1
|
Liu SS, White JM, Chao Z, Li R, Wen S, Garza A, Tang W, Ma X, Chen P, Daniel S, Bates FS, Yeo J, Calabrese MA, Yang R. A Pseudo-Surfactant Chemical Permeation Enhancer to Treat Otitis Media via Sustained Transtympanic Delivery of Antibiotics. Adv Healthc Mater 2024; 13:e2400457. [PMID: 38738584 PMCID: PMC11368652 DOI: 10.1002/adhm.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Chemical permeation enhancers (CPEs) represent a prevalent and safe strategy to enable noninvasive drug delivery across skin-like biological barriers such as the tympanic membrane (TM). While most existing CPEs interact strongly with the lipid bilayers in the stratum corneum to create defects as diffusion paths, their interactions with the delivery system, such as polymers forming a hydrogel, can compromise gelation, formulation stability, and drug diffusion. To overcome this challenge, differing interactions between CPEs and the hydrogel system are explored, especially those with sodium dodecyl sulfate (SDS), an ionic surfactant and a common CPE, and those with methyl laurate (ML), a nonionic counterpart with a similar length alkyl chain. Notably, the use of ML effectively decouples permeation enhancement from gelation, enabling sustained delivery across TMs to treat acute otitis media (AOM), which is not possible with the use of SDS. Ciprofloxacin and ML are shown to form a pseudo-surfactant that significantly boosts transtympanic permeation. The middle ear ciprofloxacin concentration is increased by 70-fold in vivo in a chinchilla AOM model, yielding superior efficacy and biocompatibility than the previous highest-performing formulation. Beyond improved efficacy and biocompatibility, this single-CPE formulation significantly accelerates its progression toward clinical deployment.
Collapse
Affiliation(s)
- Sophie S. Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
- Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY, 14850, USA
| | - Joanna M. White
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave., Minneapolis, MN, 55114, USA
| | - Zhongmou Chao
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Ruye Li
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| | - Shuxian Wen
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Ally Garza
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1201 W University Drive, Edinburg, TX, 78539, USA
| | - Wenjing Tang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Xiaojing Ma
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Pengyu Chen
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave., Minneapolis, MN, 55114, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall, Ithaca, NY, 14850, USA
| | - Michelle A. Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave., Minneapolis, MN, 55114, USA
| | - Rong Yang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| |
Collapse
|
2
|
Gao H, Wang X, Wu H, Zhang Y, Zhang W, Wang Z, Liu X, Li X, Li H. Freeze-Dried Camelina Lipid Droplets Loaded with Human Basic Fibroblast Growth Factor-2 Formulation for Transdermal Delivery: Breaking through the Cuticle Barrier to Accelerate Deep Second-Degree Burn Healing. Pharmaceuticals (Basel) 2023; 16:1492. [PMID: 37895963 PMCID: PMC10610516 DOI: 10.3390/ph16101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 10/29/2023] Open
Abstract
Transdermal administration of chemo therapeutics into burn healing may be an effective treatment to reduce toxic side effects and improve patient compliance for burns. As a transdermal delivery system, Camelina lipid droplets (CLDs) have received great attention due to their biocompatibility, high drug payload, and rapid absorption. However, the absorbed-related mechanisms of Camelina lipid droplets have not yet been reported. Thus, this paper not only demonstrated that CLD can accelerate skin burn healing through promoting hFGF2 absorption, but also elucidated the mechanism between the skin tissue and keratinocytes using Franz, HE staining, DSC, FTIR spectroscopy, and atomic force microscopy with the presence of CLD-hFGF2 freeze-dried powder. We found that the cumulative release rate of CLD-hFGF2 freeze-dried powder was significantly higher than that of free hFGF2 freeze-dried powder into the skin. At the same time, CLD can change the structure and content of lipids and keratin to increase the permeability of hFGF2 freeze-dried powder in skin tissue. Unlike the free state of hFGF2, the biophysical properties of single cells, including height and adhesion force, were changed under CLD-hFGF2 freeze-dried powder treatment. Meanwhile, CLD-hFGF2 freeze-dried powder was more easily taken up through keratinocytes without damaging cell integrity, which provided a new viewpoint for understanding the absorption mechanism with the CLD system for cellular physiology characteristics. Overall, our findings demonstrated that CLD could break through the stratum corneum (SC) barrier and elucidated the transport mechanism of lipid droplets in skin tissue, which provides a crucial guideline in drug delivery applications for future engineering.
Collapse
Affiliation(s)
- Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Xue Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Hao Wu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China (W.Z.)
| | - Yuan Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Wenxiao Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China (W.Z.)
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China (W.Z.)
| | - Xin Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haiyan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570288, China
| |
Collapse
|
3
|
Badhe Y, Sharma P, Gupta R, Rai B. Elucidating collective translocation of nanoparticles across the skin lipid matrix: a molecular dynamics study. NANOSCALE ADVANCES 2023; 5:1978-1989. [PMID: 36998645 PMCID: PMC10044770 DOI: 10.1039/d2na00241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The top layer of skin, the stratum corneum, provides a formidable barrier to the skin. Nanoparticles are utilized and further explored for personal and health care applications related to the skin. In the past few years, several researchers have studied the translocation and permeation of nanoparticles of various shapes, sizes, and surface chemistry through cell membranes. Most of these studies focused on a single nanoparticle and a simple bilayer system, whereas skin has a highly complex lipid membrane architecture. Moreover, it is highly unlikely that a nanoparticle formulation applied on the skin will not have multiple nanoparticle-nanoparticle and skin-nanoparticle interactions. In this study, we have utilized coarse-grained MARTINI molecular dynamics simulations to assess the interactions of two types (bare and dodecane-thiol coated) of nanoparticles with two models (single bilayer and double bilayer) of skin lipid membranes. The nanoparticles were found to be partitioned from the water layer to the lipid membrane as an individual entity as well as in the cluster form. It was discovered that each nanoparticle reached the interior of both single bilayer and double bilayer membranes irrespective of the nanoparticle type and concentration, though coated particles were observed to efficiently traverse across the bilayer when compared with bare particles. The coated nanoparticles also created a single large cluster inside the membrane, whereas the bare nanoparticles were found in small clusters. Both the nanoparticles exhibited preferential interactions with cholesterol molecules present in the lipid membrane as compared to other lipid components of the membrane. We have also observed that the single membrane model exhibited unrealistic instability at moderate to higher concentrations of nanoparticles, and hence for translocation study, a minimum double bilayer model should be employed.
Collapse
Affiliation(s)
- Yogesh Badhe
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| | | | - Rakesh Gupta
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| | - Beena Rai
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| |
Collapse
|
4
|
Kopečná M, Macháček M, Roh J, Vávrová K. Proline, hydroxyproline, and pyrrolidone carboxylic acid derivatives as highly efficient but reversible transdermal permeation enhancers. Sci Rep 2022; 12:19495. [PMID: 36376455 PMCID: PMC9663686 DOI: 10.1038/s41598-022-24108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Overcoming the skin barrier properties efficiently, temporarily, and safely for successful transdermal drug delivery remains a challenge. We synthesized three series of potential skin permeation enhancers derived from natural amino acid derivatives proline, 4-hydroxyproline, and pyrrolidone carboxylic acid, which is a component of natural moisturizing factor. Permeation studies using in vitro human skin identified dodecyl prolinates with N-acetyl, propionyl, and butyryl chains (Pro2, Pro3, and Pro4, respectively) as potent enhancers for model drugs theophylline and diclofenac. The proline derivatives were generally more active than 4-hydroxyprolines and pyrrolidone carboxylic acid derivatives. Pro2-4 had acceptable in vitro toxicities on 3T3 fibroblast and HaCaT cell lines with IC50 values in tens of µM. Infrared spectroscopy using the human stratum corneum revealed that these enhancers preferentially interacted with the skin barrier lipids and decreased the overall chain order without causing lipid extraction, while their effects on the stratum corneum protein structures were negligible. The impacts of Pro3 and Pro4 on an in vitro transepidermal water loss and skin electrical impedance were fully reversible. Thus, proline derivatives Pro3 and Pro4 have an advantageous combination of high enhancing potency, low cellular toxicity, and reversible action, which is important for their potential in vivo use as the skin barrier would quickly recover after the drug/enhancer administration is terminated.
Collapse
Affiliation(s)
- Monika Kopečná
- grid.4491.80000 0004 1937 116XSkin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Miloslav Macháček
- grid.4491.80000 0004 1937 116XDepartment of Biochemical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Jaroslav Roh
- grid.4491.80000 0004 1937 116XDepartment of Organic and Bioorganic Chemistry, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- grid.4491.80000 0004 1937 116XSkin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Formulation and Evaluation of a Drug-in-Adhesive Patch for Transdermal Delivery of Colchicine. Pharmaceutics 2022; 14:pharmaceutics14102245. [PMID: 36297680 PMCID: PMC9611814 DOI: 10.3390/pharmaceutics14102245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Gout is one of the most prevalent rheumatic diseases, globally. Colchicine (COL) is the first-line drug used for the treatment of acute gout. However, the oral administration of COL is restricted, owing to serious adverse reactions. Therefore, this study aimed to develop a drug-in-adhesive (DIA) patch to achieve transdermal delivery of COL. We investigated the solubility of COL in different pressure-sensitive adhesives (PSAs) using slide crystallization studies. The COL-DIA patches were optimized based on in vitro skin penetration studies and evaluated by in vivo pharmacokinetics and pharmacodynamics. The results showed that the optimized COL-DIA patch contained 10% COL, Duro-Tak 87-2516 as PSA, 5% oleic acid (OA) and 5% propylene glycol (PG) as permeation enhancer, exhibiting the highest in vitro cumulative penetration amount of COL (235.14 ± 14.47 μg∙cm-2 over 48 h). Pharmacokinetic studies demonstrated that the maximum plasma drug concentration (Cmax) was 2.65 ± 0.26 ng/L and the mean retention time (MRT) was 37.47 ± 7.64 h of the COL-DIA patch, effectively reducing the drug side effects and prolonging drug activity. In addition, pharmacodynamic studies showed the patch significantly decreased the expression levels of inflammatory factors of gouty rats and reduced pathological damage in the ankle joint of rats, making it an attractive alternative to the administration of COL for the treatment of gout.
Collapse
|
6
|
Zhang C, Duan J, Huang Y, Chen M. Enhanced Skin Delivery of Therapeutic Peptides Using Spicule-Based Topical Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13122119. [PMID: 34959402 PMCID: PMC8709454 DOI: 10.3390/pharmaceutics13122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
This study reports two therapeutic peptides, insulin (INS, as a hydrophilic model peptide) and cyclosporine A (CysA, as a hydrophobic one), that can be administrated through a transdermal or dermal route by using spicule-based topical delivery systems in vitro and in vivo. We obtained a series of spicules with different shapes and sizes from five kinds of marine sponges and found a good correlation between the skin permeability enhancement induced by these spicules and their aspect ratio L/D. In the case of INS, Sponge Haliclona sp. spicules (SHS) dramatically increased the transdermal flux of INS (457.0 ± 32.3 ng/cm2/h) compared to its passive penetration (5.0 ± 2.2 ng/cm2/h) in vitro. Further, SHS treatment slowly and gradually reduced blood glucose to 13.1 ± 6.3% of the initial level in 8 h, while subcutaneous injection resulted in a rapid blood glucose reduction to 15.9 ± 1.4% of the initial level in 4 h, followed by a rise back to 75.1 ± 24.0% of the initial level in 8 h. In the case of CysA, SHS in combination with ethosomes (SpEt) significantly (p < 0.05) increased the accumulation of CysA in viable epidermis compared to other groups. Further, SpEt reduced the epidermis thickness by 41.5 ± 9.4% in 7 days, which was significantly more effective than all other groups. Spicule-based topical delivery systems offer promising strategies for delivering therapeutic peptides via a transdermal or dermal route.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
| | - Jiwen Duan
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
| | - Yongxiang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Ming Chen
- Department of Marine Biological Science & Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (C.Z.); (J.D.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
- Pingtan Research Institute of Xiamen University, Pingtan 350400, China
- Correspondence:
| |
Collapse
|
7
|
Bozdaganyan ME, Orekhov PS. Synergistic Effect of Chemical Penetration Enhancers on Lidocaine Permeability Revealed by Coarse-Grained Molecular Dynamics Simulations. MEMBRANES 2021; 11:410. [PMID: 34072597 PMCID: PMC8227207 DOI: 10.3390/membranes11060410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
The search for new formulations for transdermal drug delivery (TDD) is an important field in medicine and cosmetology. Molecules with specific physicochemical properties which can increase the permeability of active ingredients across the stratum corneum (SC) are called chemical penetration enhancers (CPEs), and it was shown that some CPEs can act synergistically. In this study, we performed coarse-grained (CG) molecular dynamics (MD) simulations of the lidocaine delivery facilitated by two CPEs-linoleic acid (LA) and ethanol-through the SC model membrane containing cholesterol, N-Stearoylsphingosine (DCPE), and behenic acid. In our simulations, we probed the effects of individual CPEs as well as their combination on various properties of the SC membrane and the lidocaine penetration across it. We demonstrated that the addition of both CPEs decreases the membrane thickness and the order parameters of the DPCE hydrocarbon chains. Moreover, LA also enhances diffusion of the SC membrane components, especially cholesterol. The estimated potential of mean force (PMF) profiles for the lidocaine translocation across SC in the presence/absence of two individual CPEs and their combination demonstrated that while ethanol lowers the free energy barrier for lidocaine to enter SC, LA decreases the depth of the free energy minima for lidocaine inside SC. These two effects supposedly result in synergistic penetration enhancement of drugs. Altogether, the present simulations provide a detailed molecular picture of CPEs' action and their synergistic effect on the penetration of small molecular weight therapeutics that can be beneficial for the design of novel drug and cosmetics formulations.
Collapse
Affiliation(s)
- Marine E. Bozdaganyan
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Philipp S. Orekhov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Institute of Personalized Medicine, Sechenov University, 119991 Moscow, Russia
- Research Center of Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
8
|
Pereira R, Silva SG, Pinheiro M, Reis S, do Vale ML. Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery. MEMBRANES 2021; 11:343. [PMID: 34067194 PMCID: PMC8151591 DOI: 10.3390/membranes11050343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Transdermal drug delivery (TDD) presents many advantages compared to other conventional routes of drug administration, yet its full potential has not been achieved. The administration of drugs through the skin is hampered by the natural barrier properties of the skin, which results in poor permeation of most drugs. Several methods have been developed to overcome this limitation. One of the approaches to increase drug permeation and thus to enable TDD for a wider range of drugs consists in the use of chemical permeation enhancers (CPEs), compounds that interact with skin to ultimately increase drug flux. Amino acid derivatives show great potential as permeation enhancers, as they exhibit high biodegradability and low toxicity. Here we present an overview of amino acid derivatives investigated so far as CPEs for the delivery of hydrophilic and lipophilic drugs across the skin, focusing on the structural features which promote their enhancement capacity.
Collapse
Affiliation(s)
- Rui Pereira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| | - Sandra G. Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| | - Marina Pinheiro
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.P.); (S.R.)
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (M.P.); (S.R.)
| | - M. Luísa do Vale
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (R.P.); (S.G.S.)
| |
Collapse
|
9
|
Camelina lipid droplets as skin delivery system promotes wound repair by enhancing the absorption of hFGF2. Int J Pharm 2021; 598:120327. [PMID: 33540033 DOI: 10.1016/j.ijpharm.2021.120327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/24/2022]
Abstract
Human basic fibroblast growth factor (hFGF2) is widely recognized for accelerating skin wound healing in both animal models and randomized clinical trials. However, the low skin permeation and bioavailability of hFGF2 remain the most limiting factors in the pharmacological application. For the first time, Camelina Lipid Droplets (CLD) delivery system was displayed important virtue, by promoting the skin absorption of hFGF2, which is a key factor that accelerates the skin wound repair, and provide a new alternative for skin therapy. In this study, we used the CLD as a safer material to prepare the nanoparticles, which were characterized by size and morphology. Our data revealed that particle sizes of Camelina Lipid Droplets linked to hFGF2 (CLD-hFGF2) were around 133.5 nm; it also displayed that the complex of CLD-hFGF2 penetrates the skin barrier in deeper than an individual hFGF2. This suggests that once the hFGF2 is fixed onto the surface of CLD, it can cross the stratum corneum and play a therapeutic role into the dermis. Furthermore, we demonstrated that CLD-hFGF2 enhances fibroblast migration, and significantly improves skin regeneration for accelerating wound healing without any significant toxicity. This paper highlights the importance of CLD as an emerging delivery system; it is also providing a new and applicable therapeutic research direction through enhancing the skin permeation of hFGF2 to accelerate wound healing.
Collapse
|
10
|
Najib ON, Martin GP, Kirton SB, Botha MJ, Sallam AS, Murnane D. The Influence of Oily Vehicle Composition and Vehicle-Membrane Interactions on the Diffusion of Model Permeants across Barrier Membranes. MEMBRANES 2021; 11:membranes11010057. [PMID: 33466758 PMCID: PMC7830636 DOI: 10.3390/membranes11010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
In many instances, one or more components of a pharmaceutical or cosmetic formulation is an oil. The aims of this study were two-fold. First, to examine the potential of preferential uptake of one oily vehicle component over another into a model barrier membrane (silicone) from blended vehicles (comprising two from the common excipients isohexadecane (IHD), hexadecane (HD), isopropyl myristate (IPM), oleic acid (OA) and liquid paraffin). Second, to study the effect of membrane-vehicle interactions on the diffusion of model permeants (caffeine (CF), methyl paraben (MP) and butyl paraben (BP)) from blended vehicles. Selective sorption and partition of some oils (especially IHD and IPM) at the expense of other oils (such as OA) was demonstrated to take place. For example, the membrane composition of IHD was enriched compared to a donor solution of IHD-OA: 41%, 63% and 82% IHD, compared to donor solution composition of 25%, 50% and 75% IHD, respectively. Pre-soaking the membrane in IHD, HD or LP, rather than phosphate buffer, enhanced the flux of MP through the membrane by 2.6, 1.7 and 1.3 times, respectively. The preferential sorption of individual oil components from mixtures altered the barrier properties of silicone membrane, and enhanced the permeation of CF, MP and BP, which are typically co-formulated in topical products.
Collapse
Affiliation(s)
- Omaima N. Najib
- Institute of Pharmaceutical Sciences, Franklin-Wilkins Building, Kings College London, 150 Stamford Street, London SE1 9NN, UK; (O.N.N.); (G.P.M.)
- International Pharmaceutical Research Centre, 1 Queen Rania Street, Amman 11196, Jordan
| | - Gary P. Martin
- Institute of Pharmaceutical Sciences, Franklin-Wilkins Building, Kings College London, 150 Stamford Street, London SE1 9NN, UK; (O.N.N.); (G.P.M.)
| | - Stewart B. Kirton
- Department of Clinical and Pharmaceutical Science, College Lane, University of Hertfordshire, Hatfield AL10 9AB, UK; (S.B.K.); (M.J.B.)
| | - Michelle J. Botha
- Department of Clinical and Pharmaceutical Science, College Lane, University of Hertfordshire, Hatfield AL10 9AB, UK; (S.B.K.); (M.J.B.)
| | - Al-Sayed Sallam
- Al-Taqaddom Pharmaceutical Industries, Co. 29-Queen Alia Street, Amman 11196, Jordan;
| | - Darragh Murnane
- Department of Clinical and Pharmaceutical Science, College Lane, University of Hertfordshire, Hatfield AL10 9AB, UK; (S.B.K.); (M.J.B.)
- Correspondence: ; Tel.: +44-(0)-1707-285904
| |
Collapse
|
11
|
Espino JA, Zhang Z, Jones LM. Chemical Penetration Enhancers Increase Hydrogen Peroxide Uptake in C. elegans for In Vivo Fast Photochemical Oxidation of Proteins. J Proteome Res 2020; 19:3708-3715. [PMID: 32506919 PMCID: PMC7861136 DOI: 10.1021/acs.jproteome.0c00245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical protein
footprinting method that covalently labels solvent-accessible amino acids by photolysis
of hydrogen peroxide. Recently, we expanded the use of FPOP for in vivo
(IV-FPOP) covalent labeling in C. elegans. In initial IV-FPOP studies,
545 proteins were oxidatively modified in all body systems within the worm. Here, with
the use of chemical penetration enhancers (CPEs), we increased the number of modified
proteins as well as the number of modifications per protein to gain more structural
information. CPEs aid in the delivery of hydrogen peroxide inside C.
elegans by disturbing the highly ordered lipid bilayer of the worm cuticle
without affecting worm viability. IV-FPOP experiments performed using the CPE azone
showed an increase in oxidatively modified proteins and peptides. This increase
correlated with greater hydrogen peroxide uptake by C. elegans
quantified using a chemical fluorophore demonstrating the efficacy of using CPEs with
IV-FPOP. Mass spectrometry proteomics data are available via ProteomeXchange with
identifier PXD019290.
Collapse
Affiliation(s)
- Jessica A Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, United States
| | - Zhihui Zhang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21202, United States
| |
Collapse
|
12
|
An Y, Park MJ, Lee J, Ko J, Kim S, Kang DH, Hwang NS. Recent Advances in the Transdermal Delivery of Protein Therapeutics with a Combinatorial System of Chemical Adjuvants and Physical Penetration Enhancements. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Young‐Hyeon An
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University Seoul 08826 Republic of Korea
| | - Mihn Jeong Park
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
| | - Joon Lee
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University Seoul 08826 Republic of Korea
| | - Su‐Hwan Kim
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
| | - Dong Hyeon Kang
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
- BioMAX Institute, Institute of BioengineeringSeoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
13
|
Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv 2020; 17:145-155. [PMID: 31910342 DOI: 10.1080/17425247.2020.1713087] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Transdermal drug delivery has several clinical benefits over conventional routes of drug administration. To open the transdermal route for a wider range of drugs, including macromolecules, numerous physical and chemical techniques to overcome the natural low skin permeability have been developed.Areas covered: This review focuses on permeation enhancers (penetration enhancers, percutaneous absorption promoters or accelerants), which are chemicals that increase drug flux through the skin barrier. First, skin components, drug permeation pathways, and drug properties are introduced. Next, we discuss properties of enhancers, their various classifications, structure-activity relationships, mechanisms of action, reversibility and toxicity, biodegradable enhancers, and synergistic enhancer combinations.Expert opinion: Overcoming the remarkable skin barrier properties in an efficient, temporary and safe manner remains a challenge. High permeation-enhancing potency has long been perceived to be associated with toxicity and irritation potential of such compounds, which has limited their further development. In addition, the complexity of enhancer interactions with skin, formulation and drug, along with their vast chemical diversity hampered understanding of their mechanisms of action. The recent development in the field revealed highly potent yet safe enhancers or enhancer combinations, which suggest that enhancer-aided transdermal drug delivery has yet to reach its full potential.
Collapse
Affiliation(s)
- Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Monika Kopečná
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
14
|
Gao S, Tian B, Han J, Zhang J, Shi Y, Lv Q, Li K. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema. Int J Nanomedicine 2019; 14:6135-6150. [PMID: 31447556 PMCID: PMC6683961 DOI: 10.2147/ijn.s205295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/12/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Nanostructured lipid carriers (NLCs) are emerging as attractive drug carriers in transdermal drug delivery. The surface modification of NLCs with cell-penetrating peptides (CPPs) can enhance the skin permeation of drugs. Purpose: The objective of the current study was to evaluate the ability of the cell-penetrating peptide (CPP) polyarginine to translocate NLCs loaded with lornoxicam (LN) into the skin layers and to evaluate its anti-inflammatory effect. Methods: The NLCs were prepared using an emulsion evaporation and low temperature solidification technique using glyceryl monostearates, triglycerides, DOGS-NTA-Ni lipids and surfactants, and then six histidine-tagged polyarginine containing 11 arginine (R11) peptides was modified on the surface of NLCs. Results: The developed NLCs formulated with LN and R11 (LN-NLC-R11) were incorporated into 2% HPMC gels. NLCs were prepared with a particle size of (121.81±3.61)–(145.72±4.78) nm, and the zeta potential decreased from (−30.30±2.07) to (−14.66±0.74) mV after the modification of R11 peptides. The encapsulation efficiency and drug loading were (74.61±1.13) % and (7.92±0.33) %, respectively, regardless of the surface modification. Cellular uptake assays using HaCaT cells suggested that the NLC modified with R11 (0.02%, w/w) significantly enhanced the cell internalization of nanoparticles relative to unmodified NLCs (P<0.05 or P<0.01). An in vitro skin permeation study showed better permeation-enhancing ability of R11 (0.02%, w/w) than that of other content (0.01% or 0.04%). In carrageenan-induced rat paw edema models, LN-NLC-R11 gels inhibited rat paw edema and the production of inflammatory cytokines compared with LN-NLC gels and LN gels (P<0.01). Conclusion: In our investigation, it was strongly demonstrated that the surface modification of NLC with R11 enhanced the translocation of LN across the skin, thereby alleviating inflammation.
Collapse
Affiliation(s)
- Shanshan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Jing Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Yanan Shi
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| | - Keke Li
- School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of china
| |
Collapse
|
15
|
Jain S, Khare P, Date T, Katiyar SS, Kushwah V, Katariya MK, Swami R. Mechanistic insights into high permeation vesicle-mediated synergistic enhancement of transdermal drug permeation. Nanomedicine (Lond) 2019; 14:2227-2241. [DOI: 10.2217/nnm-2018-0519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To design a nanocarrier platform for enhanced transdermal drug permeation. Materials & methods: Gel-based high permeation vesicles (HPVs) were developed and their performance in terms of transdermal flux improvement, in vitro release and skin irritancy was assessed. The mechanistic insights of permeation enhancement were explored using confocal laser scanning microscopy, ATR-FTIR, DSC and P31 NMR. Results: HPVs exhibited as vesicles with uniform size (∼150 nm), extended drug-release profile (∼48 h) and improved transdermal flux. HPVs were also nontoxic and nonirritant to skin. Enhanced vesicle deformability, improved vesicle membrane fluidity and synergistic permeation enhancement action of synergistic combination of permeation enhancer components was found to be responsible for HPV-mediated permeation enhancement. Conclusion: Overall, the study established that HPVs demonstrate a promising therapeutic advantage over conventional transdermal drug carriers.
Collapse
Affiliation(s)
- Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Pragati Khare
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Tushar Date
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Sameer S Katiyar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Varun Kushwah
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Mahesh K Katariya
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Rajan Swami
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| |
Collapse
|
16
|
Jafri I, Shoaib MH, Yousuf RI, Ali FR. Effect of permeation enhancers on in vitro release and transdermal delivery of lamotrigine from Eudragit ®RS100 polymer matrix-type drug in adhesive patches. Prog Biomater 2019; 8:91-100. [PMID: 31069700 PMCID: PMC6556165 DOI: 10.1007/s40204-019-0114-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022] Open
Abstract
The drug-in-adhesive (DIA)-type matrix patches of lamotrigine are developed using variable permeation enhancers (oleic acid, PG, lemon oil and aloe vera), and drug in vitro release and its permeation are evaluated. Lamotrigine has been long used as an anti-epileptic, mood stabilizer, to treat bipolar disorder in adults and off label as an antidepressant. lamotrigine matrix patches comprising of Eudragit®RS100 (rate-controlling polymer) and DuroTak® 387-2510 (adhesive) were prepared by pouring the solution on backing membrane (3M-9720). The thickness of 120 µm was adjusted through micrometer film applicator. USP Apparatus V was used for the evaluation of release profile, which was fitted into various mathematical models. Quality characteristics of patches were determined through weight variation, moisture content, moisture uptake and drug content evaluation. FTIR studies were performed for drug-excipient compatibility; Franz diffusion cell was employed for studying in vitro permeation parameters such as flux, lag time, and ER. Skin sensitivity study of optimized patch was also performed. The release from patches comprising of PG and oleic acid was maximum, i.e., 96.24 ± 1.15% and 91.12 ± 1.11%, respectively. Formulations (A1-A5) exhibited Makoid-Banakar release profile. Formulation A3 consisting of oleic acid was optimized due to enhanced permeation of drug across skin compared to other enhancers with enhancement ratio of 3.55. Skin sensitivity study revealed patch as safe and non-allergenic. The study demonstrates that oleic acid can be used as a suitable permeation enhancer for transdermal delivery of lamotrigine from matrix-type patches.
Collapse
Affiliation(s)
- Ifrah Jafri
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan.
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Fatima Ramzan Ali
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
17
|
Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019; 11:E129. [PMID: 30893852 PMCID: PMC6471246 DOI: 10.3390/pharmaceutics11030129] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Routes of drug administration and the corresponding physicochemical characteristics of a given route play significant roles in therapeutic efficacy and short term/long term biological effects. Each delivery method has favorable aspects and limitations, each requiring a specific delivery vehicles design. Among various routes, oral delivery has been recognized as the most attractive method, mainly due to its potential for solid formulations with long shelf life, sustained delivery, ease of administration and intensified immune response. At the same time, a few challenges exist in oral delivery, which have been the main research focus in the field in the past few years. The present work concisely reviews different administration routes as well as the advantages and disadvantages of each method, highlighting why oral delivery is currently the most promising approach. Subsequently, the present work discusses the main obstacles for oral systems and explains the most recent solutions proposed to deal with each issue.
Collapse
Affiliation(s)
- Bahman Homayun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Xueting Lin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
18
|
Sonzogni AS, Yealland G, Kar M, Wedepohl S, Gugliotta LM, Gonzalez VDG, Hedtrich S, Calderón M, Minari RJ. Effect of Delivery Platforms Structure on the Epidermal Antigen Transport for Topical Vaccination. Biomacromolecules 2018; 19:4607-4616. [DOI: 10.1021/acs.biomac.8b01307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana S. Sonzogni
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Guy Yealland
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Mrityunjoy Kar
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Stefanie Wedepohl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Luis M. Gugliotta
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Verónica D. G. Gonzalez
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Sarah Hedtrich
- Freie Universität Berlin, Institute of Pharmacy, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Roque J. Minari
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| |
Collapse
|
19
|
Yang R, Okonkwo OS, Zurakowski D, Kohane DS. Synergy between chemical permeation enhancers and drug permeation across the tympanic membrane. J Control Release 2018; 289:94-101. [PMID: 29932959 DOI: 10.1016/j.jconrel.2018.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Chemical permeation enhancers (CPEs) can enable antibiotic flux across the tympanic membrane. Here we study whether combinations of CPEs (sodium dodecyl sulfate, limonene, and bupivacaine hydrochloride) are synergistic and whether they could increase the peak drug flux. Synergy is studied by isobolographic analysis and combination indices. CPE concentration-response (i.e. trans-tympanic flux of ciprofloxacin) curves are demonstrated for each CPE, isobolograms constructed for pairs of CPEs, and synergy demonstrated for all three pairs. Synergy is much greater at earlier (6 h) than later (48 h) time points, although the effect sizes are greater later. Synergy is also demonstrated with the three-drug combination. Combinations of CPEs also greatly enhance the maximum drug flux achievable over that achieved by individual CPEs.
Collapse
Affiliation(s)
- Rong Yang
- Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Obiajulu S Okonkwo
- Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - David Zurakowski
- Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Daniel S Kohane
- Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Giulbudagian M, Yealland G, Hönzke S, Edlich A, Geisendörfer B, Kleuser B, Hedtrich S, Calderón M. Breaking the Barrier - Potent Anti-Inflammatory Activity following Efficient Topical Delivery of Etanercept using Thermoresponsive Nanogels. Am J Cancer Res 2018; 8:450-463. [PMID: 29290820 PMCID: PMC5743560 DOI: 10.7150/thno.21668] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNFα binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFα fusion protein etanercept (ETR) (~150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin.
Collapse
|
21
|
Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting Drugs Across Biological Barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606596. [PMID: 28752600 PMCID: PMC5683089 DOI: 10.1002/adma.201606596] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Indexed: 05/13/2023]
Abstract
The delivery of drugs to a target site frequently involves crossing biological barriers. The degree and nature of the impediment to flux, as well as the potential approaches to overcoming it, depend on the tissue, the drug, and numerous other factors. Here an overview of approaches that have been taken to crossing biological barriers is presented, with special attention to transdermal drug delivery. Technology and knowledge pertaining to addressing these issues in a variety of organs could have a significant clinical impact.
Collapse
Affiliation(s)
- Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Tuo Wei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Hannah Goldberg
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Bygd HC, Bratlie KM. Investigating the Synergistic Effects of Combined Modified Alginates on Macrophage Phenotype. Polymers (Basel) 2016; 8:E422. [PMID: 30974698 PMCID: PMC6432444 DOI: 10.3390/polym8120422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Understanding macrophage responses to biomaterials is crucial to the success of implanted medical devices, tissue engineering scaffolds, and drug delivery vehicles. Cellular responses to materials may depend synergistically on multiple surface chemistries, due to the polyvalent nature of cell⁻ligand interactions. Previous work in our lab found that different surface functionalities of chemically modified alginate could sway macrophage phenotype toward either the pro-inflammatory or pro-angiogenic phenotype. Using these findings, this research aims to understand the relationship between combined material surface chemistries and macrophage phenotype. Tumor necrosis factor-α (TNF-α) secretion, nitrite production, and arginase activity were measured and used to determine the ability of the materials to alter macrophage phenotype. Cooperative relationships between pairwise modifications of alginate were determined by calculating synergy values for the aforementioned molecules. Several materials appeared to improve M1 to M2 macrophage reprogramming capabilities, giving valuable insight into the complexity of surface chemistries needed for optimal incorporation and survival of implanted biomaterials.
Collapse
Affiliation(s)
- Hannah C Bygd
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA.
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
23
|
Van Bocxlaer K, Yardley V, Murdan S, Croft SL. Topical formulations of miltefosine for cutaneous leishmaniasis in a BALB/c mouse model. ACTA ACUST UNITED AC 2016; 68:862-72. [PMID: 27230300 DOI: 10.1111/jphp.12548] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania and affects approximately 10 million people worldwide. Currently available drugs are not ideal due to high cost, toxicity, parenteral administration and suboptimal efficacy. Miltefosine is the only oral treatment (Impavido®) available to treat CL, given over a period of 28 days with common side effects such as vomiting and diarrhoea. OBJECTIVE To explore the local application of miltefosine as a topical formulation to enhance activity and reduce the drug's adverse effects. METHODS The antileishmanial activity of miltefosine was confirmed in vitro against several Leishmania species. The permeation of miltefosine, in different solvents and solvent combinations, through BALB/c mouse skin was evaluated in vitro using Franz diffusion cells. The topical formulations which enabled the highest drug permeation or skin disposition were tested in vivo in BALB/c mice infected with L. major. KEY FINDINGS The overall permeation of miltefosine through skin was low regardless of the solvents used. This was reflected in limited antileishmanial activity of the drug formulations when applied topically in vivo. All topical formulations caused skin irritation. CONCLUSIONS We conclude that miltefosine is not an appropriate candidate for the topical treatment of CL.
Collapse
Affiliation(s)
- Katrien Van Bocxlaer
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK.,Department of Infection and Immunology, London School of Hygiene & Tropical Medicine, London, UK
| | - Vanessa Yardley
- Department of Infection and Immunology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Simon L Croft
- Department of Infection and Immunology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
24
|
Kong X, Zhao Y, Quan P, Fang L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
Hamishehkar H, Khoshbakht M, Jouyban A, Ghanbarzadeh S. The Relationship between Solubility and Transdermal Absorption of Tadalafil. Adv Pharm Bull 2015; 5:411-7. [PMID: 26504764 PMCID: PMC4616899 DOI: 10.15171/apb.2015.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The aim of this study was to find a relationship between drug solubility and its transdermal permeation and find the best vehicle composition to improve transdermal permeation of Tadalafil. METHODS Pure or binary mixtures of commonly used solvents in pharmaceutical sciences including ethanol, glycerin, N-methyl pyrrolidone (NMP), polyethylene glycol (PEG) 400 and propylene glycol (PG) were evaluated for drug solubility and transdermal delivery through the exercised rat skin employing Franz diffusion cells. RESULTS Tadalafil showed higher solubility in NMP compared to the other solvents. The amount of Tadalafil permeation from the pure vehicles was ranked as follow: Ethanol >glycerin >NMP>PEG 400 >PG. Furthermore, the solubility and transdermal delivery from binary mixtures of NMP and PG were higher than that obtained from pure PG, and accordingly, both increased with increasing NMP concentration in the binary solvent mixtures. The Flux values were determined as following order for Ethanol>NMP>glycerin>PG>PEG 400. CONCLUSION Generally, increase in Tadalafil solubility resulted in a decrease in its skin penetration rate and amount. However, NMP exhibited substantial drug skin penetration rate and amount accompanying with appropriate drug solvency. In conclusion, the results of this study introduced NMP as a solvent suitable for application in the formulation of topically applied drug delivery systems.
Collapse
Affiliation(s)
- Hamed Hamishehkar
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Khoshbakht
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghanbarzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Abstract
To achieve an efficient skin penetration of most compounds it is necessary to overcome the barrier function of the skin, provided mainly (but not only) by the stratum corneum. Among various strategies used or studied to date, chemical penetration enhancers are the most frequently employed with one of the longest histories of use. There is a multitude of agents described as penetration enhancers, and they present varying properties and structures. In this manuscript, we aim to provide a brief overview of traditional enhancers and some of their properties, focusing on the benefits of combination of chemical enhancers and on selected novel compounds that have shown promise to increase drug delivery into/across the skin.
Collapse
|
27
|
Mullin CA, Chen J, Fine JD, Frazier MT, Frazier JL. The formulation makes the honey bee poison. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:27-35. [PMID: 25987217 DOI: 10.1016/j.pestbp.2014.12.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 05/14/2023]
Abstract
Dr. Fumio Matsumura's legacy embraced a passion for exploring environmental impacts of agrochemicals on non-target species such as bees. Why most formulations are more toxic to bees than respective active ingredients and how pesticides interact to cause pollinator decline cannot be answered without understanding the prevailing environmental chemical background to which bees are exposed. Modern pesticide formulations and seed treatments, particularly when multiple active ingredients are blended, require proprietary adjuvants and inert ingredients to achieve high efficacy for targeted pests. Although we have found over 130 different pesticides and metabolites in beehive samples, no individual pesticide or amount correlates with recent bee declines. Recently we have shown that honey bees are sensitive to organosilicone surfactants, nonylphenol polyethoxylates and the solvent N-methyl-2-pyrrolidone (NMP), widespread co-formulants used in agrochemicals and frequent pollutants within the beehive. Effects include learning impairment for adult bees and chronic toxicity in larval feeding bioassays. Multi-billion pounds of formulation ingredients like NMP are used and released into US environments. These synthetic organic chemicals are generally recognized as safe, have no mandated tolerances, and residues remain largely unmonitored. In contrast to finding about 70% of the pesticide active ingredients searched for in our pesticide analysis of beehive samples, we have found 100% of the other formulation ingredients targeted for analysis. These 'inerts' overwhelm the chemical burden from active pesticide, drug and personal care ingredients with which they are formulated. Honey bees serve as an optimal terrestrial bioindicator to determine if 'the formulation and not just the dose makes the poison'.
Collapse
Affiliation(s)
- Christopher A Mullin
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jing Chen
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Julia D Fine
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maryann T Frazier
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - James L Frazier
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
28
|
Song W, Cun D, Quan P, Liu N, Chen Y, Cui H, Xiang R, Fang L. Dual-directional regulation of drug permeating amount by combining the technique of ion-pair complexation with chemical enhancers for the synchronous permeation of indapamide and bisoprolol in their compound patch through rabbit skin. Eur J Pharm Biopharm 2015; 91:59-65. [DOI: 10.1016/j.ejpb.2015.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 11/27/2022]
|
29
|
Abstract
AbstractBacterial cellulose (BC), a natural polymer with unique physical and mechanical properties, has several applications in the biomedical field, including drug loading and controlled drug delivery. For this study, a Box-Behnken experimental design was employed as a statistical tool to optimize the release of a model drug, amoxicillin, from BC membranes. Independent variables studied were the concentration of the drug (X1), the concentration of glycerol (X2) and the concentration of a permeation enhancer (X3). From the variables studied, drug concentration had the highest effect on drug release. Among the other independent variables, th linear and quadratic X2 terms, the linear X3 term and the interaction term X2X3 were found to affect the release of amoxicillin from bacterial cellulose membranes.
Collapse
|
30
|
Zhou W, He S, Yang Y, Jian D, Chen X, Ding J. Formulation, characterization and clinical evaluation of propranolol hydrochloride gel for transdermal treatment of superficial infantile hemangioma. Drug Dev Ind Pharm 2014; 41:1109-19. [DOI: 10.3109/03639045.2014.931968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Maurya A, Narasimha Murthy S. Pretreatment with Skin Permeability Enhancers: Importance of Duration and Composition on the Delivery of Diclofenac Sodium. J Pharm Sci 2014; 103:1497-503. [DOI: 10.1002/jps.23938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 11/11/2022]
|
32
|
An overview of clinical and commercial impact of drug delivery systems. J Control Release 2014; 190:15-28. [PMID: 24747160 DOI: 10.1016/j.jconrel.2014.03.053] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems.
Collapse
|
33
|
Lopes LB. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics 2014; 6:52-77. [PMID: 24590260 PMCID: PMC3978525 DOI: 10.3390/pharmaceutics6010052] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/24/2014] [Accepted: 02/11/2014] [Indexed: 11/16/2022] Open
Abstract
Microemulsions are fluid and isotropic formulations that have been widely studied as delivery systems for a variety of routes, including the skin. In spite of what the name suggests, microemulsions are nanocarriers, and their use as topical delivery systems derives from their multiple advantages compared to other dermatological formulations, such as ease of preparation, thermodynamic stability and penetration-enhancing properties. Composition, charge and internal structure have been reported as determinant factors for the modulation of drug release and cutaneous and transdermal transport. This manuscript aims at reviewing how these and other characteristics affect delivery and make microemulsions appealing for topical and transdermal administration, as well as how they can be modulated during the formulation design to improve the potential and efficacy of the final system.
Collapse
Affiliation(s)
- Luciana B Lopes
- Institute of Biomedical Science, University of São Paulo, São Paulo 05508, SP, Brazil.
| |
Collapse
|
34
|
Papa S, Ferrari R, De Paola M, Rossi F, Mariani A, Caron I, Sammali E, Peviani M, Dell'Oro V, Colombo C, Morbidelli M, Forloni G, Perale G, Moscatelli D, Veglianese P. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Release 2013; 174:15-26. [PMID: 24225226 DOI: 10.1016/j.jconrel.2013.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/11/2013] [Accepted: 11/01/2013] [Indexed: 01/24/2023]
Abstract
The possibility to control the fate of the cells responsible for secondary mechanisms following spinal cord injury (SCI) is one of the most relevant challenges to reduce the post traumatic degeneration of the spinal cord. In particular, microglia/macrophages associated inflammation appears to be a self-propelling mechanism which leads to progressive neurodegeneration and development of persisting pain state. In this study we analyzed the interactions between poly(methyl methacrylate) nanoparticles (PMMA-NPs) and microglia/macrophages in vitro and in vivo, characterizing the features that influence their internalization and ability to deliver drugs. The uptake mechanisms of PMMA-NPs were in-depth investigated, together with their possible toxic effects on microglia/macrophages. In addition, the possibility to deliver a mimetic drug within microglia/macrophages was characterized in vitro and in vivo. Drug-loaded polymeric NPs resulted to be a promising tool for the selective administration of pharmacological compounds in activated microglia/macrophages and thus potentially able to counteract relevant secondary inflammatory events in SCI.
Collapse
Affiliation(s)
- Simonetta Papa
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Raffaele Ferrari
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Massimiliano De Paola
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Ambiente e Salute, via La Masa 19, 20156 Milan, Italy
| | - Filippo Rossi
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Alessandro Mariani
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Ambiente e Salute, via La Masa 19, 20156 Milan, Italy
| | - Ilaria Caron
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Eliana Sammali
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Marco Peviani
- Università di Pavia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", via Ferrata, 9, 27100 Pavia, Italy
| | - Valentina Dell'Oro
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Claudio Colombo
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, ETH Zurich, Campus Hoenggerberg, HCI F125, Wolfgang Pauli Str. 10, 8093 Zurich, Switzerland
| | - Gianluigi Forloni
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy
| | - Giuseppe Perale
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy; Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, via Cantonale, CH-6928 Manno, Switzerland; Swiss Institute for Regenerative Medicine, CH-6807 Taverne, Switzerland
| | - Davide Moscatelli
- Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", via Mancinelli 7, 20131 Milan, Italy
| | - Pietro Veglianese
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Dipartimento di Neuroscienze, via La Masa 19, 20156 Milan, Italy.
| |
Collapse
|
35
|
Flurbiprofen PLGA-PEG nanospheres: Role of hydroxy-β-cyclodextrin on ex vivo human skin permeation and in vivo topical anti-inflammatory efficacy. Colloids Surf B Biointerfaces 2013; 110:339-46. [DOI: 10.1016/j.colsurfb.2013.04.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/16/2013] [Accepted: 04/27/2013] [Indexed: 11/22/2022]
|
36
|
Khoo X, Simons EJ, Chiang HH, Hickey JM, Sabharwal V, Pelton SI, Rosowski JJ, Langer R, Kohane DS. Formulations for trans-tympanic antibiotic delivery. Biomaterials 2013; 34:1281-8. [PMID: 23146430 PMCID: PMC3511665 DOI: 10.1016/j.biomaterials.2012.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/07/2012] [Indexed: 10/27/2022]
Abstract
We have developed a drug delivery system for prolonged trans-tympanic antibiotic delivery from a single dose administration. Increased permeability to ciprofloxacin of the intact tympanic membrane (TM) was achieved by chemical permeation enhancers (CPEs--bupivacaine, limonene, sodium dodecyl sulfate); this was also seen by CPEs contained within a hydrogel (poloxamer 407) to maintain the formulation at the TM. The CPE-hydrogel formulation had minimal effects on auditory thresholds and tissue response in vivo. CPE-hydrogel formulations have potential for ototopical delivery of ciprofloxacin for the treatment of acute otitis media (AOM) and other middle ear diseases.
Collapse
Affiliation(s)
- Xiaojuan Khoo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Emmanuel J. Simons
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Homer H. Chiang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Julia M. Hickey
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Vishakha Sabharwal
- Division of Pediatric Infectious Diseases, Maxwell Finland Laboratory for Infectious Diseases, Boston Medical Center, Boston, MA 02118, USA
| | - Stephen I. Pelton
- Division of Pediatric Infectious Diseases, Maxwell Finland Laboratory for Infectious Diseases, Boston Medical Center, Boston, MA 02118, USA
| | - John J. Rosowski
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Otology and Laryngology, Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Robert Langer
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel S. Kohane
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
37
|
Amino acid derivatives as transdermal permeation enhancers. J Control Release 2013; 165:91-100. [DOI: 10.1016/j.jconrel.2012.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/28/2012] [Accepted: 11/03/2012] [Indexed: 01/31/2023]
|
38
|
Karande P, Mitragotri S. Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies. Annu Rev Chem Biomol Eng 2012; 1:175-201. [PMID: 22432578 DOI: 10.1146/annurev-chembioeng-073009-100948] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skin is an immunologically active tissue composed of specialized cells and agents that capture and process antigens to confer immune protection. Transcutaneous immunization takes advantage of the skin immune network by inducing a protective immune response against topically applied antigens. This mode of vaccination presents a novel and attractive approach for needle-free immunization that is safe, noninvasive, and overcomes many of the limitations associated with needle-based administrations. In this review we will discuss the developments in the field of transcutaneous immunization in the past decade with special emphasis on disease targets and vaccine delivery technologies. We will also briefly discuss the challenges that need to be overcome to translate early laboratory successes in transcutaneous immunization into the development of effective clinical prophylactics.
Collapse
Affiliation(s)
- Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | |
Collapse
|
39
|
Shah PP, Desai PR, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release 2012; 161:735-45. [PMID: 22617521 DOI: 10.1016/j.jconrel.2012.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/24/2012] [Accepted: 05/05/2012] [Indexed: 01/19/2023]
Abstract
The objective of the present study was to investigate the effect of polyarginine chain length on topical delivery of surface modified NLCs. Design of experiments (DOE) was used to optimize number of arginines required to deliver active drug into deeper skin layers. The NLCs were prepared by hot-melt technique and the surface of NLCs was modified with six-histidine tagged cell penetrating peptides (CPPs) or YKA. In vivo confocal microscopy and Raman confocal spectroscopy studies were performed using fluorescent dye encapsulated NLCs and NLC-CPPs. Spantide II (SP) and ketoprofen (KP) were used as model drugs for combined delivery. In vitro skin permeation and drug release studies were performed using Franz diffusion cells. Inflammatory response corresponding to higher skin permeation was investigated in allergic contact dermatitis (ACD) mouse model. NLCs had a particle size of 140±20nm with higher encapsulation efficiencies. The negative charge of NLC was reduced from -17.54 to -8.47 mV after surface modification with CPPs. In vivo confocal microscopy and Raman confocal spectroscopy studies suggested that a peptide containing 11 arginines (R11) had significant permeation enhancing ability than other polyarginines and TAT peptides. The amount of SP and KP retained in dermis after topical application of NLC-R11 was significantly higher than solution and NLC after 24 h of skin permeation. SP was not found in receiver compartment. However, KP was found in receiver compartment and the amount of KP present in receiver compartment was increased approximately 7.9 and 2.6 times compared to the control solution and NLCs, respectively. In an ACD mouse model, SP+KP-NLC-R11 showed significant reduction (p<0.05) in ear thickness compared to SP+KP solution and SP+KP-NLC. Our results strongly suggest that the surface modification of NLC with R11 improved transport of SP and KP across the deeper skin layers and thus results in reduction of inflammation associated with ACD.
Collapse
Affiliation(s)
- Punit P Shah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The process for developing drug delivery systems has evolved over the past two decades with more scientific rigor, involving a collaboration of various fields, i.e., biology, chemistry, engineering, and pharmaceutics. Drug products, also commonly known in the pharmaceutical industry as formulations or "dosage forms," are used for administering the active pharmaceutical ingredient (API) for purposes of assessing safety in preclinical models, early- to late-phase human clinical trials, and for routine clinical/commercial use. This overview discusses approaches for creating small-molecule API dosage forms, from preformulation to commercial manufacturing.
Collapse
Affiliation(s)
- Padma Narayan
- The Dow Chemical Company, Engineering Sciences, Solids Processing, Midland, Michigan, USA
| |
Collapse
|
41
|
Liu J, Wang Z, Liu C, Xi H, Li C, Chen Y, Sun L, Mu L, Fang L. Silicone adhesive, a better matrix for tolterodine patches—a research based onin vitro/in vivostudies. Drug Dev Ind Pharm 2011; 38:1008-14. [DOI: 10.3109/03639045.2011.637049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Shah PP, Desai PR, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release 2011; 158:336-45. [PMID: 22134117 DOI: 10.1016/j.jconrel.2011.11.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
The objective of the present study was to evaluate the effect of oleic acid modified polymeric bilayered nanoparticles (NPS) on combined delivery of two anti-inflammatory drugs, spantide II (SP) and ketoprofen (KP) on the skin permeation. NPS were prepared using poly(lactic-co-glycolic acid) (PLGA) and chitosan. SP and KP were encapsulated in different layers alone or/and in combination (KP-NPS, SP-NPS and SP+KP-NPS). The surface of NPS was modified with oleic acid (OA) ('Nanoease' technology) using an established procedure in the laboratory (KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA). Fluorescent dyes (DiO and DID) containing surface modified (DiO-NPS-OA and DID-NPS-OA) and unmodified NPS (DiO-NPS and DID-NPS) were visualized in lateral rat skin sections using confocal microscopy and Raman confocal spectroscopy after skin permeation. In vitro skin permeation was performed in dermatomed human skin and HPLC was used to analyze the drug levels in different skin layers. Further, allergic contact dermatitis (ACD) model was used to evaluate the response of KP-NPS, SP-NPS, SP+KP-NPS, KP-NPS-OA, SP-NPS-OA and SP+KP-NPS-OA treatment in C57BL/6 mice. The fluorescence from OA modified NPS was observed up to a depth of 240μm and was significantly higher as compared to non-modified NPS. The amount of SP and KP retained in skin layers from OA modified NPS increased by several folds compared to unmodified NPS and control solution. In addition, the combination index value calculated from ACD response for solution suggested an additive effect and moderate synergism for NPS-OA. Our results strongly suggest that surface modification of bilayered nanoparticles with oleic acid improved drug delivery to the deeper skin layers.
Collapse
Affiliation(s)
- Punit P Shah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | |
Collapse
|
43
|
|
44
|
Lin JCY, Huang CJ, Lee YT, Lee KM, Lin IJB. Carboxylic acid functionalized imidazolium salts: sequential formation of ionic, zwitterionic, acid-zwitterionic and lithium salt-zwitterionic liquid crystals. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10580a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Jampilek J, Brychtova K. Azone analogues: classification, design, and transdermal penetration principles. Med Res Rev 2010; 32:907-47. [DOI: 10.1002/med.20227] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy; University of Veterinary and Pharmaceutical Sciences Brno; Palackeho 1-3 612 42 Brno Czech Republic
- Zentiva k.s., U kabelovny 130; 102 37 Prague 10 Czech Republic
| | - Katerina Brychtova
- Department of Chemical Drugs, Faculty of Pharmacy; University of Veterinary and Pharmaceutical Sciences Brno; Palackeho 1-3 612 42 Brno Czech Republic
| |
Collapse
|
46
|
Foldvari M, Badea I, Wettig S, Baboolal D, Kumar P, Creagh AL, Haynes CA. Topical delivery of interferon alpha by biphasic vesicles: evidence for a novel nanopathway across the stratum corneum. Mol Pharm 2010; 7:751-62. [PMID: 20349952 DOI: 10.1021/mp900283x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noninvasive delivery of macromolecules across intact skin is challenging but would allow for needle-free administration of many pharmaceuticals. Biphasic vesicles, a novel lipid-based topical delivery system, have been shown to deliver macromolecules into the skin. Investigation of the delivery mechanism of interferon alpha (IFN alpha), as a model protein, by biphasic vesicles could improve understanding of molecular transport through the stratum corneum and allow for the design of more effective delivery systems. The interaction of biphasic vesicles with human skin and isolated stratum corneum membrane was investigated by confocal microscopy, differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS and WAXS). Confocal microscopy revealed that biphasic vesicles delivered IFN alpha intercellularly, to a depth of 70 microm, well below the stratum corneum and into the viable epidermis. DSC and SAXS/WAXS data suggest that the interaction of biphasic vesicles with SC lipids resulted in the formation of a three-dimensional cubic Pn3m polymorphic phase by the molecular rearrangement of intercellular lipids. This cubic phase could be an intercellular permeation nanopathway that may explain the increased delivery of IFN alpha by biphasic vesicles. Liposomes and submicrometer emulsion (the individual building blocks of biphasic vesicles) separately and methylcellulose gel, an alternative topical vehicle, did not induce a cubic phase and delivered low amounts of IFN alpha below the stratum corneum. Molecular modeling of the cubic Pn3m phase and lamellar-to-cubic phase transitions provides a plausible mechanism for transport of IFN alpha. It is hypothesized that induction of a Pn3m cubic phase in stratum corneum lipids could make dermal and transdermal delivery of other macromolecules also possible.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 2010; 1:109-31. [PMID: 21132122 PMCID: PMC2995530 DOI: 10.4155/tde.10.16] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs.
Collapse
Affiliation(s)
- Kalpana S Paudel
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Mikolaj Milewski
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Courtney L Swadley
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Nicole K Brogden
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Priyanka Ghosh
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Audra L Stinchcomb
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| |
Collapse
|
48
|
Multicomponent chemical enhancer formulations for transdermal drug delivery: More is not always better. J Control Release 2010; 144:175-80. [DOI: 10.1016/j.jconrel.2010.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/03/2010] [Accepted: 02/08/2010] [Indexed: 11/22/2022]
|
49
|
Arora A, Mitragotri S. Novel topical microbicides through combinatorial strategies. Pharm Res 2010; 27:1264-72. [PMID: 20306119 PMCID: PMC2883926 DOI: 10.1007/s11095-010-0095-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 02/15/2010] [Indexed: 11/24/2022]
Abstract
Purpose Developing microbicides for topical epithelial applications is extremely challenging, as evidenced by the scarcity of approved products even after decades of research. Chemical enhancers, including surfactants, are known to be effective antimicrobial agents but are typically toxic towards epithelial cells. Here, we report on the discovery of unique surfactant formulations with improved safety and efficacy profile for epithelial applications, via a combination of high throughput screening techniques. Methods Over three-hundred formulations derived from nine surfactants were screened for antibacterial properties against E. coli in vitro. A subset of these formulations showed high antibacterial activity and was screened for cytotoxicity in vitro. Formulations showing high antibacterial activity and reduced cytotoxicity compared to their individual components were tested for efficacy against B. thailendensis, a model for melioidosis-causing B. pseudomallei. Results Lead formulations showed lower toxicity towards epidermal keratinocytes, with LC50 values up to 3.5-fold higher than their component surfactants, while maintaining antibacterial efficacy against B. thailendensis. Conclusions Our results demonstrate that such a combinatorial screening approach can be used for designing safe and potent microbicides for epithelial applications.
Collapse
Affiliation(s)
- Anubhav Arora
- Department of Chemical Engineering, Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
50
|
Azarbayjani AF, Tan EH, Chan YW, Chan SY. Transdermal delivery of haloperidol by proniosomal formulations with non-ionic surfactants. Biol Pharm Bull 2010; 32:1453-8. [PMID: 19652389 DOI: 10.1248/bpb.32.1453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proniosomal formulations with non-ionic surfactant were studied. The effect of hydrophilicity and hydrophobicity of one or two surfactants on drug solubility, proniosome surface structure and stability and skin permeation of haloperidol from different formulations were investigated. Haloperidol (HP) was entrapped in proniosomes with very high efficiency for all formulations. Stability studies performed at 4 degrees C and 25 degrees C for a period of 6 weeks did not reveal any significant drug leakage (p>0.05). Formulations with single surfactants were found to increase the skin permeation of HP more than formulations containing two surfactants. The number of carbons in the alkyl chain of the non-ionic surfactant influenced the in vitro permeation of HP though the epidermis and the skin permeation was increased with increase in hydrophilic-lipophilic balance (HLB) value of the surfactant. Interfacial tension and surfactant hydrophobicity appeared to be useful for elucidating mechanism of skin permeation and for comparing drug fluxes from different proniosomal formulations.
Collapse
|