1
|
Liu Y, Ding Y, Hou Y, Yu T, Nie H, Cui Y. The miR-130a-3p/TGF-βRII Axis Participates in Inhibiting the Differentiation of Fibroblasts Induced by TGF-β1. Front Pharmacol 2021; 12:732540. [PMID: 34393805 PMCID: PMC8355625 DOI: 10.3389/fphar.2021.732540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease that has a poor prognosis. Abnormal activation of transforming growth factor-β1 (TGF-β1) plays a crucial role in fibroblast differentiation. Mesenchymal stem cells (MSCs) are currently being considered for the treatment of PF, but the regulatory mechanisms are poorly understood. We co-cultured bone marrow-derived MSCs and mouse lung fibroblasts (MLg) in the presence of TGF-β1, and studied the protein/mRNA expression of fibrosis markers and related signaling pathways. The effects of miR-130a-3p and TGF-β receptor II (TGF-βRII) on the differentiation of MLg induced by TGF-β1 were studied using immunofluorescence assay, Western blot, and quantitative real-time PCR techniques, respectively. Our results showed that MSCs reversed the overexpression of fibrosis markers and TGF-β1/Smad signaling pathway proteins and mRNAs after TGF-β1 treatment and increased the level of miR-130a-3p. TGF-βRII was identified as a target of miR-130a-3p and was evaluated by dual-luciferase reporter assay. The miR-130a-3p/TGF-βRII axis could suppress the differentiation of lung fibroblasts via the TGF-β1/Smad signaling pathway, thereby reducing the process of PF.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Departments of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Mishima S, Takahashi K, Kiso H, Murashima-Suginami A, Tokita Y, Jo JI, Uozumi R, Nambu Y, Huang B, Harada H, Komori T, Sugai M, Tabata Y, Bessho K. Local application of Usag-1 siRNA can promote tooth regeneration in Runx2-deficient mice. Sci Rep 2021; 11:13674. [PMID: 34211084 PMCID: PMC8249669 DOI: 10.1038/s41598-021-93256-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
Runt-related transcription factor 2 (Runx2)-deficient mice can be used to model congenital tooth agenesis in humans. Conversely, uterine sensitization-associated gene-1 (Usag-1)-deficient mice exhibit supernumerary tooth formation. Arrested tooth formation can be restored by crossing both knockout-mouse strains; however, it remains unclear whether topical inhibition of Usag-1 expression can enable the recovery of tooth formation in Runx2-deficient mice. Here, we tested whether inhibiting the topical expression of Usag-1 can reverse arrested tooth formation after Runx2 abrogation. The results showed that local application of Usag-1 Stealth small interfering RNA (siRNA) promoted tooth development following Runx2 siRNA-induced agenesis. Additionally, renal capsule transplantation of siRNA-loaded cationized, gelatin-treated mouse mandibles confirmed that cationized gelatin can serve as an effective drug-delivery system. We then performed renal capsule transplantation of wild-type and Runx2-knockout (KO) mouse mandibles, treated with Usag-1 siRNA, revealing that hindered tooth formation was rescued by Usag-1 knockdown. Furthermore, topically applied Usag-1 siRNA partially rescued arrested tooth development in Runx2-KO mice, demonstrating its potential for regenerating teeth in Runx2-deficient mice. Our findings have implications for developing topical treatments for congenital tooth agenesis.
Collapse
Affiliation(s)
- Sayaka Mishima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akiko Murashima-Suginami
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshihito Tokita
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Jun-Ichiro Jo
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryuji Uozumi
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukiko Nambu
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Boyen Huang
- Department of Primary Dental Care, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Hidemitsu Harada
- Department of Anatomy, Division of Developmental Biology and Regenerative Medicine1-1-1, Iwate Medical University, Idaidori, Yahaba, Shiwa-gun, Iwate, 020-3694, Japan
| | - Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Abstract
Interstitial fibrosis with tubule atrophy (IF/TA) is the response to virtually any sustained kidney injury and correlates inversely with kidney function and allograft survival. IF/TA is driven by various pathways that include hypoxia, renin-angiotensin-aldosterone system, transforming growth factor (TGF)-β signaling, cellular rejection, inflammation and others. In this review we will focus on key pathways in the progress of renal fibrosis, diagnosis and therapy of allograft fibrosis. This review discusses the role and origin of myofibroblasts as matrix producing cells and therapeutic targets in renal fibrosis with a particular focus on renal allografts. We summarize current trends to use multi-omic approaches to identify new biomarkers for IF/TA detection and to predict allograft survival. Furthermore, we review current imaging strategies that might help to identify and follow-up IF/TA complementary or as alternative to invasive biopsies. We further discuss current clinical trials and therapeutic strategies to treat kidney fibrosis.Supplemental Visual Abstract; http://links.lww.com/TP/C141.
Collapse
|
4
|
Sun M, Zhou W, Yao F, Song J, Xu Y, Deng Z, Diao H, Li S. MicroRNA-302b mitigates renal fibrosis via inhibiting TGF-β/Smad pathway activation. ACTA ACUST UNITED AC 2021; 54:e9206. [PMID: 33503202 PMCID: PMC7836400 DOI: 10.1590/1414-431x20209206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Renal fibrosis is one of the most significant pathological changes after ureteral
obstruction. Transforming growth factor-β (TGF-β) signaling pathway plays
essential roles in kidney fibrosis regulation. The aims of the present study
were to investigate effects of microRNA-302b (miR-302b) on renal fibrosis, and
interaction between miR-302b and TGF-β signaling pathway in murine unilateral
ureteral obstruction (UUO) model. Microarray dataset GSE42716 was downloaded by
retrieving Gene Expression Omnibus database. In accordance with bioinformatics
analysis results, miR-302b was significantly down-regulated in UUO mouse kidney
tissue and TGF-β1-treated HK-2 cells. Masson's trichrome staining showed that
miR-302b mimics decreased renal fibrosis induced by UUO. The increased mRNA
expression of collagen I and α-smooth muscle actin (α-SMA) and decreased
expression of E-cadherin were reversed by miR-302b mimics. In addition, miR-302b
up-regulation also inhibited TGF-β1-induced epithelial mesenchymal transition
(EMT) of HK-2 cells by restoring E-cadherin expression and decreasing α-SMA
expression. miR-302b mimics suppressed both luciferase activity and protein
expression of TGF-βR2. However, miR-302b inhibitor increased TGF-βR2 luciferase
activity and protein expression. Meanwhile, miR-302b mimics inhibited TGF-βR2
mRNA expression and decreased Smad2 and Smad3 phosphorylation in
vivo and in vitro. Furthermore, over-expression of
TGF-βR2 restored the miR-302b-induced decrease of collagen I and α-SMA
expression. In conclusion, this study demonstrated that miR-302b attenuated
renal fibrosis by targeting TGF-βR2 to suppress TGF-β/Smad signaling activation.
Our findings showed that elevating renal miR-302b levels may be a novel
therapeutic strategy for preventing renal fibrosis.
Collapse
Affiliation(s)
- Mengkui Sun
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Wei Zhou
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Fei Yao
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Jianming Song
- Department of Pathology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Yanan Xu
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Zhimei Deng
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Hongwang Diao
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Shoulin Li
- Department of Urology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China.,Laboratory of Pelvic Floor Muscle Function, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Chun YY, Yap ZL, Seet LF, Chan HH, Toh LZ, Chu SWL, Lee YS, Wong TT, Tan TTY. Positive-charge tuned gelatin hydrogel-siSPARC injectable for siRNA anti-scarring therapy in post glaucoma filtration surgery. Sci Rep 2021; 11:1470. [PMID: 33446775 PMCID: PMC7809290 DOI: 10.1038/s41598-020-80542-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022] Open
Abstract
Small interfering RNA (siRNA) therapy is a promising epigenetic silencing strategy. However, its widespread adoption has been severely impeded by its ineffective delivery into the cellular environment. Here, a biocompatible injectable gelatin-based hydrogel with positive-charge tuned surface charge is presented as an effective platform for siRNA protection and delivery. We demonstrate a two-step synthesis of a gelatin-tyramine (Gtn-Tyr) hydrogel with simultaneous charge tunability and crosslinking ability. We discuss how different physiochemical properties of the hydrogel interact with siSPARC (siRNA for secreted protein, acidic and rich in cysteine), and study the positive-charge tuned gelatin hydrogel as an effective delivery platform for siSPARC in anti-fibrotic treatment. Through in vitro studies using mouse tenon fibroblasts, the positive-charge tuned Gtn-Tyr hydrogel shows sustained siSPARC cellular internalization and effective SPARC silencing with excellent biocompatibility. Similarly, the same hydrogel platform delivering siSPARC in an in vivo assessment employing a rabbit model shows an effective reduction in subconjunctival scarring in post glaucoma filtration surgery, and is non-cytotoxic compared to a commonly used anti-scarring agent, mitomycin-C. Overall, the current siRNA delivery strategy involving the positive-charge tuned gelatin hydrogel shows effective delivery of gene silencing siSPARC for anti-fibrotic treatment. The current charge tunable hydrogel delivery system is simple to fabricate and highly scalable. We believe this delivery platform has strong translational potential for effective siRNA delivery and epigenetic silencing therapy.
Collapse
Affiliation(s)
- Yong Yao Chun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Dr, Singapore, 637459, Singapore
- Ocular Imaging, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore
| | - Zhu Li Yap
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore
- Glaucoma Service, Singapore National Eye Centre, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Li Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Hiok Hong Chan
- Glaucoma Service, Singapore National Eye Centre, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore
| | - Ying Shi Lee
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore
- Glaucoma Service, Singapore National Eye Centre, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road Discovery Tower Level 6, The Academia, Singapore, 169856, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore.
- Glaucoma Service, Singapore National Eye Centre, 11 Third Hospital Ave, Singapore, 168751, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore, 639977, Singapore.
| | - Timothy T Y Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Dr, Singapore, 637459, Singapore.
| |
Collapse
|
6
|
van den Berg AIS, Yun CO, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J Control Release 2021; 331:121-141. [PMID: 33453339 DOI: 10.1016/j.jconrel.2021.01.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy using nucleic acids has many clinical applications for the treatment of diseases with a genetic origin as well as for the development of innovative vaccine formulations. Since nucleic acids in their free form are rapidly degraded by nucleases present in extracellular matrices, have poor pharmacokinetics and hardly pass cellular membranes, carrier systems are required. Suitable carriers that protect the nucleic acid payload against enzymatic attack, prolong circulation time after systemic administration and assist in cellular binding and internalization are needed to develop nucleic acid based drug products. Viral vectors have been investigated and are also clinically used as delivery vehicles. However, some major drawbacks are associated with their use. Therefore there has been substantial attention on the use of non-viral carrier systems based on cationic lipids and polymers. This review focuses on the properties of polymer-based nucleic acid formulations, also referred as polyplexes. Different polymeric systems are summarized, and the cellular barriers polyplexes encounter and ways to tackle these are discussed. Finally attention is given to the clinical status of non-viral nucleic acid formulations.
Collapse
Affiliation(s)
- Annette I S van den Berg
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Chae-Ok Yun
- Institute of Nano Science and Technology, Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Abstract
Chronic kidney disease (CKD) is an inherently systemic disease that refers to a long-term loss of kidney function. The progression of CKD has repercussions for other organs, leading to many kinds of extrarenal complications. Intensive studies are now being undertaken to reveal the risk factors and pathophysiological mechanism of this disease. During the past 20 years, increasing evidence from clinical and basic studies has indicated that klotho, which was initially known as an anti-aging gene and is mainly expressed in the kidney, is significantly correlated with the development and progression of CKD and its complications. Here, we discuss in detail the role and pathophysiological implications of klotho in ion disorders, the inflammation response, vascular calcification, mineral bone disorders, and renal fibrosis in CKD. Based on the pathogenic mechanism of klotho deficiency and klotho decline in urine early in CKD stage 2 and even earlier in CKD stage 1, it is not difficult to understand that soluble klotho can serve as an early and sensitive marker of CKD. Moreover, the prevention of klotho decline by several mechanisms can attenuate renal injuries, retard CKD progression, ameliorate extrarenal complications, and improve renal function. In this review, we focus on the functions and pathophysiological implications of klotho in CKD and its extrarenal complications as well as its potential applications as a diagnostic and/or prognostic biomarker for CKD and as a novel treatment strategy to improve and decrease the burden of comorbidity in CKD.
Collapse
|
8
|
Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev 2018; 129:295-307. [PMID: 29288033 DOI: 10.1016/j.addr.2017.12.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is the common outcome of many chronic kidney diseases (CKD) independent of the underlying etiology. Despite a host of promising experimental data, currently available strategies only ameliorate or delay the progression of CKD but do not reverse fibrosis. One of the major impediments of translating novel antifibrotic strategies from bench to bedside is due to the intricacies of the drug delivery process. In this review, we briefly describe mechanisms of renal fibrosis and methods of drug transfer into the kidney. Various tools used in gene therapy to administer nucleic acids in vivo are discussed. Furthermore, we review the modes of action of protein- or peptide-based drugs with target-specific antibodies and cytokines incorporated in hydrogels. Additionally, we assess an intriguing new method to deliver drugs specifically to tubular epithelial cells via conjugation with ligands binding to the megalin receptor. Finally, plant-derived compounds with antifibrotic properties are also summarized.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; National Institute for Chemical-Pharmaceutical Research and Development, 112 Vitan Avenue, 031299 Bucharest, Romania
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Mottaghitalab F, Rastegari A, Farokhi M, Dinarvand R, Hosseinkhani H, Ou KL, Pack DW, Mao C, Dinarvand M, Fatahi Y, Atyabi F. Prospects of siRNA applications in regenerative medicine. Int J Pharm 2017; 524:312-329. [PMID: 28385649 DOI: 10.1016/j.ijpharm.2017.03.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Small interfering RNA (siRNA) has established its reputation in the field of tissue engineering owing to its ability to silence the proteins that inhibit tissue regeneration. siRNA is capable of regulating cellular behavior during tissue regeneration processes. The concept of using siRNA technology in regenerative medicine derived from its ability to inhibit the expression of target genes involved in defective tissues and the possibility to induce the expression of tissue-inductive factors that improve the tissue regeneration process. To date, siRNA has been used as a suppressive biomolecule in different tissues, such as nervous tissue, bone, cartilage, heart, kidney, and liver. Moreover, various delivery systems have been applied in order to deliver siRNA to the target tissues. This review will provide an in-depth discussion on the development of siRNA and their delivery systems and mechanisms of action in different tissues.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
| | - Daniel W Pack
- Department of Chemical & Materials Engineering and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Meshkat Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens 2015; 24:28-36. [PMID: 25470014 DOI: 10.1097/mnh.0000000000000087] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To provide a perspective by investigating the potential cross-talk between the adipose tissue and the kidney during obesity. RECENT FINDINGS It is well established that excessive caloric intake contributes to organ injury. The associated increased adiposity initiates a cascade of cellular events that leads to progressive obesity-associated diseases such as kidney disease. Recent evidence has indicated that adipose tissue produces bioactive substances that contribute to obesity-related kidney disease, altering the renal function and structure. In parallel, proinflammatory processes within the adipose tissue can also lead to pathophysiological changes in the kidney during the obese state. SUMMARY Despite considerable efforts to better characterize the pathophysiology of obesity-related metabolic disease, there are still a lack of efficient therapeutic strategies. New strategies focused on regulating adipose function with respect to AMP-activated protein kinase activation, NADPH oxidase function, and TGF-β may contribute to reducing adipose inflammation that may also provide renoprotection.
Collapse
|
11
|
Glebova K, Reznik ON, Reznik AO, Mehta R, Galkin A, Baranova A, Skoblov M. siRNA technology in kidney transplantation: current status and future potential. BioDrugs 2015; 28:345-61. [PMID: 24573958 DOI: 10.1007/s40259-014-0087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kidney transplantation is one of the most common transplantation operations in the world, accounting for up to 50 % of all transplantation surgeries. To curtail the damage to transplanted organs that is caused by ischemia-reperfusion injury and the recipient's immune system, small interfering RNA (siRNA) technology is being explored. Importantly, the kidney as a whole is a preferential site for non-specific systemic delivery of siRNA. To date, most attempts at siRNA-based therapy for transplantation-related conditions have remained at the in vitro stage, with only a few of them being advanced into animal models. Hydrodynamic intravenous injection of naked or carrier-bound siRNAs is currently the most common route for delivery of therapeutic constructs. To our knowledge, no systematic screens for siRNA targets most relevant for kidney transplantation have been attempted so far. A majority of researchers have arrived at one or another target of interest by analyzing current literature that dissects pathological processes taking place in transplanted organs. A majority of the genes that make up the list of 53 siRNA targets that have been tested in transplantation-related models so far belong to either apoptosis- or immune rejection-centered networks. There is an opportunity for therapeutic siRNA combinations that may be delivered within the same delivery vector or injected at the same time and, by targeting more than one pathway, or by hitting the same pathways within two different key points, will augment the effects of each other.
Collapse
Affiliation(s)
- Kristina Glebova
- Research Center for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
12
|
Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 2015; 165:512-30. [PMID: 25176603 PMCID: PMC4326607 DOI: 10.1016/j.trsl.2014.07.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. Here, we review novel strategies targeting various components implicated in the fibrogenic pathway to inhibit or retard the loss of kidney function. We focus, in particular, on antifibrotic approaches that target transforming growth factor (TGF)-β1, a key mediator of kidney fibrosis, and exciting new data on the role of autophagy. Bone morphogenetic protein (BMP)-7 and connective tissue growth factor (CTGF) are highlighted as modulators of profibrotic TGF-β activity. BMP-7 has a protective role against TGF-β1 in kidney fibrosis, whereas CTGF enhances TGF-β-mediated fibrosis. We also discuss recent advances in the development of additional strategies for antifibrotic therapy. These include strategies targeting chemokine pathways via CC chemokine receptors 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide-cyclic 3',5'-guanosine monophosphate function, inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4 to suppress reactive oxygen species production, and inhibition of endothelin 1 or tumor necrosis factor α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis is currently being explored that may improve the ability to monitor antifibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel antifibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD.
Collapse
Affiliation(s)
- So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sung I Kim
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
13
|
Abstract
Gene therapy is a widespread and promising treatment of many diseases resulting from genetic disorders, infections and cancer. The feasibility of the gene therapy is mainly depends on the development of appropriate method and suitable vectors. For an efficient gene delivery, it is very important to use a carrier that is easy to produce, stable, non-oncogenic and non-immunogenic. Currently most of the vectors actually suffer from many problems. Therefore, the ideal gene therapy delivery system should be developed that can be easily used for highly efficient delivery and able to maintain long-term gene expression, and can be applicable to basic research as well as clinical settings. This article provides a brief over view on the concept and aim of gene delivery, the different gene delivery systems and use of different materials as a carrier in the area of gene therapy.
Collapse
|
14
|
Abstract
Chronic kidney disease (CKD) is becoming a worldwide epidemic, driven largely by the dramatic rise in the prevalence of diabetes and obesity. Novel targets and treatments for CKD are, therefore, desperately needed-to both mitigate the burden of this disease in the general population and reduce the necessity for renal replacement therapy in individual patients. This Review highlights new insights into the mechanisms that contribute to CKD, and approaches that might facilitate the development of disease-arresting therapies for CKD. Particular focus is given to therapeutic approaches using antifibrotic agents that target the transforming growth factor β superfamily. In addition, we discuss new insights regarding the roles of vascular calcification, the NADPH oxidase family, and inflammation in the pathogenesis of CKD. We also highlight a new understanding regarding kidney energy sensing pathways (AMPK, sirtuins, and mTOR) in a variety of kidney diseases and how they are linked to inflammation and fibrosis. Finally, exciting new insights have been made into the role of mitochondrial function and mitochondrial biogenesis in relation to progressive kidney disease. Prospective therapeutics based on these findings will hopefully renew hope for clinicians and patients in the near future.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), CP603, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Kumar Sharma
- Center for Renal Translational Medicine, University of California, San Diego and Veterans Affairs San Diego Healthcare System, Stein Clinical Research Building, 4th Floor, 9500 Gilman Drive, La Jolla, CA 92093-0711, USA
| |
Collapse
|
15
|
Inoue A, Takahashi KA, Mazda O, Arai Y, Saito M, Kishida T, Shin-Ya M, Morihara T, Tonomura H, Sakao K, Imanishi J, Kubo T. Comparison of anti-rheumatic effects of local RNAi-based therapy in collagen induced arthritis rats using various cytokine genes as molecular targets. Mod Rheumatol 2014. [DOI: 10.3109/s10165-008-0131-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Atsuo Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopaedics, Kyoto First Red Cross Hospital,
Kyoto 605-0981, Japan
| | - Kenji A. Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Microbiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuji Arai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masazumi Saito
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tsunao Kishida
- Department of Microbiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Louis Pasteur Center for Medical Research,
Kyoto 606-8225, Japan
| | - Masaharu Shin-Ya
- Department of Microbiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toru Morihara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hitoshi Tonomura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kei Sakao
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Jiro Imanishi
- Department of Microbiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine,
465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
16
|
Dosanjh A, Robison E, Mondala T, Head SR, Salomon DR, Kurian SM. Genomic meta-analysis of growth factor and integrin pathways in chronic kidney transplant injury. BMC Genomics 2013; 14:275. [PMID: 23617750 PMCID: PMC3644490 DOI: 10.1186/1471-2164-14-275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/18/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic Allograft Nephropathy (CAN) is a clinical entity of progressive kidney transplant injury. The defining histology is tubular atrophy with interstitial fibrosis (IFTA). Using a meta-analysis of microarrays from 84 kidney transplant biopsies, we revealed growth factor and integrin adhesion molecule pathways differentially expressed and correlated with histological progression. A bioinformatics approach mining independent datasets leverages new and existing data to identify correlative changes in integrin and growth factor signaling pathways. RESULTS Analysis of CAN/IFTA Banff grades showed that hepatocyte growth factor (HGF), and epidermal growth factor (EGF) pathways are significantly differentially expressed in all classes of CAN/IFTA. MAPK-dependent pathways were also significant. However, the TGFβ pathways, albeit present, failed to differentiate CAN/IFTA progression. The integrin subunits β8, αv, αμ and β5 are differentially expressed, but β1, β6 and α6 specifically correlate with progression of chronic injury. Results were validated using our published proteomic profiling of CAN/IFTA. CONCLUSIONS CAN/IFTA with chronic kidney injury is characterized by expression of distinct growth factors and specific integrin adhesion molecules as well as their canonical signaling pathways. Drug target mapping suggests several novel candidates for the next generation of therapeutics to prevent or treat progressive transplant dysfunction with interstitial fibrosis.
Collapse
Affiliation(s)
- Amrita Dosanjh
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Diabetes mellitus is rapidly becoming a global health issue that may overtake cancer during the next two decades as it covertly affects multiple organ systems that goes undiagnosed long after the onset. A number of complications are associated with poorly controlled hyperglycemia. Diabetic nephropathy is one of the most common complications of diabetes mellitus. Other than angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blocker (ARB) there is not much in the armamentarium with which to treat patients with overt diabetic nephropathy. Research points towards a multifactorial etiology and complex interplay of several pathogenic pathways that can contribute to the declining kidney function in diabetes. Patients with diabetic nephropathy (and with any chronic kidney disease) eventually develop kidney fibrosis. Despite the financial and labor investment spent on determining the basic mechanism of fibrosis, not much progress has been made in terms of therapeutic targets available to us today. This may be in part due to paucity in the experimental animal models available. However, there now seems to be a concerted effort from several pharmaceutical companies to develop a drug that would halt/delay the process of fibrosis, if not reverse it. This review discusses the current state of research in the field while staying within the context of diabetic nephropathy.
Collapse
Affiliation(s)
- Anil Karihaloo
- Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
|
19
|
Perin L, Da Sacco S, De Filippo RE. Regenerative medicine of the kidney. Adv Drug Deliv Rev 2011; 63:379-87. [PMID: 21145933 DOI: 10.1016/j.addr.2010.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/23/2010] [Accepted: 12/01/2010] [Indexed: 01/19/2023]
Abstract
End stage renal disease is a major health problem in this country and worldwide. Although dialysis and kidney transplantation are currently used to treat this condition, kidney regeneration resulting in complete healing would be a desirable alternative. In this review we focus our attention on current therapeutic approaches used clinically to delay the onset of kidney failure. In addition we describe novel approaches, like Tissue Engineering, Stem cell Applications, Gene Therapy, and Renal Replacement Therapy that may one day be possible alternative therapies for patients with the hope of delaying kidney failure or even stopping the progression of renal disease.
Collapse
|
20
|
|
21
|
Lentiviral-mediated RNA interference against TGF-beta receptor type II in renal epithelial and fibroblast cell populations in vitro demonstrates regulated renal fibrogenesis that is more efficient than a nonlentiviral vector. J Biomed Biotechnol 2010; 2010:859240. [PMID: 21151672 PMCID: PMC2997515 DOI: 10.1155/2010/859240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/05/2010] [Accepted: 08/18/2010] [Indexed: 12/16/2022] Open
Abstract
Background. Lentiviral constructs reportedly can integrate into the genome of non-dividing, terminally differentiated cells and dividing cells, for long-term gene expression. This investigation tested whether a third generation lentiviral-mediated small interfering RNA (siRNA) delivered into renal epithelial and fibroblast cells against type II transforming growth factor-beta receptor (siRNA-TBRII) could better attenuate renal fibrogenesis in comparison with a non-lentiviral construct. Methods. HIV-derived lentiviral and non-lentiviral constructs were used to transfect cells with siRNA-TBRII or siRNA-EGFP control. Human embryonic kidney (HEK-293T), renal epithelial cells (NRK-52E) and renal fibroblasts (NRK-49F) were transfected and gene silencing quantified (fluorescence microscopy, Western blotting, fluorescence-activated cell sorting). Renal fibrogenesis was assessed using extracellular matrix protein synthesis (fibronectin and collagen-III; Western immunoblot), and α-smooth muscle actin (α-SMA) was analysed as a marker of fibroblast activation and epithelial-to-mesenchymal transdifferentiation (EMT). Results. Lentiviral-mediated siRNA-TBRII significantly suppressed TBRII expression in all cell lines, and also significantly suppressed renal fibrogenesis. In comparison with the non-lentiviral construct, lentiviral-mediated siRNA-TBRII produced stronger and more persistent inhibition of collagen-III in NRK-49F cells, fibronectin in all renal cell lines, and α-SMA in renal epithelial cells. Conclusions. Lentiviral vector systems against TBRII can be delivered into renal cells to efficiently limit renal fibrogenesis by sequence-specific gene silencing.
Collapse
|
22
|
Honjo K, Takahashi KA, Mazda O, Kishida T, Shinya M, Tokunaga D, Arai Y, Inoue A, Hiraoka N, Imanishi J, Kubo T. MDR1a/1b gene silencing enhances drug sensitivity in rat fibroblast-like synoviocytes. J Gene Med 2010; 12:219-27. [PMID: 19950109 DOI: 10.1002/jgm.1378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Drug resistance mediated by P-glycoprotein (P-gp) is one of the major reasons for the failure of rheumatoid arthritis (RA) therapy with disease modifying anti-rheumatic drugs and glucocorticoids. In the present study, we aimed to investigate the in vitro effectiveness of small interfering RNA (siRNA) to render rat fibroblast-like synoviocytes (FLS) susceptible to drugs. We also attempted the electroporation-mediated transfer of siRNA against multidrug resistance (MDR) genes into rat knee joints. METHODS FLS were transfected with siRNAs corresponding to MDR1a and MDR1b genes. FLS were treated with dexamethasone (DEX) and lipopolysaccharide. The mRNA and protein levels of tumor necrosis factor-alpha, interleukin (IL)-6 and IL-1beta were measured. Both siRNAs were co-transduced into rat knee joints by an electroporation method and evaluated the target gene expressions in the synovium. RESULTS Each siRNA could sequence-specifically reduce the target gene expression by over 70% and effectively suppressed P-gp expression and function in the FLS. Both gene expression and protein production of the inflammatory cytokines in the cells transfected with siRNA were reduced by a greater amount compared to in control cells. The in vivo electroporation-mediated transduction of siRNA could significantly inhibit the target gene expressions. CONCLUSIONS MDR1a/1b gene silencing by siRNA could effectively inhibit P-gp in rat FLS, resulting in a significant enhancement of the anti-inflammatory effects of DEX. The in vivo siRNA transduction could successfully silence MDR gene expression in the rat synovium. These findings indicate that the siRNA targeting MDR gene could be a useful tool for treating refractory arthritis in RA.
Collapse
Affiliation(s)
- Kuniaki Honjo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Declèves AE, Sharma K. New pharmacological treatments for improving renal outcomes in diabetes. Nat Rev Nephrol 2010; 6:371-80. [PMID: 20440278 DOI: 10.1038/nrneph.2010.57] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy is the most common and most rapidly growing cause of end-stage renal failure in developed countries. Diabetic nephropathy results from complex interactions between genetic, metabolic and hemodynamic factors. Improvements in our understanding of the pathogenesis of fibrosis associated with diabetic kidney disease have led to the identification of several novel targets for the treatment of diabetic nephropathy. Albuminuria is a useful clinical marker of diabetic nephropathy, as it can be used to predict a decline in renal function. A reduction in albuminuria might not, however, be reflective of a protective effect of therapies focused on ameliorating renal fibrosis. Although new strategies for slowing down the progression of several types of renal disease have emerged, the challenge of arresting the relentless progression of diabetic nephropathy remains. In this Review, we discuss novel pharmacological approaches that aim to improve the renal outcomes of diabetic nephropathy, including the use of direct renin inhibitors and statins. We also discuss the promise of using antifibrotic agents to treat diabetic nephropathy. The need for novel biomarkers of diabetic nephropathy is also highlighted.
Collapse
|
24
|
Abstract
Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.
Collapse
|
25
|
Wan F, Tang Z, He W, Chu B. A chemistry/physics pathway with nanofibrous scaffolds for gene delivery. Phys Chem Chem Phys 2010; 12:12379-89. [DOI: 10.1039/c002515a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Abstract
Small interfering RNA (siRNA) and short hairpin RNA (shRNA) targeting different regions of transforming growth factor beta1 (TGF-beta1) mRNA were designed and the silencing effect was determined after transfection into immortalized rat liver stellate cells (HSC-T6). There was not only significant decrease in TGF-beta1, tissue inhibitor of metalloproteinase 1 (TIMP-1), alpha-smooth muscle actin (alpha-SMA) and type I collagen after transfection with TGF-beta1 siRNAs, but also synergism in gene silencing when siRNAs targeting two different start sites were used as a pool for transfection. The two siRNA sequences which efficiently inhibited TGF-beta1 gene expression were converted to shRNAs via cloning into the pSilencer1.0. There was significant decrease in TGF-beta1 and TIMP-1 when HSC-T6 cells were transfected with pshRNA targeting the same regions of TGF-beta1 mRNA as siRNAs. Furthermore, TGF-beta1 gene silencing in HSC-T6 cells significantly decreased the levels of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta). In conclusion, both siRNA and shRNA showed sequence-specific and dose dependent TGF-beta1 gene silencing and have the potential to treat liver fibrosis.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA
| | | | | |
Collapse
|
27
|
Vorhies JS, Nemunaitis JJ. Synthetic vs. natural/biodegradable polymers for delivery of shRNA-based cancer therapies. Methods Mol Biol 2009; 480:11-29. [PMID: 19085121 DOI: 10.1007/978-1-59745-429-2_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA vector-based short hairpin RNA (shRNA) as a means of effecting RNA interference (RNAi) is a promising mechanism for the precise disruption of gene expression to achieve a therapeutic effect. The clinical usage of shRNA therapeutics in cancer is limited by obstacles related to effective delivery into the nuclei of target cancer cells. Significant pre-clinical data have been amassed about biodegradable and non-biodegradable polymeric delivery vehicles that are relevant for shRNA delivery into humans. Here, we will review some leading candidates for clinical usage with a focus on studies relating to their potential for usage in cancer shRNA therapeutics and discuss some of the advantages and disadvantages of using biodegradable and non-biodegradable delivery vehicles.
Collapse
|
28
|
Comparison of anti-rheumatic effects of local RNAi-based therapy in collagen induced arthritis rats using various cytokine genes as molecular targets. Mod Rheumatol 2008; 19:125-33. [PMID: 19030778 DOI: 10.1007/s10165-008-0131-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
RNA interference (RNAi) provides a powerful means of sequence-specific gene silencing. Several studies show that RNAi may provide promising strategies to treat human diseases by suppressing disease responsible genes in vivo. In locomotor diseases, the progression of collagen-induced arthritis (CIA) is suppressed by tumor necrosis factor-alpha (TNF-alpha)-specific small interfering RNA (siRNA) delivered into the joint. The aim of this study, is to compare the effects of intraarticularly administered siRNAs targeting TNF-alpha, interleukin-1beta (IL-1beta), interleukin-6 (IL-6) and receptor activator of NF-kappaB ligand (RANKL) on CIA in rats. We confirmed that the silencing effects of siRNA duplexes specific for rat TNF-alpha, IL-1beta, IL-6 and RANKL in vitro. Each siRNA was also delivered into the knee joint of CIA rats by the in vivo electroporation method 7, 10, 13 and 16 days after immunization with collagen. Local delivery of TNF-alpha or IL-1beta-specific siRNA ameliorated CIA in rats effectively at the gross morphological, radiographical and histological evaluations. Our results suggested that TNF-alpha and IL-1beta were the cytokines to be targeted in the joint for the treatment of rheumatoid arthritis. The in vivo siRNA transfection method may be useful for selection of target molecules to be silenced for treatment of joint diseases.
Collapse
|
29
|
Kimura Y, Hokugo A, Takamoto T, Tabata Y, Kurosawa H. Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng Part C Methods 2008; 14:47-57. [PMID: 18454645 DOI: 10.1089/tec.2007.0286] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to increase the therapeutic efficacy of anterior cruciate ligament (ACL) surgery using an artificial ligament material developed through a combination of tissue engineering technologies. A poly-L-lactic acid (PLLA) scaffold of plain-woven braid was incorporated with a gelatin hydrogel for controlled release of basic fibroblast growth factor (bFGF) and wrapped with a collagen membrane to allow space for ligament regeneration. For the ACL reconstruction surgery, the PLLA braid scaffold combined with the gelatin hydrogel incorporating bFGF and the collagen wrapping was applied to a tunnel prepared in the femur and tibia of rabbits. The hydrogel was placed in the bone, whereas the portion of the braid inside the joint cavity was wrapped with the membrane. As controls, the PLLA scaffold was applied with the hydrogel or the membrane, or without either material. Bone regeneration in the tunnel and ACL tissue regeneration in the joint cavity were histologically evaluated, and the mechanical strength and collagen content of the regenerated ACL were assessed. When the PLLA scaffold was integrated with both the hydrogel and the membrane, bone and ACL tissues were regenerated in the corresponding sites, in marked contrast to the control groups. Combination of bFGF-controlled release resulted in enhanced mechanical strength of the regenerated ACL tissue. In the joint cavity, it is possible that the local bFGF release inside the membrane enhanced the cell migration and collagen production, and that the surrounding PLLA scaffold results in the biological regeneration of ligament-like tissue. Additionally, significant bone regeneration around the scaffold was observed in the bone tunnel. It is therefore possible that the local controlled release of bFGF near the PLLA braid induced both osseointegration and intrascaffold cell migration in the bone tunnel and joint cavity, respectively, resulting in an overall increase in the mechanical strength of the regenerated ACL.
Collapse
Affiliation(s)
- Yuta Kimura
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
30
|
Jo JI, Tabata Y. Non-viral gene transfection technologies for genetic engineering of stem cells. Eur J Pharm Biopharm 2008; 68:90-104. [PMID: 17870447 DOI: 10.1016/j.ejpb.2007.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
The recent rapid progress of molecular biology together with the steady progress of genome projects has given us some essential and revolutionary information about DNA and RNA to elucidate various biological phenomena at a genetic level. Under these circumstances, the technology and methodology of gene transfection have become more and more important to enhance the efficacy of gene therapy for several diseases. In addition, gene transfection is a fundamental technology indispensable to the further research development of basic biology and medicine regarding stem cells. Stem cells genetically manipulated will enhance the therapeutic efficacy of cell transplantation. In this paper, the carrier and technology of gene delivery are briefly overviewed while the applications to the basic researches of biology and medicine as well as regenerative medical therapy are introduced. A new non-viral carrier and the cell culture system are described to efficiently manipulate stem cells.
Collapse
Affiliation(s)
- Jun-ichiro Jo
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
31
|
Imamura M, Kanematsu A, Yamamoto S, Kimura Y, Kanatani I, Ito N, Tabata Y, Ogawa O. Basic fibroblast growth factor modulates proliferation and collagen expression in urinary bladder smooth muscle cells. Am J Physiol Renal Physiol 2007; 293:F1007-17. [PMID: 17634401 DOI: 10.1152/ajprenal.00107.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bladder hypertrophy is a general consequence of bladder outlet obstruction (BOO) and a typical phenomenon observed in clinical urologic diseases such as benign prostatic hyperplasia and neurogenic bladder. It is characterized by smooth muscle hyperplasia, altered extracellular matrix composition, and increased contractile function. Various growth factors are likely involved in hypertrophic pathophysiology, but their functions remain unknown. In this report, the role of basic fibroblast growth factor (bFGF) was investigated using a rat bladder smooth muscle cell (BSMC) culture system and an original animal model, in which bFGF was released from a gelatin hydrogel directly onto rat bladders. bFGF treatment promoted BSMC proliferation both in vitro and in vivo. In vitro, bFGF downregulated the expression of type I collagen, but upregulated type III collagen. ERK1/2, but not p38MAPK, was activated by bFGF, whereas inhibition of ERK1/2 by PD98059 reversed bFGF-induced BSMC proliferation, type I collagen downregulation, and type III collagen upregulation. In the in vivo release model, bFGF upregulated type III collagen and increased the contractile force of treated bladders. In parallel with these findings, hypertrophied rat bladders created by urethral constriction showed increased urothelial bFGF expression, BSMC proliferation, and increased type III collagen expression compared with sham-operated rats. These data suggest that bFGF from the urothelium could act as a paracrine signal that stimulates the proliferation and matrix production of BSMC, thereby contributing to the hypertrophic remodeling of the smooth muscle layer.
Collapse
Affiliation(s)
- Masaaki Imamura
- Department of Urology, Graduate School of Medicine, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xia Z, Abe K, Furusu A, Miyazaki M, Obata Y, Tabata Y, Koji T, Kohno S. Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47. Am J Nephrol 2007; 28:34-46. [PMID: 17890856 DOI: 10.1159/000108759] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/09/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Unilateral ureteral obstruction (UUO) is a well-established model for tubulointerstitial fibrosis. During the progression of tubulointerstitial fibrosis, upregulation of collagen synthesis and subsequent accumulation of collagen were observed in the tubulointerstitial area. Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone and plays an essential role in regulating collagen synthesis. We designed small interfering RNA (siRNA) sequences for HSP47 mRNA to examine whether HSP47 is involved in the progression of renal tubulointerstitial fibrosis in a mouse UUO model. METHODS The HSP47 siRNA was injected once via the ureter at the time of UUO preparation. We also applied a new gene delivery system for siRNA using cationized gelatin microspheres. The kidneys were harvested 7 and 14 days after UUO. The HSP47 and type I, III, and IV collagen expression levels were analyzed by immunohistochemistry and Western blotting. RESULTS Seven days after UUO, the expression levels of HSP47 and type I, III, and IV collagens were markedly upregulated in obstructed kidneys or green fluorescent protein siRNA treated obstructed kidneys. HSP47 siRNA injection significantly reduced the protein expression levels and significantly diminished the accompanying interstitial fibrosis. Moreover, cationized gelatin microspheres as a delivery system enhanced and lengthened the antifibrotic effect of HSP47 siRNA. CONCLUSIONS Our results indicate that HSP47 is a candidate target for the prevention of tubulointerstitial fibrosis and that selective blockade of the HSP47 expression by using siRNA could be a potentially useful therapeutic approach for patients with renal disease.
Collapse
Affiliation(s)
- Zhiyin Xia
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kimura Y, Tabata Y. Experimental tissue regeneration by DDS technology of bio-signaling molecules. J Dermatol Sci 2007; 47:189-99. [PMID: 17507205 DOI: 10.1016/j.jdermsci.2007.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 11/28/2022]
Abstract
The medical therapy of tissue regeneration achieved by biomaterial-based tissue engineering has been currently expected as the third option following reconstructive surgery and organ transplantation. The basic idea of this regenerative therapy is to assist the self-healing potentials of body to induce the natural regeneration and repairing of defective or injured tissue. To this end, it is practically important to create a local environment which enables cells to promote their proliferation and differentiation, resulting in the induction of cell-based tissue regeneration. Tissue engineering is a biomedical technology or methodology to build up this regeneration environment by making use of biomaterials. Drug delivery system (DDS) is a biomaterial technology to enhance the in vivo biological functions of bio-signaling molecules (growth factors and genes) for promoted tissue regeneration. This paper overviews the recent status of tissue regeneration therapy based on the DDS technology of bio-signaling molecules.
Collapse
Affiliation(s)
- Yu Kimura
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
34
|
Mendez-Pertuz M, Hughes C, Annenkov A, Daly G, Chernajovsky Y. Engineering stem cells for therapy. Regen Med 2007; 1:575-87. [PMID: 17465851 DOI: 10.2217/17460751.1.4.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The differentiation of a stem cell is dependent on the environmental cues that it receives and can be modulated by the expression of different master regulators or by secreted factors or inducers. The use of genetically modified stem cells to express the required factors can direct differentiation along the requisite pathway. This approach to the engineering of stem cells is important, as control of the pluripotentiality of stem cells is necessary in order to avoid unwanted growth, migration or differentiation to nontarget tissues. The authors provide an overview of the stem cell engineering field, highlighting challenges and solutions, and focusing on recent developments in therapeutic applications in areas such as autoimmunity, CNS lesions, bone and joint diseases, cancer and myocardial infarction.
Collapse
Affiliation(s)
- Marinela Mendez-Pertuz
- Bone and Joint Research Unit, Barts and The London Queen Mary's School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
35
|
Vorhies JS, Nemunaitis J. Nonviral delivery vehicles for use in short hairpin RNA-based cancer therapies. Expert Rev Anticancer Ther 2007; 7:373-82. [PMID: 17338656 DOI: 10.1586/14737140.7.3.373] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The use of DNA vector-based short hairpin (sh)RNA for RNA interference shows promise as a precise means for the disruption of gene expression to achieve a therapeutic effect. The in vivo usage of shRNA therapeutics in cancer is limited by obstacles related to effective delivery into the nuclei of target cancer cells. Nonviral delivery vehicles that are relevant for shRNA delivery into humans belong to a group of substances about which significant preclinical data has been amassed to show an acceptable safety profile, resistance to immune defenses and good transfection efficiency. Here, we review the most promising current nonviral gene delivery vehicles with a focus on their potential use in cancer shRNA therapeutics.
Collapse
Affiliation(s)
- John S Vorhies
- Mary Crowley Medical Research Center, 1717 Main St, Suite 6000, Dallas, TX 75201, USA.
| | | |
Collapse
|
36
|
Matsumoto G, Kushibiki T, Kinoshita Y, Lee U, Omi Y, Kubota E, Tabata Y. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma. Cancer Sci 2006; 97:313-21. [PMID: 16630124 PMCID: PMC11159315 DOI: 10.1111/j.1349-7006.2006.00174.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Double-stranded RNA (dsRNA) plays a major role in RNA interference (RNAi), a process in which segments of dsRNA are initially cleaved by the Dicer into shorter segments (21-23 nt) called small interfering RNA (siRNA). These siRNA then specifically target homologous mRNA molecules causing them to be degraded by cellular ribonucleases. RNAi down regulates endogenous gene expression in mammalian cells. Vascular endothelial growth factor (VEGF) is a key molecule in vasculogenesis as well as in angiogenesis. Tumor growth is an angiogenesis-dependent process, and therapeutic strategies aimed at inhibiting angiogenesis are theoretically attractive. To investigate the feasibility of using siRNA for VEGF in the specific knockdown of VEGF mRNA, thereby inhibiting angiogenesis, we have performed experiments with a DNA vector based on a siRNA system that targets VEGF (siVEGF). It almost completely inhibited the expression of three different isoforms (VEGF120, VEGF164 and VEGF188) of VEGF mRNA and the secretion of VEGF protein in mouse squamous cell carcinoma NRS-1 cells. The siVEGF released from cationized gelatin microspheres suppressed tumor growth in vivo. A marked reduction in vascularity accompanied the inhibition of a siVEGF-transfected tumor. Fluorescent microscopic study showed that the complex of siVEGF with cationized gelatin microspheres was still present around the tumor 10 days after injection, while free siVEGF had vanished by that time. siVEGF gene therapy increased the fraction of vessels covered by pericytes and induced expression of angiopoietin-1 by pericytes. These data suggest that cationized-gelatin microspheres containing siVEGF can be used to normalize tumor vasculature and inhibit tumor growth in a NRS-1 squamous cell carcinoma xenograft model.
Collapse
Affiliation(s)
- Goichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka, Yokosuka, Kanagawa 238-8580, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Salvay DM, Shea LD. Inductive tissue engineering with protein and DNA-releasing scaffolds. MOLECULAR BIOSYSTEMS 2005; 2:36-48. [PMID: 16880921 PMCID: PMC2657198 DOI: 10.1039/b514174p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cellular differentiation, organization, proliferation and apoptosis are determined by a combination of an intrinsic genetic program, matrix/substrate interactions, and extracellular cues received from the local microenvironment. These molecular cues come in the form of soluble (e.g. cytokines) and insoluble (e.g. ECM proteins) factors, as well as signals from surrounding cells that can promote specific cellular processes leading to tissue formation or regeneration. Recent developments in the field of tissue engineering have employed biomaterials to present these cues, providing powerful tools to investigate the cellular processes involved in tissue development, or to devise therapeutic strategies based on cell replacement or tissue regeneration. These inductive scaffolds utilize natural and/or synthetic biomaterials fabricated into three-dimensional structures. This review summarizes the use of scaffolds in the dual role of structural support for cell growth and vehicle for controlled release of tissue inductive factors, or DNA encoding for these factors. The confluence of molecular and cell biology, materials science and engineering provides the tools to create controllable microenvironments that mimic natural developmental processes and direct tissue formation for experimental and therapeutic applications.
Collapse
Affiliation(s)
- David M. Salvay
- Department of Chemical and Biological Engineering, 2145 Sheridan Rd E156 Evanston, IL 60208-3120. E-mail: ; Fax: 847-491-3728; Tel: 847-491-7043
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, 2145 Sheridan Rd E156 Evanston, IL 60208-3120. E-mail: ; Fax: 847-491-3728; Tel: 847-491-7043
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd E156 Evanston, IL 60208-3120
| |
Collapse
|