1
|
Singh N, Singh A, Dhanka M, Bhatia D. DNA functionalized programmable hybrid biomaterials for targeted multiplexed applications. J Mater Chem B 2024. [PMID: 38973587 DOI: 10.1039/d4tb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
With the advent of DNA nanotechnology, DNA-based biomaterials have emerged as a unique class of materials at the center of various biological advances. Owing to DNA's high modification capacity via programmable Watson-Crick base-pairing, DNA structures of desired design with increased complexity have been developed. However, the limited scalability, along with poor mechanical properties, high synthesis costs, and poor stability, reduced the adaptability of DNA-based materials to complex biological applications. DNA-based hybrid biomaterials were designed to overcome these limitations by conjugating DNA with functional materials. Today, DNA-based hybrid materials have attracted significant attention in biological engineering with broad application prospects in biomedicine, clinical diagnosis, and nanodevices. Here, we summarize the recent advances in DNA-based hybrid materials with an in-depth understanding of general molecular design principles, functionalities, and applications. Finally, the challenges and prospects associated with DNA-based hybrid materials are discussed at the end of this review.
Collapse
Affiliation(s)
- Nihal Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Ankur Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Mukesh Dhanka
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Dhiraj Bhatia
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| |
Collapse
|
2
|
Maze D, Pichon C, Midoux P. Reversible stabilization of DNA/PEI complexes by reducible click-linkage between DNA and polymer. A new polyplex concept for lowering polymer quantity. Gene Ther 2023; 30:783-791. [PMID: 36755129 DOI: 10.1038/s41434-023-00386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
Nonviral transfection of mammalian cells can be performed with electrostatic complexes (polyplexes) between a plasmid DNA (pDNA) encoding a foreign gene and a cationic polymer. However, an excess of the cationic polymer is required for pDNA condensation and polyplexes formation, which generate in vivo toxicity. Here, we present a new concept of polyplexes preparation aiming to reduce the polymer quantity. pDNA was functionalized with 3,6,9-trioxaundecan-1- {4 - [(2-chloroethyl) ethylamino)] - benzylamino}, 11-azide, and polyethyleneimine (lPEI) with reducible dibenzocyclooctyl (SS-DBCO) groups allowing azide-alkyne cycloaddition between pDNA and lPEI after condensation. The size of polyplexes with DBCO-SS-lPEI was smaller than with lPEI due to a stronger DNA condensation thanks to linkages between polymer and pDNA preventing dissociation until disulfide bridges reduction. In vitro transfection showed that the amount of DBCO-SS-lPEI leading to the most efficient polyplexes was three times lower than lPEI. As expected, toxicity in mice was significantly reduced upon intravenous injection of DBCO-SS-lPEI polyplexes at doses where the lPEI polyplexes killed mice. This is probably due to the high stability of the DBCO-SS-lPEI polyplexes which prevented their aggregation in the pulmonary capillaries. Overall, this new concept of polyplexes with DBCO-SS-lPEI offering the possibility of administering higher doses of polyplexes than lPEI and their ability to pass the pulmonary barrier could be favorably exploited for transfection of distant organs or tissues, such as tumors.
Collapse
Affiliation(s)
- Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, F-45071, Orléans cedex 02, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, F-45071, Orléans cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, F-45071, Orléans cedex 02, France.
| |
Collapse
|
3
|
McMillan RB, Bediako H, Devenica LM, Velasquez A, Hardy IP, Ma YE, Roscoe DM, Carter AR. Protamine folds DNA into flowers and loop stacks. Biophys J 2023; 122:4288-4302. [PMID: 37803830 PMCID: PMC10645571 DOI: 10.1016/j.bpj.2023.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
DNA in sperm undergoes an extreme compaction to almost crystalline packing levels. To produce this dense packing, DNA is dramatically reorganized in minutes by protamine proteins. Protamines are positively charged proteins that coat negatively charged DNA and fold it into a series of toroids. The exact mechanism for forming these ∼50-kbp toroids is unknown. Our goal is to study toroid formation by starting at the "bottom" with folding of short lengths of DNA that form loops and working "up" to more folded structures that occur on longer length scales. We previously measured folding of 200-300 bp of DNA into a loop. Here, we look at folding of intermediate DNA lengths (L = 639-3003 bp) that are 2-10 loops long. We observe two folded structures besides loops that we hypothesize are early intermediates in the toroid formation pathway. At low protamine concentrations (∼0.2 μM), we see that the DNA folds into flowers (structures with multiple loops that are positioned so they look like the petals of a flower). Folding at these concentrations condenses the DNA to 25% of its original length, takes seconds, and is made up of many small bending steps. At higher protamine concentrations (≥2 μM), we observe a second folded structure-the loop stack-where loops are stacked vertically one on top of another. These results lead us to propose a two-step process for folding at this length scale: 1) protamine binds to DNA, bending it into loops and flowers, and 2) flowers collapse into loop stacks. These results highlight how protamine uses a bind-and-bend mechanism to rapidly fold DNA, which may be why protamine can fold the entire sperm genome in minutes.
Collapse
Affiliation(s)
- Ryan B McMillan
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Hilary Bediako
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Luka M Devenica
- Department of Physics, Amherst College, Amherst, Massachusetts
| | | | - Isabel P Hardy
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Yuxing E Ma
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Donna M Roscoe
- Department of Physics, Amherst College, Amherst, Massachusetts
| | - Ashley R Carter
- Department of Physics, Amherst College, Amherst, Massachusetts.
| |
Collapse
|
4
|
Chatterjee A, Zhang K, Parker KM. Binding of Dissolved Organic Matter to RNA and Protection from Nuclease-Mediated Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16086-16096. [PMID: 37811805 DOI: 10.1021/acs.est.3c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The persistence of RNA in environmental systems is an important parameter for emerging applications, including ecological surveys, wastewater-based epidemiology, and RNA interference biopesticides. RNA persistence is controlled by its rate of biodegradation, particularly by extracellular enzymes, although the specific factors determining this rate have not been characterized. Due to prior work suggesting that nucleic acids-specifically DNA-interact with dissolved organic matter (DOM), we hypothesized that DOM may bind RNA and impede its biodegradation in natural systems. We first adapted a technique previously used to assess RNA-protein binding to differentiate RNA that is bound at all sites by DOM from RNA that is unbound or partially bound by DOM. Results from this technique suggested that humic acids bound RNA more extensively than fulvic acids. At concentrations of 8-10 mgC/L, humic acids were also found to be more effective than fulvic acids at suppressing enzymatic degradation of RNA. In surface water and soil extract containing DOM, RNA degradation was suppressed by 39-46% relative to pH-adjusted controls. Due to the ability of DOM to both bind and suppress the enzymatic degradation of RNA, RNA biodegradation may be slowed in environmental systems with high DOM concentrations, which may increase its persistence.
Collapse
Affiliation(s)
- Anamika Chatterjee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ke Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Zhang YQ, Guo RR, Chen YH, Li TC, Du WZ, Xiang RW, Guan JB, Li YP, Huang YY, Yu ZQ, Cai Y, Zhang P, Ling GX. Ionizable drug delivery systems for efficient and selective gene therapy. Mil Med Res 2023; 10:9. [PMID: 36843103 PMCID: PMC9968649 DOI: 10.1186/s40779-023-00445-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 02/28/2023] Open
Abstract
Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function. However, a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells. To be excited, the development of ionizable drug delivery systems (IDDSs) has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019 (COVID-19) in 2021. Compared with conventional cationic gene vectors, IDDSs can decrease the toxicity of carriers to cell membranes, and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures. Despite the progress, there remain necessary requirements for designing more efficient IDDSs for precise gene therapy. Herein, we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms. The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of pDNA and four kinds of RNA. In particular, organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity. We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future, and indicate ideas for developing next generation gene vectors.
Collapse
Affiliation(s)
- Yu-Qi Zhang
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ran-Ran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yong-Hu Chen
- School of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Tian-Cheng Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Wen-Zhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong-Wu Xiang
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ji-Bin Guan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yu-Peng Li
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yuan-Yu Huang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhi-Qiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Gui-Xia Ling
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
6
|
R11 modified tumor cell membrane nanovesicle-camouflaged nanoparticles with enhanced targeting and mucus-penetrating efficiency for intravesical chemotherapy for bladder cancer. J Control Release 2022; 351:834-846. [DOI: 10.1016/j.jconrel.2022.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022]
|
7
|
Zhang P, Zhang H, Zheng B, Wang H, Qi X, Wang S, Liu Z, Sun L, Liu Y, Qin X, Fan W, Ma M, Lai WF, Zhang D. Combined Self-Assembled Hendeca-Arginine Nanocarriers for Effective Targeted Gene Delivery to Bladder Cancer. Int J Nanomedicine 2022; 17:4433-4448. [PMID: 36172006 PMCID: PMC9512291 DOI: 10.2147/ijn.s379356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Bladder cancer (BCa) is among the most prevalent cancers worldwide. However, the effectiveness of intravesical therapy for BCa is limited due to the short dwell time and the presence of the permeation barrier. Methods Nanocomplexes were self-assembled between DNA and hendeca-arginine peptide (R11). Stepwise intravesical instillation of R11 and the generated nanocomplexes significantly enhanced the targeting capacity and penetration efficiency in BCa therapy. The involved mechanism of cellular uptake and penetration of the nanocomplexes was determined. The therapeutic effect of the nanocomplexes was verified preclinically in murine orthotopic BCa models. Results Nanocomplexes exhibited the best BCa targeting efficiency at a nitrogen-to-phosphate (NP) ratio of 5 but showed a lack of stability during cellular uptake. The method of stepwise intravesical instillation not only increased the stability and target specificity of the DNA component but also caused the delivered DNA to more effectively penetrate into the glycosaminoglycan layer and plasma membrane. The method promotes the accumulation of the delivered DNA in the clathrin-independent endocytosis pathway, directs the intracellular trafficking of the delivered DNA to nonlysosome-localized regions, and enables the intercellular transport of the delivered DNA via a direct transfer mechanism. In preclinical trials, our stepwise method was shown to remarkably enhance the targeting and penetration efficiency of DNA in murine orthotopic BCa models. Conclusion With this method, a stepwise intravesical instillation of self-assembled nanocomplexes, which are generated from hendeca-arginine peptides, was achieved; thus, this method offers an effective strategy to deliver DNA to target and penetrate BCa cells during gene therapy and warrants further development for future intravesical gene therapy in the clinical context.
Collapse
Affiliation(s)
- Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Haibao Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bin Zheng
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Xiaolong Qi
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Shuai Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Zhenghong Liu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Li Sun
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Xiaowen Qin
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Weijiao Fan
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Minghai Ma
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang People's Republic of China
| |
Collapse
|
8
|
Yuan X, Luo SZ, Chen L. Novel branched amphiphilic peptides for nucleic acids delivery. Int J Pharm 2022; 624:121983. [PMID: 35803534 DOI: 10.1016/j.ijpharm.2022.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Highly efficient and safe non-viral vectors for nucleic acids delivery have attracted much attention due to their potential applications in gene therapy, gene editing and vaccination against infectious diseases, and various materials have been investigated and designed as delivery vectors. Herein, we designed a series of branched amphiphilic peptides (BAPs) and tested their applications as pDNA/mRNA delivery vectors. The BAP structure was inspired by the phospholipids, in which lysine oligomers were used as the "polar head", segments containing phenylalanine, histidine and leucine were used as the "hydrophobic tails", and a lysine residue was used as the branching point. By comparing the gel retardation, particle sizes and zeta potentials of the BAP/pDNA complexes of the short-branch BAPs (BAP-V1 ∼ BAP-V4), we determined the optimal lysine oligomer was K6. However, their cell transfection efficiencies were not satisfactory, and thus three long-branch BAPs (BAP-V5 ∼ BAP-V7) were further designed. In these long-branch BAPs, more hydrophobic residues were added and the overall amphiphilicity increased accordingly. The results showed that these three BAPs could effectively compact the nucleic acids, including both pDNA and mRNA, and all could transfect nucleic acids into HEK 293 cells, with low cytotoxicity. Among the three long-branch BAPs, BAP-V7 (bis(FFLFFHHH)-K-K6) showed the best transfection efficiency at N/P = 10, which was better than the commercial transfection reagent PEI-25 K. These results indicate that increased amphiphilicity would also benefit for BAP mediated nucleic acid delivery. The designed BAPs provide more documents of such novel type of nucleic acids delivery vectors, which is worth of further investigation as a new gene theranostic platforms.
Collapse
Affiliation(s)
- Xiushuang Yuan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Petkova AI, Kubajewska I, Vaideanu A, Schätzlein AG, Uchegbu IF. Gene Targeting to the Cerebral Cortex Following Intranasal Administration of Polyplexes. Pharmaceutics 2022; 14:pharmaceutics14061136. [PMID: 35745709 PMCID: PMC9231247 DOI: 10.3390/pharmaceutics14061136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Gene delivery to the cerebral cortex is challenging due to the blood brain barrier and the labile and macromolecular nature of DNA. Here we report gene delivery to the cortex using a glycol chitosan—DNA polyplex (GCP). In vitro, GCPs carrying a reporter plasmid DNA showed approximately 60% of the transfection efficiency shown by Lipofectamine lipoplexes (LX) in the U87 glioma cell line. Aiming to maximise penetration through the brain extracellular space, GCPs were coated with hyaluronidase (HYD) to form hyaluronidase-coated polyplexes (GCPH). The GCPH formulation retained approximately 50% of the in vitro hyaluronic acid (HA) digestion potential but lost its transfection potential in two-dimensional U87 cell lines. However, intranasally administered GCPH (0.067 mg kg−1 DNA) showed high levels of gene expression (IVIS imaging of protein expression) in the brain regions. In a separate experiment, involving GCP, LX and naked DNA, the intranasal administration of the GCP formulation (0.2 mg kg−1 DNA) resulted in protein expression predominantly in the cerebral cortex, while a similar dose of intranasal naked DNA led to protein expression in the cerebellum. Intranasal LX formulations did not show any evidence of protein expression. GCPs may provide a means to target protein expression to the cerebral cortex via the intranasal route.
Collapse
Affiliation(s)
- Asya I. Petkova
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Ilona Kubajewska
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Alexandra Vaideanu
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
| | - Andreas G. Schätzlein
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Ijeoma F. Uchegbu
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
- Correspondence:
| |
Collapse
|
10
|
Er S, Laraib U, Arshad R, Sargazi S, Rahdar A, Pandey S, Thakur VK, Díez-Pascual AM. Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3002. [PMID: 34835766 PMCID: PMC8622868 DOI: 10.3390/nano11113002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Over various scientific fields in biochemistry, amino acids have been highlighted in research works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed nanotechnology via immense flexibility in their features for attaching various drug molecules and biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electrospun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced as nanosensors for accurate detection of these organic compounds. These nanostructures can bind the biological receptor to the sensor surface and increase the surface area of the working electrode, significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have also emerged as useful drug and gene delivery platforms. This is important since, despite recent advancements, there are still biological barriers and other obstacles limiting gene and drug delivery efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based nanostructures. These nano-based delivery platforms can be tailored into functional transformation using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified diseases. The purpose of this review is to shed light on traditional and nanotechnology-based methods to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.
Collapse
Affiliation(s)
- Simge Er
- Biochemistry Department, Faculty of Science, Ege University, Bornova-Izmir 35100, Turkey;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Baig MMFA, Zhang C, Akhtar MF, Saleem A, Mudassir J. The effective transfection of a low dose of negatively charged drug-loaded DNA-nanocarriers into cancer cells via scavenger receptors. J Pharm Anal 2021; 11:174-182. [PMID: 34012693 PMCID: PMC8116213 DOI: 10.1016/j.jpha.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
DNA-nanotechnology-based nano-architecture scaffolds based on circular strands were designed in the form of DNA-nanowires (DNA-NWs) as a polymer of DNA-triangles. Circularizing a scaffold strand (84-NT) was the critical step followed by annealing with various staple strands to make stiff DNA-triangles. Atomic force microcopy (AFM), native polyacrylamide gel electrophoresis (PAGE), UV-analysis, MTT-assay, flow cytometry, and confocal imaging were performed to assess the formulated DNA-NWs and cisplatin (CPT) loading. The AFM and confocal microscopy images revealed a uniform shape and size distribution of the DNA-NWs, with lengths ranging from 2 to 4 μm and diameters ranging from 150 to 300 nm. One sharp band at the top of the lane (500 bp level) with the loss of electrophoretic mobility during the PAGE (native) gel analysis revealed the successful fabrication of DNA-NWs. The loading efficiency of CPT ranged from 66.85% to 97.35%. MTT and flow cytometry results showed biocompatibility of the blank DNA-NWs even at 95% concentration compared with the CPT-loaded DNA-NWs. The CPT-loaded DNA-NWs exhibited enhanced apoptosis (22%) compared to the apoptosis (7%) induced by the blank DNA-NWs. The release of CPT from the DNA-NWs was sustained at < 75% for 6 h in the presence of serum, demonstrating suitability for systemic applications. The IC50 of CPT@DNA-NWs was reduced to 12.8 nM CPT, as compared with the free CPT solution exhibiting an IC50 of 51.2 nM. Confocal imaging revealed the targetability, surface binding, and slow internalization of the DNA-NWs in the scavenger-receptor-rich cancer cell line (HepG2) compared with the control cell line.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Chengfei Zhang
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|
12
|
Baig MMFA, Zou T, Neelakantan P, Zhang C. Development and functionalization of
DNA
nanostructures for biomedical applications. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Biomedical Engineering and Biofunctional Materials Theme, Restorative Dental Sciences, Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| | - Ting Zou
- Biomedical Engineering and Biofunctional Materials Theme, Restorative Dental Sciences, Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| | - Prasanna Neelakantan
- Biomedical Engineering and Biofunctional Materials Theme, Restorative Dental Sciences, Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| | - Chengfei Zhang
- Biomedical Engineering and Biofunctional Materials Theme, Restorative Dental Sciences, Faculty of Dentistry The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
13
|
Yaffe N, Rotem D, Soni A, Porath D, Shlomai J. Direct monitoring of the stepwise condensation of kinetoplast DNA networks. Sci Rep 2021; 11:1501. [PMID: 33452335 PMCID: PMC7810991 DOI: 10.1038/s41598-021-81045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
Condensation and remodeling of nuclear genomes play an essential role in the regulation of gene expression and replication. Yet, our understanding of these processes and their regulatory role in other DNA-containing organelles, has been limited. This study focuses on the packaging of kinetoplast DNA (kDNA), the mitochondrial genome of kinetoplastids. Severe tropical diseases, affecting large human populations and livestock, are caused by pathogenic species of this group of protists. kDNA consists of several thousand DNA minicircles and several dozen DNA maxicircles that are linked topologically into a remarkable DNA network, which is condensed into a mitochondrial nucleoid. In vitro analyses implicated the replication protein UMSBP in the decondensation of kDNA, which enables the initiation of kDNA replication. Here, we monitored the condensation of kDNA, using fluorescence and atomic force microscopy. Analysis of condensation intermediates revealed that kDNA condensation proceeds via sequential hierarchical steps, where multiple interconnected local condensation foci are generated and further assemble into higher order condensation centers, leading to complete condensation of the network. This process is also affected by the maxicircles component of kDNA. The structure of condensing kDNA intermediates sheds light on the structural organization of the condensed kDNA network within the mitochondrial nucleoid.
Collapse
Affiliation(s)
- Nurit Yaffe
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Dvir Rotem
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Awakash Soni
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Danny Porath
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Joseph Shlomai
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
14
|
Baig MMFA, Lai WF, Ashraf S, Saleem A, Akhtar MF, Mikrani R, Naveed M, Siddique F, Taleb A, Mudassir J, Khan GJ, Ansari MT. The integrin facilitated internalization of fibronectin-functionalized camptothecin-loaded DNA-nanofibers for high-efficiency anticancer effects. Drug Deliv Transl Res 2020; 10:1381-1392. [PMID: 32661832 DOI: 10.1007/s13346-020-00820-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Camptothecin (CMPT) in a free form is extremely cytotoxic as well as hydrophobic drug, and is considered to be highly contagious for systemic administration. The fibronectin (FN)-functionalized DNA-based nanocarrier has been designed to load CMPT and target integrin (αvβ3) receptors which are highly expressed on the A549 cancer cells. Here, we report DNA nanocarrier in the form of DNA-nanofibers (DNA-NFs) capable of loading CMPT via strand intercalation in the GC (base pairs)-rich regions of the DNA duplex. Hence, our keen purpose was to explore the potential of DNA-NFs to load CMPT and assess the improvements of the outcomes in terms of enhanced therapeutic effects to integrin-rich A549 cancer cells with reduced cytotoxic effects to integrin-lacking HEK293 cells. DNA-NFs were formulated as a polymer of DNA triangles. DNA triangles arranged in a programmed way through the complementary overhangs present at the vertices. DNA triangles were primarily obtained through the annealing of the freshly circularized scaffold strands with the three distinct staple strands of specific sequences. The polymerized triangular tiles instead of forming two-dimensional nanosheets underwent self-coiling to give rise to DNA-NF-shaped structures. Flow cytometry and MTT assays were performed to observe cytotoxic and apoptotic effects on integrin-rich A549 cancer cells compared with the integrin-deficient HEK293 cells. AFM, native-page, and confocal experiments confirmed the polymerization of DNA triangles and the morphology of the resulting nanostructures. AFM and confocal images revealed the length of DNA-NFs to be 3-6 μm and the width from 70 to 110 nm. CMPT loading (via strands intercalation) in GC-rich regions of DNA-NFs and the FN functionalization (TAMRA tagged; red fluorescence) via amide chemistry using amino-modified strands of DNA-NFs were confirmed through the UV-shift analysis (> 10 nm shift) and confocal imaging. Blank DNA-NFs were found to be highly biocompatible in 2-640 μM concentrations. MTT assay and flow cytometry experiments revealed that CMPT-loaded DNA-NFs showed a dose-dependent decrease in the cell viability to integrin-rich A549 cancer cells compared with the integrin-deficient HEK293 cells. Conclusively, FN-functionalized, CMPT-loaded DNA-NFs effectively destroyed integrin-rich A549 cancer cells in a targeted manner compared with integrin-deficient HEK293 cells. Grapical abstract.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, People's Republic of China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Saba Ashraf
- Nishtar Medical University and Hospital, Multan, 60000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Reyaj Mikrani
- School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Farhan Siddique
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Abdoh Taleb
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Ghulam Jilany Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54570, Pakistan
| | - Muhammad Tayyab Ansari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|
15
|
Ghodke S, Mahajan P, Gupta K, Ver Avadhani C, Dandekar P, Jain R. Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector. Curr Gene Ther 2020; 19:274-287. [PMID: 31393245 DOI: 10.2174/1566523219666190808094225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polyrotaxane, a macromolecular interlocked assembly, consisting of cyclodextrin has excellent inclusion capabilities and functionalization capacity, which makes it a versatile material as a vector for gene delivery applications. OBJECTIVE A biodegradable linear aliphatic polyester axle composed of Polyethylene Glycol (PEG) and Sebacic Acid (SA) was used to fabricate the β-Cyclodextrin (β-CD) based polyrotaxane as a cationic polymeric vector and evaluated for its potential gene silencing efficiency. METHODS The water-soluble aliphatic polyester was synthesized by the solvent esterification process and characterized using viscometry, GPC, FT-IR and 1H NMR spectroscopy. The synthesized polyester was further evaluated for its biodegradability and cellular cytotoxicity. Hence, this water-soluble polyester was used for the step-wise synthesis of polyrotaxane, via threading and blocking reactions. Threading of β-CD over PEG-SA polyester axle was conducted in water, followed by end-capping of polypseudorotaxane using 2,4,6-trinitrobenzenesulfonic acid to yield polyester-based polyrotaxane. For gene delivery application, cationic polyrotaxane (PRTx+) was synthesized and evaluated for its gene loading and gene silencing efficiency. RESULTS AND DISCUSSION The resulting novel macromolecular assembly was found to be safe for use in biomedical applications. Further, characterization by GPC and 1H NMR techniques revealed successful formation of PE-β-CD-PRTx with a threading efficiency of 16%. Additionally, the cellular cytotoxicity assay indicated biosafety of the synthesized polyrotaxane, exploring its potential for gene delivery and other biomedical applications. Further, the biological profile of PRTx+: siRNA complexes was evaluated by measuring their zeta potential and gene silencing efficiency, which were found to be comparable to Lipofectamine 3000, the commercial transfecting agent. CONCLUSION The combinatory effect of various factors such as biodegradability, favourable complexation ability, near zero zeta potentials, good cytotoxicity properties of poly (ethylene glycol)-sebacic acid based β-Cyclodextrin-polyrotaxane makes it a promising gene delivery vector for therapeutic applications.
Collapse
Affiliation(s)
- Sharwari Ghodke
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Prajakta Mahajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Kritika Gupta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Chilukuri Ver Avadhani
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| |
Collapse
|
16
|
Tarvirdipour S, Huang X, Mihali V, Schoenenberger CA, Palivan CG. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules 2020; 25:E3482. [PMID: 32751865 PMCID: PMC7435460 DOI: 10.3390/molecules25153482] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology approaches play an important role in developing novel and efficient carriers for biomedical applications. Peptides are particularly appealing to generate such nanocarriers because they can be rationally designed to serve as building blocks for self-assembling nanoscale structures with great potential as therapeutic or diagnostic delivery vehicles. In this review, we describe peptide-based nanoassemblies and highlight features that make them particularly attractive for the delivery of nucleic acids to host cells or improve the specificity and sensitivity of probes in diagnostic imaging. We outline the current state in the design of peptides and peptide-conjugates and the paradigms of their self-assembly into well-defined nanostructures, as well as the co-assembly of nucleic acids to form less structured nanoparticles. Various recent examples of engineered peptides and peptide-conjugates promoting self-assembly and providing the structures with wanted functionalities are presented. The advantages of peptides are not only their biocompatibility and biodegradability, but the possibility of sheer limitless combinations and modifications of amino acid residues to induce the assembly of modular, multiplexed delivery systems. Moreover, functions that nature encoded in peptides, such as their ability to target molecular recognition sites, can be emulated repeatedly in nanoassemblies. Finally, we present recent examples where self-assembled peptide-based assemblies with "smart" activity are used in vivo. Gene delivery and diagnostic imaging in mouse tumor models exemplify the great potential of peptide nanoassemblies for future clinical applications.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| |
Collapse
|
17
|
DNA nanotechnology as a tool to develop molecular tension probes for bio-sensing and bio-imaging applications: An up-to-date review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Tuning with Phosphorylcholine Grafts Improves the Physicochemical Properties of PLL/pDNA Nanoparticles at Neutral pH. Macromol Res 2019. [DOI: 10.1007/s13233-020-8019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Design, synthesis and evaluation of DNA nano-cubes as a core material protected by the alginate coating for oral administration of anti-diabetic drug. J Food Drug Anal 2019; 27:805-814. [PMID: 31324296 PMCID: PMC9307041 DOI: 10.1016/j.jfda.2019.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Poor control towards glycemic levels among diabetic patients may lead to severe micro/ macro-vascular and neuropathic complexities. Proper functioning of alpha-beta cells of pancreases is required to attain long term glycemic control among type 2 diabetics. The recent developments to manage diabetes are focused on controlling the insulin-glucagon secretions from the pancreases. DPP-4 inhibitors class of drugs after elevating GLP-1/GIP (incretins) levels in the blood, not only raise the insulin levels but also suppress the glucagon level. Vildagliptin (VI) is a potent DPP-4 inhibitor with least adverse events compared to other DPP-4 inhibitors. We encapsulated VI into 3D nanocube that gets bind to the DNA due to secondary amine in its chemical structure. DNA-nanocube being negatively charged was incubated with the PLL to attain positive surface. Ultimately VI loaded nanocubes were coated with the negatively charged Na-alginate via electrostatic attraction method to get stable spherical nanospheres for oral delivery of VI. Nanospheres were evaluated physically through native PAGE analysis, DSC, TGA, dissolution testing, XRD and FTIR. We attained uniformed and spherical nanospheres with stable topology, nanoscale size precision (40–150 nm in diameter), Entrapment efficiency (up to 90%), prolonged drug release (13 ± 4 h) at basic pH, and superior oral antidiabetic effects with improved GLP1 and glycemic levels. The formulated nanospheres attained size uniformity and better therapeutic outcomes in terms of reduced adverse events and better control of glycemic levels than previously reported methods with decreased dosage frequency tested in Db/Db mice.
Collapse
|
20
|
PLL-alginate and the HPMC-EC hybrid coating over the 3D DNA nanocubes as compact nanoparticles for oral administration. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01075-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Zinchenko A, Hiramatsu H, Yamaguchi H, Kubo K, Murata S, Kanbe T, Hazemoto N, Yoshikawa K, Akitaya T. Amino Acid Sequence of Oligopeptide Causes Marked Difference in DNA Compaction and Transcription. Biophys J 2019; 116:1836-1844. [PMID: 31076102 PMCID: PMC6531782 DOI: 10.1016/j.bpj.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 04/12/2019] [Indexed: 02/04/2023] Open
Abstract
Compaction of T4 phage DNA (166 kbp) by short oligopeptide octamers composed of two types of amino acids, four cationic lysine (K), and four polar nonionic serine (S) having different sequence order was studied by single-molecule fluorescent microscopy. We found that efficient DNA compaction by oligopeptide octamers depends on the geometrical match between phosphate groups of DNA and cationic amines. The amino acid sequence order in octamers dramatically affects the mechanism of DNA compaction, which changes from a discrete all-or-nothing coil-globule transition induced by a less efficient (K4S4) octamer to a continuous compaction transition induced by a (KS)4 octamer with a stronger DNA-binding character. This difference in the DNA compaction mechanism dramatically changes the packaging density, and the morphology of T4 DNA condensates: DNA is folded into ordered toroidal or rod morphologies during all-or-nothing compaction, whereas disordered DNA condensates are formed as a result of the continuous DNA compaction. Furthermore, the difference in DNA compaction mechanism has a certain effect on the inhibition scenario of the DNA transcription activity, which is gradual for the continuous DNA compaction and abrupt for the all-or-nothing DNA collapse.
Collapse
Affiliation(s)
- Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan.
| | - Hiroyuki Hiramatsu
- Faculty of Pharmaceutical Science, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | | | - Koji Kubo
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
| | - Shizuaki Murata
- Graduate School of Environmental Studies, Nagoya University, Furocho, Chikusa-ku, Nagoya, Japan
| | - Toshio Kanbe
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, School of Medicine, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Norio Hazemoto
- Faculty of Pharmaceutical Science, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tatsuo Akitaya
- Department of Chemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| |
Collapse
|
22
|
DNA scaffold nanoparticles coated with HPMC/EC for oral delivery. Int J Pharm 2019; 562:321-332. [DOI: 10.1016/j.ijpharm.2019.03.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
|
23
|
Malfanti A, Mastrotto F, Han Y, Král P, Balasso A, Scomparin A, Pozzi S, Satchi-Fainaro R, Salmaso S, Caliceti P. Novel Oligo-Guanidyl-PEG Carrier Forming Rod-Shaped Polyplexes. Mol Pharm 2019; 16:1678-1693. [PMID: 30860853 DOI: 10.1021/acs.molpharmaceut.9b00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel unconventional supramolecular oligo-cationic structure (Agm6-M-PEG-OCH3) has been synthesized to yield high efficiency therapeutic oligonucleotide (ON) delivery. Agm6-M-PEG-OCH3 was obtained by a multistep protocol that included the conjugation of agmatine (Agm) moieties to maltotriose (M), which was further derivatized with one poly(ethylene glycol) (PEG) chain. Gel electrophoresis analysis showed that the 19 base pairs dsDNA model ON completely associates with Agm6-M-PEG-OCH3 at 3 N/P molar ratio, which is in agreement with the in silico molecular predictions. Isothermal titration calorimetry (ITC) analyses showed that the Agm6-M-PEG-OCH3/ON association occurs through a combination of mechanisms depending on the N/P ratios resulting in different nanostructures. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the Agm6-M-PEG-OCH3/ON polyplexes have rod-shape structure with a mean diameter of 50-75 nm and aspect ratio depending on the N/P ratio. The polyplexes were stable over time in buffer, while a slight size increase was observed in the presence of serum proteins. Cell culture studies showed that neither Agm6-M-PEG-OCH3 nor polyplexes displayed cytotoxic effects. Cellular uptake depended on the cell line and polyplex composition: cellular internalization was higher in the case of MCF-7 and KB cells compared to MC3T3-E1 cells and polyplexes with smaller aspect ratio were taken-up by cells more efficiently than polyplexes with higher aspect ratio. Finally, preliminary studies showed that our novel carrier efficiently delivered ONs into cells providing gene silencing.
Collapse
Affiliation(s)
- Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Yanxiao Han
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Petr Král
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.,Department of Biopharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel.,Department of Drug Science and Technology , University of Turin , Via P. Giuria 9 , 10125 Turin , Italy
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| |
Collapse
|
24
|
Abstract
Most pathogens gain access to the human body and initiate systemic infections through mucosal sites. A large number of currently marketed licensed vaccines are parenterally administered; they generate strong systemic immunity but not mucosal immunity. Nasal vaccination is an appealing strategy for the induction of mucosal-specific immunity; however, its development is mostly challenged by several factors, such as inefficient antigen uptake, its rapid mucociliary clearance, size-restricted permeation across epithelial barriers and absence of safe human mucosal adjuvants. Therefore, a safer mucosal-adjuvanting strategy or efficient mucosal delivery platform is much warranted. This review summarizes challenges and the rationale for nasal vaccine development with a special focus on the use of nanoparticles based on polymers and lipids for mucosal vaccine delivery.
Collapse
|
25
|
Verma I, Sidiq S, Pal SK. Poly(l-lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Their Applications in Controlled Release of Drug Molecules. ACS OMEGA 2017; 2:7936-7945. [PMID: 30023567 PMCID: PMC6045355 DOI: 10.1021/acsomega.7b01175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/03/2017] [Indexed: 05/24/2023]
Abstract
Interactions between DNA and adsorbed poly(l-lysine) (PLL) on liquid crystal (LC) droplets were investigated using polarizing optical microcopy and epi-fluorescence microscopy. Earlier, we demonstrated that adsorption of PLL to the LC/aqueous interface resulted in homeotropic orientation of the LC and thus exhibited a radial configuration of the LC confined within the droplets. Subsequent adsorption of DNA (single-stranded DNA/double-stranded DNA) at PLL-coated LC droplets was found to trigger an LC reorientation within the droplets, leading to preradial/bipolar configuration of those droplets. To our surprise, subsequent exposure of complementary ssDNA to ssDNA/adsorbed PLL-modified LC droplets did not cause the LC reorientation. This is likely due to the formation of polyplexes (DNA-PLL complex) as confirmed by fluorescence microscopy and atomic force microscopy. In addition, dsDNA-adsorbed PLL droplets have been found to be effectively useful to displace (controlled release) propidium iodide (a model drug) encapsulated within dsDNA over time. These observations suggest the potential for a label-free droplet-based LC detection system that can respond to DNA and may provide a simple method to develop DNA-based drug nanocarriers.
Collapse
|
26
|
Japaridze A, Muskhelishvili G, Benedetti F, Gavriilidou AFM, Zenobi R, De Los Rios P, Longo G, Dietler G. Hyperplectonemes: A Higher Order Compact and Dynamic DNA Self-Organization. NANO LETTERS 2017; 17:1938-1948. [PMID: 28191853 DOI: 10.1021/acs.nanolett.6b05294] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial chromosome has a compact structure that dynamically changes its shape in response to bacterial growth rate and growth phase. Determining how chromatin remains accessible to DNA binding proteins, and transcription machinery is crucial to understand the link between genetic regulation, DNA structure, and topology. Here, we study very large supercoiled dsDNA using high-resolution characterization, theoretical modeling, and molecular dynamics calculations. We unveil a new type of highly ordered DNA organization forming in the presence of attractive DNA-DNA interactions, which we call hyperplectonemes. We demonstrate that their formation depends on DNA size, supercoiling, and bacterial physiology. We compare structural, nanomechanic, and dynamic properties of hyperplectonemes bound by three highly abundant nucleoid-associated proteins (FIS, H-NS, and HU). In all these cases, the negative supercoiling of DNA determines molecular dynamics, modulating their 3D shape. Overall, our findings provide a mechanistic insight into the critical role of DNA topology in genetic regulation.
Collapse
Affiliation(s)
- Aleksandre Japaridze
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Georgi Muskhelishvili
- Jacobs University , D-28759 Bremen, Germany
- Agricultural University of Georgia , 0159 Tbilisi, Georgia
| | - Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne , 1015 Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics , 1015 Lausanne, Switzerland
| | - Agni F M Gavriilidou
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Paolo De Los Rios
- Vital-IT, SIB Swiss Institute of Bioinformatics , 1015 Lausanne, Switzerland
- Laboratoire de Biophysique Statistique, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Giovanni Longo
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche , Rome, Italy
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Marciel AB, Chung EJ, Brettmann BK, Leon L. Bulk and nanoscale polypeptide based polyelectrolyte complexes. Adv Colloid Interface Sci 2017; 239:187-198. [PMID: 27418294 PMCID: PMC5205580 DOI: 10.1016/j.cis.2016.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 11/26/2022]
Abstract
Polyelectrolyte complexes (PECs) formed using polypeptides have great potential for developing new self-assembled materials, in particular for the development of drug and gene delivery vehicles. This review discusses the latest advancements in PECs formed using polypeptides as the polyanion and/or the polycation in both polyelectrolyte complexes that form bulk materials and block copolymer complexes that form nanoscale assemblies such as PEC micelles and other self-assembled structures. We highlight the importance of secondary structure formation between homogeneous polypeptide complexes, which, unlike PECs formed using other polymers, introduces additional intermolecular interactions in the form of hydrogen bonding, which may influence precipitation over coacervation. However, we still include heterogeneous complexes consisting of polypeptides and other polymers such as nucleic acids, sugars, and other synthetic polyelectrolytes. Special attention is given to complexes formed using nucleic acids as polyanions and polypeptides as polycations and their potential for delivery applications.
Collapse
Affiliation(s)
- Amanda B Marciel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Blair K Brettmann
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Lorraine Leon
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
28
|
Takeda KM, Osada K, Tockary TA, Dirisala A, Chen Q, Kataoka K. Poly(ethylene glycol) Crowding as Critical Factor To Determine pDNA Packaging Scheme into Polyplex Micelles for Enhanced Gene Expression. Biomacromolecules 2016; 18:36-43. [DOI: 10.1021/acs.biomac.6b01247] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Kensuke Osada
- Japan
Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Theofilus A. Tockary
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Anjaneyulu Dirisala
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | | | - Kazunori Kataoka
- Innovation
Center of NanoMedicine, Institute of Industrial Promotion - KAWASAKI, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| |
Collapse
|
29
|
Pigeon L, Gonçalves C, Pichon C, Midoux P. Evidence for plasmid DNA exchange after polyplex mixing. SOFT MATTER 2016; 12:7012-7019. [PMID: 27459887 DOI: 10.1039/c6sm00575f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly of a plasmid DNA (pDNA) with cationic polymers or cationic liposomes forms nanosized supramolecular structures called lipoplexes, polyplexes and lipopolyplexes. Here, we report that when two polyplex preparations made using the same polymer and the same pDNA but labelled with two different fluorophores are mixed together, pDNA molecules are exchanged. Indeed, when Flu-pDNA complexed with histidinylated lPEI (Flu-pDNA/His-lPEI) polyplexes are mixed with Cy5-pDNA complexed with histidinylated lPEI (Cy5-pDNA/His-lPEI) polyplexes, a high quantity of polyplexes emitting dual fluorescence is observed and FRET indicates that one single polyplex contains two kinds of fluorescent pDNA molecules. This phenomenon depends on the polymer-type and the strength of the pDNA/polymer interaction. No exchange is observed with polylysine polyplexes, caged His-lPEI polyplexes, lipoplexes, lipopolyplexes or when His-lPEI polyplexes are mixed with lipoplexes. Our results suggest that aggregation or collapse of polyplexes occurs after their interaction leading to their unpackaging followed by the formation of new polyplexes with the exchange of pDNA.
Collapse
Affiliation(s)
- L Pigeon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France.
| | - C Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France.
| | - C Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France.
| | - P Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France.
| |
Collapse
|
30
|
Kwok A, McCarthy D, Hart SL, Tagalakis AD. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA. Chem Biol Drug Des 2016; 87:747-63. [PMID: 26684657 PMCID: PMC4991294 DOI: 10.1111/cbdd.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023]
Abstract
The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved.
Collapse
Affiliation(s)
- Albert Kwok
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
- Present address: Department of Clinical Biochemistry University of CambridgeBox 289, Addenbrooke's HospitalCambridgeCB2 0QQUK
| | - David McCarthy
- UCL School of Pharmacy29‐39 Brunswick SquareLondonWC1N 1AXUK
| | - Stephen L. Hart
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Aristides D. Tagalakis
- Experimental and Personalised Medicine SectionUCL Institute of Child HealthUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|
31
|
Kasyanenko N, Dribinsky B. Similarities and differences in the influence of polycations and oligomers on DNA conformation and packaging. Int J Biol Macromol 2016; 86:216-23. [DOI: 10.1016/j.ijbiomac.2016.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/26/2015] [Accepted: 01/12/2016] [Indexed: 11/28/2022]
|
32
|
Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. NANO TODAY 2016; 11:41-60. [PMID: 27103939 PMCID: PMC4834907 DOI: 10.1016/j.nantod.2016.02.004] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.
Collapse
Affiliation(s)
- Neda Habibi
- Division of Biomedical Engineering, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139 (USA)
| | - Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 (USA)
| | - Adnan Memic
- Center for Nanotechnology, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi Shafiee
- Division of Biomedical Engineering, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139 (USA)
| |
Collapse
|
33
|
Zhang T, Costigan P, Varshney N, Tricoli A. Disposable micro stir bars by photodegradable organic encapsulation of hematite–magnetite nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra22082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present a novel method to synthesize microscale stirring bars by the anisotropic assembly of magnetite nanoparticles to overcome diffusion-limited mixing in micro-vessels.
Collapse
Affiliation(s)
- Tina Zhang
- Nanotechnology Research Laboratory
- Research School of Engineering
- Australian National University
- Canberra
- Australia
| | - Paul Costigan
- Nanotechnology Research Laboratory
- Research School of Engineering
- Australian National University
- Canberra
- Australia
| | - Nitin Varshney
- Nanotechnology Research Laboratory
- Research School of Engineering
- Australian National University
- Canberra
- Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory
- Research School of Engineering
- Australian National University
- Canberra
- Australia
| |
Collapse
|
34
|
Joyeux M. Compaction of bacterial genomic DNA: clarifying the concepts. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:383001. [PMID: 26345139 DOI: 10.1088/0953-8984/27/38/383001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The unconstrained genomic DNA of bacteria forms a coil, whose volume exceeds 1000 times the volume of the cell. Since prokaryotes lack a membrane-bound nucleus, in sharp contrast with eukaryotes, the DNA may consequently be expected to occupy the whole available volume when constrained to fit in the cell. Still, it has been known for more than half a century that the DNA is localized in a well-defined region of the cell, called the nucleoid, which occupies only 15% to 25% of the total volume. Although this problem has focused the attention of many scientists in recent decades, there is still no certainty concerning the mechanism that enables such a dramatic compaction. The goal of this Topical Review is to take stock of our knowledge on this question by listing all possible compaction mechanisms with the proclaimed desire to clarify the physical principles they are based upon and discuss them in the light of experimental results and the results of simulations based on coarse-grained models. In particular, the fundamental differences between ψ-condensation and segregative phase separation and between the condensation by small and long polycations are highlighted. This review suggests that the importance of certain mechanisms, like supercoiling and the architectural properties of DNA-bridging and DNA-bending nucleoid proteins, may have been overestimated, whereas other mechanisms, like segregative phase separation and the self-association of nucleoid proteins, as well as the possible role of the synergy of two or more mechanisms, may conversely deserve more attention.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique (CNRS UMR5588), Université Joseph Fourier Grenoble 1, BP 87, 38402 St Martin d'Hères, France
| |
Collapse
|
35
|
Modra K, Dai S, Zhang H, Shi B, Bi J. Polycation-mediated gene delivery: Challenges and considerations for the process of plasmid DNA transfection. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Karl Modra
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Sheng Dai
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Hu Zhang
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Bingyang Shi
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Jingxiu Bi
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
36
|
Ageitos JM, Chuah JA, Numata K. Chemo-Enzymatic Synthesis of Linear and Branched Cationic Peptides: Evaluation as Gene Carriers. Macromol Biosci 2015; 15:990-1003. [PMID: 25828913 DOI: 10.1002/mabi.201400487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/30/2015] [Indexed: 11/08/2022]
Abstract
Cationic peptides such as poly(l-lysine) and poly(l-arginine) are important tools for gene delivery since they can efficiently condense DNA. It is difficult to produce cationic peptides by recombinant bacterial expression, and its chemical synthesis requires several steps of protection/deprotection and toxic agents. Chemo-enzymatic synthesis of peptides is a clean chemistry technique that allows fast production under mild conditions. With the aim to simplify the production of cationic peptides, the present work develops an enzymatic reaction which enables the synthesis of linear cationic peptides and, through terminal functionalization with tris(2-aminoethyl)amine, of branched cationic peptide conjugates, which show improved DNA complex formation. Cytotoxicity and transfection efficiency of all the chemo-enzymatically synthesized cationic peptides are evaluated for their novel use as gene delivery agents. Synthesized peptides exhibit transfection efficiencies comparable to previously reported monodisperse peptides. Chemo-enzymatic synthesis opens the door for efficient production of cationic peptides for their use as gene delivery carriers.
Collapse
Affiliation(s)
- Jose Manuel Ageitos
- Enzyme Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Jo-Ann Chuah
- Enzyme Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
37
|
H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:421-9. [PMID: 25673304 DOI: 10.1128/cvi.00778-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Influenza whole inactivated virus (WIV) is more immunogenic and induces protective antibody responses compared with other formulations, like split virus or subunit vaccines, after intranasal mucosal delivery. Polyethyleneimine (PEI), an organic polycation, is widely used as a reagent for gene transfection and DNA vaccine delivery. Although PEI recently has demonstrated potent mucosal adjuvant activity for viral subunit glycoprotein antigens, its immune activity with H9N2 WIV is not well demonstrated. Here, mice were immunized intranasally with H9N2 WIV combined with PEI, and the levels of local respiratory tract and systemic immune responses were measured. Compared to H9N2 WIV alone, antigen-specific IgA levels in the local nasal cavity, trachea, and lung, as well as levels of IgG and its subtypes (IgG1 and IgG2a) in the serum, were strongly enhanced with the combination. Similarly, the activation and proliferation of splenocytes were markedly increased. In addition, PEI is superior as an H9N2 WIV delivery system due to its ability to greatly increase the viral adhesion to mucosal epithelial cells and to enhance the cellular uptake and endosomal escape of antigens in dendritic cells (DCs) and further significantly activate DCs to mature. Taken together, these results provided more insights that PEI has potential as an adjuvant for H9N2 particle antigen intranasal vaccination.
Collapse
|
38
|
Gunkel-Grabole G, Sigg S, Lomora M, Lörcher S, Palivan CG, Meier WP. Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomater Sci 2015; 3:25-40. [PMID: 26214187 DOI: 10.1039/c4bm00230j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
A promising approach for addressing a range of diseases lies in the delivery of functional biomacromolecules such as nucleic acids or proteins to cells. Polymers, peptides and the different shapes accessible through self-assembly of polymeric and peptidic amphiphiles have been widely explored as carriers and as containers for reactions on the nanoscale. These building blocks are particularly interesting, because several essential parameters such as physical characteristics, conditions for degradation or biocompatibility can be tuned to suit specific requirements. In this review, different three-dimensional architectures ranging from dendrimers and hyperbranched molecules to micelles, vesicles and nanoparticles assembled from synthetic polymers and peptides are discussed. It is focused on their function as a carrier for biologically active macromolecules, highlighting seminal examples from the current literature and pointing out the remaining and upcoming challenges in this important area of research.
Collapse
Affiliation(s)
- G Gunkel-Grabole
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
39
|
Bao FF, Xu XX, Zhou W, Pang CY, Li Z, Gu ZG. Enantioselective DNA condensation induced by heptameric lanthanum helical supramolecular enantiomers. J Inorg Biochem 2014; 138:73-80. [DOI: 10.1016/j.jinorgbio.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
|
40
|
Zinchenko A, Tsumoto K, Murata S, Yoshikawa K. Crowding by Anionic Nanoparticles Causes DNA Double-Strand Instability and Compaction. J Phys Chem B 2014; 118:1256-62. [DOI: 10.1021/jp4107712] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anatoly Zinchenko
- Graduate
School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
| | - Kanta Tsumoto
- Graduate
School of Engineering, Mie University, Mie, 514-8507, Japan
| | - Shizuaki Murata
- Graduate
School of Environmental Studies, Nagoya University, Nagoya, 464-8601, Japan
| | - Kenichi Yoshikawa
- Faculty
of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| |
Collapse
|
41
|
Mansfield E, Tyner KM, Poling CM, Blacklock JL. Determination of Nanoparticle Surface Coatings and Nanoparticle Purity Using Microscale Thermogravimetric Analysis. Anal Chem 2014; 86:1478-84. [DOI: 10.1021/ac402888v] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elisabeth Mansfield
- Applied
Chemicals and Materials Division, National Institute of Standards and Technology (NIST) Boulder, Colorado 80305, United States
| | - Katherine M. Tyner
- Center
for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Christopher M. Poling
- Applied
Chemicals and Materials Division, National Institute of Standards and Technology (NIST) Boulder, Colorado 80305, United States
| | - Jenifer L. Blacklock
- Applied
Chemicals and Materials Division, National Institute of Standards and Technology (NIST) Boulder, Colorado 80305, United States
| |
Collapse
|
42
|
Shi J, Choi JL, Chou B, Johnson RN, Schellinger JG, Pun SH. Effect of polyplex morphology on cellular uptake, intracellular trafficking, and transgene expression. ACS NANO 2013; 7:10612-20. [PMID: 24195594 PMCID: PMC3874816 DOI: 10.1021/nn403069n] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanoparticle morphology has been shown to affect cellular uptake, but there are few studies investigating the impact of particle shape on biologic drug delivery. Recently, our group synthesized a series of N-(2-hydroxypropyl) methacrylamide (HPMA)-oligolysine brush polymers for nucleic acid delivery that varied in oligolysine peptide length and polymer molecular weight. Interestingly, a 50% longer peptide (K15) transfected very poorly compared to the optimized polymer comprised of K10 peptide despite similar chemical composition and molecular weight. We hypothesized that differences in particle morphology contributed to the differences in plasmid DNA delivery. We found that particles formed with plasmid DNA and a polymer with the longer oligolysine peptide (pHK15) had larger aspect ratios than particles formed with optimized polymer (pHK10). Even though both formulations showed similar percentages of cellular association, particles of a higher aspect ratio were internalized to a lesser extent. Furthermore, the rod-like particles accumulated more in endosomal/lysosomal compartments, leading to delayed nuclear delivery. Other parameters, such as particle surface charge, unpackaging ability, uptake mechanism, intracellular trafficking, and the presence of heparan sulfate proteoglycans did not significantly differ between the two polymer formulations. These results indicate that, for this system, polyplex morphology primarily impacts nucleic acid delivery efficiency through differences in cellular internalization rates.
Collapse
Affiliation(s)
- Julie Shi
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington , 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| | | | | | | | | | | |
Collapse
|
43
|
Sun S, Liu M, Dong F, Fan S, Yao Y. A histone-like protein induces plasmid DNA to form liquid crystals in vitro and gene compaction in vivo. Int J Mol Sci 2013; 14:23842-57. [PMID: 24322443 PMCID: PMC3876081 DOI: 10.3390/ijms141223842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/17/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022] Open
Abstract
The liquid crystalline state is a universal phenomenon involving the formation of an ordered structure via a self-assembly process that has attracted attention from numerous scientists. In this study, the dinoflagellate histone-like protein HCcp3 is shown to induce super-coiled pUC18 plasmid DNA to enter a liquid crystalline state in vitro, and the role of HCcp3 in gene condensation in vivo is also presented. The plasmid DNA (pDNA)-HCcp3 complex formed birefringent spherical particles with a semi-crystalline selected area electronic diffraction (SAED) pattern. Circular dichroism (CD) titrations of pDNA and HCcp3 were performed. Without HCcp3, pUC18 showed the characteristic B conformation. As the HCcp3 concentration increased, the 273 nm band sharply shifted to 282 nm. When the HCcp3 concentration became high, the base pair (bp)/dimer ratio fell below 42/1, and the CD spectra of the pDNA-HCcp3 complexes became similar to that of dehydrated A-form DNA. Microscopy results showed that HCcp3 compacted the super-coiled gene into a condensed state and that inclusion bodies were formed. Our results indicated that HCcp3 has significant roles in gene condensation both in vitro and in histone-less eukaryotes in vivo. The present study indicates that HCcp3 has great potential for applications in non-viral gene delivery systems, where HCcp3 may compact genetic material to form liquid crystals.
Collapse
Affiliation(s)
- Shiyong Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle & Fundamental Science on Nuclear Waste and Environmental Security Laboratory, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mail:
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mails: (S.F.); (Y.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (F.D.); Tel./Fax: +86-816-2419569 (S.S.)
| | - Mingxue Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle & Fundamental Science on Nuclear Waste and Environmental Security Laboratory, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mail:
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle & Fundamental Science on Nuclear Waste and Environmental Security Laboratory, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (F.D.); Tel./Fax: +86-816-2419569 (S.S.)
| | - Shenglan Fan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mails: (S.F.); (Y.Y.)
| | - Yanchen Yao
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; E-Mails: (S.F.); (Y.Y.)
| |
Collapse
|
44
|
Zhou T, Llizo A, Wang C, Xu G, Yang Y. Nanostructure-induced DNA condensation. NANOSCALE 2013; 5:8288-8306. [PMID: 23838744 DOI: 10.1039/c3nr01630g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.
Collapse
Affiliation(s)
- Ting Zhou
- National Center for Nanoscience and Technology (NCNST), Beijing 100190, PR China
| | | | | | | | | |
Collapse
|
45
|
Giustini M, Giuliani AM, Gennaro G. Natural or synthetic nucleic acids encapsulated in a closed cavity of amphiphiles. RSC Adv 2013. [DOI: 10.1039/c3ra23208e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
46
|
Davydova N, Sinitsyna O, Yaminsky I, Kalinina E, Zinoviev K. Synthesis and Study of New Copolymers Capable of Forming Molecular Complexes with DNA. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/masy.201251114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Hernandez-Garcia A, Werten MWT, Stuart MC, de Wolf FA, de Vries R. Coating of single DNA molecules by genetically engineered protein diblock copolymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3491-3501. [PMID: 22865731 DOI: 10.1002/smll.201200939] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Indexed: 06/01/2023]
Abstract
Coating DNA is an effective way to modulate its physical properties and interactions. Current chemosynthetic polymers form DNA aggregates with random size and shape. In this study, monodisperse protein diblock copolymers are produced at high yield in recombinant yeast. They carry a large hydrophilic colloidal block (≈400 amino acids) linked to a short binding block (≈12 basic amino acids). It is demonstrated that these protein polymers complex single DNA molecules as highly stable nanorods, reminiscent of cylindrical viruses. It is proposed that inter- and intramolecular bridging of DNA molecules are prevented completely by the small size of the binding block attached to the large colloidal stability block. These protein diblocks serve as a scaffold that can be tuned for application in DNA-based nanotechnology.
Collapse
Affiliation(s)
- Armando Hernandez-Garcia
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands; Dutch Polymer Institute, John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Zhang Z, Yin L, Xu Y, Tong R, Lu Y, Ren J, Cheng J. Facile functionalization of polyesters through thiol-yne chemistry for the design of degradable, cell-penetrating and gene delivery dual-functional agents. Biomacromolecules 2012; 13:3456-62. [PMID: 23098261 DOI: 10.1021/bm301333w] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthesis of polyesters bearing pendant amine groups with controlled molecular weights and narrow molecular weight distributions was achieved through ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione, an O-carboxyanhydride derived from tyrosine, followed by thiol-yne "click" photochemistry with 2-aminoethanethiol hydrochloride. This class of biodegradable polymers displayed excellent cell penetration and gene delivery properties with low toxicities.
Collapse
Affiliation(s)
- Zhonghai Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Talvitie E, Leppiniemi J, Mikhailov A, Hytönen VP, Kellomäki M. Peptide-functionalized chitosan–DNA nanoparticles for cellular targeting. Carbohydr Polym 2012; 89:948-54. [DOI: 10.1016/j.carbpol.2012.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/25/2022]
|
50
|
Deng WW, Cao X, Wang M, Qu R, Su WY, Yang Y, Wei YW, Xu XM, Yu JN. Delivery of a transforming growth factor β-1 plasmid to mesenchymal stem cells via cationized Pleurotus eryngii polysaccharide nanoparticles. Int J Nanomedicine 2012; 7:1297-311. [PMID: 22457592 PMCID: PMC3310408 DOI: 10.2147/ijn.s28010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The objective of this study was to investigate the use of cationized Pleurotus eryngii polysaccharide (CPEPS) as a nonviral gene delivery vehicle to transfer plasmid DNA encoding transforming growth factor beta-1 (pTGF-β1) into mesenchymal stem cells (MSCs) in vitro. Crude P. eryngii polysaccharide was purified, and then cationized by grafting spermine onto the backbone of the polysaccharide. Agarose gel electrophoresis, transmission electron microscopy, and a Nano Sense Zetasizer (Malvern Instruments, Malvern, UK) were used to characterize the CPEPS-pTGF-β1 nanoparticles. The findings of cytotoxicity analysis showed that when the nanoparticles were formulated with a CPEPS/pTGF-β1 weight ratio ≥ 10:1, a greater gel retardation effect was observed during agarose gel electrophoresis. The CPEPS-pTGF-β1 nanoparticles with a weight ratio of 20:1, respectively, possessed an average particle size of 80.8 nm in diameter and a zeta potential of +17.4 ± 0.1 mV. Significantly, these CPEPS-pTGF-β1 nanoparticles showed lower cytotoxicity and higher transfection efficiency than both polyethylenimine (25 kDa) (P = 0.006, Student’s t-test) and LipofectamineTM 2000 (P = 0.002, Student’s t-test). Additionally, the messenger RNA expression level of TGF-β1 in MSCs transfected with CPEPS-pTGF-β1 nanoparticles was significantly higher than that of free plasmid DNA-transfected MSCs and slightly elevated compared with that of Lipofectamine 2000-transfected MSCs. Flow cytometry analysis demonstrated that 92.38% of MSCs were arrested in the G1 phase after being transfected with CPEPS-pTGF-β1 nanoparticles, indicating a tendency toward differentiation. In summary, the findings of this study suggest that the CPEPS-pTGF-β1 nanoparticles prepared in this work exhibited excellent transfection efficiency and low toxicity. Therefore, they could be developed into a promising nonviral vector for gene delivery in vitro.
Collapse
Affiliation(s)
- Wen Wen Deng
- Department of Pharmaceutics, School of Pharmacy and Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|