1
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
2
|
Leyden MC, Oviedo F, Saxena S, Kumar R, Le N, Reineke TM. Synergistic Polymer Blending Informs Efficient Terpolymer Design and Machine Learning Discerns Performance Trends for pDNA Delivery. Bioconjug Chem 2024; 35:897-911. [PMID: 38924453 DOI: 10.1021/acs.bioconjchem.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Cationic polymers offer an alternative to viral vectors in nucleic acid delivery. However, the development of polymer vehicles capable of high transfection efficiency and minimal toxicity has remained elusive, and continued exploration of the vast design space is required. Traditional single polymer syntheses with large monomer bases are very time-intensive, limiting the speed at which new formulations are identified. In this work, we present an experimental method for the quick probing of the design space, utilizing a combinatorial set of 90 polymer blends, derived from 6 statistical copolymers, to deliver pDNA. This workflow facilitated rapid screening of polyplex compositions, successfully tailoring polyplex hydrophobicity, particle size, and payload binding affinity. This workflow identified blended polyplexes with high levels of transfection efficiency and cell viability relative to single copolymer controls and commercial JetPEI, indicating synergistic benefits from copolymer blending. Polyplex composition was coupled with biological outputs to guide the synthesis of single terpolymer vehicles, with high-performing polymers P10 and M20, providing superior transfection of HEK293T cells in serum-free and serum-containing media, respectively. Machine learning coupled with SHapley Additive exPlanations (SHAP) was used to identify polymer/polyplex attributes that most impact transfection efficiency, viability, and overall effective efficiency. Subsequent transfections on ARPE-19 and HDFn cells found that P10 and M20 were surpassed in performance by M10, contrasting with results in HEK293T cells. This cell type dependency reinforced the need to evaluate transfection conditions with multiple cell models to potentially identify moieties more beneficial to delivery in certain tissues. Overall, the workflow employed can be used to expedite the exploration of the polymer design space, bypassing extensive synthesis, and to develop improved polymer delivery vehicles more readily for nucleic acid therapies.
Collapse
Affiliation(s)
- Michael C Leyden
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Felipe Oviedo
- Nanite Inc., Boston, Massachusetts 02109, United States
| | - Sonashree Saxena
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ramya Kumar
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ngoc Le
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Turuvekere Vittala Murthy N, Vlasova K, Renner J, Jozic A, Sahay G. A new era of targeting cystic fibrosis with non-viral delivery of genomic medicines. Adv Drug Deliv Rev 2024; 209:115305. [PMID: 38626860 DOI: 10.1016/j.addr.2024.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Cystic fibrosis (CF) is a complex genetic respiratory disorder that necessitates innovative gene delivery strategies to address the mutations in the gene. This review delves into the promises and challenges of non-viral gene delivery for CF therapy and explores strategies to overcome these hurdles. Several emerging technologies and nucleic acid cargos for CF gene therapy are discussed. Novel formulation approaches including lipid and polymeric nanoparticles promise enhanced delivery through the CF mucus barrier, augmenting the potential of non-viral strategies. Additionally, safety considerations and regulatory perspectives play a crucial role in navigating the path toward clinical translation of gene therapy.
Collapse
Affiliation(s)
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Jonas Renner
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR 97331, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97201, USA; Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
4
|
Noske S, Karimov M, Krüger M, Lilli B, Ewe A, Aigner A. Spray-drying of PEI-/PPI-based nanoparticles for DNA or siRNA delivery. Eur J Pharm Biopharm 2024; 199:114297. [PMID: 38641228 DOI: 10.1016/j.ejpb.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a ∼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.
Collapse
Affiliation(s)
- Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Martin Krüger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Bettina Lilli
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
5
|
Liu W, Ma C, Cao J, Zhou H, Guo T. Tet1 peptide and zinc (II)-adenine multifunctional module functionalized polycations as efficient siRNA carriers for Parkinson's disease. J Control Release 2024; 367:316-326. [PMID: 38253202 DOI: 10.1016/j.jconrel.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
A bioreducible Zn (II)-adenine multifunctional module (BS) and Tet1 peptide were used to modify low-molecular-weight PEI3.5k (polyethyleneimine with molecular weight of 3.5 kDa)into a siRNA vector Zn-PB-T with high transfection efficiency in neurons. A GSH-responsive breakable disulfide spacer was introduced into BS to realize the controlled release of siRNA from the polyplexes in cytoplasm. Zn-PB showed >90% transfection rates in multiple cell lines (3 T3, HK-2, HepG2, 293 T, HeLa, PANC-1),and 1.8-folds higher EGFP knockdown rates than commercial Lipo2k in normal cell line 293 T and cancer cell line HepG2. And Zn-PB-T1 showed 4.7-4.9- and 8.0-8.1-folds higher transfection efficiency comparing to commercial Lipo2k and PEI25k (polyethyleneimine with molecular weight of 25 kDa) in PC12 cells respectively, 2.1-fold EGFP gene silencing efficiency (96.6% EGFP knockdown rates) superior to commercial Lipo2k in neurons. In Parkinson's model, Zn-PB-T1/SNCA-siRNA can effectively protect neurons against MPP+-induced cell death and apoptosis, increasing the cell survival rate to 84.6% and reducing the cell apoptosis rate to 10.8%. This work demonstrated the promising application prospects of the resulting efficient siRNA carriers in siRNA-mediated gene therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Weijie Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunchao Ma
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| | - Junpeng Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Zhou
- Department of Biochemistry and Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Guo C, Liu Y, Zhao Z, Wu Y, Kong Q, Wang Y. Regulating inflammation and apoptosis: A smart microgel gene delivery system for repairing degenerative nucleus pulposus. J Control Release 2024; 365:1004-1018. [PMID: 38128882 DOI: 10.1016/j.jconrel.2023.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The progression of intervertebral disc degeneration (IDD) is attributed to the gradual exacerbation of cellular apoptosis and impaired extracellular matrix (ECM) synthesis, both of which are induced by progressive inflammation. Therefore, it is crucial to address the inflammatory microenvironment and rectify the excessive apoptosis of nucleus pulposus cells (NPCs) to achieve intervertebral disc (IVD) regeneration. In this study, we devised a smart microgel gene delivery system that incorporates functionalized gene nanoparticles (NPs) for the purpose of IVD regeneration. siGrem1 was loaded into the NPs to enhance their antiapoptotic ability and protective effects. Furthermore, the encapsulation of HADA further endows the NPs (referred to as HSGN) with targeted delivery and anti-inflammatory effects, as well as reactive oxygen species (ROS) scavenging capacities. To create an microenvironment-responsive microgel system, phenylboronic acid-functionalized microspheres (referred to as M.S.) were fabricated and dynamically loaded with the HSGN. This microgel system (MHSGN), which is highly biocompatible, enables the sustained release of siGrem1, effectively modulating inflammation, scavenging ROS, and alleviating apoptosis in NPCs. These multifunctional capabilities promote the restoration of metabolic homeostasis within the nucleus pulposus ECM, ultimately leading to delayed IDD.
Collapse
Affiliation(s)
- Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Yuheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Zhen Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041.
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041.
| |
Collapse
|
7
|
Mashal M, Attia N, Grijalvo S, Eritja R, Puras G, Pedraz JL. Stability of polymeric cationic niosomes and their plasmid DNA-based complexes as gene delivery carriers. Drug Deliv 2023; 30:2219420. [PMID: 37322900 PMCID: PMC10281300 DOI: 10.1080/10717544.2023.2219420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023] Open
Abstract
This study aims to explore the stability of lipo-polymeric niosomes/niosome-based pCMS-EGFP complexes under different storage temperatures (25 °C, 4 °C, and -20 °C). To date, the question of nucleic acid-complex stability is one of the most vital issues in gene delivery applications. The need for stable vaccines during the COVID-19 pandemic has merely highlighted it. In the case of niosomes as gene carriers, the scientific literature still lacks comprehensive stability studies. In this study, the physicochemical features of niosomes/nioplexes in terms of size, surface charge, and polydispersity index (PDI), along with transfection efficiency, and cytotoxicity in NT2 cells were evaluated for 8 weeks. Compared to day 0, the physicochemical features of the niosomes stored at 25 °C and -20 °C changed dramatically in terms of size, zeta potential, and PDI, while remaining in reasonable values when stored at 4 °C. However, niosomes and nioplexes stored at 4 °C and -20 °C showed nearly stable transfection efficiency values, yet an obvious decrease at 25 °C. This article provides a proof of concept into the stability of polymeric cationic niosomes and their nioplexes as promising gene delivery vehicles. Moreover, it highlights the practical possibility of storing nioplexes at 4 °C for up to 2 months, as an alternative to niosomes, for gene delivery purposes.
Collapse
Affiliation(s)
- Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Histology and Cell Biology Department. Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Santiago Grijalvo
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Ramón Eritja
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Shen KH, Chiu TH, Teng KC, Yu J, Yeh YC. Fabrication of triple-crosslinked gelatin/alginate hydrogels for controlled release applications. Int J Biol Macromol 2023; 250:126133. [PMID: 37543263 DOI: 10.1016/j.ijbiomac.2023.126133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Hydrogels have been demonstrated as smart drug carriers to recognize the tumor microenvironment for cancer treatment, where the dynamic crosslinks in the hydrogel network contribute to the stimuli-responsive features but also result in poor stability and weak mechanical property of the hydrogels. Here, phenylboronic acid-grafted polyethyleneimine (PBA-PEI)-modified gelatin (PPG) was synthesized to crosslink alginate dialdehyde (ADA) through imine bonds and boronate ester bonds, and then calcium ions (Ca2+) were added to introduce the third calcium-carboxylate crosslinking in the network to form the triple-crosslinked PPG/ADA-Ca2+ hydrogels. Given the three types of dynamic bonds in the network, PPG/ADA-Ca2+ hydrogels possessed a self-healing manner, stimuli-responsiveness, and better mechanical properties compared to single- or double-crosslinked hydrogels. The controlled release capability of PPG/ADA-Ca2+ hydrogels was also demonstrated, showing the encapsulated molecules can be rapidly released from the hydrogel network in the presence of hydrogen peroxide while the release rate can be slowed down at acidic pH. Furthermore, PPG/ADA-Ca2+ hydrogels presented selected cytotoxicity and drug delivery to cancer cells due to the regulated degradation by the cellular microenvironment. Taken together, PPG/ADA-Ca2+ hydrogels have been demonstrated as promising biomaterials with multiple desirable properties and dynamic features to perform controlled molecule release for biomedical applications.
Collapse
Affiliation(s)
- Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kuang-Chih Teng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
9
|
Patel V, Parekh P, Khimani M, Yusa SI, Bahadur P. Pluronics® based Penta Block Copolymer micelles as a precursor of smart aggregates for various applications: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Deng S, Wang S, Xiao Z, Cheng D. Unprotonatable and ROS-Sensitive Nanocarrier for NIR Spatially Activated siRNA Therapy with Synergistic Drug Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203823. [PMID: 36094800 DOI: 10.1002/smll.202203823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Although small interfering RNA (siRNA) therapy has achieved great progress, unwanted gene inhibition in normal tissues severely limits its extensive clinical applications due to uncontrolled siRNA biodistribution. Herein, a spatially controlled siRNA activation strategy is developed to achieve tumor-specific siRNA therapy without gene inhibition in the normal tissues. The quaternary ammonium moieties are conjugated to amphiphilic copolymers via reactive oxygen species (ROS)-sensitive thioketal (TK) linkers for co-delivery of siRNA and photosensitizer chlorin e6 (Ce6), showing excellent siRNA complexation capacity and near infrared (NIR)-controlled siRNA release. In the normal tissue, siRNAs are trapped and degraded in the endo-lysosomes due to the unprotonatable property of quaternary ammonium moiety, showing the siRNA activity "off" state. When NIR irradiation is spatially applied to the tumor tissue, the NIR irradiation/Ce6-induced ROS trigger siRNA endo-lysosomal escape and cytosolic release through the photochemical internalization effect and cleavage of TK bonds, respectively, showing the siRNA activity "on" state. The siRNA-mediated glutathione peroxidase 4 gene inhibition enhances ROS accumulation. The synergistic antitumor activity of Ce6 photodynamic therapy and gene inhibition is confirmed in vivo. Spatially controlled tumor-specific siRNA activation and co-delivery with Ce6 using unprotonatable and ROS-sensitive cationic nanocarriers provide a feasible strategy for tumor-specific siRNA therapy with synergistic drug effects.
Collapse
Affiliation(s)
- Shaohui Deng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shiyin Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zecong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
11
|
Song G, Lv F, Huang Y, Bai H, Wang S. Conjugated Polymers for Gene Delivery and Photothermal Gene Expression. Chempluschem 2022; 87:e202200073. [DOI: 10.1002/cplu.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gang Song
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Organic Solids CHINA
| | - Fengting Lv
- Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 CHINA
| | - Yiming Huang
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Organic Solids CHINA
| | - Haotian Bai
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Organic Solids CHINA
| | - Shu Wang
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Organic Solids CHINA
| |
Collapse
|
12
|
Zhou L, Rubin LE, Liu C, Chen Y. Short interfering RNA (siRNA)-Based Therapeutics for Cartilage Diseases. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 7:283-290. [PMID: 34589570 DOI: 10.1007/s40883-020-00149-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Articular cartilage injury, as a hallmark of arthritic diseases, is difficult to repair and causes joint pain, stiffness, and loss of mobility. Over the years, the most significant problems for the drug-based treatment of arthritis have been related to drug administration and delivery. In recent years, much research has been devoted to developing new strategies for repairing or regenerating the damaged osteoarticular tissue. The RNA interference (RNAi) has been suggested to have the potential for implementation in targeted therapy in which the faulty gene can be edited by delivering its complementary Short Interfering RNA (siRNA) at the post-transcriptional stage. The successful editing of a specific gene by the delivered siRNA might slow or halt osteoarthritic diseases without side effects caused by chemical inhibitors. However, cartilage siRNA delivery remains a challenging objective because cartilage is an avascular and very dense tissue with very low permeability. Furthermore, RNA is prone to degradation by serum nucleases (such as RNase H and RNase A) due to an extra hydroxyl group in its phosphodiester backbone. Therefore, successful delivery is the first and most crucial requirement for efficient RNAi therapy. Nanomaterials have emerged as highly advantage tools for these studies, as they can be engineered to protect siRNA from degrading, address barriers in siRNA delivery to joints, and target specific cells. This review will discuss recent breakthroughs of different siRNA delivery technologies for cartilage diseases.
Collapse
Affiliation(s)
- Libo Zhou
- Department of Biomedical Engineering, University of Connecticut
| | - Lee E Rubin
- Department of Orthopaedics & Rehabilitation, Yale University School of Medicine
| | - Chuanju Liu
- Department of Orthopaedic Surgery and Cell Biology, New York University School of Medicine
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut
| |
Collapse
|
13
|
Bono N, Coloma Smith B, Moreschi F, Redaelli A, Gautieri A, Candiani G. In silico prediction of the in vitro behavior of polymeric gene delivery vectors. NANOSCALE 2021; 13:8333-8342. [PMID: 33900339 DOI: 10.1039/d0nr09052b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-viral gene delivery vectors have increasingly come under the spotlight, but their performaces are still far from being satisfactory. Therefore, there is an urgent need for forecasting tools and screening methods to enable the development of ever more effective transfectants. Here, coarse-grained (CG) models of gold standard transfectant poly(ethylene imine)s (PEIs) have been profitably used to investigate and highlight the effect of experimentally-relevant parameters, namely molecular weight (2 vs. 10 kDa) and topologies (linear vs. branched), protonation state, and ammine-to-phosphate ratios (N/Ps), on the complexation and the gene silencing efficiency of siRNA molecules. The results from the in vitro screening of cationic polymers and conditions were used to validate the in silico platform that we developed, such that the hits which came out of the CG models were of high practical relevance. We show that our in silico platform enables to foresee the most suitable conditions for the complexation of relevant siRNA-polycation assemblies, thereby providing a reliable predictive tool to test bench transfectants in silico, and foster the design and development of gene delivery vectors.
Collapse
Affiliation(s)
- Nina Bono
- GenT LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Oner E, Kotmakci M, Baird AM, Gray SG, Debelec Butuner B, Bozkurt E, Kantarci AG, Finn SP. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small-molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. J Nanobiotechnology 2021; 19:71. [PMID: 33685469 PMCID: PMC7938557 DOI: 10.1186/s12951-021-00781-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND siRNAs hold a great potential for cancer therapy, however, poor stability in body fluids and low cellular uptake limit their use in the clinic. To enhance the bioavailability of siRNAs in tumors, novel, safe, and effective carriers are needed. RESULTS Here, we developed cationic solid lipid nanoparticles (cSLNs) to carry siRNAs targeting EphA2 receptor tyrosine kinase (siEphA2), which is overexpressed in many solid tumors including prostate cancer. Using DDAB cationic lipid instead of DOTMA reduced nanoparticle size and enhanced both cellular uptake and gene silencing in prostate cancer cells. DDAB-cSLN showed better cellular uptake efficiency with similar silencing compared to commercial transfection reagent (Dharmafect 2). After verifying the efficacy of siEphA2-loaded nanoparticles, we further evaluated a potential combination with a histone lysine demethylase inhibitor, JIB-04. Silencing EphA2 by siEphA2-loaded DDAB-cSLN did not affect the viability (2D or 3D culture), migration, nor clonogenicity of PC-3 cells alone. However, upon co-administration with JIB-04, there was a decrease in cellular responses. Furthermore, JIB-04 decreased EphA2 expression, and thus, silencing by siEphA2-loaded nanoparticles was further increased with co-treatment. CONCLUSIONS We have successfully developed a novel siRNA-loaded lipid nanoparticle for targeting EphA2. Moreover, preliminary results of the effects of JIB-04, alone and in combination with siEphA2, on prostate cancer cells and prostate cancer tumor spheroids were presented for the first time. Our delivery system provides high transfection efficiency and shows great promise for targeting other genes and cancer types in further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Ezgi Oner
- Department of Histopathology and Morbid Anatomy, Sir Patrick Dun Translational Research Lab, St. James's Hospital, Dublin, Ireland.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Balatcik, Izmir, Turkey
| | - Mustafa Kotmakci
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, Sir Patrick Dun Translational Research Lab, St. James's Hospital, Dublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Emir Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Balcova, Izmir, Turkey
| | - Ayse Gulten Kantarci
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Sir Patrick Dun Translational Research Lab, St. James's Hospital, Dublin, Ireland. .,Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland. .,Department of Histopathology, Labmed Directorate, St. James's Hospital, Dublin, Ireland. .,Cancer Molecular Diagnostics, Labmed Directorate, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
16
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
17
|
Wang K, Peng Y, Chen J, Peng Y, Wang X, Shen Z, Han Z. Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104467. [PMID: 32359547 DOI: 10.1016/j.pestbp.2019.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) has proven to be a very promising prospect for insect pest control. However, low RNAi efficacy limits further development of this biotechnology for use on lepidopteran insects, including the rice striped stem borer (SSB) (Chilo suppressalis), one of the major destructive rice pests. In this work, the application of various nanoparticles (NPs) by which double-stranded RNA (dsRNA) could be encapsulated was evaluated as an alternative delivery strategy to potentially increase the bioactivity of dsRNA. Three NPs, chitosan, carbon quantum dot (CQD), and lipofectamine2000, complexed with dsRNA (to target the glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH)) were tested to examine their use in controlling SSB. Relative mRNA expressions were quantified using qPCR to evaluate knockdown efficiency of NP-dsRNA treated larvae, and the correlated dsRNA-mediated SSB larval mortality was tested. Thereafter, the content dynamics of hemolymph dsRNA after ingesting different NP-dsRNA were monitored in vivo; the hemolymph dsRNA content was in ratios of 5.67, 9.43, and 1 with chitosan, CQD, and lipofectamine2000 induced samples, respectively. The results demonstrated that all three tested NPs led to efficient feeding delivery by improving both dsRNA stability and cellular uptake equally. Furthermore, there was a strong correlation (r= 0.9854) between the hemolymph dsRNA contents and the average RNAi depletions in the non-gut tissues of SSB. Overall, our results strongly suggest that due to its strong endosomal escaping ability, CQD was the most efficient carrier for inducing systemic RNAi, and thereby causing effective gene silencing and mortality in SSB.
Collapse
Affiliation(s)
- Kangxu Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, The Jiangsu Province Center of Cooperative Innovation for Modern Grain Circulation and Security, Nanjing 210023, China.
| | - Yingchuan Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Jiasheng Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yue Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xuesong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Zihan Shen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/The Key Laboratory of Monitoring and Management of Plant Diseases and Insects (Ministry of Agriculture), The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China.
| |
Collapse
|
18
|
Daryabari SS, Fathi M, Mahdavi M, Moaddab Y, Hosseinpour Feizi MA, Shokoohi B, Safaralizadeh R. Overexpression of CFL1 in gastric cancer and the effects of its silencing by siRNA with a nanoparticle delivery system in the gastric cancer cell line. J Cell Physiol 2020; 235:6660-6672. [PMID: 31990066 DOI: 10.1002/jcp.29562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Gastric adenocarcinoma, like other cancers, is a multifactorial genetic disease, and metastasis of cancer cells is one of the main features of this illness. The expression levels of the CFL1 gene have been modulated in this pathway. Using small interfering RNA (siRNA) in the treatment of gastric cancer is considered a hopeful gene therapeutic approach. The present study reported the level of CFL1 genes between tumor and margin and healthy tissue of gastric cancer. Also, the features of a cationic nanoparticle with a polymer coating containing polyacrylic acid and polyethyleneimine that were used in the delivery of CFL1 siRNA, were shown. Then the cytotoxicity, cellular uptake, and gene silencing efficiency of this nanoparticle were evaluated with CFL1siRNA. METHOD In this study, the CFL1 gene expression was measured in 40 gastric adenocarcinoma, marginal and 15 healthy biopsy samples by a real-time polymerase chain reaction. Physicochemical characteristics, apoptosis, and inhibition of migration of the delivery of CFL1 siRNA by nanoparticle and lipofectamine were investigated in gastric cancer cells. RESULT The CFL1 expression was remarkably increased in gastric cancer tissues in comparison with the marginal samples and normal tissues (p < .05) and the biomarker index for CFL1 was obtained as 0.94, then this gene can be probably used as a biomarker for gastric cancer. After treatment of the AGS cell line by CFL1 siRNA, the CFL1 expression level of mRNA and migration in AGS cells were remarkably suppressed after transfection. Furthermore, the amount of apoptosis increased (p < .05). CONCLUSION Our results demonstrated that CFL1 downregulation in AGS cells can interdict cell migration. Finally, our outcomes propose that CFL1 can function as an oncogenic gene in gastric cancer and would be considered as a potential purpose of gene therapy for gastric cancer treatment.
Collapse
Affiliation(s)
| | - Marziyeh Fathi
- Research Center for Pharmaceuticals Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Yaghoub Moaddab
- Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behrouz Shokoohi
- Pathology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
19
|
Ewe A, Noske S, Karimov M, Aigner A. Polymeric Nanoparticles Based on Tyrosine-Modified, Low Molecular Weight Polyethylenimines for siRNA Delivery. Pharmaceutics 2019; 11:pharmaceutics11110600. [PMID: 31726756 PMCID: PMC6920781 DOI: 10.3390/pharmaceutics11110600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/02/2023] Open
Abstract
A major hurdle for exploring RNA interference (RNAi) in a therapeutic setting is still the issue of in vivo delivery of small RNA molecules (siRNAs). The chemical modification of polyethylenimines (PEIs) offers a particularly attractive avenue towards the development of more efficient non-viral delivery systems. Here, we explore tyrosine-modified polyethylenimines with low or very low molecular weight (P2Y, P5Y, P10Y) for siRNA delivery. In comparison to their respective parent PEI, they reveal considerably increased knockdown efficacies and very low cytotoxicity upon tyrosine modification, as determined in different reporter and wildtype cell lines. The delivery of siRNAs targeting the anti-apoptotic oncogene survivin or the serine/threonine-protein kinase PLK1 (polo-like kinase 1; PLK-1) oncogene reveals strong inhibitory effects in vitro. In a therapeutic in vivo setting, profound anti-tumor effects in a prostate carcinoma xenograft mouse model are observed upon systemic application of complexes for survivin or PLK1 knockdown, in the absence of in vivo toxicity. We thus demonstrate the tyrosine-modification of (very) low molecular weight PEIs for generating efficient nanocarriers for siRNA delivery in vitro and in vivo, present data on their physicochemical and biological properties, and show their efficacy as siRNA therapeutic in vivo, in the absence of adverse effects.
Collapse
Affiliation(s)
- Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany; (A.E.); (S.N.); (M.K.)
| | - Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany; (A.E.); (S.N.); (M.K.)
- Faculty of Chemistry, Technical University Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany; (A.E.); (S.N.); (M.K.)
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany; (A.E.); (S.N.); (M.K.)
- Correspondence: ; Tel.: +49-(0)341-9724661
| |
Collapse
|
20
|
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16:1149-1167. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects. Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery. Expert opinion: It has become apparent that a universal carrier that follows 'one-size' fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of 'intelligent' designs.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Boston , USA
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Gothenburg , Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville , TN , USA
| | | |
Collapse
|
21
|
Liu S, Gao Y, Zhou D, Zeng M, Alshehri F, Newland B, Lyu J, O'Keeffe-Ahern J, Greiser U, Guo T, Zhang F, Wang W. Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nat Commun 2019; 10:3307. [PMID: 31341171 PMCID: PMC6656726 DOI: 10.1038/s41467-019-11190-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
Current therapies for most neurodegenerative disorders are only symptomatic in nature and do not change the course of the disease. Gene therapy plays an important role in disease modifying therapeutic strategies. Herein, we have designed and optimized a series of highly branched poly(β-amino ester)s (HPAEs) containing biodegradable disulfide units in the HPAE backbone (HPAESS) and guanidine moieties (HPAESG) at the extremities. The optimized polymers are used to deliver minicircle DNA to multipotent adipose derived stem cells (ADSCs) and astrocytes, and high transfection efficiency is achieved (77% in human ADSCs and 52% in primary astrocytes) whilst preserving over 90% cell viability. Furthermore, the top-performing candidate mediates high levels of nerve growth factor (NGF) secretion from astrocytes, causing neurite outgrowth from a model neuron cell line. This synergistic gene delivery system provides a viable method for highly efficient non-viral transfection of ADSCs and astrocytes.
Collapse
Affiliation(s)
- Shuai Liu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yongsheng Gao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland.
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Ming Zeng
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Fatma Alshehri
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF103AT, Cardiff, UK
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Jonathan O'Keeffe-Ahern
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Udo Greiser
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Fengzhi Zhang
- School of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, 4, Dublin, Ireland.
- Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
22
|
Optimization of miRNA delivery by using a polymeric conjugate based on deoxycholic acid-modified polyethylenimine. Int J Pharm 2019; 565:391-408. [DOI: 10.1016/j.ijpharm.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
|
23
|
Zhao Y, Lee RJ, Liu L, Dong S, Zhang J, Zhang Y, Yao Y, Lu J, Meng Q, Xie J, Teng L. Multifunctional drug carrier based on PEI derivatives loaded with small interfering RNA for therapy of liver cancer. Int J Pharm 2019; 564:214-224. [PMID: 31004717 DOI: 10.1016/j.ijpharm.2019.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/18/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Gene therapy strategies for liver cancer have broad application prospects but still lack a stable and efficient delivery vehicle. To overcome this obstacle, we designed a multifunctional gene delivery vector, sTPssOLP, which was based on oleylamine (OA)-modified disulfide-containing polyethylenimine (PEI) and incorporated into lipids to prepare a lipid nanoparticle. sTPssOLP consisted of the core of PEI derivative and cationic lipids bound to siRNA. The modified polyethylene glycol (PEG) and transferrin (Tf) were partially embedded in the phospholipid bilayer through the lipid and the other as the outer shell. The aim was to use the redox responsiveness of disulfide to trigger siRNA release in cytoplasm to enhance transfection efficiency. Pegylated lipids and Tf focus on increasing cycle life in the body and increasing accumulation at the tumor site of the carrier. In addition, two vectors were prepared as controls, one based on a PEI derivative containing no disulfide bond (POLP) and the other on the surface of the carrier not linked to Tf (PssOLP). PEI derivatives effectively avoid the toxicity problems caused by the use of PEI alone (25 kDa). Meanwhile, it was confirmed by gel retardation experiments that in the presence of dithiothreitol (DTT), the disulfide bond can indeed be reduced and the siRNA entrapped in the vector can be released. Both HepG2 and SMMC had significant uptake of sTPssOLP. The results of intracellular and lysosomal co-localization indicated that sTPssOLP achieved lysosomal escape. RT-PCR and Western blot results also confirmed that sTPssOLP had the best gene silencing activity. In vivo, the tumor inhibition rate of sTPssOLP in nude mice carrying HepG2 xenografts was 56%, which was significantly greater than that of the saline control group. In vivo imaging results showed that fluorescently labeled siRNA loaded in sTPssOLP was able to deliver more to the tumor site. At the same time, it was observed that sTPssOLP did not show significant damage to normal tissues. Therefore, this multifunctional gene delivery vector warrants further investigation.
Collapse
Affiliation(s)
- Yarong Zhao
- Jilin University, School of Life Sciences, Changchun, Jilin, China
| | - Robert J Lee
- Jilin University, School of Life Sciences, Changchun, Jilin, China; Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Luotong Liu
- Jilin University, School of Life Sciences, Changchun, Jilin, China
| | - Shiyan Dong
- Jilin University, School of Life Sciences, Changchun, Jilin, China
| | - Jing Zhang
- Jilin University, School of Life Sciences, Changchun, Jilin, China
| | - Yu Zhang
- Jilin University, School of Life Sciences, Changchun, Jilin, China
| | | | - Jiahui Lu
- Jilin University, School of Life Sciences, Changchun, Jilin, China
| | - Qingfan Meng
- Jilin University, School of Life Sciences, Changchun, Jilin, China
| | - Jing Xie
- Jilin University, School of Life Sciences, Changchun, Jilin, China.
| | - Lesheng Teng
- Jilin University, School of Life Sciences, Changchun, Jilin, China.
| |
Collapse
|
24
|
Sharma D, Arora S, dos Santos Rodrigues B, Lakkadwala S, Banerjee A, Singh J. Chitosan-Based Systems for Gene Delivery. FUNCTIONAL CHITOSAN 2019:229-267. [DOI: 10.1007/978-981-15-0263-7_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Kwon K, Park D, Kim JC. Disulfide proteinoid micelles responsive to reduction. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1515026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kyeongnan Kwon
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Danbi Park
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
26
|
Gandhi NS, Godeshala S, Koomoa-Lange DLT, Miryala B, Rege K, Chougule MB. Bioreducible Poly(Amino Ethers) Based mTOR siRNA Delivery for Lung Cancer. Pharm Res 2018; 35:188. [PMID: 30105526 DOI: 10.1007/s11095-018-2460-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Lung cancer is one of the leading causes of deaths in the United States, but currently available therapies for lung cancer are associated with reduced efficacy and adverse side effects. Small interfering RNA (siRNA) can knock down the expression of specific genes and result in therapeutic efficacy in lung cancer. Recently, mTOR siRNA has been shown to induce apoptosis in NSCLC cell lines but its use is limited due to poor stability in biological conditions. METHODS In this study, we modified an aminoglyocisde-derived cationic poly (amino-ether) by introducing a thiol group using Traut's reagent to generate a bio-reducible modified-poly (amino-ether) (mPAE). The mPAE polymer was used to encapsulate mTOR siRNA by nanoprecipitation method, resulting in the formation of stable and bio-reducible nanoparticles (NPs) which possessed an average diameter of 114 nm and a surface charge of approximately +27 mV. RESULTS The mTOR siRNA showed increased release from the mTS-mPAE NPs in the presence of 10 mM glutathione (GSH). The polymeric mTS-mPAE-NPs were also capable of efficient gene knockdown (60 and 64%) in A549 and H460 lung cancer cells, respectively without significant cytotoxicity at 30 μg/ml concentrations. The NPs also showed time-dependent cellular uptake for up to 24 h as determined using flow cytometry. Delivery of the siRNA using these NPs also resulted in significant inhibition of A549 and H460 cell proliferation in vitro, respectively. CONCLUSIONS The results demonstrate that the mPAE polymer based NPs show strong potential for siRNA delivery to lung cancer cells. It is anticipated that future modification can help improve the efficacy of nucleic acid delivery, leading to higher inhibition of lung cancer growth in vitro and in vivo.
Collapse
Affiliation(s)
- Nishant S Gandhi
- Department of Pharmaceutical Sciences, The Daniel K Inouye College of pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
- Translational Bio-pharma Engineering Nanodelivery Research Laboratory, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, Faser Hall, University of Mississippi, University, MS, 38677, USA
| | - Sudhakar Godeshala
- Chemical Engineering, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Dana-Lynn T Koomoa-Lange
- Department of Pharmaceutical Sciences, The Daniel K Inouye College of pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Bhavani Miryala
- Chemical Engineering, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ, 85287-6106, USA
| | - Mahavir B Chougule
- Department of Pharmaceutical Sciences, The Daniel K Inouye College of pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA.
- Translational Bio-pharma Engineering Nanodelivery Research Laboratory, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, Faser Hall, University of Mississippi, University, MS, 38677, USA.
- Pii Center for Pharmaceutical Technology, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, 38677, USA.
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
27
|
Design and development of a robust photo-responsive block copolymer framework for tunable nucleic acid delivery and efficient gene silencing. Polym J 2018. [DOI: 10.1038/s41428-018-0077-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Li Y, Zhang X, Zhang J, Mu X, Duan Q, Wang T, Tian H. Synthesis and characterization of a hyperbranched grafting copolymer PEI-g-PLeu for gene and drug co-delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:47. [PMID: 29687339 DOI: 10.1007/s10856-018-6057-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
L-Leucine (Leu) is a hydrophobic natural amino acid and can polymerize into poly-L-Leucine (PLeu) to be an excellent biocompatible material. In this paper, a hyperbranched copolymer polyethyleneimine-g-poly-L-leucine (PEI-g-PLeu) was synthesized by ring-opening polymerization with leucine NCA as monomer and PEI as initiator, which will be used as drug and gene co-delivery system for cancer therapy. To characterize the transfection efficiency in vitro, pGL3 as the reporter gene was loaded in PEI-g-PLeu to form complexes. Doxorubicin (DOX) with cis-aconitic anhydride linker (CAD) and calf thymus DNA (as model DNA) were co-loaded in PEI-g-PLeu to obtain PEI-g-PLeu/DNA/CAD nanoparticles to measure Zeta potentials and particle sizes. Lastly, CAD and modified Bc12-shRNA(as therapeutic gene) were co-loaded in PEI-g-PLeu to get PEI-g-PLeu/CAD/DNA complexes. Our finding revealed when PEI and PLeu with the molar ratio of 1:240, and PEI-g-PLeu and DNA with the mass ratio of 1:5, PEI-g-PLeu/CAD/DNA had negligible cytotoxicity with equivalent gene transfaction efficiency compared with PEI25k. As a result, PEI-g-PLeu/CAD/DNA was a promising drug and gene co-delivery system.
Collapse
Affiliation(s)
- Yanhui Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Xue Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingpeng Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xin Mu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Tinghong Wang
- Changchun Chaoyang People's Hospital, Changchun, 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
29
|
Tai W, Li J, Corey E, Gao X. A ribonucleoprotein octamer for targeted siRNA delivery. Nat Biomed Eng 2018; 2:326-337. [PMID: 30936447 PMCID: PMC6136846 DOI: 10.1038/s41551-018-0214-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/02/2018] [Indexed: 01/09/2023]
Abstract
Hurdles in cell-specific delivery of small interfering RNA (siRNA) in vivo hinder the clinical translation of RNA interference (RNAi). A fundamental problem concerns conflicting requirements for the design of the delivery vehicles: cationic materials facilitate cargo condensation and endosomolysis, yet hinder in vivo targeting and colloidal stability. Here, we describe a self-assembled, compact (~30 nm) and biocompatible ribonucleoprotein-octamer nanoparticle that achieves endosomal destabilization and targeted delivery. The protein octamer consists of a poly(ethylene glycol) scaffold, a sterically masked endosomolytic peptide and a double-stranded RNA-binding domain, providing a discrete number of siRNA loading sites and a high siRNA payload (>30 wt%), and offering flexibility in both siRNA and targeting-ligand selection. We show that a ribonucleoprotein octamer against the polo-like kinase 1 gene and bearing a ligand that binds to prostate-specific membrane antigen leads to efficient gene silencing in prostate tumour cells in vitro and when intravenously injected in mouse models of prostate cancer. The octamer's versatile nanocarrier design should offer opportunities for the clinical translation of therapies based on intracellularly acting biologics.
Collapse
Affiliation(s)
- Wanyi Tai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Junwei Li
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Wang Y, Newman MR, Benoit DSW. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review. Eur J Pharm Biopharm 2018; 127:223-236. [PMID: 29471078 DOI: 10.1016/j.ejpb.2018.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 01/09/2023]
Abstract
Impaired fracture healing is a major clinical problem that can lead to patient disability, prolonged hospitalization, and significant financial burden. Although the majority of fractures heal using standard clinical practices, approximately 10% suffer from delayed unions or non-unions. A wide range of factors contribute to the risk for nonunions including internal factors, such as patient age, gender, and comorbidities, and external factors, such as the location and extent of injury. Current clinical approaches to treat nonunions include bone grafts and low-intensity pulsed ultrasound (LIPUS), which realizes clinical success only to select patients due to limitations including donor morbidities (grafts) and necessity of fracture reduction (LIPUS), respectively. To date, therapeutic approaches for bone regeneration rely heavily on protein-based growth factors such as INFUSE, an FDA-approved scaffold for delivery of bone morphogenetic protein 2 (BMP-2). Small molecule modulators and RNAi therapeutics are under development to circumvent challenges associated with traditional growth factors. While preclinical studies has shown promise, drug delivery has become a major hurdle stalling clinical translation. Therefore, this review overviews current therapies employed to stimulate fracture healing pre-clinically and clinically, including a focus on drug delivery systems for growth factors, parathyroid hormone (PTH), small molecules, and RNAi therapeutics, as well as recent advances and future promise of fracture-targeted drug delivery.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Maureen R Newman
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Chemical Engineering, 4517 Wegmans Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopaedics, 601 Elmwood Ave, University of Rochester, Rochester, NY 14642, USA; Department of Biomedical Genetics, 601 Elmwood Ave, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
31
|
Hiwatashi N, Kraja I, Benedict PA, Dion GR, Bing R, Rousseau B, Amin MR, Nalband DM, Kirshenbaum K, Branski RC. Nanoparticle delivery of RNA-based therapeutics to alter the vocal fold tissue response to injury. Laryngoscope 2017; 128:E178-E183. [PMID: 29238989 DOI: 10.1002/lary.27047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES/HYPOTHESIS Our laboratory and others hypothesized that Smad3 is a principle mediator of the fibrotic phenotype in the vocal folds (VFs), and we further posited that alteration of Smad3 expression through short interfering (si)RNA holds therapeutic promise, yet delivery remains challenging. To address this issue, we employed a novel synthetic oligomer, lipitoid, complexed with siRNA to improve stability and cellular uptake with the goal of increased efficiency of RNA-based therapeutics. STUDY DESIGN In vitro study and in vivo animal model. METHODS In vitro, lipitoid cytotoxicity was quantified via colorimetric and LIVE/DEAD assays in immortalized human VF fibroblasts and primary rabbit VF fibroblasts. In addition, optimal incubation interval and solution for binding siRNA to lipitoid for intracellular delivery were determined. In vivo, a rabbit model of VF injury was employed to evaluate Smad3 knockdown following locally injected lipitoid-complexed siRNA. RESULTS In vitro, lipitoid did not confer additional toxicity compared to commercially available reagents. In addition, 20-minute incubation in 1× phosphate-buffered saline resulted in maximal Smad3 knockdown. In vivo, Smad3 expression increased following VF injury. This response was significantly reduced in injured VFs at 4 and 24 hours following injection (P = .035 and .034, respectively). CONCLUSIONS The current study is the first to demonstrate targeted gene manipulation in the VFs as well as the potential utility of lipitoid for localized delivery of genetic material in vivo. Ideally, these data will serve as a platform for future investigation regarding the functional implications of therapeutic gene manipulation in the VFs. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E178-E183, 2018.
Collapse
Affiliation(s)
- Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York
| | - Iv Kraja
- Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York
| | - Peter A Benedict
- Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York
| | - Gregory R Dion
- Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York
| | - Renjie Bing
- Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York
| | - Bernard Rousseau
- Department of Otolaryngology, Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Mechanical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Milan R Amin
- Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York
| | - Danielle M Nalband
- Department of Chemistry , New York University, New York, New York, U.S.A
| | - Kent Kirshenbaum
- Department of Chemistry , New York University, New York, New York, U.S.A
| | - Ryan C Branski
- Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York
| |
Collapse
|
32
|
Lim DG, Rajasekaran N, Lee D, Kim NA, Jung HS, Hong S, Shin YK, Kang E, Jeong SH. Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31543-31556. [PMID: 28853284 DOI: 10.1021/acsami.7b09624] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanodiamonds have been discovered as a new exogenous material source in biomedical applications. As a new potent form of nanodiamond (ND), polyamidoamine-decorated nanodiamonds (PAMAM-NDs) were prepared for E7 or E6 oncoprotein-suppressing siRNA gene delivery for high risk human papillomavirus-induced cervical cancer, such as types 16 and 18. It is critical to understand the physicochemical properties of siRNA complexes immobilized on cationic solid ND surfaces in the aspect of biomolecular structural and conformational changes, as the new inert carbon material can be extended into the application of a gene delivery vector. A spectral study of siRNA/PAMAM-ND complexes using differential scanning calorimetry and circular dichroism spectroscopy proved that the hydrogen bonding and electrostatic interactions between siRNA and PAMAM-NDs decreased endothermic heat capacity. Moreover, siRNA/PAMAM-ND complexes showed low cell cytotoxicity and significant suppressing effects for forward target E6 and E7 oncogenic genes, proving functional and therapeutic efficacy. The cellular uptake of siRNA/PAMAM-ND complexes at 8 h was visualized by macropinocytes and direct endosomal escape of the siRNA/PAMAM-ND complexes. It is presumed that PAMAM-NDs provided a buffering cushion to adjust the pH and hard mechanical stress to escape endosomes. siRNA/PAMAM-ND complexes provide a potential organic/inorganic hybrid material source for gene delivery carriers.
Collapse
Affiliation(s)
- Dae Gon Lim
- College of Pharmacy, Dongguk University-Seoul , Goyang, Gyeonggi 10326, Republic of Korea
| | - Nirmal Rajasekaran
- College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
- Abion Inc. , Seoul 08394, Republic of Korea
| | - Dukhee Lee
- School of Chemical Engineering and Material Science, Chung-Ang University , Seoul 156-756, Republic of Korea
| | - Nam Ah Kim
- College of Pharmacy, Dongguk University-Seoul , Goyang, Gyeonggi 10326, Republic of Korea
- Abion Inc. , Seoul 08394, Republic of Korea
| | | | - Sungyoul Hong
- College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| | - Young Kee Shin
- College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| | - Eunah Kang
- School of Chemical Engineering and Material Science, Chung-Ang University , Seoul 156-756, Republic of Korea
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul , Goyang, Gyeonggi 10326, Republic of Korea
| |
Collapse
|
33
|
Kraja I, Bing R, Hiwatashi N, Rousseau B, Nalband D, Kirshenbaum K, Branski RC. Preliminary study of a novel transfection modality for in vivo siRNA delivery to vocal fold fibroblasts. Laryngoscope 2017; 127:E231-E237. [PMID: 27996099 PMCID: PMC5476483 DOI: 10.1002/lary.26432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE An obstacle to clinical use of RNA-based gene suppression is instability and inefficiency of current delivery modalities. Nanoparticle delivery likely holds great promise, but the kinetics and transfection conditions must be optimized prior to in vivo utility. We investigated a RNA nanoparticle complex incorporating a lipitoid transfection reagent in comparison to a commercially available reagent. STUDY DESIGN In vitro. METHODS We investigated which variables influence transfection efficiency of lipitoid oligomers and a commercially available reagent across species, in vitro. These variables included duration, dose, and number of administrations, as well as serum and media conditions. The target gene was Smad3, a signaling protein in the transforming growth factor-β cascade implicated in fibroplasia in the vocal folds and other tissues. RESULTS The two reagents suppressed Smad3 mRNA for up to 96 hours; lipitoid performed favorably and comparably. Both compounds yielded 60% to 80% mRNA knockdown in rat, rabbit, and human vocal fold fibroblasts (P < 0.05 relative to control). Dose and number of administrations played a significant role in gene suppression (P < 0.05). Suppression was more dose-sensitive with lipitoid. At a constant siRNA concentration, a 50% decrease in gene expression was observed in response to a five-fold increase in lipitoid concentration. Increased number of administrations enhanced gene suppression, ∼45% decrease between one and four administrations. Neither serum nor media type altered efficiency. CONCLUSION Lipitoid effectively knocked down Smad3 expression across multiple transfection conditions. These preliminary data are encouraging, and lipitoid warrants further investigation with the goal of clinical utility. LEVEL OF EVIDENCE NA. Laryngoscope, 127:E231-E237, 2017.
Collapse
Affiliation(s)
- Iv Kraja
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Renjie Bing
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Nao Hiwatashi
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY
| | - Bernard Rousseau
- Bill Wilkerson Center for Otolaryngology and Communication Sciences, Department of Otolaryngology, Hearing and Speech Sciences, and Mechanical Engineering, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Ryan C. Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY
| |
Collapse
|
34
|
Omar R, Yang J, Liu H, Davies NM, Gong Y. Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. Rev Physiol Biochem Pharmacol 2017; 172:1-37. [PMID: 27534415 DOI: 10.1007/112_2016_6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.
Collapse
Affiliation(s)
- Refaat Omar
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Jiaqi Yang
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Haoyuan Liu
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Neal M Davies
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 8613-114 Street, Edmonton, AB, Canada, T6G 2H1
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5.
| |
Collapse
|
35
|
Chen G, Wang Y, Xie R, Gong S. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. J Control Release 2017; 259:105-114. [PMID: 28159516 DOI: 10.1016/j.jconrel.2017.01.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/29/2017] [Indexed: 01/17/2023]
Abstract
A unique pH/redox dual-sensitive cationic unimolecular nanoparticle (NP) enabling excellent endosomal/lysosomal escape and efficient siRNA decomplexation inside the target cells was developed for tumor-targeted delivery of siRNA. siRNA was complexed into the cationic core of the unimolecular NP through electrostatic interactions. The cationic core used for complexing siRNA contained reducible disulfide bonds that underwent intracellular reduction owing to the presence of high concentrations of reduced glutathione (GSH) inside the cells, thereby facilitating the decomplexation of siRNA from the unimolecular NPs. The cationic polymers were conjugated onto the hyperbranched core (H40) via a pH-sensitive bond, which further facilitated the decomplexation of siRNA from the NPs. In vitro studies on the siRNA release behaviors showed that dual stimuli (pH=5.3, 10mM GSH) induced the quickest release of siRNA from the NPs. In addition, the imidazole groups attached to the cationic polymer segments enhanced the endosomal/lysosomal escape of NPs via the proton sponge effect. Intracellular tracking studies revealed that siRNA delivered by unimolecular NPs was efficiently released to the cytosol. Moreover, the GE11 peptide, an anti-EGFR peptide, enhanced the cellular uptake of NPs in MDA-MB-468, an EFGR-overexpressing triple negative breast cancer (TNBC) cell line. The GE11-conjugated, GFP-siRNA-complexed NPs exhibited excellent GFP gene silencing efficiency in GFP-MDA-MB-468 TNBC cells without any significant cytotoxicity. Therefore, these studies suggest that this smart unimolecular NP could be a promising nanoplatform for targeted siRNA delivery to EFGR-overexpressing cancer cells.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
36
|
Zhang M, Zhao X, Fang Z, Niu Y, Lou J, Wu Y, Zou S, Xia S, Sun M, Du F. Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv 2017. [DOI: 10.1039/c6ra26048a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Carbon quantum dots (CDs) as emerging carbon nano-materials have attracted tremendous attention in biomedical fields due to unique properties.
Collapse
Affiliation(s)
- M. Zhang
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - X. Zhao
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Z. Fang
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Y. Niu
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - J. Lou
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Y. Wu
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - S. Zou
- Department of Hepatosis
- The Third Hospital of Zhenjiang Affiliated to Jiangsu University
- Zhenjiang
- P. R. China
| | - S. Xia
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
| | - M. Sun
- Department of Clinical Laboratory
- Affiliated Yancheng Hospital
- School of Medicine
- Southeast University
- Yancheng
| | - F. Du
- School of Medicine
- Jiangsu University
- Zhenjiang
- P. R. China
- Department of Hepatosis
| |
Collapse
|
37
|
Arami S, Mahdavi M, Rashidi MR, Fathi M, Hejazi MS, Samadi N. Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer. Biologicals 2016; 44:487-496. [DOI: 10.1016/j.biologicals.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 02/02/2023] Open
|
38
|
Arami S, Rashidi MR, Mahdavi M, Fathi M, Entezami AA. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum Exp Toxicol 2016; 36:227-237. [DOI: 10.1177/0960327116646618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The limited effectiveness of the conventional methods for cancer treatment makes the researchers to find novel safe and effective therapeutic strategies. One of these strategies is to use small interfering RNAs (siRNAs). A major challenge here is the siRNA delivery into the cells. The purpose of this study was to design and prepare a biocompatible, biodegradable, and safe nanosized particle for siRNA delivery into human breast cancer MCF-7 and leukemia K562 cells. Chemically synthesized magnetic nanoparticles containing polyethyleneglycol-lactate polymer (PEG-LAC), chitosan, and polyethyleneimine (PEI) were successfully prepared and used as a gene delivery vehicle. The nanoparticles were characterized by Fourier transform infrared spectroscopy and zeta potential. The Fe3O4-PEG-LAC-chitosan-PEI nanoparticle showed efficient and stable survivin siRNA loading in gel retardation assay. The cytotoxicity of the prepared nanoparticle was studied using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and was compared with that of mitoxantrone (MTX) in combination with the prepared siRNA delivery system to evaluate the possible synergic effect of MTX and survivin siRNA. The nanoparticles with and without noncomplementary siRNA showed low toxicity against both cell lines; however, a twofold decrease was observed in cell survival percent after MTX addition to MCF-7 cells treated with either nanoparticle itself or complexed with noncomplementary siRNA. While survivin siRNA nanoplex caused threefold decrease in the cell survival percent, its combination with MTX did not result in a significant increase in the cytotoxic effect. Therefore, Fe3O4-PEG-LAC-chitosan-PEI nanoparticle should be considered as a potential carrier for enhanced survivin siRNA delivery into MCF-7 and K562 cells.
Collapse
Affiliation(s)
- S Arami
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MR Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Mahdavi
- Department of Biology, Faculty of Natural Science, University Of Tabriz, Tabriz, Iran
| | - M Fathi
- Laboratory of Polymer, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - AA Entezami
- Laboratory of Polymer, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
39
|
Kozielski KL, Rui Y, Green JJ. Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opin Drug Deliv 2016; 13:1475-87. [PMID: 27248202 DOI: 10.1080/17425247.2016.1190707] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The delivery of nucleic acids such as DNA and short interfering RNA (siRNA) is promising for the treatment of many diseases, including cancer, by enabling novel biological mechanisms of action. Non-viral nanoparticles are a promising class of nucleic acid carriers that can be designed to be safer and more versatile than traditional viral vectors. AREAS COVERED In this review, recent advances in the intracellular delivery of DNA and siRNA are described with a focus on non-viral nanoparticle-based delivery methods. Material properties that have enabled successful delivery are discussed as well as applications that have directly been applied to cancer therapy. Strategies to co-deliver different nucleic acids are highlighted, as are novel targets for nucleic acid co-delivery. EXPERT OPINION The treatment of complex genetically-based diseases such as cancer can be enabled by safe and effective intracellular delivery of multiple nucleic acids. Non-viral nanoparticles can be fabricated to deliver multiple nucleic acids to the same cell simultaneously to prevent tumor cells from easily compensating for the knockdown or overexpression of one genetic target. The continued innovation of new therapeutic modalities and non-viral nanotechnologies to provide target-specific and personalized forms of gene therapy hold promise for genetic medicine to treat diseases like cancer in the clinic.
Collapse
Affiliation(s)
- Kristen L Kozielski
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Yuan Rui
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Jordan J Green
- a Department of Biomedical Engineering, the Institute for NanoBioTechnology, & the Translational Tissue Engineering Center , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b Departments of Ophthalmology, Oncology, Neurosurgery, and Materials Science & Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
40
|
Levine RM, Dinh CV, Harris MA, Kokkoli E. Targeting HPV-infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine. Bioeng Transl Med 2016; 1:168-180. [PMID: 29313012 PMCID: PMC5675078 DOI: 10.1002/btm2.10022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023] Open
Abstract
The greatest obstacle to clinical application of cancer gene therapy is lack of effective delivery tools. Gene delivery vehicles must protect against degradation, avoid immunogenic effects and prevent off target delivery which can cause harmful side effects. PEGylated liposomes have greatly improved tumor localization of small molecule drugs and are a promising tool for nucleic acid delivery as the polyethylene glycol (PEG) coating protects against immune recognition and blood clearance. In this study, small interfering RNA (siRNA) was fully encapsulated within PEGylated liposomes by complexing the siRNA with a cationic polymer, polyethyleneimine (PEI), before encapsulation. Formation methods and material compositions were then investigated for their effects on encapsulation. This technology was translated for protective delivery of siRNA designed for human papillomavirus (HPV) viral gene silencing and cervical cancer treatment. PEGylated liposomes encapsulating siRNA were functionalized with the AG86 targeting peptide-amphiphile which binds to the α6β4 integrin, a cervical cancer biomarker. It was found that both targeting and polymer complexation before encapsulation were critical components to effective transfection.
Collapse
Affiliation(s)
- Rachel M. Levine
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Christina V. Dinh
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Michael A. Harris
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Efrosini Kokkoli
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| |
Collapse
|
41
|
Depieri LV, Borgheti-Cardoso LN, Campos PM, Otaguiri KK, Vicentini FTMDC, Lopes LB, Fonseca MJV, Bentley MVLB. RNAi mediated IL-6 in vitro knockdown in psoriasis skin model with topical siRNA delivery system based on liquid crystalline phase. Eur J Pharm Biopharm 2016; 105:50-8. [PMID: 27224855 DOI: 10.1016/j.ejpb.2016.05.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/09/2016] [Accepted: 05/15/2016] [Indexed: 02/04/2023]
Abstract
Gene therapy by RNA interference (RNAi) is a post-transcriptional silencing process that can suppress the expression of a particular gene and it is a promising therapeutic approach for the treatment of many severe diseases, including cutaneous disorders. However, difficulties related to administration and body distribution limit the clinical use of small interfering RNA (siRNA) molecules. In this study, we proposed to use nanocarriers to enable siRNA application in the topical treatment of skin disorders. A siRNA nanodispersion based on liquid crystalline phase and composed of monoolein (MO), oleic acid (OA) and polyethylenimine (PEI) was developed and its physicochemical properties, efficiency of complexation and carrier/siRNA stability were assessed. Subsequently, cell viability, cellular uptake, in vitro skin irritation test using reconstructed human epidermis (RHE) and in vitro IL-6 knockdown in psoriasis skin model were evaluated. The results showed that the liquid crystalline nanodispersion is a promising topical delivery system for administration of siRNA, being able to overcome the limitations of the route of administration, as well those resulting from the characteristics of siRNA molecules. The formulation was effective at complexing the siRNA, presented high rate of cell uptake (∼90%), increased the skin penetration of siRNA in vitro, and did not cause skin irritation compared with Triton-X (a moderate irritant), resulting in a 4-fold higher viability of reconstructed human epidermis and a 15.6-fold lower release of IL-1α. A single treatment with the liquid crystalline nanodispersion carrying IL-6 siRNA for 6h was able to reduce the extracellular IL-6 levels by 3.3-fold compared with control treatment in psoriasis skin model. Therefore, liquid crystalline nanodispersion is a suitable nanocarrier for siRNA with therapeutic potential to suppress skin disease-specific genes. This study also highlights the applicability of reconstructed skin models in pharmaceutical field to evaluate the performance of delivery systems without the use of animal models.
Collapse
Affiliation(s)
- Lívia Vieira Depieri
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Lívia Neves Borgheti-Cardoso
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Patrícia Mazureki Campos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Katia Kaori Otaguiri
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | | - Luciana Biagini Lopes
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, 05508-900 São Paulo, SP, Brazil; Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, New York, USA
| | - Maria José Vieira Fonseca
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - M Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
42
|
A novel tyrosine-modified low molecular weight polyethylenimine (P10Y) for efficient siRNA delivery in vitro and in vivo. J Control Release 2016; 230:13-25. [DOI: 10.1016/j.jconrel.2016.03.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 11/17/2022]
|
43
|
Tanaka H, Sato Y, Harashima H, Akita H. Cellular environment-responsive nanomaterials for use in gene and siRNA delivery: molecular design for biomembrane destabilization and intracellular collapse. Expert Opin Drug Deliv 2016; 13:1015-27. [DOI: 10.1517/17425247.2016.1154531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroki Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
44
|
Zhang Y, Yang B, Liu Y, Qin W, Li C, Wang L, Zheng W, Wu Y. Effective mRNA Inhibition in PANC-1 Cells in Vitro Mediated via an mPEG-SeSe-PEI Delivery System. Biol Pharm Bull 2016; 39:680-8. [PMID: 26948169 DOI: 10.1248/bpb.b15-00645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi)-mediated gene therapy is a promising approach to cure various diseases. However, developing an effective, safe, specific RNAi delivery system remains a major challenge. In this study, a novel redox-responsive polyetherimide (PEI)-based nanovector, mPEG-SeSe-PEI, was developed and its efficacy evaluated. We prepared three mPEG-SeSe-PEI vector candidates for small interfering glyceraldehyde-3-phosphate dehydrogenase (siGADPH) and determined their physiochemical properties and transfection efficiency using flow cytometry and PEG11.6-SeSe-PEI polymer. We investigated the silencing efficacy of GADPH mRNA expression in PANC-1 cells and observed that PEG11.6-SeSe-PEI/siGADPH (N/P ratio=10) polyplexes possessed the appropriate size and zeta-potential and exhibited excellent in vitro gene silencing effects with the least cytotoxicity in PANC-1 cells. In conclusion, we present PEG11.6-SeSe-PEI as a potential therapeutic gene delivery system for small interfering RNA (siRNA).
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jang B, Kwon H, Katila P, Lee SJ, Lee H. Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Adv Drug Deliv Rev 2016; 98:113-33. [PMID: 26654747 DOI: 10.1016/j.addr.2015.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
Cancer causes >8.2 million deaths annually worldwide; thus, various cancer treatments have been investigated over the past decades. Among them, combination drug therapy has become extremely popular, and treatment with more than one drug is often necessary to achieve appropriate anticancer efficacy. With the development of nanoformulations and nanoparticulate-based drug delivery, researchers have explored the feasibility of dual delivery of biological therapeutics to overcome the current drawbacks of cancer therapy. Compared with the conventional single drug therapy, dual delivery of therapeutics has provided various synergistic effects in addition to offering multimodality to cancer treatment. In this review, we highlight and summarize three aspects of dual-delivery systems for cancer therapy. These include (1) overcoming drug resistance by the dual delivery of chemical drugs with biological therapeutics for synergistic therapy, (2) targeted and controlled drug release by the dual delivery of drugs with stimuli-responsive nanomaterials, and (3) multimodal theranostics by the dual delivery of drugs and molecular imaging probes. Furthermore, recent developments, perspectives, and new challenges regarding dual-delivery systems for cancer therapy are discussed.
Collapse
|
46
|
Vocelle D, Chesniak OM, Malefyt AP, Comiskey G, Adu-Berchie K, Smith MR, Chan C, Walton SP. Dextran functionalization enhances nanoparticle-mediated siRNA delivery and silencing. TECHNOLOGY 2016; 4:42. [PMID: 27774502 PMCID: PMC5072529 DOI: 10.1142/s2339547816400100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding the endocytosis and intracellular trafficking of short interfering RNA (siRNA) delivery vehicle complexes remains a critical bottleneck in designing siRNA delivery vehicles for highly active RNA interference (RNAi)-based therapeutics. In this study, we show that dextran functionalization of silica nanoparticles enhanced uptake and intracellular delivery of siRNAs in cultured cells. Using pharmacological inhibitors for endocytotic pathways, we determined that our complexes are endocytosed via a previously unreported mechanism for siRNA delivery in which dextran initiates scavenger receptor-mediated endocytosis through a clathrin/caveolin-independent process. Our findings suggest that siRNA delivery efficiency could be enhanced by incorporating dextran into existing delivery platforms to activate scavenger receptor activity across a variety of target cell types.
Collapse
Affiliation(s)
- Daniel Vocelle
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA
| | - Olivia M Chesniak
- Department of Chemistry, Michigan State University, East Lansing, MI 48824-1226, USA
| | - Amanda P Malefyt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA
| | - Georgina Comiskey
- Department of Chemistry, Michigan State University, East Lansing, MI 48824-1226, USA
| | - Kwasi Adu-Berchie
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA
| | - Milton R Smith
- Department of Chemistry, Michigan State University, East Lansing, MI 48824-1226, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1226, USA
| | - S Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA
| |
Collapse
|
47
|
Zhao C, Shao L, Lu J, Deng X, Wu Y. Tumor Acidity-Induced Sheddable Polyethylenimine-Poly(trimethylene carbonate)/DNA/Polyethylene Glycol-2,3-Dimethylmaleicanhydride Ternary Complex for Efficient and Safe Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6400-6410. [PMID: 26904916 DOI: 10.1021/acsami.6b00825] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amphiphilic PEI derivatives/DNA complexes are widely used for DNA delivery, but they are unstable in vivo and have cytotoxicity due to the excess cationic charge. PEGylation of cationic complexes can improve sterical stability and biocompatibility. However, PEGylation significantly inhibits cellular uptake and endosomal escape. In this work, sheddable ternary complexes were developed by coating a tumor acidity-sensitive β-carboxylic amide functionalized PEG layer on the binary complexes of amphiphilic cationic polyethylenimine-poly(trimethylene carbonate) nanoparticles/DNA (PEI-PTMC/DNA). Such sheddable ternary complexes markedly reduced their nonspecific interactions with serum protein in the bloodstream and obtained minimal cytotoxicity due to the protection of the PEG shell. At the tumor site, the PEG layer was deshielded by responding to the tumor acidic microenvironment and the positively charged complexes re-exposed that had higher affinity with negatively charged cell membranes. Meanwhile the positively charged complexes facilitated endosomal escape. Accordingly, this delivery system improved the biocompatibility of gene-loaded complexes and enhanced the gene transfection efficiency. Such PEGylated complexes with the ability to deshield the PEG layer at the target tissues hold great promise for efficient and safe gene delivery in vivo.
Collapse
Affiliation(s)
- Caiyan Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| |
Collapse
|
48
|
|
49
|
Nam JP, Nah JW. Target gene delivery from targeting ligand conjugated chitosan–PEI copolymer for cancer therapy. Carbohydr Polym 2016; 135:153-61. [DOI: 10.1016/j.carbpol.2015.08.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/01/2023]
|
50
|
Liu S, Huang W, Jin MJ, Fan B, Xia GM, Gao ZG. Inhibition of murine breast cancer growth and metastasis by survivin-targeted siRNA using disulfide cross-linked linear PEI. Eur J Pharm Sci 2016; 82:171-82. [DOI: 10.1016/j.ejps.2015.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/11/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022]
|