1
|
Cheng J, Jian L, Chen Z, Li Z, Yu Y, Wu Y. In Vivo Delivery Processes and Development Strategies of Lipid Nanoparticles. Chembiochem 2024; 25:e202400481. [PMID: 39101874 DOI: 10.1002/cbic.202400481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
Lipid nanoparticles (LNPs) represent an advanced and highly efficient delivery system for RNA molecules, demonstrating exceptional biocompatibility and remarkable delivery efficiency. This is evidenced by the clinical authorization of three LNP formulations: Patisiran, BNT162b2, and mRNA-1273. To further maximize the efficacy of RNA-based therapy, it is imperative to develop more potent LNP delivery systems that can effectively protect inherently unstable and negatively charged RNA molecules from degradation by nucleases, while facilitating their cellular uptake into target cells. Therefore, this review presents feasible strategies commonly employed for the development of efficient LNP delivery systems. The strategies encompass combinatorial chemistry for large-scale synthesis of ionizable lipids, rational design strategy of ionizable lipids, functional molecules-derived lipid molecules, the optimization of LNP formulations, and the adjustment of particle size and charge property of LNPs. Prior to introducing these developing strategies, in vivo delivery processes of LNPs, a crucial determinant influencing the clinical translation of LNP formulations, is described to better understand how to develop LNP delivery systems.
Collapse
Affiliation(s)
- Jiashun Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lina Jian
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoyuan Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaobang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Kanmani S, Song XM, Kanmani P, Wu XJ, Tan XD, Liu J, Wang JP, Minshall RD, Hu G. Enhancement of Autophagy in Macrophages via the p120-Catenin-Mediated mTOR Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1666-1675. [PMID: 39423222 DOI: 10.4049/jimmunol.2400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Autophagy serves as a critical regulator of immune responses in sepsis. Macrophages are vital constituents of both innate and adaptive immunity. In this study, we delved into the intricate role of p120-catenin (p120) in orchestrating autophagy in macrophages in response to endotoxin stimulation. Depletion of p120 effectively suppressed LPS-induced autophagy in both J774A.1 macrophages and murine bone marrow-derived macrophages. LPS not only elevated the interaction between p120 and L chain 3 (LC3) I/II but also facilitated the association of p120 with mammalian target of rapamycin (mTOR). p120 depletion in macrophages by small interfering RNA reduced LPS-induced dissociation of mTOR and Unc-51-like kinase 1 (ULK1), leading to an increase in the phosphorylation of ULK1. p120 depletion also enhanced LPS-triggered macrophage apoptosis, as evidenced by increased levels of cleaved caspase 3, 7-aminoactinomycin D staining, and TUNEL assay. Notably, inhibiting autophagy reversed the decrease in apoptosis caused by LPS stimulation in macrophages overexpressing p120. Additionally, the ablation of p120 inhibited autophagy and accentuated apoptosis in alveolar macrophages in LPS-challenged mice. Collectively, our findings strongly suggest that p120 plays a pivotal role in fostering autophagy while concurrently hindering apoptosis in macrophages, achieved through modulation of the mTOR/ULK1 signaling pathway in sepsis. This underscores the potential of targeting macrophage p120 as an innovative therapeutic avenue for treating inflammatory disorders.
Collapse
Affiliation(s)
- Suganya Kanmani
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
| | - Xue-Min Song
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
- Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Wuchang, Hubei Province, China
| | - Paulraj Kanmani
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
| | - Xiao-Jing Wu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Wuchang, Hubei Province, China
| | - Xiao-Di Tan
- Department Pediatrics, University of Illinois College of Medicine, Chicago, IL
| | - Jing Liu
- Department of Surgery/Cancer Center, University of Illinois College of Medicine, Chicago, IL
| | - Ji-Ping Wang
- Departments of Statistics and Data Science, Northwestern University, Evanston, IL; and
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
3
|
Ma Z, Du X, Sun Y, Jia Y, Liang X, Gao Y. Attenuation of PM2.5-Induced Lung Injury by 4-Phenylbutyric Acid: Maintenance of [Ca 2+]i Stability between Endoplasmic Reticulum and Mitochondria. Biomolecules 2024; 14:1135. [PMID: 39334901 PMCID: PMC11430257 DOI: 10.3390/biom14091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Fine particulate matter (PM2.5) is a significant cause of respiratory diseases and associated cellular damage. The mechanisms behind this damage have not been fully explained. This study investigated two types of cellular damage (inflammation and pyroptosis) induced by PM2.5, focusing on their relationship with two organelles (the endoplasmic reticulum and mitochondria). Animal models have demonstrated that PM2.5 induces excessive endoplasmic reticulum stress (ER stress), which is a significant cause of lung damage in rats. This was confirmed by pretreatment with an ER stress inhibitor (4-Phenylbutyric acid, 4-PBA). We found that, in vitro, the intracellular Ca2+ ([Ca2+]i) dysregulation induced by PM2.5 in rat alveolar macrophages was associated with ER stress. Changes in mitochondria-associated membranes (MAMs) result in abnormal mitochondrial function. This further induced the massive expression of NLRP3 and GSDMD-N, which was detrimental to cell survival. In conclusion, our findings provide valuable insights into the relationship between [Ca2+]i dysregulation, mitochondrial damage, inflammation and pyroptosis under PM2.5-induced ER stress conditions. Their interactions ultimately have an impact on respiratory health.
Collapse
Affiliation(s)
- Zhenhua Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiaohui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yize Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunna Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Song H, Zhang J, Lou N, Jiang X, Cui Y, Liu J, Hu F, Jiao J, Pan C, Liu J, Wang Z, Shang D. Emodin nanocapsules inhibit acute pancreatitis by regulating lipid metabolic reprogramming in macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155763. [PMID: 38820661 DOI: 10.1016/j.phymed.2024.155763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Emodin is a chemical compound found in traditional Chinese herbs. It possesses anti-inflammatory and many other pharmacological effects. Our previous study showed that emodin significantly alleviates the inflammation effect of severe acute pancreatitis (SAP). However, its poor solubility, high toxicity and limited pancreas retention time hinder its clinical application. PURPOSE We aimed to prepare emodin nanocapsules with improved bioavailability to achieve the controlled release of emodin by targeting macrophages. Further, the mechanism of mannose-conjugated chitosan-coated lipid nanocapsules loaded with emodin (M-CS-E-LNC) in the treatment of SAP was explored. METHODS M-CS-E-LNC were prepared by the phase inversion method with slight modification. The expression of inflammation mediators and the anti-inflammation efficacy of M-CS-E-LNC were examined by ELISA, IHC and IF in macrophage cells and LPS-induced SAP mice. IVIS spectrum imaging and HPLC were applied to explore the controlled release of M-CS-E-LNC in the pancreas. LC-MS/MS was performed for lipidomics analysis of macrophages. Moreover, a vector-based short hairpin RNA (shRNA) method was used to silence CTP1 gene expression in macrophage cells. RESULTS The levels of inflammatory mediators in macrophages were markedly decreased after treatment with M-CS-E-LNC. The same anti-inflammation effects were detected in SAP mouse through the analysis of serum levels of amylase, TNF-α and IL-6. Importantly, M-CS-E-LNC allowed the emodin to selectively accumulate at pancreas and gastrointestinal tissues, thus exhibiting a targeted release. Mechanistically, the M-CS-E-LNC treatment group showed up-regulated expression of the carnitine palmitoyltransferase 1 (CPT1) protein which promoted intracellular long-chain fatty acid transport, thereby promoting the M2 phenotype polarization of macrophages. CONCLUSION M-CS-E-LNC exhibited significantly improved bioavailability and water solubility, which translated to greater therapeutic effects on macrophage polarization. Our findings also demonstrate, for the first time, that CPT1 may be a new therapeutic target for SAP treatment.
Collapse
Affiliation(s)
- Huiyi Song
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Jianbin Zhang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning, PR China
| | - Ni Lou
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Xinyue Jiang
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Yuying Cui
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Jinming Liu
- The Third Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Fenglin Hu
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Juying Jiao
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Chen Pan
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Jianjun Liu
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Zhizhou Wang
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Hospital affiliated to Dalian Medical University, Dalian, Liaoning, PR China; The Third Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, PR China.
| |
Collapse
|
5
|
Alwani S, Wasan EK, Badea I. Solid Lipid Nanoparticles for Pulmonary Delivery of Biopharmaceuticals: A Review of Opportunities, Challenges, and Delivery Applications. Mol Pharm 2024; 21:3084-3102. [PMID: 38828798 DOI: 10.1021/acs.molpharmaceut.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.
Collapse
Affiliation(s)
- Saniya Alwani
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| |
Collapse
|
6
|
Michelis S, Pompili C, Niedergang F, Fattaccioli J, Dumat B, Mallet JM. FRET-Sensing of Multivalent Protein Binding at the Interface of Biomimetic Microparticles Functionalized with Fluorescent Glycolipids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9669-9679. [PMID: 38349191 DOI: 10.1021/acsami.3c15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Cell adhesion is a central process in cellular communication and regulation. Adhesion sites are triggered by specific ligand-receptor interactions inducing the clustering of both partners at the contact point. Investigating cell adhesion using microscopy techniques requires targeted fluorescent particles with a signal sensitive to the clustering of receptors and ligands at the interface. Herein, we report on simple cell or bacterial mimics, based on liquid microparticles made of lipiodol functionalized with custom-designed fluorescent lipids. These lipids are targeted toward lectins or biotin membrane receptors, and the resulting particles can be specifically identified and internalized by cells, as demonstrated by their phagocytosis in primary murine bone marrow-derived macrophages. We also evidence the possibility to sense the binding of a multivalent lectin, concanavalin A, in solution by monitoring the energy transfer between two matching fluorescent lipids on the surface of the particles. We anticipate that these liquid particle-based sensors, which are able to report via Förster resonance energy transfer (FRET) on the movement of ligands on their interface upon protein binding, will provide a useful tool to study receptor binding and cooperation during adhesion processes such as phagocytosis.
Collapse
Affiliation(s)
- Sophie Michelis
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Chiara Pompili
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 Paris, France
| | | | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Blaise Dumat
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
7
|
Ma X, Tang W, Yang R. Bioinspired nanomaterials for the treatment of bacterial infections. NANO RESEARCH 2024; 17:691-714. [DOI: 10.1007/s12274-023-6283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/04/2025]
|
8
|
Peng S, Wang W, Zhang R, Wu C, Pan X, Huang Z. Nano-Formulations for Pulmonary Delivery: Past, Present, and Future Perspectives. Pharmaceutics 2024; 16:161. [PMID: 38399222 PMCID: PMC10893528 DOI: 10.3390/pharmaceutics16020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.
Collapse
Affiliation(s)
- Siyuan Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
10
|
Fei Q, Shalosky EM, Barnes R, Shukla VC, Xu S, Ballinger MN, Farkas L, Lee RJ, Ghadiali SN, Englert JA. Macrophage-Targeted Lipid Nanoparticle Delivery of microRNA-146a to Mitigate Hemorrhagic Shock-Induced Acute Respiratory Distress Syndrome. ACS NANO 2023; 17:16539-16552. [PMID: 37595605 PMCID: PMC10754353 DOI: 10.1021/acsnano.3c01814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro coculture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro. Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose of miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a levels in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have the therapeutic potential to mitigate lung injury during mechanical ventilation.
Collapse
Affiliation(s)
- Qinqin Fei
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | - Emily M. Shalosky
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus OH 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | - Ryelie Barnes
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus OH 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | - Vasudha C. Shukla
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH 43210, USA
| | - Siying Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | - Megan N. Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus OH 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | - Laszlo Farkas
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | - Samir N. Ghadiali
- Department of Biomedical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, OH 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | - Joshua A. Englert
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus OH 43210, USA
- The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Barui S, Saha S, Venu Y, Moku GK, Chaudhuri A. In vivo targeting of a tumor-antigen encoded DNA vaccine to dendritic cells in combination with tumor-selective chemotherapy eradicates established mouse melanoma. Biomater Sci 2023; 11:6135-6148. [PMID: 37555308 DOI: 10.1039/d3bm00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Despite remarkable progress during the past decade, eradication of established tumors by targeted cancer therapy and cancer immunotherapy remains an uphill task. Herein, we report on a combination approach for eradicating established mouse melanoma. Our approach employs the use of tumor selective chemotherapy in combination with in vivo dendritic cell (DC) targeted DNA vaccination. Liposomes of a newly synthesized lipopeptide containing a previously reported tumor-targeting CGKRK-ligand covalently grafted in its polar head-group region were used for tumor selective delivery of cancer therapeutics. Liposomally co-loaded STAT3siRNA and WP1066 (a commercially available inhibitor of the JAK2/STAT3 pathway) were used as cancer therapeutics. In vivo targeting of a melanoma antigen (MART-1) encoded DNA vaccine (p-CMV-MART1) to dendritic cells was accomplished by complexing it with a previously reported mannose-receptor selective in vivo DC-targeting liposome. Liposomes of the CGKRK-lipopeptide containing encapsulated FITC-labeled siRNA, upon intravenous administration in B16F10 melanoma bearing mice, showed remarkably higher accumulation in tumors 24 h post i.v. treatment, compared to their degree of accumulation in other body tissues including the lungs, liver, kidneys, spleen and heart. Importantly, the findings in tumor growth inhibition studies revealed that only in vivo DC-targeted genetic immunization or only tumor-selective chemotherapy using the presently described systems failed to eradicate the established mouse melanoma. The presently described combination approach is expected to find future applications in combating various malignancies (with well-defined surface antigens).
Collapse
Affiliation(s)
- Sugata Barui
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
| | - Soumen Saha
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Yakati Venu
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gopi Krishna Moku
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Department of Physical Sciences, Kakatiya Institute of Technology and Science, Yerragattu Gutta, Warangal 506 015, Telangana, India
| | - Arabinda Chaudhuri
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-74126, West Bengal, India
| |
Collapse
|
12
|
Ahalwat S, Bhatt DC, Rohilla S, Jogpal V, Sharma K, Virmani T, Kumar G, Alhalmi A, Alqahtani AS, Noman OM, Almoiliqy M. Mannose-Functionalized Isoniazid-Loaded Nanostructured Lipid Carriers for Pulmonary Delivery: In Vitro Prospects and In Vivo Therapeutic Efficacy Assessment. Pharmaceuticals (Basel) 2023; 16:1108. [PMID: 37631023 PMCID: PMC10458796 DOI: 10.3390/ph16081108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Resistance to isoniazid (INH) is common and increases the possibility of acquiring multidrug-resistant tuberculosis. For this study, isoniazid-loaded nanostructured lipid carriers (INH-NLCs) were developed and effectively functionalized with mannose (Man) to enhance the residence time of the drug within the lungs via specific delivery and increase the therapeutic efficacy of the formulation. The mannose-functionalized isoniazid-loaded nanostructured lipid carrier (Man-INH-NLC) formulation was evaluated with respect to various formulation parameters, namely, encapsulation efficiency (EE), drug loading (DL), average particle size (PS), zeta potential (ZP), polydispersity index (PDI), in vitro drug release (DR), and release kinetics. The in vitro inhalation behavior of the developed formulation after nebulization was investigated using an Andersen cascade impactor via the estimation of the mass median aerosolized diameter (MMAD) and geometric aerodynamic diameter (GAD) and subsequently found to be suitable for effective lung delivery. An in vivo pharmacokinetic study was carried out in a guinea pig animal model, and it was demonstrated that Man-INH-NLC has a longer residence time in the lungs with improved pharmacokinetics when compared with unfunctionalized INH-NLC, indicating the enhanced therapeutic efficacy of the Man-INH-NLC formulation. Histopathological analysis led us to determine that the extent of tissue damage was more severe in the case of the pure drug solution of isoniazid compared to the Man-INH-NLC formulation after nebulization. Thus, the nebulization of Man-INH-NLC was found to be safe, forming a sound basis for enhancing the therapeutic efficacy of the drug for improved management in the treatment of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Shaveta Ahalwat
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Dinesh Chandra Bhatt
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Surbhi Rohilla
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Vikas Jogpal
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Kirti Sharma
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Marwan Almoiliqy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
13
|
Shrivastava P, Mahale A, Prakash Kulkarni O, Kashaw SK, Vyas SP. Targeted intracellular delivery of antitubercular bioactive(s) to Mtb infected macrophages via transferrin functionalized nanoliposomes. Int J Pharm 2023:123189. [PMID: 37391107 DOI: 10.1016/j.ijpharm.2023.123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The packaging of antimicrobials/chemotherapeutics into nanoliposomes can enhance their activity while minimizing toxicity. However, their use is still limited owing to inefficient/inadequate loading strategies. Several bioactive(s) which are non ionizable, and poorly aqueous soluble cannot be easily encapsulated into aqueous core of liposomes by using conventional means. Such bioactive(s) however could be encapsulated in the liposomes by forming their water soluble molecular inclusion complex with cyclodextrins. In this study, we developed Rifampicin (RIF) - 2-hydroxylpropyl-β-cyclodextrin (HP-β-CD) molecular inclusion complex. The HP-β-CD-RIF complex interaction was assessed by using computational analysis (molecular modeling). The HP-β-CD-RIF complex and Isoniazid were co-loaded in the small unilamellar vesicles (SUVs). Further, the developed system was functionalized with transferrin, a targeting moiety. Transferrin functionalized SUVs (Tf-SUVs) could preferentially deliver their payload intracellularly in the endosomal compartment of macrophages. In in vitro study on infected Raw 264.7 macrophage cells revealed that the encapsulated bioactive(s) could eradicate the pathogen more efficiently than free bioactive(s). In vivo studies further revealed that the Tf-SUVs could accumulate and maintain intracellular bioactive(s) concentrations in macrophages. The study suggests Tf-SUVs as a promising module for targeted delivery of a drug combination with improved/optimal therapeutic index and effective clinical outcomes.
Collapse
Affiliation(s)
- Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, (M.P.), India, 470003
| | - Ashutosh Mahale
- Department of Pharmacy (Pharmacology division), Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy (Pharmacology division), Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Sushil K Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, (M.P.), India, 470003
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, (M.P.), India, 470003.
| |
Collapse
|
14
|
Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment. J Colloid Interface Sci 2023; 636:388-400. [PMID: 36640550 DOI: 10.1016/j.jcis.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, where M2 macrophages play an irreplaceable role in the anti-inflammatory progress. Targeting M2 macrophages and regulating their polarization may be a potential treatment strategy for IPF. Herein, we designed a magnetic liposome based dual-targeting delivery system for the IPF treatment, constructed by mannose-modified magnetic nanoparticles (MAN-MNPs) loaded on the surface of the liposome (MAN-MNPs@LP). The delivery system is capable of responding to a static magnetic field (SMF) and then recognizing in situ of M2 macrophages through the mannose receptor-dependent internalization. Firstly, a series of physical and chemical assays were used to characterize these nanoparticles. Subsequently, magnetic liposomes accumulation in the damaged lung with/without mannose modification and SMF were compared by in vivo imaging system. Finally, the reduction of M2 macrophages and inhibition of their polarization confirmed that the development of IPF was retarded due to the in situ release of encapsulated dexamethasone (Dex) in lungs under the SMF. Further investigation demonstrated that the expression of α-SMA and collagen deposition was reduced. Altogether, this dual-targeting delivery system can effectively deliver Dex into M2 macrophages in the lung, making it a novel and promising therapeutic system for the IPF treatment.
Collapse
|
15
|
Fei Q, Shalosky EM, Barnes R, Shukla VC, Ballinger MN, Farkas L, Lee RJ, Ghadiali SN, Englert JA. Macrophage-targeted lipid nanoparticle delivery of microRNA-146a to mitigate hemorrhagic shock-induced acute respiratory distress syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529007. [PMID: 36824913 PMCID: PMC9949132 DOI: 10.1101/2023.02.17.529007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury, but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro co-culture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro . Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have therapeutic potential to mitigate lung injury during mechanical ventilation.
Collapse
|
16
|
Gupta A, Gupta GS. Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:228. [PMID: 36373057 PMCID: PMC9638366 DOI: 10.1007/s11051-022-05594-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED Glycosylated nanoparticles (NPs) have drawn a lot of attention in the biomedical field over the past few decades, particularly in applications like targeted drug delivery. Mannosylated NPs and mannan-binding lectins/proteins (MBL/MBP) are emerging as promising tools for delivery of drugs, medicines, and enzymes to targeted tissues and cells as nanocarriers, enhancing their therapeutic benefits while avoiding the adverse effects of the drug. The occurrence of plenty of lectin receptors and their mannan ligands on cell surfaces makes them multifaceted carriers appropriate for specific delivery of bioactive drug materials to their targeted sites. Thus, the present review describes the tethering of mannose (Man) to several nanostructures, like micelles, liposomes, and other NPs, applicable for drug delivery systems. Bioadhesion through MBL-like receptors on cells has involvements applicable to additional arenas of science, for example gene delivery, tissue engineering, biomaterials, and nanotechnology. This review also focuses on the role of various aspects of drug/antigen delivery using (i) mannosylated NPs, (ii) mannosylated lectins, (iii) amphiphilic glycopolymer NPs, and (iv) natural mannan-containing polysaccharides, with most significant applications of MBL-based NPs as multivalent scaffolds, using different strategies. GRAPHICAL ABSTRACT Mannosylated NPs and/or MBL/MBP are coming up as viable and versatile tools as nanocarriers to deliver drugs and enzymes precisely to their target tissues or cells. The presence of abundant number of lectin receptors and their mannan ligands on cell surfaces makes them versatile carriers suitable for the targeted delivery of bioactive drugs.
Collapse
Affiliation(s)
- Anita Gupta
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - G. S. Gupta
- Department of Biophysics, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
17
|
Mousavifar L, Lewicky JD, Taponard A, Bagul R, Rivat M, Abdullayev S, Martel AL, Fraleigh NL, Nakamura A, Veyrier FJ, Le HT, Roy R. Synthesis & Evaluation of Novel Mannosylated Neoglycolipids for Liposomal Delivery System Applications. Pharmaceutics 2022; 14:2300. [PMID: 36365120 PMCID: PMC9692915 DOI: 10.3390/pharmaceutics14112300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 07/03/2024] Open
Abstract
Glycosylated NPs, including liposomes, are known to target various receptors involved in cellular carbohydrate transport, of which the mannoside binding receptors are attracting particular attention for their expression on various immune cells, cancers, and cells involved in maintaining central nervous system (CNS) integrity. As part of our interest in NP drug delivery, mannosylated glycoliposomal delivery systems formed from the self-assembly of amphiphilic neoglycolipids were developed, with a C12-alkyl mannopyranoside (ML-C12) being identified as a lead compoundcapable of entrapping, protecting, and improving the delivery of structurally diverse payloads. However, ML-C12 was not without limitations in both the synthesis of the glycolipids, and the physicochemical properties of the resulting glycoliposomes. Herein, the chemical syntheses of a novel series of mannosylated neoglycolipids are reported with the goal of further improving on the previous ML-C12 glyconanoparticles. The current work aimed to use a self-contingent strategy which overcomes previous synthetic limitations to produce neoglycolipids that have one exposed mannose residue, an aromatic scaffold, and two lipid tails with varied alkyl chains. The azido-ending carbohydrates and the carboxylic acid-ending lipid tails were ligated using a new one-pot modified Staudinger chemistry that differed advantageously to previous syntheses. The formation of stable neoglycoliposomes of controllable and ideal sizes (≈100-400 nm) was confirmed via dynamic light scattering (DLS) experiments and transmission electron microscopy (TEM). Beyond chemical advantages, the present study further aimed to establish potential improvements in the biological activity of the neoglycoliposomes. Concanavalin A (Con A) agglutination studies demonstrated efficient and stable cross-linking abilities dependent on the length of the linkers and lipid tails. The efficacy of the glycoliposomes in improving cytosolic uptake was investigated using Nile Red as probe in immune and cancer cell lines. Preliminary ex vivo safety assessments showed that the mannosylated glycoliposomes are hemocompatible, and non-immunogenic. Finally, using a model peptide therapeutic, the relative entrapment capacity and plasma stability of the optimal glycoliposome delivery system was evaluated and compared to the previous neoglycoliposomes. Overall, the new lead glycoliposome showed improved biological activity over ML-C12, in addition to having several chemical benefits including the lack of stereocenters, a longer linker allowing better sugar availability, and ease of synthesis using novel one-pot modified Staudinger chemistry.
Collapse
Affiliation(s)
- Leila Mousavifar
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Alexis Taponard
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Rahul Bagul
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Madleen Rivat
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Shuay Abdullayev
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Nya L. Fraleigh
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Arnaldo Nakamura
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Frédéric J. Veyrier
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
18
|
S. M. S, Naveen NR, Rao GSNK, Gopan G, Chopra H, Park MN, Alshahrani MM, Jose J, Emran TB, Kim B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer. Front Oncol 2022; 12:994155. [PMID: 36330493 PMCID: PMC9623325 DOI: 10.3389/fonc.2022.994155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 07/30/2023] Open
Abstract
Numerous naturally available phytochemicals have potential anti-cancer activities due to their vast structural diversity. Alkaloids have been extensively used in cancer treatment, especially lung cancers, among the plant-based compounds. However, their utilization is limited by their poor solubility, low bioavailability, and inadequacies such as lack of specificity to cancer cells and indiscriminate distribution in the tissues. Incorporating the alkaloids into nanoformulations can overcome the said limitations paving the way for effective delivery of the alkaloids to the site of action in sufficient concentrations, which is crucial in tumor targeting. Our review attempts to assess whether alkaloid nanoformulation can be an effective tool in lung cancer therapy. The mechanism of action of each alkaloid having potential is explored in great detail in the review. In general, Alkaloids suppress oncogenesis by modulating several signaling pathways involved in multiplication, cell cycle, and metastasis, making them significant component of many clinical anti-cancerous agents. The review also explores the future prospects of alkaloid nanoformulation in lung cancer. So, in conclusion, alkaloid based nanoformulation will emerge as a potential gamechanger in treating lung cancer in the near future.
Collapse
Affiliation(s)
- Sindhoor S. M.
- Department of Pharmaceutics, P.A. College of Pharmacy, Mangalore, Karnataka, India
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagar, Karnataka, India
| | - GSN Koteswara Rao
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
19
|
Huck BC, Thiyagarajan D, Bali A, Boese A, Besecke KFW, Hozsa C, Gieseler RK, Furch M, Carvalho‐Wodarz C, Waldow F, Schwudke D, Metelkina O, Titz A, Huwer H, Schwarzkopf K, Hoppstädter J, Kiemer AK, Koch M, Loretz B, Lehr C. Nano-in-Microparticles for Aerosol Delivery of Antibiotic-Loaded, Fucose-Derivatized, and Macrophage-Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery. Adv Healthc Mater 2022; 11:e2102117. [PMID: 35112802 PMCID: PMC11468583 DOI: 10.1002/adhm.202102117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/14/2022] [Indexed: 12/12/2022]
Abstract
Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco-regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline-encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP-1 cells as well as peripheral blood monocyte- and lung-tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry-powder microparticles of spray-dried bedaquiline-loaded liposomes display a high fine particle fraction of >70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP-1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections.
Collapse
Affiliation(s)
- Benedikt C. Huck
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| | - Durairaj Thiyagarajan
- Department of Anti‐infective Drug DiscoveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8 1Saarbrücken66123Germany
| | - Aghiad Bali
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| | - Annette Boese
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Karen F. W. Besecke
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Solmic BioTech GmbHDüsseldorf40225Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Siegfried AG HamelnHameln31789Germany
| | - Robert K. Gieseler
- Rodos Biotarget GmbHHannover30625Germany
- Laboratory of Immunology and Molecular Biologyand Department of Internal MedicineUniversity HospitalKnappschaftskrankenhaus BochumRuhr University BochumBochum44892Germany
| | - Marcus Furch
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Biolife Holding AGHeidelberg69126Germany
| | - Cristiane Carvalho‐Wodarz
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Franziska Waldow
- Research Center BorstelLeibniz Lung CenterBorstel23845Germany
- German Center for Infection ResearchThematic Translational Unit TuberculosisPartner Site Hamburg‐Lübeck‐Borstel‐RiemsBraunschweig38124Germany
| | - Dominik Schwudke
- Research Center BorstelLeibniz Lung CenterBorstel23845Germany
- German Center for Infection ResearchThematic Translational Unit TuberculosisPartner Site Hamburg‐Lübeck‐Borstel‐RiemsBraunschweig38124Germany
- German Center for Lung Research (DZL)Airway Research Center North (ARCN)Kiel NanoSurface and Interface Science KiNSISKiel UniversityKiel24118Germany
| | - Olga Metelkina
- Chemical Biology of Carbohydrates (CBCH)Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection ResearchSaarbrücken66123Germany
- Department of ChemistrySaarland UniversitySaarbrücken66123Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH)Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection ResearchSaarbrücken66123Germany
- Department of ChemistrySaarland UniversitySaarbrücken66123Germany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover‐Braunschweig siteBraunschweig38124Germany
| | - Hanno Huwer
- Cardiothoracic SurgeryHeart Center VoelklingenVölklingen66333Germany
| | - Konrad Schwarzkopf
- Department of Anaesthesia and Intensive CareKlinikum Saarbrücken gGmbHSaarbrücken66119Germany
| | | | | | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Brigitta Loretz
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Claus‐Michael Lehr
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| |
Collapse
|
20
|
Zlotnikov ID, Kudryashova EV. Mannose Receptors of Alveolar Macrophages as a Target for the Addressed Delivery of Medicines to the Lungs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Sharma PR, Dravid AA, Kalapala YC, Gupta VK, Jeyasankar S, Goswami A, Agarwal R. Cationic inhalable particles for enhanced drug delivery to M. tuberculosis infected macrophages. BIOMATERIALS ADVANCES 2022; 133:112612. [PMID: 35527151 DOI: 10.1016/j.msec.2021.112612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022]
Abstract
Inhalable microparticle-based drug delivery platforms are being investigated extensively for Tuberculosis (TB) treatment as they offer efficient deposition in lungs and improved pharmacokinetics of the encapsulated cargo. However, the effect of physical parameters of microcarriers on interaction with Mycobacterium tuberculosis (Mtb) infected mammalian cells is underexplored. In this study, we report that Mtb-infected macrophages are highly phagocytic and microparticle surface charge plays a major role in particle internalization by infected cells. Microparticles of different sizes (0.5-2 μm) were internalized in large numbers by Mtb-infected THP-1 macrophages and murine primary Bone Marrow Derived Macrophages in vitro. Drastic improvement in particle uptake was observed with cationic particles in vitro and in mice lungs. Rapid uptake of rifampicin-loaded cationic microparticles allowed high intracellular accumulation of the drug and led to enhanced anti-bacterial function when compared to non-modified rifampicin-loaded microparticles. Cytocompatibility assay and histological analysis in vivo confirmed that the formulations were safe and did not elicit any adverse reaction. Additionally, pulmonary delivery of cationic particles in mice resulted in two-fold higher uptake in resident alveolar macrophages compared to non-modified particles. This study provides a framework for future design of drug carriers to improve delivery of anti-TB drugs inside Mtb-infected cells.
Collapse
Affiliation(s)
- Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Ameya Atul Dravid
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Vishal K Gupta
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sharumathi Jeyasankar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Avijit Goswami
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
22
|
Xi L, Lin Z, Qiu F, Chen S, Li P, Chen X, Wang Z, Zheng Y. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm Sin B 2022; 12:339-352. [PMID: 35127390 PMCID: PMC8808595 DOI: 10.1016/j.apsb.2021.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Psoriasis is an autoimmune skin disease in which dendritic cells (DCs) trigger the progression of psoriasis by complex interactions with keratinocytes and other immune cells. In the present study, we aimed to load celastrol, an anti-inflammatory ingredient isolated from Chinese herbs, on mannosylated liposomes to enhance DC uptake as well as to induce DC tolerance in an imiquimod-induced psoriasis-like mouse model. Mannose was grafted onto liposomes to target mannose receptors on DCs. The results demonstrated that compared with unmodified liposomes, DCs preferred to take up more fluorescence-labeled mannosylated liposomes. After loading celastrol into mannose-modified liposomes, they effectively inhibited the expression of maturation markers, including CD80, CD86 and MHC-II, on DCs both in vitro and in vivo. Additionally, after intradermal injection with a microneedle, celastrol-loaded mannose-modified liposomes (CEL-MAN-LPs) achieved a superior therapeutic effect compared with free drug and celastrol-loaded unmodified liposomes in the psoriasis mouse model in terms of the psoriasis area and severity index, histology evaluation, spleen weight, and expression of inflammatory cytokines. In conclusion, our results clearly revealed that CEL-MAN-LPs was an effective formulation for psoriasis treatment and suggested that this treatment has the potential to be applied to other inflammatory diseases triggered by activated DCs.
Collapse
|
23
|
Mannosylation Of Budesonide Palmitate Nanoprodrugs For Improved Macrophage Targeting. Eur J Pharm Biopharm 2021; 170:112-120. [PMID: 34890789 DOI: 10.1016/j.ejpb.2021.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
In a strategy to improve macrophage targeting of glucocorticoids (GCs) for anti-inflammatory therapy, a so-called nanoprodrug of budesonide palmitate decorated by mannose moieties was designed. The synthesis of budesonide palmitate (BP) was obtained by esterification and mannosylated lipid (DSPE-PEG-Man) by reacting 1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine (DSPE)-polyethylene glycol-amine and α-D-mannopyranosylphenyl isothiocyanate (MPITC). Nanoparticles were formulated by emulsion-evaporation and different ratios of mannosylated lipid were introduced in the formulation of BP nanoprodrugs. Using up to 75% of DSPE-PEG-man (75/25) led to 200 nm particles with a polydispersity index below 0.2, a negative zeta potential ranging from -10 to -30 mV, and one-month stability at 4°C. The encapsulation efficiency of BP approached 100% proving that the prodrug was associated with the particles, leading to a final BP loading of 50-to 60% (w/w). The lectin agglutination test confirmed the availability of mannose on the nanoprodrug surface. Nanoprodrug uptake by RAW 264.7 macrophages was observed by confocal microscopy and flow cytometry. After 24 and 48 hours of incubation, a significantly greater internalization of mannosylated nanoparticles as compared to PEGylated nanoparticles was achieved. The mannose receptor-mediated uptake was confirmed by a mannan inhibition study. After LPS-induced inflammation, the anti-inflammatory effect of mannosylated nanoparticles was assessed. After 48 hours of incubation, cytokines (MCP-1 and TNFα) were reduced demonstrating that the functionalization of nanoprodrugs is possible and efficient.
Collapse
|
24
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Ma R, Zhang J, Chen Z, Ma H, Liu X, Liang S, Wu P, Ge Z. Treatment of spinal tuberculosis in rabbits using bovine serum albumin nanoparticles loaded with isoniazid and rifampicin. Neurol Res 2021; 44:268-274. [PMID: 34581255 DOI: 10.1080/01616412.2021.1979749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate the clinical efficacy of bovine serum albumin nanoparticles loaded with isoniazid and rifampicin (INH-RFP-BSA-NPs) in the treatment of spinal tuberculosis in rabbits. METHODS 35 spinal tuberculosis rabbit models were grouped into three groups, including 14 in group A and group B respectively and 7 in group C.All rabbits in group A were treated by INH-RFP-BSA-NPs's injection and in group B were treated with classic dosage form of INH and RFP, while in group C normal saline was given as the blank control. After intervention, the body weighing and CT scan, as well as concentration's measurement of INH and RFP in blood and tissues, were performed in all rabbits at the time of the 6thweek and 12th week, respectively. RESULTS In group A, rabbits' weight increased by 0.44 kg and 0.27 kg within 6 weeks and 12 weeks' treatment respectively. The bactericidal concentrations of 1.64 µg•g-1 for INH and 21.36 µg•g-1 for RFP were measured in focus vertebral body 6 weeks post-injection and six weeks later the concentrations of INH and RFP in vertebral body still maintained at the level of 1.96 µg•g-1 and 22.35 µg•g-1respectively. After 12 weeks therapy, CT-scanned showed all the necrotic tissue was replaced by normal bone tissue. In group B, all rabbits had no significant increment of body weight and 4 rabbits had paralysis of hind leg. The concentrations of INH and RFP in vertebral body and focus were much lower than group A. CT-scanned showed the focus vertebral body was only partially repaired after 12 weeks' therapy. CONCLUSION The INH-RFP-BSA-NPs has the characteristics of sustained release in vivo and target biodistribution in focus vertebral body. Its therapeutic effect in rabbit spinal tuberculosis is much better than common INH and RFP.
Collapse
Affiliation(s)
- Rong Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jianqun Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhen Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - He Ma
- Department of Orthopaedics, Shenzhen Baoan People's Hospital, Shenzhen, China
| | - Xiaoyin Liu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Simin Liang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Wu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhaohui Ge
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
26
|
Tse JY, Koike A, Kadota K, Uchiyama H, Fujimori K, Tozuka Y. Porous particles and novel carrier particles with enhanced penetration for efficient pulmonary delivery of antitubercular drugs. Eur J Pharm Biopharm 2021; 167:116-126. [PMID: 34363979 DOI: 10.1016/j.ejpb.2021.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/31/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to design dry powder inhaler formulations using a hydrophilic polymeric polysaccharide, phytoglycogen (PyG), as a multi-functional additive that increases the phagocytic activity of macrophage-like cells and enhances pulmonary delivery of drugs. The safety and usefulness of PyG were determined using in vitro cell-based studies. Dry powder inhaler formulations of an antitubercular drug, rifampicin, were fabricated by spray drying with PyG. The cytotoxicity, effects on phagocytosis, particle size, and morphology were evaluated. The aerosolization properties of the powder formulations were evaluated using an Andersen cascade impactor (ACI). Scanning electron microscope images of the particles on each ACI stage were captured to observe the deposition behavior. PyG showed no toxicity in A549, Calu-3, or RAW264.7 cell lines. At concentrations of 0.5 and 1 g/L, PyG facilitated the cellular uptake of latex beads and the expression of pro-inflammatory cytokine genes in RAW264.7 cells. Formulations with outstanding inhalation potential were produced. The fine particle fraction (aerodynamic size 2-7 µm) of the porous particle batch reached nearly 60%, whereas in the formulation containing wrinkled carrier particles, the extra-fine particle fraction (aerodynamic particle size < 2 μm) was 25.0% ± 1.7%. The deposition of porous and wrinkled particles on individual ACI stages was distinct. The inclusion of PyG dramatically improved the inhalation performance of porous and wrinkled powder formulations. These easily inhaled immunostimulatory carrier particles may advance the state of research by enhancing the therapeutic effect and alveolar delivery of antitubercular drugs.
Collapse
Affiliation(s)
- Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Atsushi Koike
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
27
|
Lunn AM, Unnikrishnan M, Perrier S. Dual pH-Responsive Macrophage-Targeted Isoniazid Glycoparticles for Intracellular Tuberculosis Therapy. Biomacromolecules 2021; 22:3756-3768. [PMID: 34339606 DOI: 10.1021/acs.biomac.1c00554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is a global epidemic that kills over a million people every year, particularly in low-resource communities. Mycobacterium tuberculosis, the most common bacterium that causes TB, is difficult to treat, particularly in its latent phase, in part due to its ability to survive and replicate within the host macrophage. New therapeutic approaches resulting in better tolerated and shorter antibiotic courses that target intracellular bacteria are critical to effective treatment. The development of a novel, pH-responsive, mannosylated nanoparticle, covalently linked with isoniazid, a first-line TB antibiotic, is presented. This nanoparticle drug delivery agent has increased macrophage uptake and, upon exposure to the acidic phagolysosome, releases isoniazid through hydrolysis of a hydrazone bond, and disintegrates into a linear polymer. Full antibiotic activity is shown to be retained, with mannosylated isoniazid particles being the only treatment exhibiting complete bacterial eradication of intracellular bacteria, compared to an equivalent PEGylated system and free isoniazid. Such a system, able to effectively kill intracellular mycobacteria, holds promise for improved outcomes in TB infection.
Collapse
Affiliation(s)
- Andrew M Lunn
- Department of Chemistry, The University of Warwick, Gibbet Hill, Coventry CV4 7AL, U.K
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick, Gibbet Hill, Coventry CV4 7AL, U.K.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
28
|
Improving the Utility of a Dynorphin Peptide Analogue Using Mannosylated Glycoliposomes. Int J Mol Sci 2021; 22:ijms22157996. [PMID: 34360762 PMCID: PMC8348236 DOI: 10.3390/ijms22157996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Peptide therapeutics offer numerous advantages in the treatment of diseases and disorders of the central nervous system (CNS). However, they are not without limitations, especially in terms of their pharmacokinetics where their metabolic lability and low blood–brain barrier penetration hinder their application. Targeted nanoparticle delivery systems are being tapped for their ability to improve the delivery of therapeutics into the brain non-invasively. We have developed a family of mannosylated glycoliposome delivery systems for targeted drug delivery applications. Herein, we demonstrate via in vivo distribution studies the potential of these glycoliposomes to improve the utility of CNS active therapeutics using dynantin, a potent and selective dynorphin peptide analogue antagonist of the kappa opioid receptor (KOR). Glycoliposomal entrapment protected dynantin against known rapid metabolic degradation and ultimately improved brain levels of the peptide by approximately 3–3.5-fold. Moreover, we linked this improved brain delivery with improved KOR antagonist activity by way of an approximately 30–40% positive modulation of striatal dopamine levels 20 min after intranasal administration. Overall, the results clearly highlight the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the CNS.
Collapse
|
29
|
Si W, Yang Q, Zong Y, Ren G, Zhao L, Hong M, Xin Z. Toward Understanding the Effect of Solvent Evaporation on the Morphology of PLGA Microspheres by Double Emulsion Method. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Si
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qingqing Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yuan Zong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guobin Ren
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minghuang Hong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Zhong Xin
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
30
|
Luo MX, Hua S, Shang QY. Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Mol Med Rep 2021; 23:325. [PMID: 33760125 PMCID: PMC7974419 DOI: 10.3892/mmr.2021.11964] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Respiratory disease is a common disease with a high incidence worldwide, which is a serious threat to human health, and is considered a societal and economic burden. The application of nanotechnology in drug delivery systems has created new treatments for respiratory diseases. Within this context, the present review systematically introduced the physicochemical properties of nanoparticles (NPs); reviewed the current research status of different nanocarriers in the treatment of respiratory diseases, including liposomes, solid lipid nanocarriers, polymeric nanocarriers, dendrimers, inorganic nanocarriers and protein nanocarriers; and discussed the main advantages and limitations of therapeutic nanomedicine in this field. The application of nanotechnology overcomes drug inherent deficiencies to a certain extent, and provides unlimited potential for the development of drugs to treat respiratory diseases. However, most of the related research work is in the preclinical experimental stage and safety assessment is still a challenging task. Future studies are needed to focus on the performance modification, molecular mechanism and potential toxicity of therapeutic nanomedicine.
Collapse
Affiliation(s)
- Ming-Xin Luo
- Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, P.R. China
| | - Shan Hua
- Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, P.R. China
| | - Qi-Yun Shang
- Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
31
|
Durán V, Grabski E, Hozsa C, Becker J, Yasar H, Monteiro JT, Costa B, Koller N, Lueder Y, Wiegmann B, Brandes G, Kaever V, Lehr CM, Lepenies B, Tampé R, Förster R, Bošnjak B, Furch M, Graalmann T, Kalinke U. Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells. J Control Release 2021; 334:201-212. [PMID: 33865899 DOI: 10.1016/j.jconrel.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Antibiotic treatment of tuberculosis (TB) is complex, lengthy, and can be associated with various adverse effects. As a result, patient compliance often is poor, thus further enhancing the risk of selecting multi-drug resistant bacteria. Macrophage mannose receptor (MMR)-positive alveolar macrophages (AM) constitute a niche in which Mycobacterium tuberculosis replicates and survives. Therefore, we encapsulated levofloxacin in lipid nanocarriers functionalized with fucosyl residues that interact with the MMR. Indeed, such nanocarriers preferentially targeted MMR-positive myeloid cells, and in particular, AM. Intracellularly, fucosylated lipid nanocarriers favorably delivered their payload into endosomal compartments, where mycobacteria reside. In an in vitro setting using infected human primary macrophages as well as dendritic cells, the encapsulated antibiotic cleared the pathogen more efficiently than free levofloxacin. In conclusion, our results point towards carbohydrate-functionalized nanocarriers as a promising tool for improving TB treatment by targeted delivery of antibiotics.
Collapse
Affiliation(s)
- Verónica Durán
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Elena Grabski
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Hanzey Yasar
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI), Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - João T Monteiro
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Nicole Koller
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.; Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover, Medical School, Germany; German Centre of Lung Research, 30625, Hannover, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI), Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - Bernd Lepenies
- Institute for Immunology & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany..
| | | | - Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Clinic of Immunology and Rheumatology, Hannover Medical School, Hannover, Germany..
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany..
| |
Collapse
|
32
|
Goswami A, Sharma PR, Agarwal R. Combatting intracellular pathogens using bacteriophage delivery. Crit Rev Microbiol 2021; 47:461-478. [PMID: 33818246 DOI: 10.1080/1040841x.2021.1902266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracellular pathogens reside in specialised compartments within the host cells restricting the access of antibiotics. Insufficient intracellular delivery of antibiotics along with several other resistance mechanisms weaken the efficacy of current therapies. An alternative to antibiotic therapy could be bacteriophage (phage) therapy. Although phage therapy has been in practice for a century against various bacterial infections, the efficacy of phages against intracellular bacteria is still being explored. In this review, we will discuss the advancement and challenges in phage therapy, particularly against intracellular bacterial pathogens. Finally, we will highlight the uptake mechanisms and approaches to overcome the challenges to phage therapy against intracellular bacteria.
Collapse
Affiliation(s)
- Avijit Goswami
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
33
|
Shrivastava P, Gautam L, Sharma R, Dube D, Vyas S, Vyas SP. Dual antitubercular drug loaded liposomes for macrophage targeting: development, characterisation, ex vivo and in vivo assessment. J Microencapsul 2021; 38:108-123. [PMID: 33267623 DOI: 10.1080/02652048.2020.1857861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
AIM The present study was conducted to formulate and investigate liposomes for the dual drug delivery based on anti-tubercular drug(s) combination i.e. Isoniazid (INH) and Rifampicin (RIF). MATERIALS AND METHODS Mannosylated and non mannosylated liposomes were prepared by lipid thin film hydration method, using DSPC: Chol at a molar ratio 6:4 while in case of mannosylated liposomes DSPC: Chol: Man-C4-Chol at a molar ratio 6.0:3.5:0.5 were used and extensively characterised. The particle size and zeta potential were recorded to be 1.29 ± 0.24 µm and -9.1 ± 0.11 mV. The drug entrapment (%) was recorded to be 84.7 ± 1.25% for Rifampicin and 31.8 ± 0.12% for Isoniazid. RESULTS The antitubercular activity studied in Balb/C mice was maximum in the case of mannosylated liposomes. The biodistribution studies also revealed higher drug(s) concentration (accumulation) maintained over a protracted period. CONCLUSIONS The liposomal preparations are passively as well as actively uptaken by the alveolar macrophages which are the cellular tropics of infection. The mannosylated liposomes appear to be a potential carrier for dual drug delivery and targeted antitubercular therapy.
Collapse
Affiliation(s)
- Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Devyani Dube
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Sonal Vyas
- Bundelkhand Medical College and Hospital, Sagar, MP, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
34
|
Kono Y, Takegaki J, Ohba T, Matsuda K, Negoro R, Fujita S, Fujita T. Magnetization of mesenchymal stem cells using magnetic liposomes enhances their retention and immunomodulatory efficacy in mouse inflamed skeletal muscle. Int J Pharm 2021; 596:120298. [PMID: 33529784 DOI: 10.1016/j.ijpharm.2021.120298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
Sarcopenia, an age-related reduction in skeletal muscle mass and strength, is mainly caused by chronic inflammation. Because mesenchymal stem cells (MSCs) have the capacity to both promote myogenic cell differentiation and suppress inflammation, they are a promising candidate for sarcopenia treatment. In this study, to achieve the long-term retention of MSCs in skeletal muscle, we prepared magnetized MSCs using magnetic anionic liposome/atelocollagen complexes that we had previously developed, and evaluated their retention efficiency and immunomodulatory effects in mouse inflamed skeletal muscle. Mouse MSCs were efficiently magnetized by incubation with magnetic anionic liposome/atelocollagen complexes for 30 min under a magnetic field. The magnetized MSCs differentiated normally into osteoblasts and adipocytes. Additionally, non-magnetized MSCs and magnetized MSCs increased IL-6 and inducible nitric oxide synthase mRNA expression and decreased TNF-α and IL-1β mRNA expression in C2C12 mouse skeletal muscle myotubes through paracrine effects. Moreover, magnetized MSCs were significantly retained in cell culture plates and mouse skeletal muscle after their local injection in the presence of a magnetic field. Furthermore, magnetized MSCs significantly increased IL-6 and IL-10 mRNA expression and decreased TNF-α and IL-1β mRNA expression in inflamed skeletal muscle. These results suggest that magnetized MSCs may be useful for effective sarcopenia treatment.
Collapse
Affiliation(s)
- Yusuke Kono
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan.
| | - Junya Takegaki
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Takeshi Ohba
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Koji Matsuda
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Satoshi Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Takuya Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| |
Collapse
|
35
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
36
|
Devnarain N, Osman N, Fasiku VO, Makhathini S, Salih M, Ibrahim UH, Govender T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1664. [PMID: 32808486 DOI: 10.1002/wnan.1664] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nawras Osman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sifiso Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
37
|
Manček-Keber M, Ribić R, Chain F, Sinnaeve D, Martins JC, Jerala R, Tomić S, Fehér K. Adamantane Containing Peptidoglycan Fragments Enhance RANTES and IL-6 Production in Lipopolysaccharide-Induced Macrophages. Molecules 2020; 25:molecules25163707. [PMID: 32823878 PMCID: PMC7465286 DOI: 10.3390/molecules25163707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/08/2020] [Accepted: 08/06/2020] [Indexed: 11/24/2022] Open
Abstract
We report the enhancement of the lipopolysaccharide-induced immune response by adamantane containing peptidoglycan fragments in vitro. The immune stimulation was detected by Il-6 (interleukine 6) and RANTES (regulated on activation, normal T cell expressed and secreted) chemokine expression using cell assays on immortalized mouse bone-marrow derived macrophages. The most active compound was a α-D-mannosyl derivative of an adamantylated tripeptide with L-chirality at the adamantyl group attachment, whereby the mannose moiety assumed to target mannose receptors expressed on macrophage cell surfaces. The immune co-stimulatory effect was also influenced by the configuration of the adamantyl center, revealing the importance of specific molecular recognition event taking place with its receptor. The immunostimulating activities of these compounds were further enhanced upon their incorporation into lipid bilayers, which is likely related to the presence of the adamantyl group that helps anchor the peptidoglycan fragment into lipid nanoparticles. We concluded that the proposed adamantane containing peptidoglycan fragments act as co-stimulatory agents and are also suitable for the preparation of lipid nanoparticle-based delivery of peptidoglycan fragments.
Collapse
Affiliation(s)
- Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, P.O. Box 660, SI-1001 Ljubljana, Slovenia; (M.M.-K.); (R.J.)
- Centre of Excelence EN-FIST, SI-1000 Ljubljana, Slovenia
| | - Rosana Ribić
- University Center Varaždin, University North, Jurja Križanića 31b, HR-42 000 Varaždin, Croatia;
| | - Fernando Chain
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium; (F.C.); (D.S.); (J.C.M.)
| | - Davy Sinnaeve
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium; (F.C.); (D.S.); (J.C.M.)
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167—Labex DISTALZ—RID-AGE—Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
- CNRS, ERL9002—Integrative Structural Biology, F-59000 Lille, France
| | - José C. Martins
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium; (F.C.); (D.S.); (J.C.M.)
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, P.O. Box 660, SI-1001 Ljubljana, Slovenia; (M.M.-K.); (R.J.)
- Centre of Excelence EN-FIST, SI-1000 Ljubljana, Slovenia
| | - Srđanka Tomić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10 000 Zagreb, Croatia;
| | - Krisztina Fehér
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Correspondence: or ; Tel.: +36-52-512-900; Fax: +36-52-518-660
| |
Collapse
|
38
|
Lewicky JD, Fraleigh NL, Boraman A, Martel AL, Nguyen TMD, Schiller PW, Shiao TC, Roy R, Montaut S, Le HT. Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain. Eur J Pharm Biopharm 2020; 154:290-296. [PMID: 32717389 DOI: 10.1016/j.ejpb.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Dynantin is a potent and selective synthetic polypeptide kappa opioid receptor antagonist which has potential antidepressant and anxiolytic-like therapeutic applications, however its clinical development has been hampered by plasma stability issues and poor penetration of the blood brain barrier. Targeted liposome delivery systems represent a promising and non-invasive approach to improving the delivery of therapeutic agents across the blood brain barrier. As part of our work focused on targeted drug delivery, we have developed a novel mannosylated liposome system. Herein, we investigate these glycoliposomes for the targeted delivery of dynantin to the central nervous system. Cholesterol was tested and optimized as a formulation excipient, where it improved particle stability as measured via particle size, entrapment and ex vivo plasma stability of dynantin. The in vitro PRESTO-TANGO assay system was used to confirm that glycoliposomal entrapment did not impact the affinity or activity of the peptide at its receptor. Finally, in vivo distribution studies in mice showed that the mannosylated glycoliposomes significantly improved delivery of dynantin to the brain. Overall, the results clearly demonstrate the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the central nervous system.
Collapse
Affiliation(s)
- Jordan D Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Nya L Fraleigh
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Amanda Boraman
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Alexandrine L Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Thi M-D Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue W, Montreal, Quebec H2W 1R7, Canada
| | - Peter W Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue W, Montreal, Quebec H2W 1R7, Canada; Department of Pharmacology and Physiology, University of Montreal, 2900 Boulevard Édouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | - Tze Chieh Shiao
- Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Biomolecular Sciences Programme, Laurentian University, Subdury, Ontario, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Northern Ontario School of Medicine, Medicinal Sciences Division, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada.
| |
Collapse
|
39
|
Gautam L, Sharma R, Shrivastava P, Vyas S, Vyas SP. Development and Characterization of Biocompatible Mannose Functionalized Mesospheres: an Effective Chemotherapeutic Approach for Lung Cancer Targeting. AAPS PharmSciTech 2020; 21:190. [PMID: 32661573 DOI: 10.1208/s12249-020-01742-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to analyze the lung targeting potential of surface engineered mesospheres loaded with doxorubicin hydrochloride (DOX). Gelatin-based DOX encapsulated mesospheres were prepared using a steric stabilization process and surface modified with mannose, using the amino group present on the surface of the mesospheres. Gelatin-DOX-mesospheres (M1) and gelatin-mannosylated-DOX-mesospheres (M2) were characterized for particle size, polydispersity index, zeta potential, and % entrapment efficiency which were found respectively 8.7 ± 0.35, 0.671 ± 0.018, 1.74 ± 0.27, and 80.4 ± 1.2 for (M1) and 9.8 ± 0.41, 0.625 ± 0.010, 0.85 ± 0.11, and 75.1 ± 0.7 for (M2). Furthermore, the mesospheres were characterized by FTIR, DSC, SEM, and TEM. In vitro drug release study of optimized formulation was carried out using the dialysis tube method. The cumulative percent drug release was found to be 79.2 ± 0.1% and 69.6 ± 0.52% respectively for gelatin-DOX-mesospheres and gelatin-mannosylated-DOX-mesospheres. In vitro cytotoxicity of formulations was determined using xenograft A-549 tumor cell lines. The cytotoxicity recorded as IC50 was more in the case of M2 compared to M1. In addition, mesospheres exhibited minimal hemolytic toxicity and appear to be promising for sustained drug delivery of DOX to the lungs. Cytotoxicity assay was conducted on the A-549 cell line. The results revealed that gelatin-mannosylated-DOX-mesospheres were maximally cytotoxic as compared to free DOX as well as gelatin-DOX-mesospheres. The lung's accumulation of drug was measured and found maximum after administration of M2. It may, therefore, be inferred that gelatin-mannosylated-DOX-mesospheres are capable to carry bioactive(s) and can be used specifically to target the lung cancer with minimal side effects.
Collapse
|
40
|
Ribić R, Manček-Keber M, Chain F, Sinnaeve D, Martins JC, Jerala R, Tomić S, Fehér K. Targeted Delivery of Adamantylated Peptidoglycan Immunomodulators in Lipid Nanocarriers: NMR Shows That Cargo Fragments Are Available on the Surface. J Phys Chem B 2020; 124:4132-4145. [PMID: 32283934 DOI: 10.1021/acs.jpcb.0c00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present an in-depth investigation of the membrane interactions of peptidoglycan (PGN)-based immune adjuvants designed for lipid-based delivery systems using NMR spectroscopy. The derivatives contain a cargo peptidoglycan (PGN) dipeptide fragment and an adamantyl group, which serves as an anchor to the lipid bilayer. Furthermore, derivatives with a mannose group that can actively target cell surface receptors on immune cells are also studied. We showed that the targeting mannose group and the cargo PGN fragment are both available on the lipid bilayer surface, thereby enabling interactions with cognate receptors. We found that the nonmannosylated compounds are incorporated stronger into the lipid assemblies than the mannosylated ones, but the latter compounds penetrate deeper in the bilayer. This might be explained by stronger electrostatic interactions available for zwitterionic nonmannosylated derivatives as opposed to the compounds in which the charged N-terminus is capped by mannose groups. The higher incorporation efficiency of the nonmannosylated compounds correlated with a larger relative enhancement in immune stimulation activities upon lipid incorporation compared to that of the derivatives with the mannose group. The chirality of the adamantyl group also influenced the incorporation efficiency, which in turn correlated with membrane-associated conformations that affect possible intermolecular interactions with lipid molecules. These findings will help in improving the development of PGN-based immune adjuvants suitable for delivery in lipid nanoparticles.
Collapse
Affiliation(s)
- Rosana Ribić
- University Center Varaždin, University North, Jurja Križanića 31b, HR-42 000 Varaždin, Croatia.,Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, P.O. Box 660, SI-1001 Ljubljana, Slovenia.,Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Fernando Chain
- Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Davy Sinnaeve
- Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre S4, Krijgslaan 281, 9000 Ghent, Belgium.,Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167 - Labex DISTALZ - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France.,CNRS, ERL9002 - Integrative Structural Biology, F-59000 Lille, France
| | - José C Martins
- Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre S4, Krijgslaan 281, 9000 Ghent, Belgium
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, P.O. Box 660, SI-1001 Ljubljana, Slovenia
| | - Srđanka Tomić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10 000 Zagreb, Croatia
| | - Krisztina Fehér
- Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre S4, Krijgslaan 281, 9000 Ghent, Belgium.,Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Molecular Recognition and Interaction Research Group, Hungarian Academy of Sciences, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
41
|
Maeda R, Ito T, Tagami T, Takii T, Ozeki T. Development of Dried Emulsion/Mannitol Composite Microparticles through a Unique Spray Nozzle for Efficient Delivery of Hydrophilic Anti-tuberculosis Drug against Alveolar Macrophages. Biol Pharm Bull 2020; 42:1846-1853. [PMID: 31685768 DOI: 10.1248/bpb.b19-00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As alveolar macrophages are attractive targets for the treatment of tuberculosis, effective methods for delivery to alveolar macrophages are under development. We investigated a pulmonary formulation for the efficient delivery of high water-soluble drugs at high concentration targeting alveolar macrophages. In this study, a surfactant-coated high water-soluble drug complex (SDC, a hydrophobic dried emulsion), which can preferably target alveolar macrophages and be expected to deliver drug at a high concentration, was prepared in the first process. OCT313, a high water-soluble sugar derivative with anti-tuberculosis activity was used. Then, a unique two-solution, mixing-type nozzle was used to prepare the SDC nanoparticles in mannitol (MAN) microparticles (SDC/MAN microparticles) because it was difficult to disperse the SDC nanoparticles in aqueous solution. The single micron size of OCT313-SDC/MAN microparticles contained OCT313-SDC nanoparticles (mean particle size of OCT313-SDC nanoparticles, 277.9 nm; drug contents, 1.31 ± 0.041 wt%). We found that the treatment of SDC/MAN microparticles exhibited significantly higher drug accumulation in macrophage cells (Raw264.7 cells, 7.5-fold, at 4 h after treatment) in vitro and in alveolar macrophages in rats (9.1-fold, at 4 h after treatment) in vivo than that of drug alone. These results suggest that the SDC/MAN microparticle formulation prepared by spray drying through a two-solution mixing-type nozzle provides efficient delivery of a water-soluble drug targeting alveolar macrophages and may be useful for tuberculosis treatment.
Collapse
Affiliation(s)
- Ryo Maeda
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuya Ito
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Takemasa Takii
- Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University.,Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
42
|
Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 2020; 10:163. [PMID: 32206497 PMCID: PMC7062946 DOI: 10.1007/s13205-020-2144-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/16/2020] [Indexed: 01/02/2023] Open
Abstract
Liposomes are very useful biocompatible tools used in diverse scientific disciplines, employed for the vehiculation and delivery of lipophilic, ampiphilic or hydrophilic compounds. Liposomes have gained the importance as drug carriers, as the drugs alone have limited targets, higher toxicity and develop resistance when used in higher doses. Conventional liposomes suffer from several drawbacks like encapsulation inefficiencies and partially controlled particle size. The surface chemistry of liposome technology started from simple conventional vesicles to second generation liposomes by modulating their lipid composition and surface with different ligands. Introduction of polyethylene glycol to lipid anchor was the first innovative strategy which increased circulation time, delayed clearance and opsonin resistance. PEGylated liposomes have been found to possess higher drug loading capacity up to 90% or more and some drugs like CPX-1 encapsuled in such liposomes have increased the disease control up to 73% patients suffering from colorectal cancer. The surface of liposomes have been further liganded with small molecules, vitamins, carbohydrates, peptides, proteins, antibodies, aptamers and enzymes. These advanced liposomes exhibit greater solubility, higher stability, long-circulating time and specific drug targeting properties. The immense utility and demand of surface modified liposomes in different areas have led their way to the modern market. In addition to this, the multi-drug carrier approach of targeted liposomes is an innovative method to overcome drug resistance while treating ceratin tumors. Presently, several second-generation liposomal formulations of different anticancer drugs are at various stages of clinical trials. This review article summarizes briefly the preparation of liposomes, strategies of disease targeting and exclusively the surface modifications with different entities and their clinical applications especially as drug delivery system.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Khaled S. Allemailem
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Ahmed Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraidah, 51452 Saudi Arabia
| |
Collapse
|
43
|
Patil TS, Deshpande AS. Mannosylated nanocarriers mediated site-specific drug delivery for the treatment of cancer and other infectious diseases: A state of the art review. J Control Release 2020; 320:239-252. [PMID: 31991156 DOI: 10.1016/j.jconrel.2020.01.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
The non-modified nanocarriers-based therapies for the treatment of cancer and other infectious diseases enhanced the chemical stability of therapeutically active agents, protected them from enzymatic degradation and extended their blood circulation time. However, the lack of specificity and off-target effects limit their applications. Mannose receptors overexpressed on antigen presenting cells such as dendritic cells and macrophages are one of the most desirable targets for treating cancer and other infectious diseases. Therefore, the development of mannosylated nanocarrier formulation is one of the most extensively explored approaches for targeting these mannose receptors. The present manuscript gives readers the background information on C-type lectin receptors followed by the roles, expression, and distribution of the mannose receptors. It further provides a detailed account of different mannosylated nanocarrier formulations. It also gives the tabular information on most relevant and recently granted patents on mannosylated systems. The overview of mannosylated nanocarrier formulations depicted site-specific targeting, enhanced pharmacokinetic/pharmacodynamic profiles, and improved transfection efficiency of the therapeutically active agents. This suggests the bright future ahead for mannosylated nanocarriers in the treatment of cancer and other infectious diseases. Nevertheless, the mechanism behind the enhanced immune response by mannosylated nanocarriers and their thorough clinical and preclinical evaluation need to explore further.
Collapse
Affiliation(s)
- Tulshidas S Patil
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India.
| |
Collapse
|
44
|
Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today 2020; 25:150-159. [DOI: 10.1016/j.drudis.2019.09.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/01/2019] [Accepted: 09/27/2019] [Indexed: 01/27/2023]
|
45
|
Kiaie N, Gorabi AM, Penson PE, Watts G, Johnston TP, Banach M, Sahebkar A. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today 2019; 25:58-72. [PMID: 31525463 DOI: 10.1016/j.drudis.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
The consequences of atherosclerotic cardiovascular disease (ASCVD) include myocardial infarction, ischemic stroke, and angina pectoris, which are major causes of mortality and morbidity worldwide. Despite current therapeutic strategies to reduce risk, patients still experience the consequences of ASCVD. Consequently, a current goal is to enhance visualization of early atherosclerotic lesions to improve residual ASCVD risk. The uses of liposomes, in the context of ASCVD, can include as contrast agents for imaging techniques, as well as for the delivery of antiatherosclerotic drugs, genes, and cells to established sites of plaque. Additionally, liposomes have a role as vaccine adjuvants against mediators of atherosclerosis. Here. we review the scientific and clinical evidence relating to the use of liposomes in the diagnosis and management of ASCVD.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gerald Watts
- Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MI, USA
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
β-Glucan hybridized poly(ethylene glycol) microgels for macrophage-targeted protein delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Hamed A, Osman R, Al-Jamal KT, Holayel SM, Geneidi AS. Enhanced antitubercular activity, alveolar deposition and macrophages uptake of mannosylated stable nanoliposomes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Mehta M, Deeksha, Sharma N, Vyas M, Khurana N, Maurya PK, Singh H, Andreoli de Jesus TP, Dureja H, Chellappan DK, Gupta G, Wadhwa R, Collet T, Hansbro PM, Dua K, Satija S. Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 2019; 304:10-19. [PMID: 30849336 DOI: 10.1016/j.cbi.2019.02.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/10/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022]
Abstract
Macrophages are considered as the most flexible cells of the hematopoietic system that are distributed in the tissues to act against pathogens and foreign particles. Macrophages are essential in maintaining homeostatic tissue processes, repair and immunity. Also, play important role in cytokine secretion and signal transduction of the infection so as to develop acquired immunity. Accounting to their involvement in pathogenesis, macrophages present a therapeutic target for the treatment of inflammatory respiratory diseases. This review focuses on novel drug delivery systems (NDDS) including nanoparticles, liposomes, dendrimers, microspheres etc that can target alveolar macrophage associated with inflammation, intracellular infection and lung cancer. The physiochemical properties and functional moieties of the NDDS attributes to enhanced macrophage targeting and uptake. The NDDS are promising for sustained drug delivery, reduced therapeutic dose, improved patient compliance and reduce drug toxicity. Further, the review also discuss about modified NDDS for specificity to the target and molecular targeting via anti-microbial peptides, kinases, NRF-2 and phosphodiesterase.
Collapse
Affiliation(s)
- Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Deeksha
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District-123031, Haryana, India
| | - Harjeet Singh
- National Medicinal Plants Board, Ministry of AYUSH, New Delhi, India
| | | | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India
| | - Ridhima Wadhwa
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi-110021, India
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane 4059, Queensland, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050 , Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050 , Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, 144411, Punjab, India.
| |
Collapse
|
49
|
Neog MK, Rasool M. Targeted delivery of p-coumaric acid encapsulated mannosylated liposomes to the synovial macrophages inhibits osteoclast formation and bone resorption in the rheumatoid arthritis animal model. Eur J Pharm Biopharm 2018; 133:162-175. [PMID: 30339889 DOI: 10.1016/j.ejpb.2018.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022]
Abstract
The current study aimed to target the delivery of p-coumaric acid (CA), a dietary polyphenol to the synovial macrophages of AIA rats via mannose incorporated liposomal delivery system (ML) with reference to osteoclastogenesis and bone resorption. In vivo imaging and in vitro drug release study indicated the efficiency of mannosylated liposomes to localize at the site of inflammation and increased sustain drug release respectively. Morphological assessment of isolated synovial macrophages with respect to CD86 (synovial macrophages) and CD51 (pre-/osteoclast) indicated that p-coumaric acid encapsulated mannosylated liposomes (ML-CA) inhibited the osteoclasts differentiation. ML-CA treatment inhibited the TRAP staining, downregulated the expression of MMP-9 and NFATc1 and inflammatory cytokines. The ex-vivo study specified the ability of CA to induce the OPG production in bone marrow stromal cell triggered macrophage-osteoclasts differentiation and to preserve the calcium content. Taken together, our results demonstrated that ML-CA could intervene in the osteoclast formation.
Collapse
Affiliation(s)
- Manoj Kumar Neog
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
50
|
Lewicky JD, Martel AL, Fraleigh NL, Boraman A, Nguyen TMD, Schiller PW, Shiao TC, Roy R, Le HT. Strengthening peptide-based drug activity with novel glyconanoparticle. PLoS One 2018; 13:e0204472. [PMID: 30260999 PMCID: PMC6160049 DOI: 10.1371/journal.pone.0204472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of peptide-based drugs is significantly limited by the rapid proteolytic degradation that occurs when in blood. Encapsulation of these peptide structures within a delivery system, such as liposomes, can greatly improve both stability and target delivery. As part of our work focused on novel ambiphilic mannosylated neoglycolipids as targeted drug delivery systems, we have developed a C14-alkyl-mannopyranoside that forms self-assembled monodisperse liposomes. Herein, these glycoliposomes are investigated as a potential method to improve the plasma stability of peptide-based drugs. Reversed phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) methods were developed to assess the in vitro plasma stability of two structurally diverse peptides, including the kappa opioid receptor selective antagonist dynantin, and the NOD2 innate immune receptor ligand muramyl dipeptide (MDP). The RP-HPLC methods developed were able to resolve the peptides from background plasma contaminants and provided suitable response levels and linearity over an appropriate concentration range. Both compounds were found to be significantly degraded in rat plasma. Increasing degrees of both entrapment and stabilization were noted when dynantin was combined with the C14-alkyl-mannopyranoside in increasing peptide:glycoside ratios. The combination of MDP with the glycolipid also led to peptide entrapment, which greatly improved the plasma stability of the peptide. Overall, the results clearly indicate that the stability of peptide-based structures, which are subject to degradation in plasma, can be greatly improved via entrapment within C14-alkyl-mannopyranoside-bearing glycoliposomes.
Collapse
Affiliation(s)
| | | | - Nya L. Fraleigh
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Amanda Boraman
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Thi M.-D. Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Peter W. Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, Canada
| | | | - René Roy
- Glycovax Pharma Inc., Montreal, Quebec, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Northern Ontario School of Medicine, Medicinal Sciences Division, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|