1
|
Xu H, Sahakijpijarn S, Moon C, Emig CJ, Mena M, Henry SJ, Vitug A, Ventura CJ, Kuehl PJ, Revelli D, Owens DE, Christensen DJ, Williams RO, Cui Z. Inhalable dry powders of a monoclonal antibody against SARS-CoV-2 virus made by thin-film freeze-drying. Int J Pharm 2024; 662:124511. [PMID: 39067548 DOI: 10.1016/j.ijpharm.2024.124511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies (mAbs) represent a promising modality for the prevention and treatment of viral infections. For infections that initiate from the respiratory tract, direct administration of specific neutralizing mAbs into lungs has advantages over systemic injection of the same mAbs. Herein, using AUG-3387, a human-derived mAb with high affinity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its various variants, as a model mAb, we formulated the mAb into dry powders by thin-film freeze-drying, confirmed that the AUG-3387 mAb reconstituted from the dry powders retained their integrity, high affinity to the SARS-CoV-2 spike protein receptor binding domain (RBD), as well as ability to neutralize RBD-expressing pseudoviruses. Finally, we showed that one of the AUG-3387 mAb dry powders had desirable aerosol properties for pulmonary delivery into the lung. We concluded that thin-film freeze-drying represents a viable method to prepare inhalable powders of virus-neutralizing mAbs for pulmonary delivery into the lung.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States
| | | | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States
| | - Christopher J Emig
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Marco Mena
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Steven J Henry
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | - Adela Vitug
- Augmenta Bioworks, 3475 Edison Way, Suite K, Menlo Park, CA 94025, United States
| | | | - Philip J Kuehl
- Lovelace Biomedical, Albuquerque, NM 87108, United States
| | - David Revelli
- Lovelace Biomedical, Albuquerque, NM 87108, United States
| | - Donald E Owens
- TFF Pharmaceuticals, Inc., Austin, TX, 78746, United States
| | | | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States.
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, United States.
| |
Collapse
|
2
|
Baldelli A, Jerry Wong CY, Oguzlu H, Gholizadeh H, Guo Y, Ong HX, Singh A, Traini D, Pratap-Singh A. Nasal delivery of encapsulated recombinant ACE2 as a prophylactic drug for SARS-CoV-2. Int J Pharm 2024; 655:124009. [PMID: 38493838 DOI: 10.1016/j.ijpharm.2024.124009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is responsible for cell fusion with SARS-CoV viruses. ACE2 is contained in different areas of the human body, including the nasal cavity, which is considered the main entrance for different types of airborne viruses. We took advantage of the roles of ACE2 and the nasal cavity in SARS-CoV-2 replication and transmission to develop a nasal dry powder. Recombinant ACE2 (rhACE2), after a proper encapsulation achieved via spray freeze drying, shows a binding efficiency with spike proteins of SARS-CoV-2 higher than 77 % at quantities lower than 5 µg/ml. Once delivered to the nose, encapsulated rhACE2 led to viability and permeability of RPMI 2650 cells of at least 90.20 ± 0.67 % and 47.96 ± 4.46 %, respectively, for concentrations lower than 1 mg/ml. These results were validated using nasal dry powder containing rhACE2 to prevent or treat infections derived from SARS-CoV-2.
Collapse
Affiliation(s)
- Alberto Baldelli
- Faculty of Land and Food Systems, The University of British Columbia, Canada; School of Agriculture and Food Sustainability, The University of Queensland, Australia.
| | - Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Hale Oguzlu
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Canada
| | - Hanieh Gholizadeh
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Yigong Guo
- Faculty of Land and Food Systems, The University of British Columbia, Canada
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University Australia Sydney, Australia
| | - Anika Singh
- Natural Health and Food Products Research Group, Centre for Applied Research, and Innovation (CARI), British Columbia Institute of Technology, Canada
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University Australia Sydney, Australia
| | | |
Collapse
|
3
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
4
|
Jena D, Srivastava N, Chauhan I, Verma M. Challenges and Therapeutic Approaches for the Protein Delivery System: A Review. Pharm Nanotechnol 2024; 12:391-411. [PMID: 38192140 DOI: 10.2174/0122117385265979231115074255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 01/10/2024]
Abstract
The protein delivery system is one of the innovative or novel drug delivery systems in the present era. Proteins play an indispensable role in our body and are mainly found in every part, like tissue and cells of our body. It also controls various functions, such as maintaining our tissue, transportation, muscle recovery, enzyme production and acting as an energy source for our body. Protein therapeutics have big future perspectives, and their use in the treatment of a wide range of serious diseases has transformed the delivery system in the pharmaceutical and biotechnology industries. The chief advantage of protein delivery is that it can be delivered directly to the systemic circulation. So far, parenteral routes, such as intravenous, intramuscular, and subcutaneous, are the most often used method of administering protein drugs. Alternative routes like buccal, oral, pulmonary, transdermal, nasal, and ocular routes have also shown a remarkable success rate. However, as with all other types of delivery, here, several challenges are posed due to the presence of various barriers, such as the enzymatic barrier, intestinal epithelial barrier, capillary endothelial barrier, and blood-brain barrier. There are several approaches that have been explored to overcome these barriers, such as chemical modification, enzymatic inhibitors, penetration enhancers, and mucoadhesive polymers. This review article discusses the protein, its functions, routes of administration, challenges, and strategies to achieve ultimate formulation goals. Recent advancements like the protein Pegylation method and Depofoam technology are another highlight of the article.
Collapse
Affiliation(s)
- Devashish Jena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Iti Chauhan
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| | - Madhu Verma
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
5
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
6
|
Salehi T, Raeisi Estabragh MA, Salarpour S, Ohadi M, Dehghannoudeh G. Absorption enhancer approach for protein delivery by various routes of administration: a rapid review. J Drug Target 2023; 31:950-961. [PMID: 37842966 DOI: 10.1080/1061186x.2023.2271680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
As bioactive molecules, peptides and proteins are essential in living organisms, including animals and humans. Defects in their function lead to various diseases in humans. Therefore, the use of proteins in treating multiple diseases, such as cancers and hepatitis, is increasing. There are different routes to administer proteins, which have limitations due to their large and hydrophilic structure. Another limitation is the presence of biological and lipophilic membranes that do not allow proteins to pass quickly. There are different strategies to increase the absorption of proteins from these biological membranes. One of these strategies is to use compounds as absorption enhancers. Absorption enhancers are compounds such as surfactants, phospholipids and cyclodextrins that increase protein passage through the biological membrane and their absorption by different mechanisms. This review focuses on using other absorption enhancers and their mechanism in protein administration routes.
Collapse
Affiliation(s)
- Toktam Salehi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Sécher T, Heuzé-Vourc'h N. Barriers for orally inhaled therapeutic antibodies. Expert Opin Drug Deliv 2023; 20:1071-1084. [PMID: 37609943 DOI: 10.1080/17425247.2023.2249821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Respiratory diseases represent a worldwide health issue. The recent Sars-CoV-2 pandemic, the burden of lung cancer, and inflammatory respiratory diseases urged the development of innovative therapeutic solutions. In this context, therapeutic antibodies (Abs) offer a tremendous opportunity to benefit patients with respiratory diseases. Delivering Ab through the airways has been demonstrated to be relevant to improve their therapeutic index. However, few inhaled Abs are on the market. AREAS COVERED This review describes the different barriers that may alter the fate of inhaled therapeutic Abs in the lungs at steady state. It addresses both physical and biological barriers and discusses the importance of taking into consideration the pathological changes occurring during respiratory disease, which may reinforce these barriers. EXPERT OPINION The pulmonary route remains rare for delivering therapeutic Abs, with few approved inhaled molecules, despite promising evidence. Efforts must focus on the intertwined barriers associated with lung diseases to develop appropriate Ab-formulation-device combo, ensuring optimal Ab deposition in the respiratory tract. Finally, randomized controlled clinical trials should be carried out to establish inhaled Ab therapy as prominent against respiratory diseases.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
8
|
Laitano R, Calzetta L, Cavalli F, Cazzola M, Rogliani P. Delivering monoclonal antibodies via inhalation: a systematic review of clinical trials in asthma and COPD. Expert Opin Drug Deliv 2023; 20:1041-1054. [PMID: 37342873 DOI: 10.1080/17425247.2023.2228681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Advances in understanding the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD) led to investigation of biologic drugs targeting specific inflammatory pathways. No biologics are licensed for COPD while all the approved monoclonal antibodies (mAbs) for severe asthma treatment are systemically administered. Systemic administration is associated with low target tissue exposure and risk of systemic adverse events. Thus, delivering mAbs via inhalation may be an attractive approach for asthma and COPD treatment due to direct targeting of the airways. AREAS COVERED This systematic review of randomized control trials (RCTs) evaluated the potential role of delivering mAbs via inhalation in asthma and COPD treatment. Five RCTs were deemed eligible for a qualitative analysis. EXPERT OPINION Compared to systemic administration, delivering mAbs via inhalation is associated with rapid onset of action, greater efficacy at lower doses, minimal systemic exposure, and lower risk of adverse events. Although some of the inhaled mAbs included in this study showed a certain level of efficacy and safety in asthmatic patients, delivering mAbs via inhalation is still challenging and controversial. Further adequately powered and well-designed RCTs are needed to assess the potential role of inhaled mAbs in the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Rossella Laitano
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
9
|
Kommineni N, Sainaga Jyothi VGS, Butreddy A, Raju S, Shapira T, Khan W, Angsantikul P, Domb AJ. SNAC for Enhanced Oral Bioavailability: An Updated Review. Pharm Res 2023; 40:633-650. [PMID: 36539668 DOI: 10.1007/s11095-022-03459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The delivery of proteins and peptides via an oral route poses numerous challenges to improve the oral bioavailability and patient compliance. To overcome these challenges, as well as to improve the permeation of proteins and peptides via intestinal mucosa, several chemicals have been studied such as surfactants, fatty acids, bile salts, pH modifiers, and chelating agents, amongst these medium chain fatty acid like C10 (sodium caprate) and Sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) and its derivatives that have been well studied from a clinical perspective. This current review enumerates the challenges involved in protein and peptide delivery via the oral route, i.e., non-invasive routes of protein and peptide administration. This review also covers the chemistry behind SNAC and toxicity as well as mechanisms to enhance the oral delivery of clinically proven molecules like simaglutide and other small molecules under clinical development, as well as other permeation enhancers for efficient delivery of proteins and peptides.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, NY, 10065, USA.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| | - Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS, 38677, USA
| | - Saka Raju
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Tovi Shapira
- School of Pharmacy and Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Ein Kerem Campus, 91120, Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
- Natco Research Centre, NATCO Pharma Limited, Hyderabad, 500018, India
| | - Pavimol Angsantikul
- Center for Biomedical Research, Population Council, New York, NY, 10065, USA
| | - Abraham J Domb
- School of Pharmacy and Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical Center, Ein Kerem Campus, 91120, Jerusalem, Israel.
| |
Collapse
|
10
|
Qin L, Cui Z, Wu Y, Wang H, Zhang X, Guan J, Mao S. Challenges and Strategies to Enhance the Systemic Absorption of Inhaled Peptides and Proteins. Pharm Res 2022; 40:1037-1055. [DOI: 10.1007/s11095-022-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
11
|
Preparation and Evaluation of Mucus-Penetrating Inhalable Microparticles of Tiotropium Bromide Containing Sodium Glycocholate. Pharmaceutics 2022; 14:pharmaceutics14071409. [PMID: 35890304 PMCID: PMC9321333 DOI: 10.3390/pharmaceutics14071409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
This study aimed to prepare mucus-penetrating inhalable microparticles for dry powder inhalers and to evaluate their applicability in an asthma-induced rat model. Microparticles were prepared from water solutions containing tiotropium bromide, L-leucine, and sodium glycocholate (NaGc) as permeation enhancers using the spray drying method. Four formulations (SDL1, SDL2, SDL3, and SDL4) were used, depending on the various NaGc concentrations. Tiotropium microparticles were characterized by standard methods. Additionally, an asthma-induced rat model was used to confirm the effects of the formulations on lung function. Tiotropium microparticles with NaGc resulted in formulations with a more corrugated morphology and smaller particle size distribution than those without NaGc. SDL 1 had a rough surface with irregular morphology, and SDL 2, 3, and 4 had a corrugated morphology. All SDL formulations had an aerodynamic size of <3 µm. The microparticles with a corrugated morphology aerosolized better than SDL1 microparticles. The apparent permeability coefficient (Papp) values of SDL3 and SDL4 were significantly higher than those for raw tiotropium. In an in vivo study using an asthma-induced rat model, the specific airway resistance (Sraw), airway wall thickness, and mean alveolus size recovered to those of the negative control group in the SDL4 formulation.
Collapse
|
12
|
Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci 2022; 300:120574. [DOI: 10.1016/j.lfs.2022.120574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
|
13
|
Forest V, Pourchez J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv Drug Deliv Rev 2022; 183:114173. [PMID: 35217112 DOI: 10.1016/j.addr.2022.114173] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
Respiratory diseases gather a wide range of disorders which are generally difficult to treat, partly due to a poor delivery of drugs to the lung with adequate dose and minimum side effects. With the recent developments of nanotechnology, nano-delivery systems have raised interest. In this review, we detail the main types of nanocarriers that have been developed presenting their respective advantages and limitations. We also discuss the route of administration (systemic versus by inhalation), also considering technical aspects (different types of aerosol devices) with concrete examples of applications. Finally, we propose some perspectives of development in the field such as the nano-in-micro approaches, the emergence of drug vaping to generate airborne carriers in the submicron size range, the development of innovative respiratory models to assess regional aerosol deposition of nanoparticles or the application of nano-delivery to the lung in the treatment of other diseases.
Collapse
|
14
|
Microencapsulated Chitosan-Based Nanocapsules: A New Platform for Pulmonary Gene Delivery. Pharmaceutics 2021; 13:pharmaceutics13091377. [PMID: 34575452 PMCID: PMC8472419 DOI: 10.3390/pharmaceutics13091377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, we propose chitosan (CS)-based nanocapsules (NCs) for pulmonary gene delivery. Hyaluronic acid (HA) was incorporated in the NCs composition (HA/CS NCs) aiming to promote gene transfection in the lung epithelium. NCs were loaded with a model plasmid (pCMV-βGal) to easily evaluate their transfection capacity. The plasmid encapsulation efficiencies were of approx. 90%. To facilitate their administration to the lungs, the plasmid-loaded NCs were microencapsulated in mannitol (Ma) microspheres (MS) using a simple spray-drying technique, obtaining dry powders of adequate properties. In vivo, the MS reached the deep lung, where the plasmid-loaded CS-based NCs were released and transfected the alveolar cells more homogeneously than the control formulation of plasmid directly microencapsulated in Ma MS. The HA-containing formulation achieved the highest transfection efficiency, in a more extended area and more homogeneously distributed than the rest of tested formulations. The new micro-nanostructured platform proposed in this work represents an efficient strategy for the delivery of genetic material to the lung, with great potential for the treatment of genetic lung diseases.
Collapse
|
15
|
Cappelletti C, Maes A, Rossman K, Gillen M, LaForce C, Kerwin EM, Reisner C. Dose-Ranging and Cumulative Dose Studies of Albuterol Sulfate MDI in Co-Suspension Delivery™ Technology (AS MDI; PT007) in Patients with Asthma: the ASPEN and ANTORA Trials. Clin Drug Investig 2021; 41:579-590. [PMID: 34089147 PMCID: PMC8195775 DOI: 10.1007/s40261-021-01040-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Background and Objectives Co-suspension Delivery™ Technology has been developed for the administration of albuterol sulfate pressurised inhalation suspension via metered-dose inhaler (AS MDI, PT007). We assessed the efficacy and safety of AS MDI versus Proventil® in order to determine the optimal dose of AS MDI to take to Phase III clinical trials. Methods ASPEN (NCT03371459) and ANTORA (NCT03364608) were Phase II, randomised, crossover, multicentre studies of AS MDI versus Proventil® in patients with persistent asthma. In ASPEN, 46 patients received cumulative-dose treatments (90 μg/inhalation using 1 + 1 + 2 + 4 + 8 inhalations at 30-minute intervals) in 1 of 2 possible sequences: AS MDI/Proventil or Proventil/AS MDI. In ANTORA, 86 patients were randomised to one of 10 treatment sequences of AS MDI (90 μg or 180 μg), placebo MDI, or Proventil (90 μg or 180 μg). The primary endpoints were baseline-adjusted forced expiratory volume in 1 second (FEV1) 30 minutes after each cumulative dose (ASPEN) and change from baseline in FEV1 area under the curve from 0 to 6 h (ANTORA). Safety was assessed in both studies. Results In ASPEN, AS MDI was equivalent to Proventil (within pre-specified bounds of ± 200 mL) following cumulative doses of albuterol up to 1440 μg for the primary endpoint. In ANTORA, 90 μg and 180 μg doses of AS MDI and Proventil were significantly superior to placebo MDI (p < 0.0001), and AS MDI was non-inferior to Proventil at both doses, based on a margin of 100 mL. No new safety concerns were identified. Conclusion The effects of albuterol delivered via AS MDI and Proventil on bronchodilation were equivalent, supporting the selection of AS MDI 180 µg to be taken into Phase III clinical trials, either alone or in combination with an inhaled corticosteroid. Trial Registration number ASPEN (NCT03371459); Date of registration: 29/12/2017. ANTORA (NCT03364608); Date of registration: 15/12/2017. Supplementary Information The online version contains supplementary material available at 10.1007/s40261-021-01040-7.
Collapse
Affiliation(s)
- Christy Cappelletti
- BioPharmaceuticals R&D, AstraZeneca, 4322 Emperor Blvd, Suite 250, Durham, NC, 27703, USA.
| | - Andrea Maes
- BioPharmaceuticals R&D, AstraZeneca, Wilmington, DE, USA
| | | | - Michael Gillen
- BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Edward M Kerwin
- Clinical Trials Department, Altitude Clinical Consulting and Clinical Research Institute, Medford, OR, USA
| | - Colin Reisner
- BioPharmaceuticals R&D, AstraZeneca, Wilmington, DE, USA
| |
Collapse
|
16
|
Fatima N, Kaushik V, Ayoub A. A Narrative Review of a Pulmonary Aerosolized Formulation or a Nasal Drop Using Sera Containing Neutralizing Antibodies Collected from COVID-19-Recovered Patients as a Probable Therapy for COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:151-168. [PMID: 34083848 PMCID: PMC8163704 DOI: 10.30476/ijms.2020.86417.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) emerged as a new contagion during December 2019, since which time it has triggered a rampant spike in fatality rates worldwide due to insufficient medical treatments and a lack of counteragents and prompted the World Health Organization to declare COVID-19 a public health emergency. It is, therefore, vital to accelerate the screening of new molecules or vaccines to win the battle against this pandemic. Experiences from previous epidemiological data on coronaviruses guide investigators in designing and exploring new compounds for a safe and cost-effective treatment. Several reports on the severe acute respiratory syndrome (SARS) epidemic indicate that severe acute respiratory syndrome coronavirus (SARS-CoV) and the novel COVID-19 use angiotensin-converting enzyme 2 (ACE2) as a receptor for binding to the host cell in the lung epithelia through the spike protein on their virion surface. ACE2 is a mono-carboxypeptidase best known for cleaving major peptides and substrates. Its degree in human airway epithelia positively correlates with coronavirus infection. The treatment approach can be the neutralization of the virus entering lung epithelial cells by using sera containing antibodies collected from COVID-19-recovered patients. Hence, we herein propose a pulmonary aerosolized formulation or a nasal drop using sera, which contain antibodies to prevent, treat, or immunize against COVID-19 infection.
Collapse
Affiliation(s)
- Nishat Fatima
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| | | | - Amjad Ayoub
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| |
Collapse
|
17
|
Enlo-Scott Z, Bäckström E, Mudway I, Forbes B. Drug metabolism in the lungs: opportunities for optimising inhaled medicines. Expert Opin Drug Metab Toxicol 2021; 17:611-625. [DOI: 10.1080/17425255.2021.1908262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zachary Enlo-Scott
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Erica Bäckström
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, School of Population Health & Environmental Sciences, Imperial College London, London, United Kingdom; National Institute for Health Research, Health Protection Research Units in Chemical and Radiation Threats and Hazards and Environmental Exposures and Health, Imperial College London, London, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
18
|
Gao Y, Sun Y, Liao G, Zhang H, Long Q. DSPE-PEG polymers for improving pulmonary absorption of poorly absorbed macromolecules in rats and relative mechanism. Drug Dev Ind Pharm 2021; 47:337-346. [PMID: 33502913 DOI: 10.1080/03639045.2021.1879837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study aims to investigate the potential of DSPE-PEG polymers (DSPE-PEG-OH and DSPE-PEG-SH) on improving absorption of poorly absorbable macromolecules via intrapulmonary administration and underlying mechanism. METHODS In situ pulmonary absorption experiments were performed to investigate the absorption of model compounds after intrapulmonary administration to rats. The local membrane damage induced by these DSPE-PEG polymers were evaluated based on morphological observation of lung tissues and measurement of biological toxic markers in bronchoalveolar lavage fluid (BALF) postintrapulmonary delivery of DSPE-PEG polymers to rats. The underlying enhancement mechanism of these polymers was explored by investigating their effects on the pulmonary membrane fluidity and gene expression of tight junction associated proteins with fluorescence polarization and western blotting, respectively. RESULTS Intrapulmonary delivery of these DSPE-PEG polymers significantly enhanced absorptions of poorly absorbed model drugs and did not induce serious damage to the pulmonary membranes of rats. Mechanistic studies demonstrated unaffected pulmonary membrane fluidity and up-regulated expression levels of tight junction-associated proteins by DSPE-PEG polymers, thus indicating that paracellular pathways might be included in the underlying mechanisms by which DSPE-PEG polymers exerted their enhancing actions on drug absorption. CONCLUSIONS These findings suggested that these DSPE-PEG polymers are potential for promoting absorptions of poorly absorbable macromolecules with no evidence of damage to the local pulmonary membranes of rats.Novelty statementIn this study, DSPE-PEG-OH and DSPE-PEG-SH polymers, two DSPE-PEG2000 conjugates with different terminal groups demonstrated significant promoting effects on the absorption of poorly absorbed macromolecular drugs after intrapulmonary delivery to rats, and did not induce serious damage to the pulmonary membranes of rats. These DSPE-PEG polymers could statistically downregulate expression levels of tight junction-associated proteins (ZO-1 and occludin), indicating the underlying mechanism by which these polymers exerted their absorption enhancing actions through pulmonary epithelial paracellular pathways. Thus, this study exhibited prospective potential of these DSPE-PEG polymers in developing into dosage forms with the aim to improve the poor bioavailability of some poorly absorbed macromolecular drugs.
Collapse
Affiliation(s)
- Yang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Ya Sun
- Department of Pharmacy, Xi'an Medical College, Xi'an, China
| | - Guangli Liao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Qingzhi Long
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Mousazadeh H, Pilehvar-Soltanahmadi Y, Dadashpour M, Zarghami N. Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy. J Control Release 2021; 330:1046-1070. [DOI: 10.1016/j.jconrel.2020.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
|
20
|
Douafer H, Andrieu V, Brunel JM. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J Control Release 2020; 325:276-292. [PMID: 32652109 DOI: 10.1016/j.jconrel.2020.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/24/2023]
Abstract
The rise of antimicrobial resistance has created an urgent need for the development of new methods for antibiotics delivery to patients with pulmonary infections in order to mainly increase the effectiveness of the drugs administration, to minimize the risk of emergence of resistant strains, and to prevent patients reinfection. Since bacterial resistance is often related to antibiotic concentration, their pulmonary administration could eradicate strains resistant to the same drug at the concentration achieved through the systemic circulation. Pulmonary administration offers several advantages; it directly targets the site of the infection which allows the inhaled dose of the drug to be reduced compared to that administered orally or parenterally while keeping the same local effect. The review article is made with an objective to compile information about various existing modern technologies developed to provide greater patient compliance and reduce the undesirable side effect of the drugs. In conclusion, aerosol antibiotic delivery appears as one of the best technologies for the treatment of pulmonary infectious diseases and able to limit the systemic adverse effects related to the high drug dose and to make life easier for the patients.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | | |
Collapse
|
21
|
Yamamoto A, Ukai H, Morishita M, Katsumi H. Approaches to improve intestinal and transmucosal absorption of peptide and protein drugs. Pharmacol Ther 2020; 211:107537. [DOI: 10.1016/j.pharmthera.2020.107537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
|
22
|
Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm Res 2020; 37:117. [PMID: 32488611 PMCID: PMC7266419 DOI: 10.1007/s11095-020-02844-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
The success of protein, peptide and antibody based therapies is evident - the biopharmaceuticals market is predicted to reach $388 billion by 2024 [1], and more than half of the current top 20 blockbuster drugs are biopharmaceuticals. However, the intrinsic properties of biopharmaceuticals has restricted the routes available for successful drug delivery. While providing 100% bioavailability, the intravenous route is often associated with pain and needle phobia from a patient perspective, which may translate as a reluctance to receive necessary treatment. Several non-invasive strategies have since emerged to overcome these limitations. One such strategy involves the use of microneedles (MNs), which are able to painlessly penetrate the stratum corneum barrier to dramatically increase transdermal drug delivery of numerous drugs. This review reports the wealth of studies that aim to enhance transdermal delivery of biopharmaceutics using MNs. The true potential of MNs as a drug delivery device for biopharmaceuticals will not only rely on acceptance from prescribers, patients and the regulatory authorities, but the ability to upscale MN manufacture in a cost-effective manner and the long term safety of MN application. Thus, the current barriers to clinical translation of MNs, and how these barriers may be overcome are also discussed.
Collapse
|
23
|
Ibrahim YHEY, Regdon G, Hamedelniel EI, Sovány T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru 2020; 28:403-416. [PMID: 31811628 PMCID: PMC7214593 DOI: 10.1007/s40199-019-00316-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The main objective of present review is to explore and evaluate the effectiveness of recently developed methods to improve the bioavailability of orally administered biopharmaceutical drugs. METHODS A systematic search of sciencedirect, tandfonline and Google Scholar databases based on various sets of keywords was performed. All results were evaluated based on their abstracts, and irrelevant studies were neglected during further evaluation. RESULTS At present, biopharmaceuticals are used as injectable therapies as they are not absorbed adequately from the different routes of drug administration, particularly the oral one. Their insufficient absorption is attributed to their high molecular weight, degradation by proteolytic enzymes, high hydrophilicity and rigidity of the absorptive tissues. From industrial aspect incorporation of enzyme inhibitors (EIs) and permeation enhancers (PEs) and mucoadhesive polymers into conventional dosage forms may be the easiest way of formulation of orally administered macromolecular drugs, but the effectiveness of protection and absorption enhancement here is the most questionable. Conjugation may be problematic from regulatory aspect. Encapsulation into lipid-based vesicles sufficiently protects the incorporated macromolecule and improves intestinal uptake but have considerable stability issues. In contrast, polymeric nanocarriers may provide good stability but provides lower internalization efficacy in comparison with the lipid-based carriers. CONCLUSION It can be concluded that the combination of the advantages of mucoadhesive polymeric and lid-based carriers in hybrid lipid/polymer nanoparticles may result in improved absorption and might represent a potential means for the oral administration of therapeutic proteins in the near future. Graphical abstract Delivery systems for oral protein daministration.
Collapse
Affiliation(s)
- Yousif H-E Y Ibrahim
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
- Pharmaceutics Department, Omdurman Islamic University, Omdurman, Sudan
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
| | | | - Tamás Sovány
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary.
| |
Collapse
|
24
|
Sécher T, Mayor A, Heuzé-Vourc'h N. Inhalation of Immuno-Therapeutics/-Prophylactics to Fight Respiratory Tract Infections: An Appropriate Drug at the Right Place! Front Immunol 2019; 10:2760. [PMID: 31849954 PMCID: PMC6896187 DOI: 10.3389/fimmu.2019.02760] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023] Open
Affiliation(s)
- Thomas Sécher
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France.,Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
| | - Alexie Mayor
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France.,Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France.,Centre d'Etude des Pathologies Respiratoires, Université de Tours, Tours, France
| |
Collapse
|
25
|
Nieto-Orellana A, Li H, Rosiere R, Wauthoz N, Williams H, Monteiro CJ, Bosquillon C, Childerhouse N, Keegan G, Coghlan D, Mantovani G, Stolnik S. Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. J Control Release 2019; 316:250-262. [PMID: 31678655 DOI: 10.1016/j.jconrel.2019.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Pulmonary delivery is increasingly seen as an attractive, non-invasive route for the delivery of forthcoming protein therapeutics. In this context, here we describe protein complexes with a new 'complexing excipient' - vitamin B12-targeted poly(ethylene glycol)-block-poly(glutamic acid) copolymers. These form complexes in sub-200nm size with a model protein, suitable for cellular targeting and intracellular delivery. Initially we confirmed expression of vitamin B12-internalization receptor (CD320) by Calu-3 cells of the in vitro lung epithelial model used, and demonstrated enhanced B12 receptor-mediated cellular internalization of B12-targeted complexes, relative to non-targeted counterparts or protein alone. To develop an inhalation formulation, the protein complexes were spray dried adopting a standard protocol into powders with aerodynamic diameter within the suitable range for lower airway deposition. The cellular internalization of targeted complexes from dry powders applied directly to Calu-3 model was found to be 2-3 fold higher compared to non-targeted complexes. The copolymer complexes show no complement activation, and in vivo lung tolerance studies demonstrated that repeated administration of formulated dry powders over a 3 week period in healthy BALB/c mice induced no significant toxicity or indications of lung inflammation, as assessed by cell population count and quantification of IL-1β, IL-6, and TNF-α pro-inflammatory markers. Importantly, the in vivo data appear to suggest that B12-targeted polymer complexes administered as dry powder enhance lung retention of their protein payload, relative to protein alone and non-targeted counterparts. Taken together, our data illustrate the potential developability of novel B12-targeted poly(ethylene glycol)-poly(glutamic acid) copolymers as excipients suitable to be formulated into a dry powder product for the inhalation delivery of proteins, with no significant lung toxicity, and with enhanced protein retention at their in vivo target tissue.
Collapse
Affiliation(s)
- A Nieto-Orellana
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - H Li
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - R Rosiere
- Laboratory of Pharmaceutics and Biopharmaceutics (ULBGAL), Université Libre de Bruxelles, Bruxelles, BE, Belgium
| | - N Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics (ULBGAL), Université Libre de Bruxelles, Bruxelles, BE, Belgium
| | - H Williams
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - C J Monteiro
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - C Bosquillon
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - G Keegan
- Vectura Group plc, Chippenhafm, UK
| | | | - G Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - S Stolnik
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
26
|
Kinetic stability of amorphous solid dispersions with high content of the drug: A fast scanning calorimetry investigation. Int J Pharm 2019; 562:113-123. [DOI: 10.1016/j.ijpharm.2019.03.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022]
|
27
|
Zhang G, Mo S, Fang B, Zeng R, Wang J, Tu M, Zhao J. Pulmonary delivery of therapeutic proteins based on zwitterionic chitosan-based nanocarriers for treatment on bleomycin-induced pulmonary fibrosis. Int J Biol Macromol 2019; 133:58-66. [PMID: 30981773 DOI: 10.1016/j.ijbiomac.2019.04.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticle-based pulmonary delivery of protein therapeutics provides a promising approach for improving protein bioavailability to treat either local or systemic diseases, however high-efficient nanocarrier is a great challenge. Here, biomimetic phosphorylcholine-chitosan nanoparticles (PCCs-NPs) taking advantages of both zwitterionic phosphorylcholine and chitosan were developed as a pulmonary protein delivery platform. msFGFR2c, a potential therapeutic protein for lung fibrosis as model was loaded into PCCs-NPs via ionic gelation. The obtained msFGFR2c/PCCs-NPs inhibited α-SMA expression in fibroblasts induced by TGF-β1, slightly more effective than naked msFGFR2c. After orotracheal administration to bleomycin-induced pulmonary fibrosis model rats, msFGFR2c/PCCs-NPs resulted in a significant antifibrotic efficacy, with reduction in inflammatory cytokines and α-SMA expression, remarkable attenuation of lung fibrosis score and collagen deposition, and significant increase in survival rate, while naked msFGFR2c exhibited a poor efficacy. The in vitro and in vivo results strongly indicated that PCCs-NPs may be a promising nanocarrier for pulmonary protein delivery.
Collapse
Affiliation(s)
- Guanglin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Shanyi Mo
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Bangren Fang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China.
| | - Ju Wang
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| | - Mei Tu
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
28
|
Ghadiri M, Young PM, Traini D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics 2019; 11:pharmaceutics11030113. [PMID: 30861990 PMCID: PMC6470976 DOI: 10.3390/pharmaceutics11030113] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
New therapeutic agents such as proteins, peptides, and nucleic acid-based agents are being developed every year, making it vital to find a non-invasive route such as nasal or pulmonary for their administration. However, a major concern for some of these newly developed therapeutic agents is their poor absorption. Therefore, absorption enhancers have been investigated to address this major administration problem. This paper describes the basic concepts of transmucosal administration of drugs, and in particular the use of the pulmonary or nasal routes for administration of drugs with poor absorption. Strategies for the exploitation of absorption enhancers for the improvement of pulmonary or nasal administration are discussed, including use of surfactants, cyclodextrins, protease inhibitors, and tight junction modulators, as well as application of carriers such as liposomes and nanoparticles.
Collapse
Affiliation(s)
- Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
29
|
Abstract
Biologics now constitute a significant element of available medical treatments. Owing to their clinical and commercial success, biologics are a rapidly growing class and have become a dominant therapeutic modality. Although most of the successful biologics to date are drugs that bear a peptidic backbone, ranging from small peptides to monoclonal antibodies (~500 residues; 150 kDa), new biologic modalities, such as nucleotide-based therapeutics and viral gene therapies, are rapidly maturing towards widespread clinical use. Given the rise of peptides and proteins in the pharmaceutical landscape, tremendous research and development interest exists in developing less-invasive or non-invasive routes for the systemic delivery of biologics, including subcutaneous, transdermal, oral, inhalation, nasal and buccal routes. This Review summarizes the current status, latest updates and future prospects for such delivery of peptides, proteins and other biologics.
Collapse
|
30
|
He J, Zhang G, Zhang Q, Chen J, Zhang Y, An X, Wang P, Xie S, Fang F, Zheng J, Tang Y, Zhu J, Yu Y, Chen X, Lu Y. Evaluation of inhaled recombinant human insulin dry powders: pharmacokinetics, pharmacodynamics and 14-day inhalation. J Pharm Pharmacol 2018; 71:176-184. [PMID: 30324757 DOI: 10.1111/jphp.13026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The present study was designed to assess the pharmacokinetic and pharmacodynamic performance of inhaled recombinant human insulin (rh-insulin) dry powders together with their safety profiles after 14-day inhalation. METHODS In the pharmacokinetic and pharmacodynamic study, pulmonary surfactant (PS)-loaded and phospholipid hexadecanol tyloxapol (PHT)-loaded rh-insulin dry powders were intratracheally administered to male rats at the dose of 20 U/kg. Novolin R was used as control. Serum glucose and rh-insulin concentrations were determined by glucose oxidase method and human rh-insulin CLIA kit, respectively. For the safety study, rats were exposed to rh-insulin dry powders or air for 14-day by nose-only inhalation chambers. Bronchoalveolar lavage and histopathology examinations were performed after inhalation. KEY FINDINGS There were no significant differences in the major pharmacokinetic and pharmacodynamic parameters between PS-loaded and PHT-loaded rh-insulin dry powders. The relative bioavailabilities and pharmacodynamic availabilities were 39.9%, 25.6% for PS-loaded dry powders and 30.1%, 23% for PHT-loaded dry powders, respectively. Total protein was the only injury marker that was significantly altered. Histopathology examinations showed the ranking of irritations (from slight to severe) were PHT-loaded rh-insulin, negative air control and PS-loaded rh-insulin. CONCLUSIONS Both PS- and PHT-loaded rh-insulin dry powders were able to deliver rh-insulin systemically with appropriate pharmacokinetic, pharmacodynamic and safety profiles.
Collapse
Affiliation(s)
- Jiake He
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ge Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyang Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayin Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoxia An
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Pan Wang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shan Xie
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fang Fang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianheng Zheng
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Tang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiabi Zhu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Sørli JB, Balogh Sivars K, Da Silva E, Hougaard KS, Koponen IK, Zuo YY, Weydahl IE, Åberg PM, Fransson R. Bile salt enhancers for inhalation: Correlation between in vitro and in vivo lung effects. Int J Pharm 2018; 550:114-122. [DOI: 10.1016/j.ijpharm.2018.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
|
32
|
Emami F, Vatanara A, Park EJ, Na DH. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals. Pharmaceutics 2018; 10:E131. [PMID: 30126135 PMCID: PMC6161129 DOI: 10.3390/pharmaceutics10030131] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/29/2023] Open
Abstract
Solid dosage forms of biopharmaceuticals such as therapeutic proteins could provide enhanced bioavailability, improved storage stability, as well as expanded alternatives to parenteral administration. Although numerous drying methods have been used for preparing dried protein powders, choosing a suitable drying technique remains a challenge. In this review, the most frequent drying methods, such as freeze drying, spray drying, spray freeze drying, and supercritical fluid drying, for improving the stability and bioavailability of therapeutic proteins, are discussed. These technologies can prepare protein formulations for different applications as they produce particles with different sizes and morphologies. Proper drying methods are chosen, and the critical process parameters are optimized based on the proposed route of drug administration and the required pharmacokinetics. In an optimized drying procedure, the screening of formulations according to their protein properties is performed to prepare a stable protein formulation for various delivery systems, including pulmonary, nasal, and sustained-release applications.
Collapse
Affiliation(s)
- Fakhrossadat Emami
- College of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Alireza Vatanara
- College of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Eun Ji Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
33
|
Lu J, Li N, Gao Y, Li N, Guo Y, Liu H, Chen X, Zhu C, Dong Z, Yamamoto A. The Effect of Absorption-Enhancement and the Mechanism of the PAMAM Dendrimer on Poorly Absorbable Drugs. Molecules 2018; 23:molecules23082001. [PMID: 30103462 PMCID: PMC6222674 DOI: 10.3390/molecules23082001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023] Open
Abstract
The polyamidoamine (PAMAM) dendrimer is a highly efficient absorption promoter. In the present study, we studied the absorption-enhancing effects and the mechanism of PAMAM dendrimers with generation 0 to generation 3 (G0–G3) and concentrations (0.1–1.0%) on the pulmonary absorption of macromolecules. The absorption-enhancing mechanisms were elucidated by microarray, western blotting analysis, and PCR. Fluorescein isothiocyanate-labeled dextrans (FDs) with various molecular weights were used as model drugs of poorly absorbable drugs. The absorption-enhancing effects of PAMAM dendrimers on the pulmonary absorption of FDs were in a generation- and concentration-dependent manner. The G3 PAMAM dendrimer with high effectiveness was considered to the best absorption enhancer for improving the pulmonary absorption of FDs. G3 PAMAM dendrimers at three different concentrations were non-toxic to Calu-3 cells. Based on the consideration between efficacy and cost, the 0.1% G3 PAMAM dendrimer was selected for subsequent studies. The results showed that treatment with a 0.1% G3 PAMAM dendrimer could increase the secretion of organic cation transporters (OCTs), OCT1, OCT2, and OCT3, which might be related to the absorption-enhancing mechanisms of the pulmonary absorption of FDs. These findings suggested that PAMAM dendrimers might be potentially safe absorption enhancers for improving absorption of FDs by increasing the secretion of OCT1, OCT2, and OCT3.
Collapse
Affiliation(s)
- Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Nannan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Yaochun Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Nan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Chunyan Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
34
|
Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv 2018; 15:821-834. [PMID: 30021074 PMCID: PMC6110405 DOI: 10.1080/17425247.2018.1502267] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecules with unique effects and potency are increasingly being considered for application in lung pathologies. Numerous delivery strategies for these macromolecules through the lung have been investigated to improve the targeting and overall efficacy. AREAS COVERED Targeting approaches from delivery devices, formulation strategies and specific targets are discussed. EXPERT OPINION Although macromolecules are a heterogeneous group of molecules, a number of strategies have been investigated at the macro, micro, and nanoscopic scale for the delivery of macromolecules to specific sites and cells of lung tissues. Targeted approaches are already in use at the macroscopic scale through inhalation devices and formulations, but targeting strategies at the micro and nanoscopic scale are still in the laboratory stage. The combination of controlling lung deposition and targeting after deposition, through a combination of targeting strategies could be the future direction for the treatment of lung pathologies through the pulmonary route.
Collapse
Affiliation(s)
- Nashwa Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Valeria Carini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
35
|
Chen G, Svirskis D, Lu W, Ying M, Huang Y, Wen J. N-trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N-trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J Control Release 2018; 277:142-153. [PMID: 29548985 DOI: 10.1016/j.jconrel.2018.03.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Gemcitabine is a nucleoside analogue effective against a number of cancers. However, the full potential of this drug has not been realised, in part due to low oral bioavailability and frequent dosing requirements. This study reports the synthesis, in-vitro, ex-vivo and in-vivo evaluation of trimethyl chitosan (TMC) - CSKSSDYQC (CSK) peptide conjugates capable of enhancing the oral bioavailability of gemcitabine due to the ability to target intestinal goblet cells and promote intestinal cellular uptake. TMC was synthesized by a novel two-step methylation method to improve quanternization and yield. The CSK-TMC conjugates were prepared by ionic gelation to achieve particles sized at 173.6 ± 6.8 nm, zeta potential of +18.5 ± 0.2 mV and entrapment efficiency of 66.4 ± 0.1%, capable of sustained drug release. By encapsulating gemcitabine into CSK-TMC conjugates, an increased amount of drug permeated through porcine intestinal epithelial membranes compared with the unconjugated TMC nanoparticles (NPs). The rate of cellular uptake of drug loaded conjugates into HT29-MTX-E12 intestinal goblet cells, was time- and concentration-dependant. The conjugates underwent active transport associated with adsorptive mediated, clathrin and caveolae mediated endocytosis. In cellular transport studies, drug loaded conjugates had greater drug transport capability compared with drug solution and TMC NPs over the co-cultured Caco-2/HT29-MTX-E12 cell monolayer. The drug loaded conjugates exhibited electrostatic interaction with the intestinal epithelial cells. Both P-glycoprotein (P-gp) and multiple resistance protein-2 (MRP2) efflux affected the cellular transport of the conjugates. Importantly, during the pharmacokinetic studies, the orally administrated drug loaded into TMC NPs showed an improved oral bioavailability of 54.0%, compared with gemcitabine solution of 9.9%. Notable, the CSK-TMC conjugates further improved oral bioavailability to 60.1% and reduced the tumour growth rate in a BALB/c nude mouse model, with a 5.1-fold and 3.3-fold reduction compare with the non-treated group and gemcitabine solution group. Furthermore, no major evidence of toxicity was discernible on histologic studies of selected organs. In conclusion, the presented CSK-TMC conjugates and TMC nanoparticles both significantly improve the oral bioavailability of gemcitabine and have the potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Guanyu Chen
- School of Pharmacy, Faculty of Medical and Health Science, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Science, University of Auckland, New Zealand
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Science, University of Auckland, New Zealand.
| |
Collapse
|
36
|
Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery. Int J Pharm 2018; 540:78-88. [DOI: 10.1016/j.ijpharm.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/26/2018] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
|
37
|
Ghadiri M, Canney F, Pacciana C, Colombo G, Young PM, Traini D. The use of fatty acids as absorption enhancer for pulmonary drug delivery. Int J Pharm 2018; 541:93-100. [DOI: 10.1016/j.ijpharm.2018.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/15/2018] [Accepted: 02/15/2018] [Indexed: 01/12/2023]
|
38
|
Microspherical Particles of Solid Dispersion of Polyvinylpyrrolidone K29-32 for Inhalation Administration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2412156. [PMID: 29546051 PMCID: PMC5818905 DOI: 10.1155/2018/2412156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/11/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022]
Abstract
Inhalation administration is a promising alternative to the invasive drug delivery methods. The particle size required for ideal drug aerosol preparation is between 1 and 3 μm. The application of microspherical particles of solid dispersions enhances bioavailability of poorly soluble drugs due to the solubilization. In the present work, the spray drying process of the production of microspherical particles of solid dispersions of polyvinylpyrrolidone K29-32 with model hydrophobic drug, phenacetin, was optimized using the results of DSC, PXRD, and viscometry. The diameter of the obtained particles is within 1–3 μm range. The Gibbs energy of dissolution in water was shown to be negative for the mixture with polymer/phenacetin mass ratio 5 : 1. We have demonstrated that the optimal size distribution for the inhalation administration is obtained for microspherical particles produced using spray caps with 7.0 μm hole size. The dissolution rates of phenacetin from the produced microspherical particles were faster than that of drug powder. As evidenced by powder X-ray diffraction data, phenacetin stayed in amorphous state for 4 months in microspherical particles of solid dispersions. According to the obtained results, strategic application of the spray drying process could be beneficial for the improvement of the pharmaceutical properties of model drug, phenacetin.
Collapse
|
39
|
Chono S, Togami K, Itagaki S. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin. Drug Dev Ind Pharm 2017; 43:1892-1898. [PMID: 28689439 DOI: 10.1080/03639045.2017.1353521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. SIGNIFICANCE The present study provides the useful information for development of noninvasive treatment of diabetes. METHODS Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. RESULTS DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. CONCLUSION We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.
Collapse
Affiliation(s)
- Sumio Chono
- a Division of Pharmaceutics , Hokkaido Pharmaceutical University School of Pharmacy , Hokkaido , Japan
| | - Kohei Togami
- a Division of Pharmaceutics , Hokkaido Pharmaceutical University School of Pharmacy , Hokkaido , Japan
| | - Shirou Itagaki
- b Department of Pharmacy , Hirosaki University School of Medicine & Hospital , Aomori , Japan
| |
Collapse
|
40
|
Halwani R, Sultana Shaik A, Ratemi E, Afzal S, Kenana R, Al-Muhsen S, Al Faraj A. A novel anti-IL4Rα nanoparticle efficiently controls lung inflammation during asthma. Exp Mol Med 2016; 48:e262. [PMID: 27713399 PMCID: PMC5099422 DOI: 10.1038/emm.2016.89] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 01/08/2023] Open
Abstract
Drug resistance and the harmful side effects accompanying the prolonged corticosteroid treatment of chronic pulmonary diseases prompted the development of more specific anti-inflammatory approaches. Several strategies aiming to block IL4Rα, the receptor for a key pro-inflammatory pathway, were investigated. However, their efficiency was limited, mostly due to the systemic or subcutaneous route of administrations. In this paper, we examined the ability of an intranasal treatment with biocompatible nanoparticles targeting IL4Rα to control lung inflammation in ovalbumin (OVA)-sensitized mice. OVA-sensitized mice were treated with anti-IL4Rα-conjugated nanoparticles. The levels of pro-inflammatory cytokines in the lungs and broncho-alveolar lavage fluid (BALF) were determined using a cytokine array assay. The effects of nanoparticle treatment on the activation of lung inflammatory cells and their ability to proliferate and produce cytokines were determined using fluorescence-activated cell sorting (FACS) analysis. Lung inflammation was also monitored using immunohistochemical staining. Treatment with the anti-IL4Rα nanoparticles significantly decreased pro-inflammatory cytokine expression and release in BALF and airway lung tissue in mice. The numbers of lung tissue lymphocytes, neutrophils and eosinophils were also decreased. Interestingly, anti-IL4Rα nanoparticles deactivated CD4 and CD8 T cells in lung tissue and inhibited their ability to produce pro-inflammatory cytokines to a significantly lower level than the treatment with free anti-IL4Rα. Moreover, they induced a sustained low level of lung inflammation for 1 week following the last instillation compared with the treatment with free anti-IL4Rα antibodies. Together, this data suggested that the enhanced tissue penetrability and sustainability of these nanoparticles improved the strength and durability of the immunosuppressive effects of anti-IL4Rα.
Collapse
Affiliation(s)
- Rabih Halwani
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Asma Sultana Shaik
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Elaref Ratemi
- Jubail Industrial College, Department of Chemical and Process Engineering Technology, Jubail Industrial City, Saudi Arabia
| | - Sibtain Afzal
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rosan Kenana
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Prince Naif Center for Immunology Research and Asthma Research Chair, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Achraf Al Faraj
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Reslan M, Demir YK, Trout BL, Chan HK, Kayser V. Lack of a synergistic effect of arginine–glutamic acid on the physical stability of spray-dried bovine serum albumin. Pharm Dev Technol 2016; 22:785-791. [DOI: 10.1080/10837450.2016.1185116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mouhamad Reslan
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Yusuf K. Demir
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | | | - Hak-Kim Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Veysel Kayser
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Jin L, Zhou QT, Chan HK, Larson IC, Pennington MW, Morales RAV, Boyd BJ, Norton RS, Nicolazzo JA. Pulmonary Delivery of the Kv1.3-Blocking Peptide HsTX1[R14A] for the Treatment of Autoimmune Diseases. J Pharm Sci 2016; 105:650-656. [PMID: 26869426 DOI: 10.1016/j.xphs.2015.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/16/2015] [Indexed: 11/25/2022]
Abstract
HsTX1[R14A] is a potent and selective Kv1.3 channel blocker peptide with the potential to treat autoimmune diseases. Given the typically poor oral bioavailability of peptides, we evaluated pulmonary administration of HsTX1[R14A] in rats as an alternative route for systemic delivery. Plasma concentrations of HsTX1[R14A] were measured by liquid chromatography coupled with tandem mass spectrometry in rats receiving intratracheal administration of HsTX1[R14A] in solution (1-4 mg/kg) or a mannitol-based powder (1 mg/kg) and compared with plasma concentrations after intravenous administration (2 mg/kg). HsTX1[R14A] stability in rat plasma and lung tissue was also determined. HsTX1[R14A] was more stable in plasma than in lung homogenate, with more than 90% of the HsTX1[R14A] remaining intact after 5 h, compared with 40.5% remaining in lung homogenate. The terminal elimination half-life, total clearance, and volume of distribution of HsTX1[R14A] after intravenous administration were 79.6 ± 6.5 min, 8.3 ± 0.6 mL/min/kg, and 949.8 ± 71.0 mL/kg, respectively (mean ± SD). After intratracheal administration, HsTX1[R14A] in solution and dry powder was absorbed to a similar degree, with absolute bioavailability values of 39.2 ± 5.2% and 44.5 ± 12.5%, respectively. This study demonstrated that pulmonary administration is a promising alternative for systemically delivering HsTX1[R14A] for treating autoimmune diseases.
Collapse
Affiliation(s)
- Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Qi Tony Zhou
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian C Larson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
43
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
44
|
Li CY, Wang ZW, Tu C, Wang JB, Jiang BQ, Li Q, Zeng LN, Ma ZJ, Zhang P, Zhao YL, Zhang YM, Yan D, Tan R, Xiao XH. Needle-free injection of insulin powder: delivery efficiency and skin irritation assessment. J Zhejiang Univ Sci B 2015; 15:888-99. [PMID: 25294378 DOI: 10.1631/jzus.b1400065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin is widely used in treating diabetes, but still needs to be administered by needle injection. This study investigated a new needle-free approach for insulin delivery. A portable powder needleless injection (PNI) device with an automatic mechanical unit was designed. Its efficiency in delivering insulin was evaluated in alloxan-induced diabetic rabbits. The skin irritation caused by the device was investigated and the results were analyzed in relation to aerodynamic parameters. Inorganic salt-carried insulin powders had hypoglycemic effects, while raw insulin powders were not effective when delivered by PNI, indicating that salt carriers play an important role in the delivery of insulin via PNI. The relative delivery efficiency of phosphate-carried insulin powder using the PNI device was 72.25%. A safety assessment test showed that three key factors (gas pressure, cylinder volume, and nozzle distance) were related to the amount of skin irritation caused by the PNI device. Optimized injection conditions caused minimal skin lesions and are safe to use in practice. The results suggest that PNI has promising prospects as a novel technology for delivering insulin and other biological drugs.
Collapse
Affiliation(s)
- Chun-yu Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China; China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing 100039, China; Department of Traditional Chinese Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China; Integrative Medicine Center, 302 Military Hospital, Beijing 100039, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Moghimipour E, Ameri A, Handali S. Absorption-Enhancing Effects of Bile Salts. Molecules 2015; 20:14451-73. [PMID: 26266402 PMCID: PMC6332414 DOI: 10.3390/molecules200814451] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/16/2022] Open
Abstract
Bile salts are ionic amphiphilic compounds with a steroid skeleton. Among the most important physiological properties of bile salts are lipid transport by solubilization and transport of some drugs through hydrophobic barriers. Bile salts have been extensively studied to enhance transepithelial permeability for different marker molecules and drugs. They readily agglomerate at concentrations above their critical micelle concentration (CMC). The mechanism of absorption enhancement by bile salts appears to be complex. The aim of the present article was to review bile salt structure and their application as absorption enhancers and the probable mechanism for increasing permeation based on previous studies.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| | - Abdulghani Ameri
- Department of Drug and Food Control, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| | - Somayeh Handali
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| |
Collapse
|
46
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [PMID: 26022400 DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
47
|
Supercritical fluid assisted production of micrometric powders of the labile trypsin and chitosan/trypsin composite microparticles. Int J Pharm 2015; 489:226-36. [DOI: 10.1016/j.ijpharm.2015.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/17/2015] [Accepted: 05/04/2015] [Indexed: 12/20/2022]
|
48
|
Zhang H, Huang X, Sun Y, Lu G, Wang K, Wang Z, Xing J, Gao Y. Improvement of pulmonary absorption of poorly absorbable macromolecules by hydroxypropyl-β-cyclodextrin grafted polyethylenimine (HP-β-CD-PEI) in rats. Int J Pharm 2015; 489:294-303. [DOI: 10.1016/j.ijpharm.2015.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/16/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
|
49
|
Lee WH, Loo CY, Traini D, Young PM. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin Drug Deliv 2015; 12:1009-26. [PMID: 25912721 DOI: 10.1517/17425247.2015.1039509] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Macrophages are the most versatile cells in the hematopoietic system and are strategically distributed in tissues to fight pathogens or other foreign particles. In the lung, however, for intracellular infections such as tuberculosis, pneumonia and aspergillosis, bacteria and fungi utilize the alveolar macrophage as a breeding ground. This has become a challenge for the treatment of these infections, as most drugs do not effectively reach the macrophages at therapeutic levels. Alveolar macrophages also play an important role to initiative adaptive immunity toward combating inflammation and cancer in the lung. AREAS COVERED This review focuses on the development of micro- and nanotechnology-based drug delivery systems to target alveolar macrophages in association with intracellular infections, cancer and lung inflammation. Aspects of nanoparticle and micron-sized particle engineering through exploitation of particles' physicochemical characteristics such as particle size, surface charge and geometry of particles are discussed. In addition, the application of nanocarriers such as liposomes, polymeric nanoparticles and dendrimers are covered with respect to macrophage targeting. EXPERT OPINION Drug delivery targeted to alveolar macrophages in the lung is becoming a reality thanks to micro- and nanotechnology breakthrough. The literature review shows that regulation of physicochemical parameters of particles could be a recipe to enhance macrophage targeting and uptake. However, there is still a need to identify more target-specific receptors in order to facilitate drug targeting. Besides that, the toxicity of nanocarriers arising from prolonged residence in the lung should be taken into consideration during formulation.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Woolcock Institute of Medical Research, Sydney Medical School, Respiratory Technology, The Discipline of Pharmacology , Sydney, 2006 , Australia
| | | | | | | |
Collapse
|
50
|
Zhang H, Huang X, Sun Y, Xing J, Yamamoto A, Gao Y. Absorption-improving effects of chitosan oligomers based on their mucoadhesive properties: a comparative study on the oral and pulmonary delivery of calcitonin. Drug Deliv 2015; 23:2419-2427. [DOI: 10.3109/10717544.2014.1002946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hailong Zhang
- Health Science Center, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China and
| | - Xiaoyan Huang
- Health Science Center, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China and
| | - Ya Sun
- Health Science Center, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China and
| | - Jianfeng Xing
- Health Science Center, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China and
| | - Akira Yamamoto
- Department of Pharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yang Gao
- Health Science Center, School of Pharmacy, Xi’an Jiaotong University, Xi’an, China and
| |
Collapse
|