1
|
Inoue M, Muta K, Mohammed AFA, Onodera R, Higashi T, Ouchi K, Ueda M, Ando Y, Arima H, Jono H, Motoyama K. Feasibility Study of Dendrimer-Based TTR-CRISPR pDNA Polyplex for Ocular Amyloidosis <i>in Vitro</i>. Biol Pharm Bull 2022; 45:1660-1668. [DOI: 10.1248/bpb.b22-00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Masamichi Inoue
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kyosuke Muta
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University
| | - Kenta Ouchi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
2
|
Inoue M, Higashi T, Hayashi Y, Onodera R, Fujisawa K, Taharabaru T, Yokoyama R, Ouchi K, Misumi Y, Ueda M, Inoue Y, Mizuguchi M, Saito T, Saido TC, Ando Y, Arima H, Motoyama K, Jono H. Multifunctional Therapeutic Cyclodextrin-Appended Dendrimer Complex for Treatment of Systemic and Localized Amyloidosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40599-40611. [PMID: 36052562 DOI: 10.1021/acsami.2c09913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amyloidosis pathologically proceeds via production of amyloidogenic proteins by organs, formation of protein aggregates through structural changes, and their deposition on tissues. A growing body of evidence demonstrates that amyloidosis generally develops through three critical pathological steps: (1) production of amyloid precursor proteins, (2) amyloid formation, and (3) amyloid deposition. However, no clinically effective therapy that is capable of targeting each pathological step of amyloidosis independently is currently available. Here, we combined therapeutic effects and developed a short hairpin RNA expression vector (shRNA) complex with a cyclodextrin-appended cationic dendrimer (CDE) as a novel multitarget therapeutic drug that is capable of simultaneously suppressing these three steps. We evaluated its therapeutic effects on systemic transthyretin (ATTR) amyloidosis and Alzheimer's disease (AD) as localized amyloidosis, by targeting TTR and amyloid β, respectively. CDE/shRNA exhibited RNAi effects to suppress amyloid protein production and also achieved both inhibition of amyloid formation and disruption of existing amyloid fibrils. The multitarget therapeutic effects of CDE/shRNA were confirmed by evaluating TTR deposition reduction in early- and late-onset human ATTR amyloidosis model rats and amyloid β deposition reduction in AppNL-G-F/NL-G-F AD model mice. Thus, the CDE/shRNA complex exhibits multifunctional therapeutic efficacy and may reveal novel strategies for establishing curative treatments for both systemic and localized amyloidosis.
Collapse
Affiliation(s)
- Masamichi Inoue
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools "Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuya Hayashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kazuya Fujisawa
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Taharabaru
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kenta Ouchi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Amyloidosis Research, Nagasaki International University, 2825-7 Huis Ten Bosch-machi, Sasebo-shi, Nagasaki 859-3298, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511 Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
3
|
Lai TH, Keperscha B, Qiu X, Voit B, Appelhans D. Long-Term Retarded Release for the Proteasome Inhibitor Bortezomib through Temperature-Sensitive Dendritic Glycopolymers as Drug Delivery System from Calcium Phosphate Bone Cement. Macromol Rapid Commun 2021; 42:e2100083. [PMID: 34048124 DOI: 10.1002/marc.202100083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Indexed: 12/22/2022]
Abstract
For the local treatment of bone defects, highly adaptable macromolecular architectures are still required as drug delivery system (DDS) in solid bone substitute materials. Novel DDS fabricated by host-guest interactions between β-cyclodextrin-modified dendritic glycopolymers and adamantane-modified temperature-sensitive polymers for the proteasome inhibitor bortezomib (BZM) is presented. These DDS induce a short- and long-term (up to two weeks) retarded release of BZM from calcium phosphate bone cement (CPC) in comparison to a burst release of the drug alone. Different release parameters of BZM/DDS/CPC are evaluated in phosphate buffer at 37 °C to further improve the long-term retarded release of BZM. This is achieved by increasing the amount of drug (50-100 µg) and/or DDS (100-400 µg) versus CPC (1 g), by adapting the complexes better to the porous bone cement environment, and by applying molar ratios of excess BZM toward DDS with 1:10, 1:25, and 1:100. The temperature-sensitive polymer shells of BZM/DDS complexes in CPC, which allow drug loading at room temperature but are collapsed at body temperature, support the retarding long-term release of BZM from DDS/CPC. Thus, the concept of temperature-sensitive DDS for BZM/DDS complexes in CPC works and matches key points for a local therapy of osteolytic bone lesions.
Collapse
Affiliation(s)
- Thu Hang Lai
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany.,Department of Research and Development, ROTOP Pharmaka Ltd., Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Bettina Keperscha
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany.,Organic Chemistry of Polymers, Technische Universität, Dresden, 01062, Germany
| | - Xianping Qiu
- Hubei Institute of Aerospace Chemotechnology, 1 Chunyuan Road, Fancheng District, Xiangyang, 441003, P. R. China
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany.,Organic Chemistry of Polymers, Technische Universität, Dresden, 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany
| |
Collapse
|
4
|
Arima H. Twenty Years of Research on Cyclodextrin Conjugates with PAMAM Dendrimers. Pharmaceutics 2021; 13:697. [PMID: 34064866 PMCID: PMC8151880 DOI: 10.3390/pharmaceutics13050697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, the number of gene and oligonucleotide drugs are increasing. Of various drug delivery systems (DDSs) for gene and oligonucleotide drugs, few examples of the clinical application of polymer as drug carriers are known, despite development of the novel polymers has been progressing. Cyclodextrin (CD) conjugates with starburst polyamidoamine (PAMAM) dendrimer (CDEs), as a new type of polymer-based carriers, were first published in 2001. After that, galactose-, lactose-, mannose-, fucose-, folate-, and polyethyleneglycol (PEG)-appended CDEs have been prepared for passive and active targeting for gene, oligonucleotide, and low-molecular-weight drugs. PEG-appended CDE formed polypsuedorotaxanes with α-CD and γ-CD, which are useful for a sustained release system of gene and oligonucleotide drugs. Interestingly, CDEs were found to have anti-inflammatory effects and anti-amyloid effects themselves, which have potential as active pharmaceutical ingredients. Most recently, CDE is reported to be a useful Cas9-RNA ribonucleoproteins (Cas9 RNP) carrier that induces genome editing in the neuron and brain. In this review, the history and progression of CDEs are overviewed.
Collapse
Affiliation(s)
- Hidetoshi Arima
- School of Pharmacy, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan
| |
Collapse
|
5
|
Mousazadeh H, Pilehvar-Soltanahmadi Y, Dadashpour M, Zarghami N. Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy. J Control Release 2021; 330:1046-1070. [DOI: 10.1016/j.jconrel.2020.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
|
6
|
Zamani S, Shafeie-Ardestani M, Bitarafan-Rajabi A, Khalaj A, Sabzevari O. Synthesis, radiolabelling, and biological assessment of folic acid-conjugated G-3 99mTc-dendrimer as the breast cancer molecular imaging agent. IET Nanobiotechnol 2020; 14:628-634. [PMID: 33010140 PMCID: PMC8676428 DOI: 10.1049/iet-nbt.2020.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Hence, in this study, the authors aimed to develop a dendrimer-based imaging agent comprised of poly(ethylene glycol) (PEG)-citrate, technetium-99 m (99mTc), and folic acid. The dendrimer-G3 was synthesised and conjugated with folic acid, which confirmed by Fourier transform infrared, proton nuclear magnetic resonance, dynamic light scattering, and transition electron microscopy. 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-Tetrazolium-5-Carboxanilide cytotoxicity assay kit was used to measure the cellular toxicity of dendrimer. Imaging and biodistribution studies were conducted on the mice bearing tumour. The results showed that the fabricated dendrimer-G3 has a size of 90 ± 3 nm, which was increased to 100 ± 4 nm following the conjugation with folic acid. The radiostablity investigation showed that the fabricated dendrimers were stable in the human serum at various times. Toxicity assessment confirmed no cellular toxicity against HEK-293 cells at 0.25, 0.5, 1, 2, 4, and 8 mg/μl concentrations. The in vivo studies demonstrated that the synthesised dendrimers were able to provide a bright SPECT image applicable for tumour detection. In conclusion, the authors' study documented the positive aspects of PEG-citrate dendrimer conjugated with folic acid as the SPECT contrast agent for breast cancer detection.
Collapse
Affiliation(s)
- Saedeh Zamani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafeie-Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Khalaj
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sorroza-Martínez K, González-Méndez I, Martínez-Serrano RD, Solano JD, Ruiu A, Illescas J, Zhu XX, Rivera E. Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: impact on the water solubility and cytotoxicity. RSC Adv 2020; 10:25557-25566. [PMID: 35518581 PMCID: PMC9055266 DOI: 10.1039/d0ra02574g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
The toxicity of the poly(amidoamine) dendrimers (PAMAM) caused by the peripheral amino groups has been a limitation for their use as drug carriers in clinical applications. In this work, we completely modified the periphery of PAMAM dendrimer generation 1 (PAMAM G1) with β-cyclodextrin (β-CD) units through the Cu(i)-catalyzed azide–alkyne cycloaddition (CuAAC) to obtain the PAMAM G1-β-CD dendrimer with high yield. The PAMAM G1-β-CD was characterized by 1H- and 13C-NMR and mass spectrometry studies. Moreover, the PAMAM G1-β-CD dendrimer showed remarkably higher water solubility than native β-CD. Finally, we studied the toxicity of PAMAM G1-β-CD dendrimer in four different cell lines, human breast cancer cells (MCF-7 and MDA-MB-231), human cervical adenocarcinoma cancer cells (HeLa) and pig kidney epithelial cells (LLC-PK1). The PAMAM G1-β-CD dendrimer did not present any cytotoxicity in cell lines tested which shows the potentiality of this new class of dendrimers. The toxicity of the poly(amidoamine) dendrimers (PAMAM) caused by the peripheral amino groups has been a limitation for their use as drug carriers in clinical applications.![]()
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Ricardo D Martínez-Serrano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - José D Solano
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Andrea Ruiu
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca Av. Tecnológico S/N, Col. Agrícola Bellavista CP 52149 Metepec México
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal C.P. 6128, Succursale Centre-ville Montreal QC H3C 3J7 Canada
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| |
Collapse
|
8
|
Patil TS, Deshpande AS. Mannosylated nanocarriers mediated site-specific drug delivery for the treatment of cancer and other infectious diseases: A state of the art review. J Control Release 2020; 320:239-252. [PMID: 31991156 DOI: 10.1016/j.jconrel.2020.01.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
The non-modified nanocarriers-based therapies for the treatment of cancer and other infectious diseases enhanced the chemical stability of therapeutically active agents, protected them from enzymatic degradation and extended their blood circulation time. However, the lack of specificity and off-target effects limit their applications. Mannose receptors overexpressed on antigen presenting cells such as dendritic cells and macrophages are one of the most desirable targets for treating cancer and other infectious diseases. Therefore, the development of mannosylated nanocarrier formulation is one of the most extensively explored approaches for targeting these mannose receptors. The present manuscript gives readers the background information on C-type lectin receptors followed by the roles, expression, and distribution of the mannose receptors. It further provides a detailed account of different mannosylated nanocarrier formulations. It also gives the tabular information on most relevant and recently granted patents on mannosylated systems. The overview of mannosylated nanocarrier formulations depicted site-specific targeting, enhanced pharmacokinetic/pharmacodynamic profiles, and improved transfection efficiency of the therapeutically active agents. This suggests the bright future ahead for mannosylated nanocarriers in the treatment of cancer and other infectious diseases. Nevertheless, the mechanism behind the enhanced immune response by mannosylated nanocarriers and their thorough clinical and preclinical evaluation need to explore further.
Collapse
Affiliation(s)
- Tulshidas S Patil
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India.
| |
Collapse
|
9
|
Mohammed AFA, Higashi T, Motoyama K, Ohyama A, Onodera R, Khaled KA, Sarhan HA, Hussein AK, Arima H. In Vitro and In Vivo Co-delivery of siRNA and Doxorubicin by Folate-PEG-Appended Dendrimer/Glucuronylglucosyl-β-Cyclodextrin Conjugate. AAPS J 2019; 21:54. [PMID: 30993472 DOI: 10.1208/s12248-019-0327-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/01/2019] [Indexed: 01/11/2023] Open
Abstract
We have previously reported the utility of folate-polyethylene glycol-appended dendrimer conjugate with glucuronylglucosyl-β-cyclodextrin (Fol-PEG-GUG-β-CDE) (generation 3) as a tumor-selective carrier for siRNA against polo-like kinase 1 (siPLK1) in vitro. In the present study, we evaluated the potential of Fol-PEG-GUG-β-CDE as a carrier for the low-molecular antitumor drug doxorubicin (DOX). Further, to fabricate advanced antitumor agents, we have prepared a ternary complex of Fol-PEG-GUG-β-CDE/DOX/siPLK1 and evaluated its antitumor activity both in vitro and in vivo. Fol-PEG-GUG-β-CDE released DOX in an acidic pH and enhanced the cellular accumulation and cytotoxic activity of DOX in folate receptor-α (FR-α)-overexpressing KB cells. Importantly, the Fol-PEG-GUG-β-CDE/DOX/siPLK1 ternary complex exhibited higher cytotoxic activity than a binary complex of Fol-PEG-GUG-β-CDE with DOX or siPLK1 in KB cells. In addition, the cytotoxic activity of the ternary complex was reduced by the addition of folic acid, a competitor against FR-α. Furthermore, the ternary complex showed a significant antitumor activity after intravenous administration to the tumor-bearing mice. These results suggest that Fol-PEG-GUG-β-CDE has the potential of a tumor-selective co-delivery carrier for DOX and siPLK1.
Collapse
Affiliation(s)
- Ahmed Fouad Abdelwahab Mohammed
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan.
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Ayumu Ohyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Risako Onodera
- School of Pharmacy, Building Regional Innovation Ecosystems, Kumamoto University, Kumamoto, Japan
| | - Khaled Ali Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Amal Kamal Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Targeted siRNA delivery to tumor cells by folate-PEG-appended dendrimer/glucuronylglucosyl-β-cyclodextrin conjugate. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0834-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Quadir M, Fehse S, Multhaup G, Haag R. Hyperbranched Polyglycerol Derivatives as Prospective Copper Nanotransporter Candidates. Molecules 2018; 23:E1281. [PMID: 29861466 PMCID: PMC6100100 DOI: 10.3390/molecules23061281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
Hyperbranched polyglycerol (hPG) has been used as a multivalent scaffold to develop a series of nanocarriers capable of high-affinity encapsulation of copper (Cu). A rationally selected set of Cu-complexing motifs has been conjugated to hPG hydroxyl groups to render the constructs potentially usable as exogenous sources of Cu for addressing different pathological conditions associated with Cu-deficiency. We have utilized a newly discovered route to attach Cu-binding domains exclusively within a hPG core by selective differentiation between the primary and secondary hydroxyl groups of the polyol. These hPG-derivatives were found to form a stable complex with Cu ions depending on the type of immobilized ligands and corresponding degree of functionalization. In addition, these Cu-bearing nano-complexes demonstrated moderately cationic surface charge resulting in adjustable protein-binding characteristics and low cellular toxicity profile. We envision that these Cu-loaded hPG nanocarriers can be used as a stable platform to transport the metal ion across the systemic circulation to supply bioavailable quantity of Cu in disease-afflicted tissues.
Collapse
Affiliation(s)
- Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58105, USA.
| | - Susanne Fehse
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
| |
Collapse
|
12
|
Potential therapeutic application of dendrimer/cyclodextrin conjugates with targeting ligands as advanced carriers for gene and oligonucleotide drugs. Ther Deliv 2017; 8:215-232. [PMID: 28222660 DOI: 10.4155/tde-2016-0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the recent approval of some gene medicines and nucleic acid drugs, further improvement of delivery techniques for these drugs is strongly required. Several delivery technologies for these drugs have been developed, in other words, viral and two types of nonviral (lipofection and polyfection) vectors. Among the polyfection system, the potential use of various cyclodextrin (CyD) derivatives and CyD-appended polymers as carriers for gene and nucleic acid drugs has been demonstrated. The polyamidoamine dendrimer (G3) conjugates with α-CyD (α-CDE (G3)) have been reported to possess noteworthy properties as DNA and nucleic acid drugs carriers. This review will focus on the attempts to develop such cell-specific drug carriers by preparing polyethylene glycol, galactose, lactose, mannose, fucose and folic acid-appended α-CDEs as tissue and cell-selective carriers of gene and nucleic acid drugs.
Collapse
|
13
|
A clue to unprecedented strategy to HIV eradication: "Lock-in and apoptosis". Sci Rep 2017; 7:8957. [PMID: 28827668 PMCID: PMC5567282 DOI: 10.1038/s41598-017-09129-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
Despite the development of antiretroviral therapy against HIV, eradication of the virus from the body, as a means to a cure, remains in progress. A “kick and kill” strategy proposes “kick” of the latent HIV to an active HIV to eventually be “killed”. Latency-reverting agents that can perform the “kick” function are under development and have shown promise. Management of the infected cells not to produce virions after the “kick” step is important to this strategy. Here we show that a newly synthesized compound, L-HIPPO, captures the HIV-1 protein Pr55Gag and intercepts its function to translocate the virus from the cytoplasm to the plasma membrane leading to virion budding. The infecting virus thus “locked-in” subsequently induces apoptosis of the host cells. This “lock-in and apoptosis” approach performed by our novel compound in HIV-infected cells provides a means to bridge the gap between the “kick” and “kill” steps of this eradication strategy. By building upon previous progress in latency reverting agents, our compound appears to provide a promising step toward the goal of HIV eradication from the body.
Collapse
|
14
|
Song Z, Liu L, Wang X, Deng Y, Nian Q, Wang G, Zhu S, Li X, Zhou H, Jiang T, Xu X, Tang R, Qin C. Intracellular delivery of biomineralized monoclonal antibodies to combat viral infection. Chem Commun (Camb) 2016; 52:1879-82. [PMID: 26672485 DOI: 10.1039/c5cc09252c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conventional therapeutic monoclonal antibodies (mAbs) are invalid for intracellular viruses but by using in situ biomineralization treatment, they can be successfully delivered into cells to inhibit intracellular viral replication. This achievement significantly expands the applications of mAbs and provides a new intracellular strategy to control viral infections.
Collapse
Affiliation(s)
- Zhiyong Song
- Center for Biomaterials and Bioparthways Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China. and Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
| | - Long Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China. and Anhui Medical University, Hefei 230032, P. R. China
| | - Xiaoyu Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China. and Qiushi Academy for Advanced Studies Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yongqiang Deng
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
| | - Qinggong Nian
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
| | - Guangchuan Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China. and Qiushi Academy for Advanced Studies Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Shunya Zhu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
| | - Xiaofeng Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China. and State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Hangyu Zhou
- Center for Biomaterials and Bioparthways Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China. and Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
| | - Tao Jiang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China. and State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Xurong Xu
- Center for Biomaterials and Bioparthways Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China. and Qiushi Academy for Advanced Studies Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Ruikang Tang
- Center for Biomaterials and Bioparthways Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China. and Qiushi Academy for Advanced Studies Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Chengfeng Qin
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China. and Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
15
|
Lukianova-Hleb EY, Yvon ES, Shpall EJ, Lapotko DO. All-in-one processing of heterogeneous human cell grafts for gene and cell therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16012. [PMID: 27006970 PMCID: PMC4793805 DOI: 10.1038/mtm.2016.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
Abstract
Current cell processing technologies for gene and cell therapies are often slow, expensive, labor intensive and are compromised by high cell losses and poor selectivity thus limiting the efficacy and availability of clinical cell therapies. We employ cell-specific on-demand mechanical intracellular impact from laser pulse-activated plasmonic nanobubbles (PNB) to process heterogeneous human cell grafts ex vivo with dual simultaneous functionality, the high cell type specificity, efficacy and processing rate for transfection of target CD3+ cells and elimination of subsets of unwanted CD25+ cells. The developed bulk flow PNB system selectively processed human cells at a rate of up to 100 million cell/minute, providing simultaneous transfection of CD3+ cells with the therapeutic gene (FKBP12(V36)-p30Caspase9) with the efficacy of 77% and viability 95% (versus 12 and 60%, respectively, for standard electroporation) and elimination of CD25+ cells with 99% efficacy. PNB flow technology can unite and replace several methodologies in an all-in-one universal ex vivo simultaneous procedure to precisely and rapidly prepare a cell graft for therapy. PNB’s can process various cell systems including cord blood, stem cells, and bone marrow.
Collapse
Affiliation(s)
| | - Eric S Yvon
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
| | - Dmitri O Lapotko
- Department of BioSciences, Rice University , Houston, Texas, USA
| |
Collapse
|
16
|
Ohyama A, Higashi T, Motoyama K, Arima H. In Vitro and In Vivo Tumor-Targeting siRNA Delivery Using Folate-PEG-appended Dendrimer (G4)/α-Cyclodextrin Conjugates. Bioconjug Chem 2016; 27:521-32. [PMID: 26715308 DOI: 10.1021/acs.bioconjchem.5b00545] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously reported that folate-polyethylene glycol (PEG)-appended dendrimer (generation 3)/α-cyclodextrin conjugate (Fol-PαC (G3)) shows folate receptor-α (FR-α)-overexpressing tumor cell-selective in vitro siRNA transfer activity. However, Fol-PαC (G3)/siRNA complex did not induce a significant in vivo RNAi effect after intravenous administration to tumor-bearing mice, possibly resulting from immediate dissociation of the complex in blood. Herein, to develop the novel siRNA carrier having high blood circulating ability, high in vivo siRNA transfer activity, and high safety profile, we newly prepared Fol-PαCs with higher generation (G4) and evaluated their potential as tumor-targeting siRNA carriers in vitro and in vivo. Fol-PαC (G4, average degree of substitution of α-cyclodextrin (DSC) 2.9, average degree of substitution of folate-PEG (DSF) 2)/siRNA complex had the prominent RNAi effect through adequate physicochemical properties, FR-α-mediated endocytosis, efficient endosomal escape, and siRNA delivery to cytoplasm with negligible cytotoxicity. Importantly, Fol-PαC (G4, DSC2.9, DSF2) improved the serum stability, blood circulating ability, and in vivo RNAi effects of siRNA, compared to Fol-PαC (G3). Furthermore, Fol-PαC (G4, DSC2.9, DSF2) complex with siRNA against Polo-like kinase 1 (siPLK1) suppressed the tumor growth compared to control siRNA complex. These results suggest that Fol-PαC (G4, DSC2.9, DSF2) has the potential as a novel tumor-targeting siRNA carrier in vitro and in vivo.
Collapse
Affiliation(s)
- Ayumu Ohyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences and ‡Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences and ‡Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences and ‡Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences and ‡Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
17
|
Rombouts K, Braeckmans K, Remaut K. Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies. Bioconjug Chem 2015; 27:280-97. [PMID: 26670733 DOI: 10.1021/acs.bioconjchem.5b00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Live-cell imaging has provided the life sciences with insights into the cell biology and dynamics. Fluorescent labeling of target molecules proves to be indispensable in this regard. In this Review, we focus on the current fluorescent labeling strategies for nucleic acids, and in particular mRNA (mRNA) and plasmid DNA (pDNA), which are of interest to a broad range of scientific fields. By giving a background of the available techniques and an evaluation of the pros and cons, we try to supply scientists with all the information needed to come to an informed choice of nucleic acid labeling strategy aimed at their particular needs.
Collapse
Affiliation(s)
- K Rombouts
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Braeckmans
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Remaut
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| |
Collapse
|
18
|
Motoyama K, Mitsuyasu R, Akao C, Abu Hashim II, Sato N, Tanaka T, Higashi T, Arima H. Potential Use of Thioalkylated Mannose-Modified Dendrimer (G3)/α-Cyclodextrin Conjugate as an NF-κB siRNA Carrier for the Treatment of Fulminant Hepatitis. Mol Pharm 2015; 12:3129-36. [DOI: 10.1021/mp500814f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Keiichi Motoyama
- Department
of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryosuke Mitsuyasu
- Department
of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Chiho Akao
- Department
of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Irhan Ibrahim Abu Hashim
- Department
of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Faculty
of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nana Sato
- Department
of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Tanaka
- Department
of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Department
of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Department
of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program
for Leading Graduate Schools “HIGO (Health Life Science: Interdisciplinary
and Glocal Oriented) Program”, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
20
|
Mkandawire MM, Lakatos M, Springer A, Clemens A, Appelhans D, Krause-Buchholz U, Pompe W, Rödel G, Mkandawire M. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. NANOSCALE 2015; 7:10634-10640. [PMID: 26022234 DOI: 10.1039/c5nr01483b] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A major challenge in designing cancer therapies is the induction of cancer cell apoptosis, although activation of intrinsic apoptotic pathways by targeting gold nanoparticles to mitochondria is promising. We report an in vitro procedure targeting mitochondria with conjugated gold nanoparticles and investigating effects on apoptosis induction in the human breast cancer cell line Jimt-1. Gold nanoparticles were conjugated to a variant of turbo green fluorescent protein (mitoTGFP) harbouring an amino-terminal mitochondrial localization signal. Au nanoparticle conjugates were further complexed with cationic maltotriose-modified poly(propylene imine) third generation dendrimers. Fluorescence and transmission electron microscopy revealed that Au nanoparticle conjugates were directed to mitochondria upon transfection, causing partial rupture of the outer mitochondrial membrane, triggering cell death. The ability to target Au nanoparticles into mitochondria of breast cancer cells and induce apoptosis reveals an alternative application of Au nanoparticles in photothermal therapy of cancer.
Collapse
Affiliation(s)
- M M Mkandawire
- Encyt Technologies Inc., 201 Churchill Drive, Membertou, NS, Canada B1S OH1.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Toomari Y, Namazi H, Entezami AA. Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent. Int J Biol Macromol 2015; 79:883-93. [PMID: 26056989 DOI: 10.1016/j.ijbiomac.2015.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 12/01/2022]
Abstract
The aim of this work was the synthesis of biodendrimeric β-cyclodextrin (β-CD) on the secondary face with encapsulation efficacy, with β-CDs moiety to preserve the biocompatibility properties, also particularly growth their loading capacity for drugs with certain size. The new dendrimer, having 14 β-CD residues attached to the core β-CD in secondary face (11), was prepared through click reaction. The encapsulation property of the prepared compound was evaluated by methotrexate (MTX) drug molecule. Characterization of compound 11 was performed with (1)H NMR, (13)C NMR and FTIR and its supramolecular inclusion complex structure was determined using FTIR, DLS, DSC and SEM techniques. In vitro cytotoxicity test results showed that compound 11 has very low or no cytotoxic effect on T47D cancer cells. In vitro drug release study at pHs 3, 5 and 7.4 showed that the release process was noticeably pH dependent and the dendrimer could be used as an appropriate controlled drug delivery system (DDS) for cancer treatment.
Collapse
Affiliation(s)
- Yousef Toomari
- Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Hassan Namazi
- Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| | - Ali Akbar Entezami
- Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
22
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [DOI: 10.1021/cr500542t] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
23
|
Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 2015; 44:3968-96. [DOI: 10.1039/c4cs00339j] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of dendritic glycopolymers based on dendritic polyamine scaffolds for biomedical applications is presented and compared with that of the structurally related anti-adhesive dendritic glycoconjugates.
Collapse
Affiliation(s)
- Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Anna Janaszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Joanna Lazniewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Organic Chemistry of Polymers
- Technische Universität Dresden
| |
Collapse
|
24
|
Glycosylation-mediated targeting of carriers. J Control Release 2014; 190:542-55. [DOI: 10.1016/j.jconrel.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/24/2022]
|
25
|
Supramolecular polymers based on cyclodextrins for drug and gene delivery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:207-49. [PMID: 20839082 DOI: 10.1007/10_2010_91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Supramolecular polymers based on cyclodextrins (CDs) have inspired interesting and rapid developments as novel biomaterials in a broad range of drug and gene delivery applications, due to their low cytotoxicity, controllable size, and unique architecture. This review will summarize the potential applications of polyrotaxanes in the field of drug delivery and gene delivery. Generally, cyclodextrin-based biodegradable polypseudorotaxane hydrogels could be used as a promising injectable drug delivery system for sustained and controlled drug release. Temperature-responsive, pH-sensitive, and controllable hydrolyzable polyrotaxane hydrogels have attracted much attention because of their controllable properties, and the self-assembly micelles formed by amphiphilic copolymer threaded with CDs could be used as a carrier for controlled and sustained drug release. Polyrotaxanes with drug or ligand conjugated CDs threaded on a polymer chain with a biodegradable end group could be useful for controlled and multivalent targeted delivery. In the field of gene delivery, cationic polyrotaxanes consisting of multiple OEI-grafted CDs threaded on a block copolymer chain are attractive non-viral gene carries due to the strong DNA-binding ability, low cytotoxicity, and high gene delivery capability. Furthermore, cytocleavable end-caps were introduced in the polyrotaxane systems in order to ensure efficient endosomal escape for intracellular trafficking of DNA. The development of the supramolecular approach using CD-containing polyrotaxanes is expected to provide a new paradigm for biomaterials.
Collapse
|
26
|
Kalhapure RS, Kathiravan MK, Akamanchi KG, Govender T. Dendrimers - from organic synthesis to pharmaceutical applications: an update. Pharm Dev Technol 2013; 20:22-40. [PMID: 24299011 DOI: 10.3109/10837450.2013.862264] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dendrimers are a relatively new class of monodisperse polymers, which have tree-like spherical structures with well-defined sizes and shapes. Their unique structure has a significant impact on their physical and chemical properties. Research on dendrimers is of significant interest to scientists from all areas and their utility in various scientific fields, including pharmaceuticals, is expanding. The present review is comprehensive and covers different aspects of dendrimers viz. (1) synthesis, (2) properties and (3) pharmaceutical applications. The emphasis is on their applications as well as the current ongoing research status for drug targeting.
Collapse
Affiliation(s)
- Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal , Durban , South Africa and
| | | | | | | |
Collapse
|
27
|
Okamatsu A, Motoyama K, Onodera R, Higashi T, Koshigoe T, Shimada Y, Hattori K, Takeuchi T, Arima H. Design and Evaluation of Folate-Appended α-, β-, and γ-Cyclodextrins Having a Caproic Acid as a Tumor Selective Antitumor Drug Carrier in Vitro and in Vivo. Biomacromolecules 2013; 14:4420-8. [DOI: 10.1021/bm401340g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ayaka Okamatsu
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Koshigoe
- Facutly
of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297, Japan
| | - Yasutaka Shimada
- R&D Lab, NanoDex, Inc., 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Kenjiro Hattori
- R&D Lab, NanoDex, Inc., 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Tomoko Takeuchi
- Facutly
of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297, Japan
| | - Hidetoshi Arima
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
28
|
Motoyama K, Onodera R, Okamatsu A, Higashi T, Kariya R, Okada S, Arima H. Potential use of the complex of doxorubicin with folate-conjugated methyl-β-cyclodextrin for tumor-selective cancer chemotherapy. J Drug Target 2013; 22:211-219. [DOI: 10.3109/1061186x.2013.856012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Gajbhiye V, Gong S. Lectin functionalized nanocarriers for gene delivery. Biotechnol Adv 2013; 31:552-62. [DOI: 10.1016/j.biotechadv.2013.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 01/01/2023]
|
30
|
Arima H, Motoyama K, Higashi T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev 2013; 65:1204-14. [PMID: 23602906 DOI: 10.1016/j.addr.2013.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022]
Abstract
The widespread use of various cyclodextrin (CyD)-appended polymers and polyrotaxanes as gene carriers has been reported. Among the various polyamidoamine dendrimer (dendrimer) conjugates with CyDs (CDE), the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 (α-CDE (G3, DS 2)) displayed remarkable properties as DNA carriers. In an attempt to develop cell-specific gene transfer carriers, we prepared some sugar-appended α-CDEs, e.g. mannosylated, galactosylated, and lactosylated α-CDEs. In addition, PEGylated Lac-α-CDEs (G3) were prepared and evaluated as a hepatocyte-selective and serum-resistant gene transfer carrier. Moreover, PEGylated-α-CDE/CyD polypseudorotaxane systems for novel sustained DNA release system have been developed. Interestingly, glucronylglucosyl-β-cyclodextrin (GUG-β-CyD) conjugates with dendrimer (G2) (GUG-β-CDE (G2)) had superior gene transfer activity to α-CDE (G2), expecting a development of new series of sugar-appended CDEs over α-CDEs (G2). Collectively, sugar-appended α-CDEs have the potential as novel cell-specific and safe carriers for DNA.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | | | | |
Collapse
|
31
|
Okamatsu A, Motoyama K, Onodera R, Higashi T, Koshigoe T, Shimada Y, Hattori K, Takeuchi T, Arima H. Folate-Appended β-Cyclodextrin as a Promising Tumor Targeting Carrier for Antitumor Drugs in Vitro and in Vivo. Bioconjug Chem 2013; 24:724-33. [DOI: 10.1021/bc400015r] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ayaka Okamatsu
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Koshigoe
- Faculty of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297,
Japan
| | - Yasutaka Shimada
- R&D Lab, NanoDex Inc., 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Kenjiro Hattori
- Faculty of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297,
Japan
- R&D Lab, NanoDex Inc., 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Tomoko Takeuchi
- Faculty of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297,
Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
32
|
Martínez Á, Ortiz Mellet C, García Fernández JM. Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate-protein interactions. Chem Soc Rev 2013; 42:4746-73. [PMID: 23340678 DOI: 10.1039/c2cs35424a] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Covalent attachment of biorecognizable sugar ligands in several copies at precise positions of cyclomaltooligosaccharide (cyclodextrin, CD) macrocycles has proven to be an extremely flexible strategy to build multivalent conjugates. The commercial availability of the native CDs in three different sizes, their axial symmetry and the possibility of position- and face-selective functionalization allow a strict control of the valency and spatial orientation of the recognition motifs (glycotopes) in low, medium, high and hyperbranched glycoclusters, including glycodendrimer-CD hybrids. "Click-type" ligation chemistries, including copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC), thiol-ene coupling or thiourea-forming reactions, have been implemented to warrant full homogeneity of the adducts. The incorporation of different glycotopes to investigate multivalent interactions in heterogeneous environments has also been accomplished. Not surprisingly, multivalent CD conjugates have been, and continue to be, major actors in studies directed at deciphering the structural features ruling carbohydrate recognition events. Nanometric glycoassemblies endowed with the capability of adapting the inter-saccharide distances and orientations in the presence of a receptor partner or capable of mimicking the fluidity of biological membranes have been conceived by multitopic inclusion complex formation, rotaxanation or self-assembling. Applications in the fields of sensors, site-specific drug and gene delivery or protein stabilization attest for the maturity of the field.
Collapse
Affiliation(s)
- Álvaro Martínez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Profesor García González 1, E-41012 Sevilla, Spain
| | | | | |
Collapse
|
33
|
Arima H, Yoshimatsu A, Ikeda H, Ohyama A, Motoyama K, Higashi T, Tsuchiya A, Niidome T, Katayama Y, Hattori K, Takeuchi T. Folate-PEG-appended dendrimer conjugate with α-cyclodextrin as a novel cancer cell-selective siRNA delivery carrier. Mol Pharm 2012; 9:2591-604. [PMID: 22873579 DOI: 10.1021/mp300188f] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that of the various polyamidoamine (PAMAM) STARBURST dendrimer (generation 3, G3) (dendrimer) conjugates with cyclodextrins (CyDs), the dendrimer (G3) conjugate with α-CyD having an average degree of substitution of 2.4 (α-CDE (G3)) has the greatest potential for a novel carrier for siRNA in vitro and in vivo. To improve the siRNA transfer activity and the lack of target specificity of α-CDE (G3), we prepared folate-polyethylene glycol (PEG)-appended α-CDEs (G3) (Fol-PαCs) with various degrees of substitution of folate (DSF) and evaluated their siRNA transfer activity to folate receptor (FR)-overexpressing cancer cells in vitro and in vivo. Of the three Fol-PαCs (G3, DSF 2, 4 and 7), Fol-PαC (G3, DSF 4) had the highest siRNA transfer activity in KB cells (FR-positive). Fol-PαC (G3, DSF 4) was endocytosed into KB cells through FR. No cytotoxicity of the siRNA complex with Fol-PαC (G3, DSF 4) was observed in KB cells (FR-positive) or A549 cells (FR-negative) up to the charge ratio of 100/1 (carrier/siRNA). In addition, the siRNA complex with Fol-PαC (G3, DSF 4) showed neither interferon response nor inflammatory response. Importantly, the siRNA complex with Fol-PαC (G3, DSF 4) tended to show the in vivo RNAi effects after intratumoral injection and intravenous injection in tumor cells-bearing mice. The FITC-labeled siRNA and TRITC-labeled Fol-PαC (G3, DSF 4) were actually accumulated in tumor tissues after intravenous injection in the mice. In conclusion, the present results suggest that Fol-PαC (G3, DSF 4) could potentially be used as a FR-overexpressing cancer cell-selective siRNA delivery carrier in vitro and in vivo.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2012; 2:307-24. [PMID: 23741608 PMCID: PMC3363024 DOI: 10.1098/rsfs.2012.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure-function relationship of ligand-dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Warren D. Gray
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
| | - Michael E. Davis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- National Engineering Laboratory for Regenerative and Implantable Medical Devices, Room 408, Building D, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, People's Republic of China
| |
Collapse
|
35
|
Anno T, Higashi T, Motoyama K, Hirayama F, Uekama K, Arima H. Possible enhancing mechanisms for gene transfer activity of glucuronylglucosyl-β-cyclodextrin/dendrimer conjugate. Int J Pharm 2012; 426:239-247. [DOI: 10.1016/j.ijpharm.2012.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/18/2011] [Accepted: 01/17/2012] [Indexed: 11/27/2022]
|
36
|
Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with α-cyclodextrin as DNA carriers to tumor cells. Cancer Gene Ther 2012; 19:358-66. [DOI: 10.1038/cgt.2012.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for DNA, shRNA and siRNA. Pharmaceutics 2012; 4:130-48. [PMID: 24300184 PMCID: PMC3834900 DOI: 10.3390/pharmaceutics4010130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 11/27/2022] Open
Abstract
Gene, short hairpin RNA (shRNA) and small interfering RNA (siRNA) delivery can be particularly used for the treatment of diseases by the entry of genetic materials mammalian cells either to express new proteins or to suppress the expression of proteins, respectively. Polyamidoamine (PAMAM) StarburstTM dendrimers are used as non-viral vectors (carriers) for gene, shRNA and siRNA delivery. Recently, multifunctional PAMAM dendrimers can be used for the wide range of biomedical applications including intracellular delivery of genes and nucleic acid drugs. In this context, this review paper provides the recent findings on PAMAM dendrimer conjugates with cyclodextrins (CyDs) for gene, shRNA and siRNA delivery.
Collapse
|
38
|
|
39
|
Arima H, Motoyama K, Higashi T. Potential Use of Polyamidoamine Dendrimer Conjugates with Cyclodextrins as Novel Carriers for siRNA. Pharmaceuticals (Basel) 2011; 5:61-78. [PMID: 24288043 PMCID: PMC3763628 DOI: 10.3390/ph5010061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023] Open
Abstract
Cyclodextrin (CyD)-based nanoparticles and polyamidoamine (PAMAM) starburst dendrimers (dendrimers) are used as novel carriers for DNA and RNA. Recently, small interfering RNA (siRNA) complex with β-CyD-containing polycations (CDP) having adamantine-PEG or adamantine-PEG-transferrin underwent a phase I study for treatment of solid tumors. Multifunctional dendrimers can be used for a wide range of biomedical applications, including the interaction and intracellular delivery of DNA and RNA. The present review will address the latest developments in dendrimer conjugates with cyclodextrins for siRNA delivery including the novel sustained release system.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan.
| | | | | |
Collapse
|
40
|
Thünemann AF, Bienert R, Appelhans D, Voit B. Core-Shell Structures of Oligosaccharide-Functionalized Hyperbranched Poly(ethylene imines). MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Ma K, Shen H, Shen S, Xie M, Mao C, Qiu L, Jin Y. Development of a successive targeting liposome with multi-ligand for efficient targeting gene delivery. J Gene Med 2011; 13:290-301. [PMID: 21574214 DOI: 10.1002/jgm.1569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A successful gene delivery system needs to breakthrough several barriers to allow efficient transgenic expression. In the present study, successive targeting liposomes (STL) were constructed by integrating various targeting groups into a nanoparticle to address this issue. METHODS Polyethylenimine (PEI) 1800-triamcinolone acetonide (TA) with nuclear targeting capability was synthesized by a two-step reaction. Lactobionic acid was connected with cholesterol to obtain a compound of [(2-lactoylamido) ethylamino]formic acid cholesterol ester (CHEDLA) with hepatocyte-targeting capability. The liposome was modified with PEI 1800-TA and CHEDLA to prepare successive targeting liposome (STL). Its physicochemical properties and transfection efficiency were investigated both in vitro and in vivo. RESULTS The diameter of STL was approximately 100 nm with 20 mV of potential. The confocal microscopy observation and potential assay verified that lipid bilayer of STL was decorated with PEI 1800-TA. Cytotoxicity of STL was significantly lower than that of PEI 1800-TA and PEI 25K. The transfection efficiency of 10% CHEDLA STL in HepG2 cells was the higher than of the latter two with serum. Its transfection efficiency was greatly reduced with excessive free galactose, indicating that STL was absorbed via galactose receptor-mediated endocytosis. The in vivo study in mice showed that 10% CHEDLA STL had better transgenic expression in liver than the other carriers. CONCLUSIONS STL with multi-ligand was able to overcome the various barriers to target nucleus and special cells and present distinctive transgenic expression. Therefore, it has a great potential for gene therapy as a nonviral carrier.
Collapse
Affiliation(s)
- Kun Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Méndez-Ardoy A, Guilloteau N, Di Giorgio C, Vierling P, Santoyo-González F, Ortiz Mellet C, García Fernández JM. β-Cyclodextrin-Based Polycationic Amphiphilic “Click” Clusters: Effect of Structural Modifications in Their DNA Complexing and Delivery Properties. J Org Chem 2011; 76:5882-94. [DOI: 10.1021/jo2007785] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alejandro Méndez-Ardoy
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, E-41012 Sevilla, Spain
| | - Nicolas Guilloteau
- LCMBA UMR 6001CNRS - Université de Nice Sophia Antipolis 28, Avenue de Valrose, F-06108 Nice, France
| | - Christophe Di Giorgio
- LCMBA UMR 6001CNRS - Université de Nice Sophia Antipolis 28, Avenue de Valrose, F-06108 Nice, France
| | - Pierre Vierling
- LCMBA UMR 6001CNRS - Université de Nice Sophia Antipolis 28, Avenue de Valrose, F-06108 Nice, France
| | - Francisco Santoyo-González
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, E-18071 Granada, Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1, E-41012 Sevilla, Spain
| | - José M. García Fernández
- Instituto de Investigaciones Químicas, CSIC - Universidad de Sevilla, A2mérico Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| |
Collapse
|
43
|
Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 2011; 40:2673-703. [PMID: 21286593 DOI: 10.1039/c0cs00097c] [Citation(s) in RCA: 358] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the past decade, nanomedicine with its promise of improved therapy and diagnostics has revolutionized conventional health care and medical technology. Dendrimers and dendrimer-based therapeutics are outstanding candidates in this exciting field as more and more biological systems have benefited from these starburst molecules. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumour via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Imaging agents including MRI contrast agents, radionuclide probes, computed tomography contrast agents, and fluorescent dyes are combined with the multifunctional nanomedicine for targeted therapy with simultaneous cancer diagnosis. However, an important question reported with dendrimer-based therapeutics as well as other nanomedicines to date is the long-term viability and biocompatibility of the nanotherapeutics. This critical review focuses on the design of biocompatible dendrimers for cancer diagnosis and therapy. The biocompatibility aspects of dendrimers such as nanotoxicity, long-term circulation, and degradation are discussed. The construction of novel dendrimers with biocompatible components, and the surface modification of commercially available dendrimers by PEGylation, acetylation, glycosylation, and amino acid functionalization have been proposed as available strategies to solve the safety problem of dendrimer-based nanotherapeutics. Also, exciting opportunities and challenges on the development of dendrimer-based nanoplatforms for targeted cancer diagnosis and therapy are reviewed (404 references).
Collapse
Affiliation(s)
- Yiyun Cheng
- School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| | | | | | | |
Collapse
|
44
|
Ma K, Hu M, Xie M, Shen H, Qiu L, Fan W, Sun H, Chen S, Jin Y. Investigation of polyethylenimine-grafted-triamcinolone acetonide as nucleus-targeting gene delivery systems. J Gene Med 2010; 12:669-80. [PMID: 20635325 DOI: 10.1002/jgm.1485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Nuclear membrane is one of the main barriers in polymer mediated intracellular gene delivery. To improve the transgenic activity and safety of nonviral vector, triamcinolone acetonide (TA) as a nuclear localization signal was conjugated with different molecular weight polyethylenimine (PEI). METHODS Different molecular weight PEI [600, 1800, 25,000 (25k)] was conjugated with TA to synthesize PEI-TA by two-step reaction. Their physicochemical characteristics, in vitro cytotoxicity and transfection efficiency were evaluated. To investigate the difference of transfection efficiency of various molecular weight PEI-TA, their transfection mechanism was further investigated by confocal microscopy and competition assay. Transgenic expression in vivo was evaluated by injection into hepatic portal vein of mice. RESULTS All PEI-TA could form nanosize polyplexes with DNA and their physicochemical properties resemble each other. Their cytotoxicities were negligible compared to PEI 25k. The order of transfection efficiency was PEI 1800-TA > PEI 600-TA > PEI 25k-TA. A transfection mechanism study displayed that TA could inhibit considerably the transgenic activity of PEI 1800-TA and PEI 600-TA, but that of PEI 25k-TA was not inhibited. It was suggested that PEI 1800-TA and PEI 600-TA might translocate into the nucleus. Confocal microscopy investigation verified this suggestion. The data strongly suggested that the transfection efficiency of PEI 1800-TA in vivo was much higher than that of PEI 25k, which was consistent with the results obtained in vitro. CONCLUSIONS Low molecular weight PEI-TA could translocate into the nucleus efficiently. PEI 1800-TA presented higher transgenic activity and it has a great potential for gene therapy as a nonviral carrier.
Collapse
Affiliation(s)
- Kun Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ortiz Mellet C, García Fernández JM, Benito JM. Cyclodextrin-based gene delivery systems. Chem Soc Rev 2010; 40:1586-608. [PMID: 21042619 DOI: 10.1039/c0cs00019a] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclodextrin (CD) history has been largely dominated by their unique ability to form inclusion complexes with guests fitting in their hydrophobic cavity. Chemical funcionalization was soon recognized as a powerful mean for improving CD applications in a wide range of fields, including drug delivery, sensing or enzyme mimicking. However, 100 years after their discovery, CDs are still perceived as novel nanoobjects of undeveloped potential. This critical review provides an overview of different strategies to promote interactions between CD conjugates and genetic material by fully exploiting the inside-outside/upper-lower face anisotropy of the CD nanometric platform. Covalent modification, self-assembling and supramolecular ligation can be put forward with the ultimate goal to build artificial viruses for programmed and efficient gene therapy (222 references).
Collapse
Affiliation(s)
- Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071 Sevilla, Spain.
| | | | | |
Collapse
|
46
|
Motoyama K, Mori Y, Yamashita S, Hayashi Y, Jono H, Ando Y, Hirayama F, Uekama K, Arima H. In vitro gene delivery mediated by lactosylated dendrimer (generation 3, G3)/α-cyclodextrin conjugates into hepatocytes. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9842-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
47
|
Design and evaluation of folate-appended methyl-β-cyclodextrin as a new antitumor agent. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9843-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Zhang H, Ma Y, Sun XL. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med Res Rev 2010; 30:270-89. [PMID: 19626595 DOI: 10.1002/med.20171] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted delivery of a drug or gene to its site of action has clear therapeutic advantages by maximizing its therapeutic efficiency and minimizing its systemic toxicity. Generally, targeted drug or gene delivery is performed by loading a macromolecular carrier with an appropriate drug or gene, and by targeting the drug/gene carrier to specific cell or tissue with the help of specific targeting ligand. The emergence of glycobiology, glycotechnology, and glycomics and their continual adaptation by pharmaceutical scientists have opened exciting avenue of medicinal applications of carbohydrates. Among them, the biocompatibility and specific receptor recognition ability confer the ability of carbohydrates as potential targeting ligands for targeted drug and gene delivery applications. This review summarizes recent progress of carbohydrate-decorated targeted drug/gene delivery applications.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | |
Collapse
|
49
|
Arima H, Motoyama K. Cyclodextrin/Dendrimer conjugates as siRNA delivery carriers. ACTA ACUST UNITED AC 2010. [DOI: 10.2745/dds.25.598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Arima H, Motoyama K. Recent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA. SENSORS (BASEL, SWITZERLAND) 2009; 9:6346-61. [PMID: 22454589 PMCID: PMC3312448 DOI: 10.3390/s90806346] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 01/28/2023]
Abstract
We have evaluated the potential use of various polyamidoamine (PAMAM) dendrimer [dendrimer, generation (G) 2-4] conjugates with cyclodextrins (CyDs) as novel DNA and RNA carriers. Among the various dendrimer conjugates with CyDs, the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 [α-CDE (G3, DS2)] displayed remarkable properties as DNA, shRNA and siRNA delivery carriers through the sensor function of α-CDEs toward nucleic acid drugs, cell surface and endosomal membranes. In an attempt to develop cell-specific gene transfer carriers, we prepared sugar-appended α-CDEs. Of the various sugar-appended α-CDEs prepared, galactose- or mannose-appended α-CDEs provided superior gene transfer activity to α-CDE in various cells, but not cell-specific gene delivery ability. However, lactose-appended α-CDE [Lac-α-CDE (G2)] was found to possess asialoglycoprotein receptor (AgpR)-mediated hepatocyte-selective gene transfer activity, both in vitro and in vivo. Most recently, we prepared folate-poly(ethylene glycol)-appended α-CDE [Fol-PαC (G3)] and revealed that Fol-PαC (G3) imparted folate receptor (FR)-mediated cancer cell-selective gene transfer activity. Consequently, α-CDEs bearing integrated, multifunctional molecules may possess the potential to be novel carriers for DNA, shRNA and siRNA.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan; E-Mail: (K.M.)
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan; E-Mail: (K.M.)
| |
Collapse
|