the vadose zone (oxygen from the atmosphere, volatile organic compounds (VOCs), methane and carbon dioxide from the zone of LNAPL biodegradation). Volatilisation of VOCs from LNAPL, aerobic biodegradation, methanogenesis and heat production all generate gas pressure changes that may lead to enhanced gas fluxes apart from diffusion. Despite the importance of the gaseous phase dynamics in the vadose zone processes, the relative pressure changes and consequent scales of advective (buoyancy and pressure driven) / diffusive transport is less studied. We use a validated multi-phase multi-component non-isothermal modelling framework to differentiate gas transport mechanisms. We simulate a multicomponent unweathered gasoline LNAPL with high VOC content to maximise the potential for pressure changes due to volatilisation and to enable the joint effects of methanogenesis and shallower aerobic biodegradation of vapours to be assessed, along with heat production. Considering a uniform fine sand profile with LNAPL resident in the water table capillary zone, results suggest that biodegradation plays the key role in gas phase formation and consequent pressure build-up. Results suggest that advection is the main transport mechanism over a thin zone inside the LNAPL/capillary region, where the effective gaseous diffusion is very low. In the bulk of the vadose zone above the LNAPL region, the pressure change is minimal, and gaseous diffusion is dominant. Even for high biodegradation rate cases, pressure build-up due to heat generation (inducing buoyancy effects) is smaller than the contribution of gas formation due to biodegradation. The findings are critical to support broader assumptions of diffusive transport being dominant in vapour transport and NSZD assessments.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| | - Greg B Davis
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - John L Rayner
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Trevor P Bastow
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| |
Collapse
|
2
|
Waqar A. Evaluation of factors causing lateral migration of light non-aqueous phase liquids (LNAPLs) in onshore oil spill accidents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10853-10873. [PMID: 38214856 DOI: 10.1007/s11356-024-31844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Contamination of groundwater by harmful substances poses significant risks to both drinking water sources and aquatic ecosystems, making it a critical environmental concern. Most on-land spill events release organic molecules known as light non-aqueous phase liquids (LNAPLs), which then seep into the ground. Due to their low density and organic composition, they tend to float as they reach the water table. LNAPLs encompass a wide range of non-aqueous phase liquids, including various petroleum products, and can, over time, develop carcinogenic chemicals in water. However, due to frequent changes in hydraulic head, the confinement may fail to contain them, causing them to extend outward. When it contaminates water wells, people cannot reliably consume the water. The removal of dangerous contaminants from groundwater aquifers is made more challenging by LNAPLs. It is imperative to analyze the mechanisms governing LNAPL migration. As a response to this need and the associated dispersion of contaminants into adjacent aquifers, we have conducted a comprehensive qualitative literature review encompassing the years 2000-2022. Groundwater variability, soil structure, and precipitation have been identified as the three primary influential factors, ranked in the following order of significance. The rate of migration is shown to rise dramatically in response to changes in groundwater levels. Different saturation zones and confinement have a major effect on the lateral migration velocity. When the various saturation zones reach a balance, LNAPLs will stop moving. Although higher confinement slows the rate of lateral migration, it speeds up vertical migration. Beyond this, the lateral or vertical movement is also influenced by differences in the permeability of soil strata. Reduced mobility and tighter containment are the outcomes of migrating through fine-grained, low-porosity sand. The gaseous and liquid phases of LNAPLs move more quickly through coarse-grained soils. Due to the complexities and uncertainties associated with LNAPL behavior, accurately foreseeing the future spread of LNAPLs can be challenging. Although studies have utilized modeling techniques to simulate and predict LNAPL migration, the inherent complexities and uncertainties in the subsurface environment make it difficult to precisely predict the extent of LNAPL spread in the future. The granular soil structure considerably affects the porosity and pore pressure.
Collapse
Affiliation(s)
- Ahsan Waqar
- Department of Civil & Environmental Engineering, University Technology PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
3
|
Sookhak Lari K, Davis GB, Bastow T, Rayner JL. On quantifying global carbon emission from oil contaminated lands over centuries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168039. [PMID: 37879486 DOI: 10.1016/j.scitotenv.2023.168039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Petroleum releases into the subsurface contribute to global soil carbon emissions. Quantifying releases and changes in releases of carbon from soils over the lifetime of a spill is complex. Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) embodies all key mechanisms for transformation to carbon gases and their release from soils including partitioning, transport and degradation of petroleum components. Quantification of the interconnected behaviours of the soil microbiome, fluid flow, multi-component transport, partitioning, and biodegradation is crucial for understanding NSZD. Volatilization from LNAPL, aerobic biodegradation, methanogenesis, and heat production all lead to release of greenhouse gases to the atmosphere. To estimate carbon emissions, using a validated computational platform, we modelled the long term NSZD of four petroleum hydrocarbon types; crude oil, diesel, jet fuel and gasoline, to span the major products used globally. For two soil types, we estimated 150 years of carbon emissions from annual minor and 25 mostly major petroleum hydrocarbon land release incidents since 1950 - with an estimated released mass of ~9 million tonnes across the circumstances considered. Up to 2100 the mass of carbon emitted to the atmosphere is estimated to range from 4 to 6 Teragrams, with nearly 60 % currently released. Nomographs generated help predict the fate of LNAPL plumes and carbon emissions due to NSZD, which is crucially important to management of soil and groundwater contamination. The method provides a basis to include additionally identified and future petroleum releases. It is noted that the petroleum mixture composition, degradation rates, volatilization, and subsurface characteristics all can influence carbon emission estimations.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; Geothermal Energy and Geofluids Group, Department of Earth Sciences, ETH Zurich, CH-8092, Zurich, Switzerland.
| | - Greg B Davis
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Trevor Bastow
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - John L Rayner
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| |
Collapse
|
4
|
Mineo S. Groundwater and soil contamination by LNAPL: State of the art and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162394. [PMID: 36858232 DOI: 10.1016/j.scitotenv.2023.162394] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Contamination by Light Non-Aqueous Phase Liquids (LNAPL) represents a challenge due to the difficulties encountered in its underground assessment and recovery. The major risks arising from subsoil LNAPL accumulation face human health and environment, gaining a social relevance also in the frame of a continuously changing climate. This paper reports on a literature review about the underground contamination by LNAPL, with the aims of providing a categorization of the aspects involved in this topic, analyzing the current state of the art, underlying potential lacks and future perspectives. The review was focused on papers published in the 2012-2022 time-interval, in journals indexed in Scopus and WoS databases, by querying "LNAPL" within article title, abstract and/or key words. 245 papers were collected and classified according to three "key approaches" -namely laboratory activity, field based-data studies and mathematical simulations- and subordinate "key themes", so to allow summarizing and commenting the main aspects based on the application setting, content and scope. Results show that there is a wide experience on plume dynamics and evolution, detection and monitoring through direct and indirect surveys, oil recovery and natural attenuation processes. Few cues of innovations were found regarding both the use of new materials and/or specific field configuration for remediation, and the application of new techniques for plume detection. Some limitations were found in the common oversimplification of the polluted media in laboratory or mathematical models, where the contamination is set within homogeneous porous environments, and in the low number of studies focused on rock masses, where the discontinuous hydraulic behavior complicates the address and modeling of the issue. This paper represents a reference for a quick update on the addressed topic, along with a starting point to develop new ideas and cues for the advance in one of the greatest environmental banes of the current century.
Collapse
Affiliation(s)
- S Mineo
- University of Catania, Department of Biological, Geological and Environmental Sciences, Corso Italia 57, Catania 95123, Italy.
| |
Collapse
|
5
|
Yang Y, Li J, Lv N, Wang H, Zhang H. Multiphase migration and transformation of BTEX on groundwater table fluctuation in riparian petrochemical sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55756-55767. [PMID: 36905541 DOI: 10.1007/s11356-023-26393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Light non-aqueous phase liquids (LNAPL) are considered to be a composition-based risk, containing multiple chemical ingredients that release dissolved- and vapor-phase plumes. In dissolved form, there is a saturation-based risk as the water source expands, affecting groundwater aquifers on a larger scale in the aquifer. As a typical pollutant found in petrochemical contaminated sites, the migration and transformation of benzene, toluene, ethylbenzene, and o-xylene (BTEX) between gas, aqueous, and NAPL phases are distinctly affected by groundwater table fluctuation (GTF). BTEX multiphase migration and transformation pattern in a petrochemical factory at the riverside was simulated based on the TMVOC model in differentiating pollution distribution and interphase transformation under stable or fluctuating groundwater tables conditions. TMVOC model performed an excellent simulation effect on the migration and transformation of BTEX in GTF circumstances. In comparison with the stable groundwater table condition, the BTEX pollution depth under GTF increased by 0.5 m, the pollution area increased by 25%, and the total mass increased by 0.12 × 102 kg. In both cases, the mass reduction of NAPL-phase pollutants was more significant than the total mass reduction of pollutants, and GTF further promoted the mass conversion of NAPL-phase pollutants to water pollutants. Prominently, as the groundwater table rises, the GTF can correct for evacuation, and the transport flux of gaseous pollutants at the atmospheric boundary decreases with increasing transport distance. Furthermore, descended groundwater table will intensify the transmission flux of gaseous pollutants at the atmospheric boundary with the transmission range expanding, which can be harmful to human health on the surface due to gaseous pollutants entering into the air.
Collapse
Affiliation(s)
- Yang Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China
| | - Juan Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China
| | - Ningqing Lv
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Haizhou Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China.
| |
Collapse
|
6
|
Shen H, Huang Y, Illman WA, Su Y, Miao K. Migration behaviour of LNAPL in fractures filled with porous media: Laboratory experiments and numerical simulations. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 253:104118. [PMID: 36563651 DOI: 10.1016/j.jconhyd.2022.104118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
With the increasing requirement of maintaining world energy security and strategic reserves, oil storage and transportation facilities are being built at a large scale. Taking the safe and efficient operation of petroleum storage projects as the goal, a set of experimental apparatus to investigate the migration of contaminants in fractures filled with media was developed to predict and evaluate the environmental risk of oil contaminants leakage. A multiphase numerical flow model based on COMSOL was built based on the laboratory experimental model. Specifically, the migration behaviour of Light Non-aqueous Phase Liquid (LNAPL) through a sand-filled fractured medium was studied by laboratory experiments and numerical simulations. Image and chemical analyses methods were used to monitor and study LNAPL migration behaviour for varying grain sizes of porous medium filling the fractures and varying groundwater table elevations. Laboratory experimental results showed that the LNAPL migration velocity in filled fracture network was significantly faster than that in adjoining porous media during the initial stage of infiltration. The migration velocity increased with the relative permeability of filled sand, which was closely related to the Van Genuchten (VG) model parameters α and n. LNAPL migrated downward with the falling groundwater table and became entrapped with the rising groundwater table, and the amount of entrapment depended on VG model parameters. Hydrogeological parameters were calibrated and LNAPL migration in filled fractured media was predicted using the calibrated numerical model. Simulation results revealed that fracture inclination had an important influence on LNAPL migration in filled fractured media and its migration velocity decreased with a decrease in fracture inclination. These research results can be applied to the control and remediation of oil-contaminated sites in fractured rock settings, such as at underground oil storage tanks and caverns, as well as at underground oil pipelines.
Collapse
Affiliation(s)
- Huan Shen
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo N2L 3G1, Canada.
| | - Yong Huang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China.
| | - Walter A Illman
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo N2L 3G1, Canada.
| | - Yue Su
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo N2L 3G1, Canada.
| | - Kehan Miao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China.
| |
Collapse
|
7
|
Davis GB, Rayner JL, Donn MJ, Johnston CD, Lukatelich R, King A, Bastow TP, Bekele E. Tracking NSZD mass removal rates over decades: Site-wide and local scale assessment of mass removal at a legacy petroleum site. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104007. [PMID: 35405439 DOI: 10.1016/j.jconhyd.2022.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Long-term estimates of natural source zone depletion (NSZD) rates for petroleum LNAPL (light non-aqueous phase liquid) sites are not available. One-off measurements are often thought valid over the lifetime of LNAPL sites. In the context of site-wide LNAPL mass estimates, we report site-specific gasoline and diesel NSZD rates spanning 21-26 years. Using depth profiles of soil gases (oxygen, carbon dioxide, methane, volatiles) above LNAPL, NSZD rates were estimated in 1994, 2006 and 2020 for diesel and 1999, 2009 and 2020 for gasoline. Each date also had soil-core mass estimates, which together with NSZD rates allow estimation of the longevity for LNAPL presence. Site-wide coring (in 1992, 2002, 2007) estimated LNAPL mass reductions of 12,000 t. For diesel NSZD, the ratio of NSZD rates for 2006 (16,000-49,000 L/ha/y) to those in 2020 (2600-14,000 L/ha/y) was ~3-6. By 2020, the 1994 diesel NSZD rates would have predicted the entire removal of measured mass (16-42 kg/m2). For gasoline, NSZD rates in 1999 were extremely high (50,000-270,000 L/ha/y) but 9-27 times lower (5800-10,000 L/ha/y) a decade later. The gasoline NSZD rates in 1999 predicted near complete mass removal in 2-12 years, but 10-11 kg/m2 was measured 10 and 21 years later which is 26% of the initial mass in 1999. The outcomes substantiate the need to understand NSZD rate changes over the lifetime of LNAPL-impacted sites.
Collapse
Affiliation(s)
- G B Davis
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia.
| | - J L Rayner
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| | - M J Donn
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| | - C D Johnston
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| | - R Lukatelich
- Consultant, Baldivis, Western Australia, Australia
| | - A King
- Remediation Management, BP Australia Pty Ltd, Melbourne, Victoria, Australia
| | - T P Bastow
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| | - E Bekele
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| |
Collapse
|
8
|
Ciampi P, Esposito C, Cassiani G, Deidda GP, Flores-Orozco A, Rizzetto P, Chiappa A, Bernabei M, Gardon A, Petrangeli Papini M. Contamination presence and dynamics at a polluted site: Spatial analysis of integrated data and joint conceptual modeling approach. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104026. [PMID: 35605355 DOI: 10.1016/j.jconhyd.2022.104026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Contaminated sites are complex systems posing challenges for their characterization as both contaminant distribution and hydrogeological properties vary markedly at the metric scale, yet may extend over broad areas, with serious issues of spatial under-sampling in the space. Characterization with sufficient spatial resolution is thus, one of the main concerns and still open areas of research. To this end, the joint use of direct and indirect (i.e., geophysical) investigation methods is a very promising approach. This paper presents a case study aspiring to demonstrate the benefit of a multidisciplinary approach in the characterization of a hydrocarbon-contaminated site. Detailed multi-source data, collected via stratigraphic boreholes, laser-induced fluorescence (LIF) surveys, electrical resistivity tomography (ERT) prospecting, groundwater hydrochemical monitoring, and gas chromatography-mass spectrometry (GC-MS) analyses were compiled into an interactive big-data package for modeling activities. The final product is a comprehensive conceptual hydro-geophysical model overlapping multi-modality data and capturing hydrogeological and geophysical structures, as well as contamination distribution in space and dynamics in time. The convergence of knowledge in the joint model verifies the possibility of discriminating geophysical findings based on lithological features and contamination effects, unmasking the real characteristics of the pollutant, the contamination mechanisms, and the residual phase hydrocarbon sequestration linked to the hydrogeological dynamics and adopted remediation actions. The emerging conceptual site model (CSM), emphasizing the necessity of a large amount of multi-source data for its reliable, high-resolution reconstruction, appears as the necessary tool for the design of remedial actions, as well as for the monitoring of remediation performance.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgio Cassiani
- Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padua, Italy.
| | - Gian Piero Deidda
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, via Marengo, 2, 09123 Cagliari, Italy.
| | | | - Paolo Rizzetto
- Logistic Headquarter of Italian Air Force, Viale dell'Università, 4, 00185 Rome, Italy.
| | - Andrea Chiappa
- Department of Technological Aerospace Materials-Flight Test Center of Italian Air Force, Pratica di Mare, 00071 Pomezia, Rome, Italy.
| | - Manuele Bernabei
- Department of Technological Aerospace Materials-Flight Test Center of Italian Air Force, Pratica di Mare, 00071 Pomezia, Rome, Italy.
| | - Andrea Gardon
- Department of Technological Aerospace Materials-Flight Test Center of Italian Air Force, Pratica di Mare, 00071 Pomezia, Rome, Italy.
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
9
|
Migration Law of LNAPLs in the Groundwater Level Fluctuation Zone Affected by Freezing and Thawing. WATER 2022. [DOI: 10.3390/w14081289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Freezing and thawing can cause dynamic fluctuations of the groundwater level, resulting in the migration and retention of LNAPLs. However, this process is difficult to observe visually, and a suitable simulation method for its quantitative calculation is lacking. In this study, a numerical simulation is established by coupling the HYDRUS-1D software and the TOUGH program to realize dynamic simulation of the entire process of soil temperature changes, water migration, water level fluctuation, and redistribution of LNAPLs during the freeze–thaw process. The results of the study show that the process of soil freezing and thawing causes water migration, which in turn causes groundwater level fluctuation, leading to the migration and redistribution of LNAPLs within the water level fluctuation zone. In this process, the soil particle size and porosity control the response degree and speed of the water level under freezing and thawing and the spatiotemporal distribution of LNAPLs by affecting the soil temperature, capillary force, and water migration. The migration ability of free LNAPLs is determined by their own density and viscosity; the retention of residual LNAPLs is affected by soil porosity and permeability as well as LNAPL viscosity. The results of this study can not only be used to develop a simulation method for the migration and retention mechanism of LNAPLs in cold regions but also serve as a scientific and theoretical basis for LNAPL pollution control in seasonal frozen soil regions.
Collapse
|
10
|
Sookhak Lari K, Davis GB, Rayner JL. Towards a digital twin for characterising natural source zone depletion: A feasibility study based on the Bemidji site. WATER RESEARCH 2022; 208:117853. [PMID: 34800855 DOI: 10.1016/j.watres.2021.117853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) may be a valid long-term management option at petroleum impacted sites. However, its future long-term reliability needs to be established. NSZD includes partitioning, biotic and abiotic degradation of LNAPL components plus multiphase fluid dynamics in the subsurface. Over time, LNAPL components are depleted and those partitioning to various phases change, as do those available for biodegradation. To accommodate these processes and predict trends and NSZD over decades to centuries, for the first time, we incorporated a multi-phase multi-component multi-microbe non-isothermal approach to representatively simulate NSZD at field scale. To validate the approach we successfully mimic data from the LNAPL release at the Bemidji site. We simulate the entire depth of saturated and unsaturated zones over the 27 years of post-release measurements. The study progresses the idea of creating a generic digital twin of NSZD processes and future trends. Outcomes show the feasibility and affordability of such detailed computational approaches to improve decision-making for site management and restoration strategies. The study provided a basis to progress a computational digital twin for complex subsurface systems.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley,WA 6009, Australia
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia
| |
Collapse
|
11
|
Sookhak Lari K, King A, Rayner JL, Davis GB. Quantifying the benefits of in-time and in-place responses to remediate acute LNAPL release incidents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112356. [PMID: 33765523 DOI: 10.1016/j.jenvman.2021.112356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/06/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Acute large volume spills from storage tanks of petroleum hydrocarbons as light non aqueous phase liquids (LNAPLs) can contaminate soil and groundwater and may have the potential to pose explosive and other risks. In consideration of an acute LNAPL release scenario, we explore the value of a rapid remediation response, and the value of installing remediation infrastructure in close proximity to the spill location, in effecting greater recovery of LNAPL mass from the subsurface. For the first time, a verified three-dimensional multi-phase numerical framework and supercomputing resources was applied to explore the significance of in-time and in-place remediation actions. A sand aquifer, two release volumes and a low viscosity LNAPL were considered in key scenarios. The time of commencement of LNAPL remediation activities and the location of recovery wells were assessed requiring asymmetric computational considerations. The volume of LNAPL released considerably affected the depth of LNAPL penetration below the groundwater table, the radius of the plume over time and the recoverable LNAPL mass. The remediation efficiency was almost linearly correlated with the commencement time, but was a non-linear function of the distance of an extraction well from the spill release point. The ratio of the recovered LNAPL in a well located at the centre of the spill/release compared to a well located 5 m away was more than 3.5, for recovery starting only 7 days after the release. Early commencement of remediation with a recovery well located at the centre of the plume was estimated to recover 190 times more LNAPL mass than a one-month delayed commencement through a well 15 m away from the centre of the LNAPL plume. Optimally, nearly 40% of the initially released LNAPL could be recovered within two months of commencing LNAPL recovery actions.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Andrew King
- BP Remediation Management, Melbourne, Australia
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
12
|
Qi S, Luo J, O'Connor D, Wang Y, Hou D. A numerical model to optimize LNAPL remediation by multi-phase extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137309. [PMID: 32087590 DOI: 10.1016/j.scitotenv.2020.137309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Light non-aqueous phase liquid (LNAPL) contaminated sites pose a risk to human health and the natural environment. Multi-phase extraction (MPE) is one of the most widely used technologies to remediate these sites. Thus, it is important to optimize MPE systems to improve their effectiveness and cost-efficiency. In this study, we developed a numerical model to optimize LNAPL mass removal by MPE, in which the aquifer domain was simplified as a cylinder with a single MPE extraction well located at the center. A dual-pump extraction system was applied to the model, which involved vacuum enhanced recovery to remove volatilized gaseous phase contaminants and a submerged pump to remove NAPL and contaminants in groundwater. After the model was validated with field data, the results showed that the contaminant extraction rate varied with the LNAPL thickness and submerged pump position. For benzene selected as the contaminant of concern, greater LNAPL extraction rates were achieved when the initial LNAPL thickness was large (>1.5 m) or in aquifers of high permeability (>2.45 × 10-10 m2). Importantly, it was discovered that in highly permeable coarse sand and gravel, the submerged pump ought to be placed within the LNAPL layer, whereas the pump should be placed below the water-NAPL interface in fine to medium sand aquifers. It was also found that an optimal liquid pumping rates exist, beyond which contaminant mass removal rates do not increase. Furthermore, it was found that in aquifers contaminated with thin LNAPL layers, mass transfer modelling that assumes equilibrium between the phases may greatly overestimate the accumulated mass of contaminants removed and, therefore, non-equilibrium modelling should be adopted. Finally, a cost analysis was carried out to compare the costs of remediating a contaminated site with MPE and by an alternative chemical oxidation approach. The MPE technology was found to be more cost effective when the initial thickness of LNAPL was relatively thin. In summary, the numerical model developed in this study is a useful tool for optimizing MPE system design.
Collapse
Affiliation(s)
- Shengqi Qi
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yidong Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Arshadi M, Gesho M, Qin T, Goual L, Piri M. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 230:103599. [PMID: 31932069 DOI: 10.1016/j.jconhyd.2020.103599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Subsurface formations often contain multiple minerals with different wettability characteristics upon contact with nonaqueous-phase liquids (NAPLs). Constitutive relationships between microstructure heterogeneity and NAPL fate and transport in these formations are difficult to predict. Several studies have used pore-scale network models with faithful representations of rock pore space topology to predict macroscopic descriptors of two-phase flow, however wettability is usually considered as a spatially random variable. This study attempts to overcome this limitation by considering more realistic representations of rock mineralogy and wettability in these models. This is especially important for heterogeneous rocks where properties vary at the pore-scale. The work was carried out in two phases. First, pore-fluid occupancy maps during waterflooding were obtained by X-ray microtomography to elucidate the impact of pore wall mineralogy and wettability on water preferential flow paths and NAPL trapping within a heterogeneous aquifer sandstone (Arkose). Then, microtomography images of the rock were used to generate a hybrid pore network model (PNM) that incorporated both pore space topology and pore wall mineralogy. In-situ contact angles (CA) measured on the surface of different minerals were assigned to the network on a pore-by-pore basis to describe the exact wettability distribution of the rock (Pore-by-pore model). The equivalent network was used as input in a quasi-static flow model to simulate waterflooding, and the predictions of residual NAPL saturation and relative permeabilities were compared against their experimental counterparts. To examine the sensitivity of the model to the underlying fluid-solid interactions, we also used traditional methods of wettability characterization in the input data and assigned them randomly to the PNM. Wettability in this case was assessed from macroscale CA distribution of oil droplets on the surface of unpolished Arkose substrates released by spontaneous imbibition of water (Arkose model) and from pendant drop measurements on polished quartz (Quartz model). Our results revealed that the Pore-by-pore model predicted waterflooding with the highest accuracy among all three cases. The Arkose model slightly overestimated NAPL removal whereas the Quartz model failed to predict the experiments. More in-depth analysis of the Pore-by-pore and Arkose models showed that macroscopic transport quantities are less dependent to microstructure heterogeneity if minerals are distributed uniformly across the rock. The predictions herein indicate the importance of incorporating mineralogy and wettability maps to improve the prediction capabilities of PNMs especially in systems with high mineral heterogeneity, where minerals are nonuniformly distributed, or selective fluid-mineral interactions are targeted.
Collapse
Affiliation(s)
- Maziar Arshadi
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA
| | - Masakazu Gesho
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA
| | - Tianzhu Qin
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA
| | - Lamia Goual
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA.
| | - Mohammad Piri
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA
| |
Collapse
|
14
|
Abstract
Accidental leakage of hydrocarbons is a common subsurface contamination scenario. Once released, the hydrocarbons migrate until they reach the vicinity of the uppermost portion of the saturated zone, where it accumulates. Whenever the amplitude of the water table fluctuation is high, the light non-aqueous phase liquid (LNAPL) may be completely entrapped in the saturated zone. The entrapped LNAPL, comprised of multicomponent products (e.g., gasoline, jet fuel, diesel), is responsible for the release of benzene, toluene, ethylbenzene, and xylenes (BTEX) into the water, thus generating the dissolved phase plumes of these compounds. In order to estimate the time required for source-zone depletion, we developed an algorithm that calculates the mass loss of BTEX compounds in LNAPL over time. The simulations performed with our algorithm provided results akin to those observed in the field and demonstrated that the depletion rate will be more pronounced in regions with high LNAPL saturation. Further, the LNAPL depletion rate is mostly controlled by flow rate and is less sensible to the biodegradation rate in the aqueous phase.
Collapse
|
15
|
Sookhak Lari K, Davis GB, Rayner JL, Bastow TP, Puzon GJ. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches. WATER RESEARCH 2019; 157:630-646. [PMID: 31004979 DOI: 10.1016/j.watres.2019.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) includes partitioning, transport and degradation of LNAPL components. NSZD is being considered as a site closure option during later stages of active remediation of LNAPL contaminated sites, and where LNAPL mass removal is limiting. To ensure NSZD meets compliance criteria and to design enhanced NSZD actions if required, residual risks posed by LNAPL and its long term behaviour require estimation. Prediction of long-term NSZD trends requires linking physicochemical partitioning and transport processes with bioprocesses at multiple scales within a modelling framework. Here we expand and build on the knowledge base of a recent review of NSZD, to establish the key processes and understanding required to model NSZD long term. We describe key challenges to our understanding, inclusive of the dominance of methanogenic or aerobic biodegradation processes, the potentially changeability of rates due to the weathering profile of LNAPL product types and ages, and linkages to underlying bioprocesses. We critically discuss different scales in subsurface simulation and modelling of NSZD. Focusing on processes at Darcy scale, 36 models addressing processes of importance to NSZD are investigated. We investigate the capabilities of models to accommodate more than 20 subsurface transport and transformation phenomena and present comparisons in several tables. We discuss the applicability of each group of models for specific site conditions.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| | - Trevor P Bastow
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| | - Geoffrey J Puzon
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| |
Collapse
|
16
|
Sookhak Lari K, Rayner JL, Davis GB. Towards characterizing LNAPL remediation endpoints. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:97-105. [PMID: 30031923 DOI: 10.1016/j.jenvman.2018.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/03/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Remediating sites contaminated with light non-aqueous phase liquids (LNAPLs) is a demanding and often prolonged task. It is vital to determine when it is appropriate to cease engineered remedial efforts based on the long-term effectiveness of remediation technology options. For the first time, the long term effectiveness of a range of LNAPL remediation approaches including skimming and vacuum-enhanced skimming each with and without water table drawdown was simulated through a multi-phase and multi-component approach. LNAPL components of gasoline were simulated to show how component changes affect the LNAPL's multi-phase behaviour and to inform the risk profile of the LNAPL. The four remediation approaches along with five types of soils, two states of the LNAPL specific mass and finite and infinite LNAPL plumes resulted in 80 simulation scenarios. Effective conservative mass removal endpoints for all the simulations were determined. As a key driver of risk, the persistence and mass removal of benzene was investigated across the scenarios. The time to effectively achieve a technology endpoint varied from 2 to 6 years. The recovered LNAPL in the liquid phase varied from 5% to 53% of the initial mass. The recovered LNAPL mass as extracted vapour was also quantified. Additional mass loss through induced biodegradation was not determined. Across numerous field conditions and release incidents, graphical outcomes provide conservative (i.e. more prolonged or greater mass recovery potential) LNAPL remediation endpoints for use in discussing the halting or continuance of engineered remedial efforts.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
17
|
Giraud Q, Gonçalvès J, Paris B, Joubert A, Colombano S, Cazaux D. 3D numerical modelling of a pulsed pumping process of a large DNAPL pool: In situ pilot-scale case study of hexachlorobutadiene in a keyed enclosure. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 214:24-38. [PMID: 29807703 DOI: 10.1016/j.jconhyd.2018.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/05/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene (HCBD), added in 2015 to the persistent organic pollutants list (POP). A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite volume of soil and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping well and an observation well was recorded. The cumulated pumped volume of DNAPL was also monitored. A total volume of about 20 m3 of pure DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.
Collapse
Affiliation(s)
- Quentin Giraud
- CEREGE, Europôle Méditerranéen de l'Arbois, Avenue Louis Philibert, 13545 Aix-en-Provence, France; INTERA, 90 Avenue Lanessan, 69410 Champagne-au-Mont-d'Or, France.
| | - Julio Gonçalvès
- CEREGE, Europôle Méditerranéen de l'Arbois, Avenue Louis Philibert, 13545 Aix-en-Provence, France
| | - Benoît Paris
- INTERA, 90 Avenue Lanessan, 69410 Champagne-au-Mont-d'Or, France
| | | | | | - David Cazaux
- INOVYN, Avenue de la République, 39500 Tavaux, France
| |
Collapse
|
18
|
Sookhak Lari K, Johnston CD, Rayner JL, Davis GB. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials. JOURNAL OF HAZARDOUS MATERIALS 2018; 345:87-96. [PMID: 29131986 DOI: 10.1016/j.jhazmat.2017.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/22/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Remediation of subsurface systems, including groundwater, soil and soil gas, contaminated with light non-aqueous phase liquids (LNAPLs) is challenging. Field-scale pilot trials of multi-phase remediation were undertaken at a site to determine the effectiveness of recovery options. Sequential LNAPL skimming and vacuum-enhanced skimming, with and without water table drawdown were trialled over 78days; in total extracting over 5m3 of LNAPL. For the first time, a multi-component simulation framework (including the multi-phase multi-component code TMVOC-MP and processing codes) was developed and applied to simulate the broad range of multi-phase remediation and recovery methods used in the field trials. This framework was validated against the sequential pilot trials by comparing predicted and measured LNAPL mass removal rates and compositional changes. The framework was tested on both a Cray supercomputer and a cluster. Simulations mimicked trends in LNAPL recovery rates (from 0.14 to 3mL/s) across all remediation techniques each operating over periods of 4-14days over the 78day trial. The code also approximated order of magnitude compositional changes of hazardous chemical concentrations in extracted gas during vacuum-enhanced recovery. The verified framework enables longer term prediction of the effectiveness of remediation approaches allowing better determination of remediation endpoints and long-term risks.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027,Australia.
| | - Colin D Johnston
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley,WA 6009, Australia
| |
Collapse
|
19
|
Sookhak Lari K, Rayner JL, Davis GB. A computational assessment of representative sampling of soil gas using existing groundwater monitoring wells screened across the water table. JOURNAL OF HAZARDOUS MATERIALS 2017; 335:197-207. [PMID: 28511089 DOI: 10.1016/j.jhazmat.2017.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Representative sampling is of great importance to decision making regarding contaminant site risks and remedial effectiveness. A focus here is whether existing groundwater monitoring wells screened across the water table can be sampled to yield representative indicators of soil gas composition. For the first time, we provide multi-phase, multi-component computational simulations to address this. We simulated high and low gas extractions rate strategies to sample the gas phase over short and extended screening intervals across the water table. We investigated the options against a field data set representative of typical hydrocarbon vapour profiles, inclusive of major gases, oxygen and carbon dioxide. We also evaluated the sampling options for uniform and non-uniform multi-component gasoline LNAPL distributions, including hazardous chemicals. Less sensitivity to the sampling option was observed for depth-wise increasing concentration profiles with a near-constant concentration across the screen. Significant discrepancy between the ratio of different compounds in the sample and in-situ (real) values was observed for high-rate gas extraction (particularly for an extended-screen). Low-rate gas extraction provided satisfactory results for all the scenarios. Shorter screening slightly improved the accuracy of this option. Graphical representations are provided to allow assessment of the applicability of each sampling option for various site conditions.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia.
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Earth and Environment, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Australia
| |
Collapse
|