1
|
Lo CH, Zeng J. Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives. Bioeng Transl Med 2023; 8:e10350. [PMID: 36684106 PMCID: PMC9842050 DOI: 10.1002/btm2.10350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane proteins (MPs) play key roles in cellular signaling pathways and are responsible for intercellular and intracellular interactions. Dysfunctional MPs are directly related to the pathogenesis of various diseases, and they have been exploited as one of the most sought-after targets in the pharmaceutical industry. However, working with MPs is difficult given that their amphiphilic nature requires protection from biological membrane or membrane mimetics. Polymersomes are bilayered nano-vesicles made of self-assembled block copolymers that have been widely used as cell membrane mimetics for MP reconstitution and in engineering of artificial cells. This review highlights the prevailing trend in the application of polymersomes in MP study and drug discovery. We begin with a review on the techniques for synthesis and characterization of polymersomes as well as methods of MP insertion to form proteopolymersomes. Next, we review the structural and functional analysis of the different types of MPs reconstituted in polymersomes, including membrane transport proteins, MP complexes, and membrane receptors. We then summarize the factors affecting reconstitution efficiency and the quality of reconstituted MPs for structural and functional studies. Additionally, we discuss the potential in using proteopolymersomes as platforms for high-throughput screening (HTS) in drug discovery to identify modulators of MPs. We conclude by providing future perspectives and recommendations on advancing the study of MPs and drug development using proteopolymersomes.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jialiu Zeng
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In consideration of the issues of drug delivery systems, the artificial vesicle structures composed of block copolymers called polymersomes recently gained considerable attention. The possibility of tuning the mechanical parameter and increasing the scale-up production of polymersomes led to its wide application in healthcare. Bearing in mind the disease condition, the structure and properties of the polymersomes could be tuned to serve the purpose. Furthermore, specific ligands can be incorporated on the vesicular surface to induce smart polymersomes, thus improving targeted delivery. The synthesis method and surface functionalization are the two key aspects that determine the versatility of biological applications as they account for stability, specific targeting, degradability, biocompatibility, and bioavailability. A perfectly aligned polymer vesicle can mimic the cells/organelles and function by avoiding cytotoxicity. This supramolecular structure can carry and deliver payloads of a wide range, including drugs, proteins, and genes, contributing to the construction of next-generation therapeutics. These aspects promote the potential use of such components as a framework to approach damaged tissue while maintaining healthy environments during circulation. Herein, this article concentrates specifically on the drug delivery applications of polymersomes.
Collapse
|
3
|
Dually Responsive Poly(N-vinylcaprolactam)-b-poly(dimethylsiloxane)-b-poly(N-vinylcaprolactam) Polymersomes for Controlled Delivery. Molecules 2022; 27:molecules27113485. [PMID: 35684423 PMCID: PMC9182360 DOI: 10.3390/molecules27113485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Limited tissue selectivity and targeting of anticancer therapeutics in systemic administration can produce harmful side effects in the body. Various polymer nano-vehicles have been developed to encapsulate therapeutics and prevent premature drug release. Dually responsive polymeric vesicles (polymersomes) assembled from temperature-/pH-sensitive block copolymers are particularly interesting for the delivery of encapsulated therapeutics to targeted tumors and inflamed tissues. We have previously demonstrated that temperature-responsive poly(N-vinylcaprolactam) (PVCL)-b-poly(dimethylsiloxane) (PDMS)-b-PVCL polymersomes exhibit high loading efficiency of anticancer therapeutics in physiological conditions. However, the in-vivo toxicity of these polymersomes as biocompatible materials has not yet been explored. Nevertheless, developing an advanced therapeutic nanocarrier must provide the knowledge of possible risks from the material’s toxicity to support its future clinical research in humans. Herein, we studied pH-induced degradation of PVCL10-b-PDMS65-b-PVCL10 vesicles in-situ and their dually (pH- and temperature-) responsive release of the anticancer drug, doxorubicin, using NMR, DLS, TEM, and absorbance spectroscopy. The toxic potential of the polymersomes was evaluated in-vivo by intravenous injection (40 mg kg−1 single dose) of PVCL10-PDMS65-PVCL10 vesicles to mice. The sub-acute toxicity study (14 days) included gravimetric, histological, and hematological analyses and provided evidence for good biocompatibility and non-toxicity of the biomaterial. These results show the potential of these vesicles to be used in clinical research.
Collapse
|
4
|
Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:836. [PMID: 35269324 PMCID: PMC8912464 DOI: 10.3390/nano12050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes are biomimetic cell membrane-like model structures that are self-assembled stepwise from amphiphilic copolymers. These polymeric (nano)carriers have gained the scientific community's attention due to their biocompatibility, versatility, and higher stability than liposomes. Their tunable properties, such as composition, size, shape, and surface functional groups, extend encapsulation possibilities to either hydrophilic or hydrophobic cargoes (or both) and their site-specific delivery. Besides, polymersomes can disassemble in response to different stimuli, including light, for controlling the "on-demand" release of cargo that may also respond to light as photosensitizers and plasmonic nanostructures. Thus, polymersomes can be spatiotemporally stimulated by light of a wide wavelength range, whose exogenous response may activate light-stimulable moieties, enhance the drug efficacy, decrease side effects, and, thus, be broadly employed in photoinduced therapy. This review describes current light-responsive polymersomes evaluated for anticancer therapy. It includes light-activable moieties' features and polymersomes' composition and release behavior, focusing on recent advances and applications in cancer therapy, current trends, and photosensitive polymersomes' perspectives.
Collapse
Affiliation(s)
- Elisa Hernández Becerra
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Cristina Castro
- Engineering School, Pontificia Bolivariana University, Bloque 11, Cq. 1 No. 70-01, Medellín 050004, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| |
Collapse
|
5
|
Porges E, Jenner D, Taylor AW, Harrison JS, De Grazia A, Hailes AR, Wright KM, Whelan AO, Norville IH, Prior JL, Mahajan S, Rowland CA, Newman TA, Evans ND. Antibiotic-Loaded Polymersomes for Clearance of Intracellular Burkholderia thailandensis. ACS NANO 2021; 15:19284-19297. [PMID: 34739227 PMCID: PMC7612142 DOI: 10.1021/acsnano.1c05309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Melioidosis caused by the facultative intracellular pathogen Burkholderia pseudomallei is difficult to treat due to poor intracellular bioavailability of antibiotics and antibiotic resistance. In the absence of novel compounds, polymersome (PM) encapsulation may increase the efficacy of existing antibiotics and reduce antibiotic resistance by promoting targeted, infection-specific intracellular uptake. In this study, we developed PMs composed of widely available poly(ethylene oxide)-polycaprolactone block copolymers and demonstrated their delivery to intracellular B. thailandensis infection using multispectral imaging flow cytometry (IFC) and coherent anti-Stokes Raman scattering microscopy. Antibiotics were tightly sequestered in PMs and did not inhibit the growth of free-living B. thailandensis. However, on uptake of antibiotic-loaded PMs by infected macrophages, IFC demonstrated PM colocalization with intracellular B. thailandensis and a significant inhibition of their growth. We conclude that PMs are a viable approach for the targeted antibiotic treatment of persistent intracellular Burkholderia infection.
Collapse
Affiliation(s)
- Eleanor Porges
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Dominic Jenner
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Adam W. Taylor
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - James S.P. Harrison
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Antonio De Grazia
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Alethia R. Hailes
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Kimberley M. Wright
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Adam O. Whelan
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Isobel H. Norville
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Joann L. Prior
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Sumeet Mahajan
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Caroline A. Rowland
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Nicholas D. Evans
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
6
|
Mertz M, Castiglione K. Increased Protein Encapsulation in Polymersomes with Hydrophobic Membrane Anchoring Peptides in a Scalable Process. Int J Mol Sci 2021; 22:7134. [PMID: 34281201 PMCID: PMC8268381 DOI: 10.3390/ijms22137134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Hollow vesicles made from a single or double layer of block-copolymer molecules, called polymersomes, represent an important technological platform for new developments in nano-medicine and nano-biotechnology. A central aspect in creating functional polymersomes is their combination with proteins, especially through encapsulation in the inner cavity of the vesicles. When producing polymersomes by techniques such as film rehydration, significant proportions of the proteins used are trapped in the vesicle lumen, resulting in high encapsulation efficiencies. However, because of the difficulty of scaling up, such methods are limited to laboratory experiments and are not suitable for industrial scale production. Recently, we developed a scalable polymersome production process in stirred-tank reactors, but the statistical encapsulation of proteins resulted in fairly low encapsulation efficiencies of around 0.5%. To increase encapsulation in this process, proteins were genetically fused with hydrophobic membrane anchoring peptides. This resulted in encapsulation efficiencies of up to 25.68%. Since proteins are deposited on the outside and inside of the polymer membrane in this process, two methods for the targeted removal of protein domains by proteolysis with tobacco etch virus protease and intein splicing were evaluated. This study demonstrates the proof-of-principle for production of protein-functionalized polymersomes in a scalable process.
Collapse
Affiliation(s)
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany;
| |
Collapse
|
7
|
Gao N, Zhou K, Feng K, Zhang W, Cui J, Wang P, Tian L, Jenkinson-Finch M, Li G. Facile fabrication of self-reporting micellar and vesicular structures based on an etching-ion exchange strategy of photonic composite spheres of poly(ionic liquid). NANOSCALE 2021; 13:1927-1937. [PMID: 33439197 DOI: 10.1039/d0nr07268k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micellar and vesicular structures capable of sensing and reporting the chemical environment as well as facilely introducing user-defined functions make a vital contribution to constructing versatile compartmentalized systems. Herein, by combining poly(ionic liquid)-based photonic spheres and an etching-ion exchange strategy we fabricate micellar and vesicular photonic compartments that can not only mimic the structure and function of conventional micelles and vesicles, but also sense and report the chemical environment as well as introducing user-defined functions. Photonic composite spheres composed of a SiO2 template and poly(ionic liquid) are employed to selectively etch outer-shell SiO2 followed by ion exchange and removal of the residual SiO2 to afford micellar photonic compartments (MPCs). The MPCs can selectively absorb solvents from the oil/water mixtures together with sensing and reporting the adsorbed solvents by the self-reporting optical signal associated with the uniform porous structure of photonic spheres. Vesicular photonic compartments (VPCs) are fabricated via selective infiltration and polymerization of ionic liquids followed by etching of the SiO2 template. Subsequent ion exchange introduces desirable functions to the VPCs. Furthermore, we demonstrate that the thickness and the anisotropic functions of VPCs can be facilely modulated. Overall, we anticipate that the micellar and vesicular photonic compartments with self-reporting optical signals and user-defined functions could serve as novel platforms towards multifunctional compartmentalized systems.
Collapse
Affiliation(s)
- Ning Gao
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fatima S, Quadri SN, Parveen S, Beg S, Rahman M, Ahmad FJ, Abdin M. Polymeric nanoparticles for potential drug delivery applications in cancer. NANOFORMULATION STRATEGIES FOR CANCER TREATMENT 2021:65-88. [DOI: 10.1016/b978-0-12-821095-6.00009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Mertz M, Golombek F, Boye S, Moreno S, Castiglione K. Fast and effective chromatographic separation of polymersomes from proteins by multimodal chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1162:122459. [DOI: 10.1016/j.jchromb.2020.122459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
|
10
|
Bakardzhiev P, Toncheva-Moncheva N, Mladenova K, Petrova S, Videv P, Moskova-Doumanova V, Topouzova-Hristova T, Doumanov J, Rangelov S. Assembly of amphiphilic nucleic acid-polymer conjugates into complex superaggregates: Preparation, properties, and in vitro performance. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Zelmer C, Zweifel LP, Kapinos LE, Craciun I, Güven ZP, Palivan CG, Lim RYH. Organelle-specific targeting of polymersomes into the cell nucleus. Proc Natl Acad Sci U S A 2020; 117:2770-2778. [PMID: 31988132 PMCID: PMC7022206 DOI: 10.1073/pnas.1916395117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Organelle-specific nanocarriers (NCs) are highly sought after for delivering therapeutic agents into the cell nucleus. This necessitates nucleocytoplasmic transport (NCT) to bypass nuclear pore complexes (NPCs). However, little is known as to how comparably large NCs infiltrate this vital intracellular barrier to enter the nuclear interior. Here, we developed nuclear localization signal (NLS)-conjugated polymersome nanocarriers (NLS-NCs) and studied the NCT mechanism underlying their selective nuclear uptake. Detailed chemical, biophysical, and cellular analyses show that karyopherin receptors are required to authenticate, bind, and escort NLS-NCs through NPCs while Ran guanosine triphosphate (RanGTP) promotes their release from NPCs into the nuclear interior. Ultrastructural analysis by regressive staining transmission electron microscopy further resolves the NLS-NCs on transit in NPCs and inside the nucleus. By elucidating their ability to utilize NCT, these findings demonstrate the efficacy of polymersomes to deliver encapsulated payloads directly into cell nuclei.
Collapse
Affiliation(s)
- Christina Zelmer
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
- Department of Chemistry, University of Basel, CH-4002 Basel, Switzerland
| | - Ludovit P Zweifel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, CH-4002 Basel, Switzerland
| | - Zekiye P Güven
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, CH-4002 Basel, Switzerland;
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland;
| |
Collapse
|
12
|
Macrophage-Based Therapies for Atherosclerosis Management. J Immunol Res 2020; 2020:8131754. [PMID: 32411803 PMCID: PMC7204102 DOI: 10.1155/2020/8131754] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/21/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis (AS), a typical chronic inflammatory vascular disease, is the main pathological basis of ischemic cardio/cerebrovascular disease (CVD). Long-term administration was characterized with low efficacy and serious side effects, while the macrophages with attractive intrinsic homing target have great potential in the efficient and safe management of AS. In this review, we focused on the systematical summary of the macrophage-based therapies in AS management, including macrophage autophagy, polarization, targeted delivery, microenvironment-triggered drug release, and macrophage- or macrophage membrane-based drug carrier. In conclusion, macrophage-based therapies have great promise to effectively manage AS in future research and clinic translation.
Collapse
|
13
|
Abstract
The poor pharmacokinetic parameters and low solubility of many anticancer therapeutics have warranted the use of drug-delivery systems such as liposomes. Overcoming some drawbacks of the conventional liposomes, targeted liposomal delivery by longer circulation time by addition of poly(ethylene glycol) to the liposomal surface and further adding specific ligands to achieve ligand selective retention and uptake has been introduced. PEGylated liposomes are the only second-generation liposomal formulations in clinical use and are now being challenged with the allergenic response they pose even in the treatment of naive patients. This article will review the challenges and hindrances in the use of long circulating liposomes and explore the opportunities to overcome this issue.
Collapse
|
14
|
PDMS-PMOXA-Nanoparticles Featuring a Cathepsin B-Triggered Release Mechanism. MATERIALS 2019; 12:ma12172836. [PMID: 31484396 PMCID: PMC6747961 DOI: 10.3390/ma12172836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Abstract
Background: It was our intention to develop cathepsin B-sensitive nanoparticles for tumor-site-directed release. These nanoparticles should be able to release their payload as close to the tumor site with a decrease of off-target effects in mind. Cathepsin B, a lysosomal cysteine protease, is associated with premalignant lesions and invasive stages of cancer. Previous studies have shown cathepsin B in lysosomes and in the extracellular matrix. Therefore, this enzyme qualifies as a trigger for such an approach. Methods: Poly(dimethylsiloxane)-b-poly(methyloxazoline) (PDMS-PMOXA) nanoparticles loaded with paclitaxel were formed by a thin-film technique and standard coupling reactions were used for surface modifications. Despite the controlled release mechanism, the physical properties of the herein created nanoparticles were described. To characterize potential in vitro model systems, quantitative polymerase chain reaction and common bioanalytical methods were employed. Conclusions: Stable paclitaxel-loaded nanoparticles with cathepsin B digestible peptide were formed and tested on the ovarian cancer cell line OVCAR-3. These nanoparticles exerted a pharmacological effect on the tumor cells suggesting a release of the payload.
Collapse
|
15
|
Zhang Y, Yang L, Yan L, Wang G, Liu A. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Yang Y, Alford A, Kozlovskaya V, Zhao S, Joshi H, Kim E, Qian S, Urban V, Cropek D, Aksimentiev A, Kharlampieva E. Effect of temperature and hydrophilic ratio on the structure of poly(N-vinylcaprolactam)-block-poly(dimethylsiloxane)-block-poly(N-vinylcaprolactam) polymersomes. ACS APPLIED POLYMER MATERIALS 2019; 1:722-736. [PMID: 31828238 PMCID: PMC6905513 DOI: 10.1021/acsapm.8b00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosized polymeric vesicles (polymersomes) assembled from ABA triblock copolymers of poly(N-vinylcaprolactam)-poly(dimethylsiloxane)-poly(N-vinylcaprolactam) (PVCL-PDMS-PVCL) are a promising platform for biomedical applications, as the temperature-responsiveness of the PVCL blocks enables reversible vesicle shrinkage and permeability of the polymersome shell at elevated temperatures. Herein, we explore the effects of molecular weight, polymer block weight ratios, and temperature on the structure of these polymersomes via electron microscopy, dynamic light scattering, small angle neutron scattering (SANS), and all-atom molecular dynamic methods. We show that the shell structure and overall size of the polymersome can be tuned by varying the hydrophilic (PVCL) weight fraction of the polymer: at room temperature, polymers of smaller hydrophilic ratios form larger vesicles that have thinner shells, whereas polymers with higher PVCL content exhibit interchain aggregation of PVCL blocks within the polymersome shell above 50 °C. Model fitting and model-free analysis of the SANS data reveals that increasing the mass ratio of PVCL to the total copolymer weight from 0.3 to 0.56 reduces the temperature-induced change in vesicle diameter by a factor of 3 while simultaneously increasing the change in shell thickness by a factor of 1.5. Finally, by analysis of the shell structures and overall size of polymersomes with various PVCL weight ratios and those without temperature-dependent polymer components, we bring into focus the mechanism of temperature-triggered drug release reported in a previous study. This work provides new fundamental perspectives on temperature-responsive polymersomes and elucidates important structure-property relationships of their constituent polymers.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shidi Zhao
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Himanshu Joshi
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Eunjung Kim
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Shuo Qian
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Volker Urban
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Donald Cropek
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Aleksei Aksimentiev
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
17
|
Chen H, Li MH. Recent Progress in Fluorescent Vesicles with Aggregation-induced Emission. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2204-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
19
|
Iyisan B, Landfester K. Polymeric Nanocarriers. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Abstract
Catalysis is at the base of a series of biological and technological application processes. In recent years, the tendency has developed to carry out catalyzed reactions within confined structures, thus forming systems called micro or nanoreactors. Compartmentalized structures are cavities delimited by a wall where specific functions are introduced with a defined concentration and in the desired sites. These containers are generally referred to as nano or microcapsules, assuming the function of reactors in the presence of chemical reactions. Among the various types of existing structures, one of the most interesting is represented by systems made with polymers. This review aims to highlight some of the current advances in the use of functionalized structures that are useful for catalysis reactions, paying particular attention to polymer capsules and enzymes. The built-up methods used for the production of polymer capsules, as well as the aspects that influence membrane permeability and reactivity to environmental conditions, are discussed. Recent advances on biocatalysis confined in polymeric capsules are illustrated, and the strengths and weaknesses of the principal nanoreactors are considered.
Collapse
|
21
|
Iyisan B, Landfester K. Modular Approach for the Design of Smart Polymeric Nanocapsules. Macromol Rapid Commun 2018; 40:e1800577. [DOI: 10.1002/marc.201800577] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Banu Iyisan
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
22
|
Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018; 23:molecules23112787. [PMID: 30373235 PMCID: PMC6278361 DOI: 10.3390/molecules23112787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has extensively demonstrated the anticancer potential of nutraceuticals, including plant polyphenols. Polymeric nanocarrier systems have played an important role in improving the physicochemical and pharmacological properties of polyphenols, thus ameliorating their therapeutic effectiveness. This article summarizes the benefits and shortcomings of various polymeric systems developed for the delivery of polyphenols in cancer therapy and reveals some ideas for future work.
Collapse
Affiliation(s)
- Umeorah Ernest
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai-Yan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming-Jun Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 1416663547, Iran.
| | | | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 5165665931, Iran.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| |
Collapse
|
23
|
Porta F, Ehrsam D, Lengerke C, Meyer zu Schwabedissen HE. Synthesis and Characterization of PDMS–PMOXA-Based Polymersomes Sensitive to MMP-9 for Application in Breast Cancer. Mol Pharm 2018; 15:4884-4897. [DOI: 10.1021/acs.molpharmaceut.8b00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fabiola Porta
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel Ehrsam
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | |
Collapse
|
24
|
Klermund L, Castiglione K. Polymersomes as nanoreactors for preparative biocatalytic applications: current challenges and future perspectives. Bioprocess Biosyst Eng 2018; 41:1233-1246. [DOI: 10.1007/s00449-018-1953-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022]
|
25
|
Petit J, Thomi L, Schultze J, Makowski M, Negwer I, Koynov K, Herminghaus S, Wurm FR, Bäumchen O, Landfester K. A modular approach for multifunctional polymersomes with controlled adhesive properties. SOFT MATTER 2018; 14:894-900. [PMID: 29303200 DOI: 10.1039/c7sm01885a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bottom-up approach in synthetic biology involves the engineering of synthetic cells by designing biological and chemical building blocks, which can be combined in order to mimic cellular functions. The first step for mimicking a living cell is the design of an appropriate compartment featuring a multifunctional membrane. This is of particular interest since it allows for the selective attachment of different groups or molecules to the membrane. In this context, we report on a modular approach for polymeric vesicles, so-called polymersomes, with a multifunctional surface, namely hydroxyl, alkyne and acrylate groups. We demonstrate that the surface of the polymersome can be functionalized to facilitate imaging, via fluorescent dyes, or to improve the specific adhesion to surfaces by using a biotin functionalization. This generally applicable multifunctionality allows for the covalent integration of various molecules in the membrane of a synthetic cell.
Collapse
Affiliation(s)
- Julien Petit
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
| | - Laura Thomi
- Max Planck Institute for Polymer Research (MPIP), 55128 Mainz, Germany.
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research (MPIP), 55128 Mainz, Germany.
| | - Marcin Makowski
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
| | - Inka Negwer
- Max Planck Institute for Polymer Research (MPIP), 55128 Mainz, Germany.
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research (MPIP), 55128 Mainz, Germany.
| | - Stephan Herminghaus
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research (MPIP), 55128 Mainz, Germany.
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
| | | |
Collapse
|
26
|
Ortelli S, Costa AL. Nanoencapsulation techniques as a “safer by (molecular) design” tool. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2016.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Praphakar RA, Shakila H, Azger Dusthackeer VN, Munusamy MA, Kumar S, Rajan M. A mannose-conjugated multi-layered polymeric nanocarrier system for controlled and targeted release on alveolar macrophages. Polym Chem 2018. [DOI: 10.1039/c7py02000g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To improve the performance of drug delivery systems in macrophages, targeted ligand-conjugated polymeric carriers have been realized to be vital for targeted, sustainable and controlled drug release with remarkable biocompatibility and bioavailability.
Collapse
Affiliation(s)
- Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| | - Harshavardhan Shakila
- Department of Molecular Microbiology
- School of Biotechnology
- Madurai Kamaraj University
- Madurai-625021
- India
| | | | - Murugan A. Munusamy
- Department of Botany and Microbiology
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology
- Universiti Putra Malaysia
- 43400 Serdang
- Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| |
Collapse
|
28
|
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018; 47:8572-8610. [DOI: 10.1039/c8cs00162f] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimal cells: we compare and contrast liposomes and polymersomes for a bettera priorichoice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications).
Collapse
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Rumiana Dimova
- Max Planck Institute for Colloids and Interfaces
- Wissenschaftspark Potsdam-Golm
- 14476 Potsdam
- Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry
- 82152 Martinsried
- Germany
| | | | | |
Collapse
|
29
|
Poschenrieder ST, Hanzlik M, Castiglione K. Polymersome formation mechanism and formation rate in stirred-tank reactors. J Appl Polym Sci 2017. [DOI: 10.1002/app.46077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sarah T. Poschenrieder
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15; Garching 85748 Germany
| | - Marianne Hanzlik
- Electron Microscopy, Technical University of Munich, Lichtenbergstraße 4; Garching 85748 Germany
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15; Garching 85748 Germany
| |
Collapse
|
30
|
Li W, Liu S, Yao H, Liao G, Si Z, Gong X, Ren L, Wang L. Microparticle templating as a route to nanoscale polymer vesicles with controlled size distribution for anticancer drug delivery. J Colloid Interface Sci 2017; 508:145-153. [PMID: 28829954 DOI: 10.1016/j.jcis.2017.08.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 01/12/2023]
Abstract
Polymer vesicles are self-assembled shells of amphiphilic block copolymers (BCPs) that have attracted tremendous interest due to their encapsulation ability and intracellular delivery of therapeutic agents. However, typical processes for the formation of polymer vesicles lead to ensembles of structures with a broad size distribution (from nanometer to micrometer scale) which result in a limitation for efficient cellular uptake. In this study, we present a simple and efficient approach for the fabrication of polymer vesicles with uniform nanoscale dimensions from template formation of electrosprayed particles in a high throughput manner. First, electrospraying was applied to produce micrometer-sized templates of a block copolymer before polymer vesicles were formed from the pre-prepared microparticles via rehydration. Four different biocompatible diblock and triblock copolymers were used to successfully fabricate polymer vesicles with uniform size around 150nm using this approach. Furthermore, we encapsulate anticancer drug doxorubicin (DOX) within the polymer vesicles via this method. The kinetics of cellular uptake (HeLa cell) and intracellular distribution of DOX-loaded polymer vesicles have been quntified and monitored by flow cytometry and confocal microscopy, respectively. The results show that our new method provides a promising way to fabricate drug-loaded polymer vesicles with controllable nanoscale size for intracellular anticancer drug delivery.
Collapse
Affiliation(s)
- Weichang Li
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Siqi Liu
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Hang Yao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Guoxing Liao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ziwei Si
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiangjun Gong
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Linge Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
31
|
Poschenrieder ST, Schiebel SK, Castiglione K. Stability of polymersomes with focus on their use as nanoreactors. Eng Life Sci 2017; 18:101-113. [PMID: 32624892 DOI: 10.1002/elsc.201700009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/09/2017] [Accepted: 07/04/2017] [Indexed: 11/12/2022] Open
Abstract
The increased membrane stability of polymersomes compared to their liposomal counterparts is one of their most important advantages. Due to this benefit, polymer vesicles are intended to be used not only as carrier systems for drug delivery purposes but also as nanoreactors for biotechnological applications. Within this work, the stability of polymersomes made of the triblock copolymer poly(2-methyloxazoline)15-poly(dimethylsiloxane)68-poly(2-methyloxazoline)15 (PMOXA15-PDMS68-PMOXA15) toward mechanical stress, typically prevailing in stirred-tank reactors being the most often used reactor type in the biotechnological industry, was characterized. Dynamic light scattering and turbidity measurements showed that stirrer rotation causing a maximum local energy dissipation of up to 1.23 W/kg-1 did not result in any loss of vesicle quality or quantity. Nevertheless, most probably due to local membrane defects, 6.6% release of the previously encapsulated model dye calcein was recognized at 25°C within 48 h. Moreover, increased temperature, leading to decreased membrane viscosity and increased membrane fluidity, respectively, led to a higher molecule leakage. Besides, the stability of polymersomes in two-phase systems was investigated. Although alkanes and ionic liquids were shown not to lead to complete vesicle damage, no efficient calcein retention was achieved in either case.
Collapse
Affiliation(s)
| | | | - Kathrin Castiglione
- Lehrstuhl für Bioverfahrenstechnik Technical University of Munich Garching Germany
| |
Collapse
|
32
|
|
33
|
Kiene K, Schenk SH, Porta F, Ernst A, Witzigmann D, Grossen P, Huwyler J. PDMS-b-PMOXA polymersomes for hepatocyte targeting and assessment of toxicity. Eur J Pharm Biopharm 2017; 119:322-332. [PMID: 28720487 DOI: 10.1016/j.ejpb.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/12/2017] [Accepted: 07/06/2017] [Indexed: 11/25/2022]
Abstract
Nanoparticles, such as polymersomes, can be directed to the hepatic asialoglycoprotein receptor to achieve targeted drug delivery. In this study, we prepared asialofetuin conjugated polymersomes based on the amphiphilic di-block copolymer poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PDMS-b-PMOXA). They had an average diameter of 150nm and formed monodisperse vesicles. Drug encapsulation and sustained release was monitored using the hydrophilic model compound carboxyfluorescein. Asialoglycoprotein receptor specific uptake by HepG2 cells in vitro was energy dependent and could be competitively inhibited by the free targeting ligand. Mechanistic uptake studies revealed intracellular trafficking of asialofetuin conjugated polymersomes from early endosomes and to the lysosomal compartment. Polymersomes showed no toxicity in the MTT assay up to concentrations of 500μg/mL. In addition, acute toxicity and tolerability of our PDMS-b-PMOXA polymersome formulations was assessed in vivo using zebrafish embryos as a vertebrate screening model. In conclusion, a hepatocyte specific drug delivery system was designed, which is safe and biocompatible and which can be used to implement liver-specific targeting strategies.
Collapse
Affiliation(s)
- Klara Kiene
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Fabiola Porta
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Alexandra Ernst
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Dominik Witzigmann
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Philip Grossen
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
34
|
Poschenrieder ST, Klermund L, Langer B, Castiglione K. Determination of Permeability Coefficients of Polymersomal Membranes for Hydrophilic Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6011-6020. [PMID: 28509557 DOI: 10.1021/acs.langmuir.6b04598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polymer vesicles, so-called polymersomes, can be applied as carrier-systems and universal reaction compartments, due to the possibility to encapsulate guest molecules. Compared to common lipid vesicles, polymersomes show an increased stability and decreased membrane permeability. Control of the mass transport across the membrane is necessary for any application, requiring the precise knowledge of the permeability. So far, data on permeability coefficients of polymersomal membranes are scarce because commonly applied release assays are confronted with the challenge of high detection limits and alternative methods developed so far are either restricted to the use of a certain permeating molecule or rely on the use of nuclear magnetic resonance measurements. In contrast, an influx assay that is broadly applicable to hydrophilic molecules and does not involve specialized equipment was developed in this work, which is based on the passive diffusion of compounds into initially empty vesicles. The method is valid for hydrophilic molecules that show no membrane retention and, thus, do not accumulate within the membrane. Using this method, the permeability of polymersomes made of poly(2-methyloxazoline)15-poly(dimethylsiloxane)68-poly(2-methyloxazoline)15 for seven model compounds was investigated under varying conditions. Permeability coefficients as low as 1.9 × 10-14 cm s-1 could be measured.
Collapse
Affiliation(s)
- Sarah T Poschenrieder
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, 85748 Garching, Germany
| | - Ludwig Klermund
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, 85748 Garching, Germany
| | - Bettina Langer
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, 85748 Garching, Germany
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technical University of Munich , Boltzmannstraße 15, 85748 Garching, Germany
| |
Collapse
|
35
|
Shulga D, Morozov O, Hunziker P. A Tensor B-Spline Approach for Solving the Diffusion PDE With Application to Optical Diffusion Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:972-982. [PMID: 28029620 DOI: 10.1109/tmi.2016.2641500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical Diffusion Tomography (ODT) is a modern non-invasive medical imaging modality which requires mathematical modelling of near-infrared light propagation in tissue. Solving the ODT forward problem equation accurately and efficiently is crucial. Typically, the forward problem is represented by a Diffusion PDE and is solved using the Finite Element Method (FEM) on a mesh, which is often unstructured. Tensor B-spline signal processing has the attractive features of excellent interpolation and approximation properties, multiscale properties, fast algorithms and does not require meshing. This paper introduces Tensor B-spline methodology with arbitrary spline degree tailored to solve the ODT forward problem in an accurate and efficient manner. We show that our Tensor B-spline formulation induces efficient and highly parallelizable computational algorithms. Exploitation of B-spline properties for integration over irregular domains proved valuable. The Tensor B-spline solver was tested on standard problems and on synthetic medical data and compared to FEM, including state-of-the art ODT forward solvers. Results show that 1) a significantly higher accuracy can be achieved with the same number of nodes, 2) fewer nodes are required to achieve a prespecified accuracy, 3) the algorithm converges in significantly fewer iterations to a given error. These findings support the value of Tensor B-spline methodology for high-performance ODT implementations. This may translate into advances in ODT imaging for biomedical research and clinical application.
Collapse
|
36
|
Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv 2017; 24:162-180. [PMID: 28156178 PMCID: PMC8241076 DOI: 10.1080/10717544.2016.1236846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
Collapse
Affiliation(s)
- Orazio Vittorio
- a UNSW Australia, Children's Cancer Institute, Lowy Cancer Research Center and ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Australian Center for NanoMedicine , Sydney , NSW , Australia
| | - Manuela Curcio
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Monica Cojoc
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany
| | - Gerardo F Goya
- d Institute of Nanoscience of Aragon (INA) and Department of Condensed Matter Physics, University of Zaragoza , Zaragoza , Spain
| | - Silke Hampel
- e Leibniz Institute of Solid State and Material Research Dresden , Dresden , Germany , and
| | - Francesca Iemma
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Anna Dubrovska
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany.,f German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Giuseppe Cirillo
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| |
Collapse
|
37
|
|
38
|
Liu K, Wang X, Ntziachristos V, Marsch S, Hunziker P. Polymeric nanosystems for near-infrared multispectral photoacoustic imaging: Synthesis, characterization and in vivo evaluation. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Praphakar RA, Munusamy MA, Alarfaj AA, Kumar SS, Rajan M. Zn2+cross-linked sodium alginate-g-allylamine-mannose polymeric carrier of rifampicin for macrophage targeting tuberculosis nanotherapy. NEW J CHEM 2017. [DOI: 10.1039/c7nj01808h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Our aim was to evaluate the capacity of polymeric nanoparticles (PNPs) to selectively deliver an antituberculosis drug (rifampicin; RF) to alveolar macrophages.
Collapse
Affiliation(s)
- Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| | | | | | - S. Suresh Kumar
- Department of Medical Microbiology and Parasitology
- University Putra Malaysia
- 43400 UPM Serdang Selangor
- Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| |
Collapse
|
40
|
Poschenrieder ST, Schiebel SK, Castiglione K. Polymersomes for biotechnological applications: Large-scale production of nano-scale vesicles. Eng Life Sci 2016; 17:58-70. [PMID: 32624729 DOI: 10.1002/elsc.201600100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 11/08/2022] Open
Abstract
Polymersomes have some fundamental advantages compared to their liposomal counterparts. Due to the increased stability of the polymeric membrane, polymersomes are intended to be reasonably applicable as carrier-systems and universal reaction compartments for diverse medical and biotechnological applications. Regardless of the application area, suitable methods to produce large vesicle quantities in a controlled and cost-effective manner have to be developed to put polymersome technology into action at the industrial scale. In this work, the amphiphilic triblock copolymer poly(2-methyloxazoline)15-poly(dimethylsiloxane)68-poly(2-methyloxazoline)15 was formed into uniform polymersomes. A recently established production process, based on the use of miniaturized stirred-tank reactors at the milliliter-scale (12 mL), was successfully scaled-up to the liter-scale (1.5 L) based on solid process engineering parameters. Dynamic light scattering measurements show that using standard propeller stirrers with a dimensionless diameter d D - 1 ≥0.65 in an unbaffled stirred-tank reactor led to a narrow particle size distribution when providing a Froude number of F r = 6.52 at the same time. Polymersomes with a mean diameter of 180 nm and a low polydispersity index (PDI<0.2) were generated within about 1 h in one single production step. Thus, this work provides the fundamental basis for further scale-up purposes, regarding polymersome production in stirred-tank reactors at the industrial scale.
Collapse
Affiliation(s)
| | | | - Kathrin Castiglione
- Lehrstuhl für Bioverfahrenstechnik Technische Universität München Garching Germany
| |
Collapse
|
41
|
Salieb-Beugelaar GB, Gonçalves D, Wolf MP, Hunziker P. Microfluidic 3D Helix Mixers. MICROMACHINES 2016; 7:mi7100189. [PMID: 30404361 PMCID: PMC6190165 DOI: 10.3390/mi7100189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/30/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022]
Abstract
Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS) using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.
Collapse
Affiliation(s)
- Georgette B Salieb-Beugelaar
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland.
- The European Foundation for Clinical Nanomedicine (CLINAM), Alemannengasse 12, CH-4016 Basel, Switzerland.
| | - Daniel Gonçalves
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland.
| | - Marc P Wolf
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland.
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland.
- The European Foundation for Clinical Nanomedicine (CLINAM), Alemannengasse 12, CH-4016 Basel, Switzerland.
- Intensive Care Clinic, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| |
Collapse
|
42
|
Jia T, Sun Z, Lu Y, Gao J, Zou H, Xie F, Zhang G, Xu H, Sun D, Yu Y, Zhong Y. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice. Int J Nanomedicine 2016; 11:3765-75. [PMID: 27540290 PMCID: PMC4981163 DOI: 10.2147/ijn.s94622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Due to the impermeability of the blood–brain barrier and the nonselective distribution of drugs in the brain, the therapeutic access to intractable neurological disorders is challenging. In this study, dual brain-targeting polymersomes (POs) functionalized by transferrin and Tet-1 peptide (Tf/Tet-1-POs) promoted the transportation of curcumin into the brain and provided neuroprotection. The modification of the ligands that bind to the surface of POs was revealed by X-ray photoelectron spectroscopy analysis. The cell uptake of a coculture model of mouse brain capillary endothelial cells with neurons showed that the Tf/Tet-1-POs had significant transportation properties and possessed affinity for neurons. The pharmacokinetic analysis showed that the blood–brain barrier permeability–surface efficiency of the Tf/Tet-1-POs was 0.28 mL/h/g and that the brain tissue uptake rate (% ID/g) was 0.08, which were significant compared with the controls (P<0.05). The curcumin-encapsulated Tf/Tet-1-POs provided neuroprotection and ameliorated cognitive dysfunction in intrahippocampal amyloid-β1–42-injected mice. These results suggest that the dual brain-targeting POs are more capable of drug delivery to the brain that can be exploited as a multiple noninvasive vehicle for targeting therapeutics.
Collapse
Affiliation(s)
- Tingting Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, The Second Military Medical University
| | - Zhiguo Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, The Second Military Medical University
| | - Ying Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, The Second Military Medical University
| | - Jie Gao
- Department of Pharmaceutical Sciences, School of Pharmacy, The Second Military Medical University
| | - Hao Zou
- Department of Pharmaceutical Sciences, School of Pharmacy, The Second Military Medical University
| | - Fangyuan Xie
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, People's Republic of China
| | - Guoqing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, People's Republic of China
| | - Hao Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Yuan Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, The Second Military Medical University
| | - Yanqiang Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, The Second Military Medical University
| |
Collapse
|
43
|
Zhang Y, Han L, Hu LL, Chang YQ, He RH, Chen ML, Shu Y, Wang JH. Mesoporous carbon nanoparticles capped with polyacrylic acid as drug carrier for bi-trigger continuous drug release. J Mater Chem B 2016; 4:5178-5184. [PMID: 32263516 DOI: 10.1039/c6tb00987e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pH and redox responsive bi-trigger continuous drug release nanocarrier is developed by capping mesoporous carbon nanoparticles (MCNs) with polyacrylic acid (PAA), termed as PAA-ss-MCN. The nanocarrier contains disulfide bond units and exhibits pH responsive behavior. It provides promising potential for drug loading due to the internal uniform channels and large surface area of MCNs. PAA grafted on the exterior surface of MCNs acts as a gating layer, generating a novel nano-container and a pH-responsive intelligent nanovalve. By loading doxorubicin (DOX) in PAA-ss-MCN, its sequential release is achieved via two approaches: (1) the intracellular acidic environment induces partial release from the surface of the PAA gating layer, (2) release of the drug sealed in nanochannels via disruption of the integrity of the nanocarrier by glutathione (GSH) caused dissociation of disulfide bonds in the physiological environment. As a result, release of 62% loaded drug is readily achieved. After culturing with HeLa cells, DOX transports into the cell interior and therein exhibits pH- and GSH-sensitive release. As most tumor sites exhibit more acidic environments or high redox potential, the pH- and GSH-sensitive releasing capability of PAA-ss-MCN is particularly useful for controllable drug delivery by taking advantage of the inherent characteristics of tumor cells.
Collapse
Affiliation(s)
- Yang Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Klermund L, Poschenrieder ST, Castiglione K. Simple surface functionalization of polymersomes using non-antibacterial peptide anchors. J Nanobiotechnology 2016; 14:48. [PMID: 27334900 PMCID: PMC4918069 DOI: 10.1186/s12951-016-0205-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/01/2022] Open
Abstract
Background Hollow vesicles formed from block copolymers, so-called polymersomes, have been extensively studied in the last decade for their various applications in drug delivery, in diagnostics and as nanoreactors. The immobilization of proteins on the polymersomes’ surface can aid in cell targeting, lead to functional biosensors or add an additional reaction space for multistep syntheses. In almost all surface functionalization strategies to date, a chemical pre-conjugation of the polymer with a reactive group or ligand and the functionalization of the protein are required. To avoid chemical pre-conjugation, we investigated the simple and quick functionalization of preformed poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) (PMOXA-PDMS-PMOXA) polymersomes through the spontaneous insertion of four hydrophobic, non-antibacterial peptide anchors into the membrane to display enhanced green fluorescent protein (eGFP) on the polymersomes’ surface. Results Three of the four hydrophobic peptides, the transmembrane domains of a eukaryotic cytochrome b5, of the viral lysis protein L and of the yeast syntaxin VAM3 could be recombinantly expressed as soluble eGFP-fusion proteins and spontaneously inserted into the polymeric membrane. Characterization of the surface functionalization revealed that peptide insertion was linearly dependent on the protein concentration and possible at a broad temperature range of 4–42 °C. Up to 2320 ± 280 eGFP molecules were immobilized on a single polymersome, which is in agreement with the calculated maximum loading capacity. The peptide insertion was stable without disrupting membrane integrity as shown in calcein leakage experiments and the functionalized polymersomes remained stable for at least 6 weeks. Conclusion The surface functionalization of polymersomes with hydrophilic proteins can be mediated by several peptide anchors in a spontaneous process at extremely mild insertion conditions and without the need of pre-conjugating polymers. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0205-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ludwig Klermund
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Sarah T Poschenrieder
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Kathrin Castiglione
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
45
|
Zhang X, Lomora M, Einfalt T, Meier W, Klein N, Schneider D, Palivan CG. Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols. Biomaterials 2016; 89:79-88. [DOI: 10.1016/j.biomaterials.2016.02.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/05/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
46
|
Li X, Zhu X, Qiu L. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics. Acta Biomater 2016; 35:269-79. [PMID: 26873366 DOI: 10.1016/j.actbio.2016.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
Polymersomes represent a promising pharmaceutical vehicle for the delivery of hydrophilic therapeutic agents. However, modification of polymersomes with molecules that confer targeting functions remains challenging because of the strict requirements regarding the weight fractions of the hydrophilic and hydrophobic block polymers. In this study, based on the compatibility between cholesterol and polymeric carriers, polymersomes self-assembled by amphiphilic graft polyphosphazenes were endowed with a targeting function by incorporating the cholesterol-linked aptamer through a simple dialysis method. The aqueous interior of the polymersomes was employed to encapsulate water-soluble doxorubicin hydrochloride. In vivo experiments in tumor-bearing mice showed that the aptamer-anchored vesicle targeted accumulation at the tumor site, favorable penetration through tumor tissue, and incremental endocytosis into tumor cells. Correspondingly, the aptamer-anchored vesicle decreased systemic toxicity and effectively suppressed the growth of subcutaneous MCF-7 xenografts. These findings suggested that vesicles modified with targeted groups via hydrophobic supermolecular interactions could provide a platform for selective delivery of hydrophilic drug. STATEMENT OF SIGNIFICANCE Polymersomes have represented a promising type of pharmaceutical vehicles due to their predominant physical properties. However, it is still a challenge to endow polymersomes with active target function because of strict requirements of the weight fractions of hydrophilic polymer block to hydrophobic one. In this research, by taking advantage of the supermolecular interactions between amphiphilic graft polyphosphazene and cholesterol which was linked to aptamer AS1411, we prepared a targeted functional polymersome (PEP-DOX·HCl-Ap) through a simple method with high loading of water soluble anti-cancer drug doxorubicin hydrochloride. The in vivo experiments in MCF-7 tumor-bearing mice demonstrated several advantages of PEP-DOX·HCl-Ap vesicle such as prolonged circulation time in blood, targeted accumulation at tumor site, permeation through the tumor tissue and incremental endocytosis by tumor cells, which consequently resulted in the significantly improved anti-cancer efficacy. Moreover, this novel polymersome designed in this study has built a research platform to achieve targeted delivery of hydrophilic chemotherapeutics for cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiumei Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
47
|
Poschenrieder ST, Wagner SG, Castiglione K. Efficient production of uniform nanometer-sized polymer vesicles in stirred-tank reactors. J Appl Polym Sci 2015. [DOI: 10.1002/app.43274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sarah Theresa Poschenrieder
- Institute of Biochemical Engineering; Technische Universität München; Boltzmannstraße 15 Garching D-85748 Germany
| | - Sabine Gabriele Wagner
- Institute of Biochemical Engineering; Technische Universität München; Boltzmannstraße 15 Garching D-85748 Germany
| | - Kathrin Castiglione
- Institute of Biochemical Engineering; Technische Universität München; Boltzmannstraße 15 Garching D-85748 Germany
| |
Collapse
|
48
|
Liu K, Zhu Z, Wang X, Gonçalves D, Zhang B, Hierlemann A, Hunziker P. Microfluidics-based single-step preparation of injection-ready polymeric nanosystems for medical imaging and drug delivery. NANOSCALE 2015; 7:16983-93. [PMID: 26415866 DOI: 10.1039/c5nr03543k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Translation of therapeutic polymeric nanosystems to patients and industry requires simplified, reproducible and scalable methods for assembly and loading. A single-step in-line process based on nanocoprecipitation of oxazoline-siloxane block copolymers in flow-focusing poly(dimethylsiloxane) microfluidics was designed to manufacture injection-ready nanosystems. Nanosystem characteristics could be controlled by copolymer concentration, block length and chemistry, microchannel geometry, flow rate, aqueous/organic flow rate ratio and payload concentration. The well-tolerated nanosystems exhibited differential cell binding and payload delivery and could confer sensitivity to photodynamic therapy to HeLa cancer cells. Such injection-ready nanosystems carrying drugs, diagnostic or functional materials may facilitate translation to clinical application.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
49
|
Müller LK, Landfester K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem Biophys Res Commun 2015; 468:411-8. [PMID: 26315266 DOI: 10.1016/j.bbrc.2015.08.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
In the last decades, the development and design of drug delivery systems have attracted great attention. Especially siRNA carriers have been of special interest since discovered as suitable tool for gene silencing. Self-assembled structures consisting of amphiphilic molecules are the most investigated carriers with regards to siRNA delivery. Liposomes as drug vehicles already found their way into clinical use, as they are highly biocompatible and their colloidal stability and circulation time in blood can be significantly enhanced by PEGylation. Fully synthetic polymersomes inspired by these natural structures provide enhanced stability and offer a wide range of modification-possibilities. Therefore, their design as carrier vehicles has become of great interest. This mini-review highlights the possibilities of using polymeric vesicles for potential drug delivery and gives a brief overview of their potential regarding fine-tuning towards targeted delivery or triggered drug release.
Collapse
Affiliation(s)
- Laura K Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
50
|
Smith JA, Leonardi T, Huang B, Iraci N, Vega B, Pluchino S. Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology 2015; 16:147-85. [PMID: 24973266 PMCID: PMC4578234 DOI: 10.1007/s10522-014-9510-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023]
Abstract
Multicellular organisms rely upon diverse and complex intercellular communications networks for a myriad of physiological processes. Disruption of these processes is implicated in the onset and propagation of disease and disorder, including the mechanisms of senescence at both cellular and organismal levels. In recent years, secreted extracellular vesicles (EVs) have been identified as a particularly novel vector by which cell-to-cell communications are enacted. EVs actively and specifically traffic bioactive proteins, nucleic acids, and metabolites between cells at local and systemic levels, modulating cellular responses in a bidirectional manner under both homeostatic and pathological conditions. EVs are being implicated not only in the generic aging process, but also as vehicles of pathology in a number of age-related diseases, including cancer and neurodegenerative and disease. Thus, circulating EVs-or specific EV cargoes-are being utilised as putative biomarkers of disease. On the other hand, EVs, as targeted intercellular shuttles of multipotent bioactive payloads, have demonstrated promising therapeutic properties, which can potentially be modulated and enhanced through cellular engineering. Furthermore, there is considerable interest in employing nanomedicinal approaches to mimic the putative therapeutic properties of EVs by employing synthetic analogues for targeted drug delivery. Herein we describe what is known about the origin and nature of EVs and subsequently review their putative roles in biology and medicine (including the use of synthetic EV analogues), with a particular focus on their role in aging and age-related brain diseases.
Collapse
Affiliation(s)
- J A Smith
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | | | | | | | | | | |
Collapse
|