1
|
Nicolescu C, Schilb A, Kim J, Sun D, Hall R, Gao S, Gilmore H, Schiemann WP, Lu ZR. Evaluating Dual-Targeted ECO/siRNA Nanoparticles against an Oncogenic lncRNA for Triple Negative Breast Cancer Therapy with Magnetic Resonance Molecular Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:461-470. [PMID: 37655165 PMCID: PMC10466452 DOI: 10.1021/cbmi.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 09/02/2023]
Abstract
Differentiation antagonizing noncoding RNA (DANCR) is recognized as an oncogenic long noncoding RNA (lncRNA) overexpressed in triple negative breast cancer (TNBC). We showed in a previous study that RNAi with targeted multifunctional ionizable lipid ECO/siRNA nanoparticles was effective to regulate this undruggable target for effective treatment of TNBC. In this study, we developed dual-targeted ECO/siDANCR nanoparticles by targeting a tumor extracellular matrix oncoprotein, extradomain B fibronectin (EDB-FN), and integrins overexpressed on cancer cells for enhanced delivery of siDANCR. The treatment of Hs578T TNBC cells and MCF-7 estrogen receptor-positive cells in vitro resulted in significant down-regulation of DANCR and EDB-FN and suppressed invasion and 3D spheroid formation of the cells. Magnetic resonance molecular imaging (MRMI) with an EDB-FN-targeted contrast agent, MT218, was used to noninvasively evaluate tumor response to treatment with the targeted ECO/siDANCR nanoparticles in female nude mice bearing orthotopic Hs578T and MCF-7 xenografts. MRMI with MT218 was effective to differentiate between aggressive TNBC with high DANCR and EDB-FN expression and ER+ MCF-7 tumors with low expression of the targets. MRMI showed that the dual-targeted ECO/siDANCR nanoparticles resulted in more significant inhibition of tumor growth in both models than the controls and significantly reduced EDB-FN expression in the TNBC tumors. The combination of MRMI and dual-targeted ECO/siDANCR nanoparticles is a promising approach for image-guided treatment of TNBC by regulating the onco-lncRNA.
Collapse
Affiliation(s)
- Calin Nicolescu
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew Schilb
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Jiyoon Kim
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Da Sun
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Ryan Hall
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Songqi Gao
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Hannah Gilmore
- Department
of Pathology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - William P. Schiemann
- Case
Comprehensive Cancer Center, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Department
of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
- Case
Comprehensive Cancer Center, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
2
|
Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023; 40:27-46. [PMID: 36600047 PMCID: PMC9812548 DOI: 10.1007/s11095-022-03460-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Hereditary genetic diseases, cancer, and infectious diseases are affecting global health and become major health issues, but the treatment development remains challenging. Gene therapies using DNA plasmid, RNAi, miRNA, mRNA, and gene editing hold great promise. Lipid nanoparticle (LNP) delivery technology has been a revolutionary development, which has been granted for clinical applications, including mRNA vaccines against SARS-CoV-2 infections. Due to the success of LNP systems, understanding the structure, formulation, and function relationship of the lipid components in LNP systems is crucial for design more effective LNP. Here, we highlight the key considerations for developing an LNP system. The evolution of structure and function of lipids as well as their LNP formulation from the early-stage simple formulations to multi-components LNP and multifunctional ionizable lipids have been discussed. The flexibility and platform nature of LNP enable efficient intracellular delivery of a variety of therapeutic nucleic acids and provide many novel treatment options for the diseases that are previously untreatable.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Yu Y, Xing L, Li L, Wu J, He J, Huang Y. Coordination of rigidity modulation and targeting ligand modification on orally-delivered nanoparticles for the treatment of liver fibrosis. J Control Release 2021; 341:215-226. [PMID: 34822908 DOI: 10.1016/j.jconrel.2021.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023]
Abstract
Although the individual role of ligand modification or rigidity modulation on oral administration of nanoparticle (NP) has been investigated, how they mutually affect each other remains to be elucidated. Here, we fabricated different rigidity NP with or without surface decoration of FcBP, a neonatal Fc receptor domain-binding peptide. In vitro studies showed that, without FcBP modification, stiff NP had higher transcytosis efficiency across the epithelium than softer NP, due to the different endocytosis mechanisms, intracellular trafficking routes, and exocytosis rate. Notably, after FcBP modification, such difference was narrowed, in a manner that was more favorable for softer NP to "catch up" with stiff NP, suggesting ligand modification was more conducive to exert transcytosis-promoting efficacy on softer NP. In vivo experiments demonstrated that, for ligand-free NP, high rigidity was required for efficient oral absorption and liver distribution. Further FcBP modification decreased that "rigidity threshold", and expanded the feasible rigidity range from stiff NP to softer NP. Upon oral administration, FcBP-modified dexamethasone-loaded softer NP achieved a therapeutic efficacy comparable with stiff NP on alleviating liver fibrosis. Collectively, our study highlighted the necessity of coordinating ligand modification and rigidity modulation for oral drug delivery.
Collapse
Affiliation(s)
- Yinglan Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - LiYun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiawei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Luo J, Wagner E, Wang Y. Artificial peptides for antitumoral siRNA delivery. J Mater Chem B 2021; 8:2020-2031. [PMID: 32091038 DOI: 10.1039/c9tb02756d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular delivery has been critical for the success of siRNA and related therapeutic nucleic acids. Improvement of delivery carriers will positively influence the efficacy of future nanomedicines. Our strategy for optimizing siRNA nanocarriers focuses on a bioinspired sequence-defined process including (i) identification of artificial amino acids active in specific delivery steps, (ii) assembly into defined sequences by solid phase-assisted synthesis (SPS), and (iii) screening for siRNA delivery, selection of top candidates and understanding structure-activity relations, followed by (iv) sequence variation for the next round of carrier selection. In the current review, our experience with this artificial peptide evolution in tumor-directed siRNA delivery is addressed. The medium-sized oligoaminoamides show better biological compatibility and can be functionalized to meet the requirements of siRNA delivery, such as formation of stable nanoparticles, shielding against proteins in the bloodstream, targeting into tumor tissue, and intracellular siRNA release in bioactive form.
Collapse
Affiliation(s)
- Jie Luo
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany.
| | - Yanfang Wang
- Pharmaceutical Biotechnology, Center for System-based Drug Research Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany.
| |
Collapse
|
5
|
Lu Z, Laney VEA, Hall R, Ayat N. Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy. Adv Healthc Mater 2021; 10:e2001294. [PMID: 33615743 DOI: 10.1002/adhm.202001294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a promising technology to regulate oncogenes for treating cancer. The primary limitation of siRNA for clinical application is the safe and efficacious delivery of therapeutic siRNA into target cells. Lipid-based delivery systems are developed to protect siRNA during the delivery process and to facilitate intracellular uptake. There is a significant progress in lipid nanoparticle systems that utilize cationic and protonatable amino lipid systems to deliver siRNA to tumors. Among these lipids, environment-responsive lipids are a class of novel lipid delivery systems that are capable of responding to the environment changes during the delivery process and demonstrate great promise for clinical translation for siRNA therapeutics. Protonatable or ionizable amino lipids and switchable lipids as well as pH-sensitive multifunctional amino lipids are the presentative environment-responsive lipids for siRNA delivery. These lipids are able to respond to environmental changes during the delivery process to facilitate efficient cytosolic siRNA delivery. Environment-responsive lipid/siRNA nanoparticles (ERLNP) are developed with the lipids and are tested for efficient delivery of therapeutic siRNA into the cytoplasm of cancer cells to silence target genes for cancer treatment in preclinical development. This review summarizes the recent developments in environment-response lipids and nanoparticles for siRNA delivery in cancer therapy.
Collapse
Affiliation(s)
- Zheng‐Rong Lu
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Victoria E. A. Laney
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Ryan Hall
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Nadia Ayat
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
6
|
Moody TW, Lee L, Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne) 2021; 12:728088. [PMID: 34539578 PMCID: PMC8441013 DOI: 10.3389/fendo.2021.728088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are increasingly being considered as possible therapeutic targets in cancers. Activation of GPCR on tumors can have prominent growth effects, and GPCRs are frequently over-/ectopically expressed on tumors and thus can be used for targeted therapy. CNS/neural tumors are receiving increasing attention using this approach. Gliomas are the most frequent primary malignant brain/CNS tumor with glioblastoma having a 10-year survival <1%; neuroblastomas are the most common extracranial solid tumor in children with long-term survival<40%, and medulloblastomas are less common, but one subgroup has a 5-year survival <60%. Thus, there is an increased need for more effective treatments of these tumors. The Bombesin-receptor family (BnRs) is one of the GPCRs that are most frequently over/ectopically expressed by common tumors and is receiving particular attention as a possible therapeutic target in several tumors, particularly in prostate, breast, and lung cancer. We review in this paper evidence suggesting why a similar approach in some CNS/neural tumors (gliomas, neuroblastomas, medulloblastomas) should also be considered.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training, Office of the Director, Bethesda, MD, United States
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Gastroenterology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tatiana Iordanskaia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samuel A. Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Robert T. Jensen,
| |
Collapse
|
7
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
8
|
Kumar S, Singh D, Kumari P, Malik RS, Poonam, Parang K, Tiwari RK. PEGylation and Cell-Penetrating Peptides: Glimpse into the Past and Prospects in the Future. Curr Top Med Chem 2020; 20:337-348. [PMID: 31994461 DOI: 10.2174/1568026620666200128142603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
Several drug molecules have shown low bioavailability and pharmacokinetic profile due to metabolism by enzymes, excretion by the renal system, or due to other physiochemical properties of drug molecules. These problems have resulted in the loss of efficacy and the gain of side effects associated with drug molecules. PEGylation is one of the strategies to overcome these pharmacokinetic issues and has been successful in the clinic. Cell-penetrating Peptides (CPPs) help to deliver molecules across biological membranes and could be used to deliver cargo selectively to the intracellular site or to the drug target. Hence CPPs could be used to improve the efficacy and selectivity of the drug. However, due to the peptidic nature of CPPs, they have a low pharmacokinetic profile. Using PEGylation and CPPs together as a component of a drug delivery system, the and efficacy of drug molecules could be improved. The other important pharmacokinetic properties such as short half-life, solubility, stability, absorption, metabolism, and elimination could be also improved. Here in this review, we summarized PEGylated CPPs or PEGylation based formulations for CPPs used in a drug delivery system for several biomedical applications until August 2019.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Deenbandhu Chottu Ram University of Science and Technology, Murthal 131039, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohta 124001, India
| | - Pooja Kumari
- Department of Chemistry, Deenbandhu Chottu Ram University of Science and Technology, Murthal 131039, India
| | - Rajender Singh Malik
- Department of Chemistry, Deenbandhu Chottu Ram University of Science and Technology, Murthal 131039, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, United States
| |
Collapse
|
9
|
Jusu SM, Obayemi JD, Salifu AA, Nwazojie CC, Uzonwanne V, Odusanya OS, Soboyejo WO. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep 2020; 10:14188. [PMID: 32843673 PMCID: PMC7447811 DOI: 10.1038/s41598-020-71129-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and difficult to treat using conventional bulk chemotherapy that is often associated with increased toxicity and side effects. In this study, we encapsulated targeted drugs [A bacteria-synthesized anticancer drug (prodigiosin) and paclitaxel] using single solvent evaporation technique with a blend of FDA-approved poly lactic-co-glycolic acid-polyethylene glycol (PLGA_PEG) polymer microspheres. These drugs were functionalized with Luteinizing Hormone-Releasing hormone (LHRH) ligands whose receptors are shown to overexpressed on surfaces of TNBC. The physicochemical, structural, morphological and thermal properties of the drug-loaded microspheres were then characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Nuclear Magnetic Resonance Spectroscopy (NMR), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Results obtained from in vitro kinetics drug release at human body temperature (37 °C) and hyperthermic temperatures (41 and 44 °C) reveal a non-Fickian sustained drug release that is well-characterized by Korsmeyer-Peppas model with thermodynamically non-spontaneous release of drug. Clearly, the in vitro and in vivo drug release from conjugated drug-loaded microspheres (PLGA-PEG_PGS-LHRH, PLGA-PEG_PTX-LHRH) is shown to result in greater reductions of cell/tissue viability in the treatment of TNBC. The in vivo animal studies also showed that all the drug-loaded PLGA-PEG microspheres for the localized and targeted treatment of TNBC did not caused any noticeable toxicity and thus significantly extended the survival of the treated mice post tumor resection. The implications of this work are discussed for developing targeted drug systems to treat and prevent local recurred triple negative breast tumors after surgical resection.
Collapse
Affiliation(s)
- S M Jusu
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - J D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA
| | - A A Salifu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA
| | - C C Nwazojie
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - V Uzonwanne
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - O S Odusanya
- Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Nigeria
| | - W O Soboyejo
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA.
- Department of Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
10
|
Subhan MA, Torchilin VP. siRNA based drug design, quality, delivery and clinical translation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102239. [PMID: 32544449 DOI: 10.1016/j.nano.2020.102239] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023]
Abstract
Gene silencing by RNA interference represents a promising therapeutic approach. The development of carriers, e.g., polymers, lipids, peptides, antibodies, aptamers, small molecules, exosome and red blood cells, is crucial for the systemic delivery of siRNA. Cell-specific targeting ligands in the nano-carriers can improve the pharmacokinetics, biodistribution, and selectivity of siRNA therapeutics. The safety, effectiveness, quality and prosperity of production and manufacturing are important considerations for selecting the appropriate siRNA carriers. Efficacy of systemic delivery of siRNA requires considerations of trafficking through the blood, off-target effects, innate immune response and endosomal escape avoiding lysosomal degradation for entering into RNAi process. Multifunctional nanocarriers with stimuli-responsive properties such as pH, magnetic and photo-sensitive segments can enhance the efficacy of siRNA delivery. The improved preclinical characterization of suitable siRNA drugs, good laboratory practice, that reduce the differences between in vitro and in vivo results may increase the success of siRNA drugs in clinical settings.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet, Bangladesh.
| | - V P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
11
|
Begum AA, Toth I, Hussein WM, Moyle PM. Advances in Targeted Gene Delivery. Curr Drug Deliv 2020; 16:588-608. [PMID: 31142250 DOI: 10.2174/1567201816666190529072914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| |
Collapse
|
12
|
Damen M, Groenen AJJ, van Dongen SFM, Nolte RJM, Scholte BJ, Feiters MC. Transfection by cationic gemini lipids and surfactants. MEDCHEMCOMM 2018; 9:1404-1425. [PMID: 30288217 PMCID: PMC6148748 DOI: 10.1039/c8md00249e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Diseases that are linked to defective genes or mutations can in principle be cured by gene therapy, in which damaged or absent genes are either repaired or replaced by new DNA in the nucleus of the cell. Related to this, disorders associated with elevated protein expression levels can be treated by RNA interference via the delivery of siRNA to the cytoplasm of cells. Polynucleotides can be brought into cells by viruses, but this is not without risk for the patient. Alternatively, DNA and RNA can be delivered by transfection, i.e. by non-viral vector systems such as cationic surfactants, which are also referred to as cationic lipids. In this review, recent progress on cationic lipids as transfection vectors will be discussed, with special emphasis on geminis, surfactants with 2 head groups and 2 tails connected by a spacer.
Collapse
Affiliation(s)
- M Damen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - A J J Groenen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - S F M van Dongen
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - R J M Nolte
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| | - B J Scholte
- Departments of Pediatric pulmonology and Cell Biology , Erasmus MC, P. O. Box 2040 , 3000 CA Rotterdam , The Netherlands
| | - M C Feiters
- Institute for Molecules and Materials , Faculty of Science , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands .
| |
Collapse
|
13
|
Dendritic peptide bolaamphiphiles for siRNA delivery to primary adipocytes. Biomaterials 2018; 178:458-466. [PMID: 29705001 DOI: 10.1016/j.biomaterials.2018.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Obesity is a major risk factor for diabetes, heart disease and other health problems. Adipose tissue plays a central role in the development of obesity and obesity-associated diseases. Gene therapy targeting adipose tissue may provide a promising strategy for obesity treatment. However, nucleic acid delivery to adipose tissue or even cultured adipocytes is challenging due to low delivery efficacy and high toxicity of the current cationic lipid based delivery systems, or monoamphiphiles. Herein, we report using dendritic peptide bolaamphiphiles (bolas) to deliver siRNA to primary adipocytes and hepatocytes. The bola consists of two l-Lysine dendrons connected to a fluorocarbon core through disulfide linkages. The Lysine dendrons are functionalized with l-histidine and l-tryptophan to promote endosomal escape and cellular uptake. The bola exhibited over 70% knockdown of GAPDH gene in both primary adipocytes and hepatocytes. Importantly, different from Lipofectamine that significantly reduced genes involved in lipolysis, lipogenesis, fatty acid oxidation and ketogenesis, the bolas had little to no effect on these genes. These results demonstrate the bola as a promising new vector for clinical and experimental applications for delivery of siRNA to metabolic organs.
Collapse
|
14
|
FAM83 proteins: Fostering new interactions to drive oncogenic signaling and therapeutic resistance. Oncotarget 2018; 7:52597-52612. [PMID: 27221039 PMCID: PMC5239576 DOI: 10.18632/oncotarget.9544] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
The FAM83 proteins were recently identified as novel transforming oncogenes that function as intermediaries in EGFR/RAS signaling. Using two distinct forward genetics screens, the Bissell and Jackson laboratories uncovered the importance of the FAM83 proteins in promoting resistance to EGFR tyrosine kinase inhibitors and therapies targeting downstream EGFR signaling effectors. The discovery of this novel oncogene family using distinct genetic screens provides compelling evidence that the FAM83 proteins are key oncogenic players in cancer-associated signaling when they are overexpressed or dysregulated. Consistent with a role in oncogenic transformation, the FAM83 genes are frequently overexpressed in diverse human cancer specimens. Importantly, ablation of numerous FAM83 members results in a marked suppression of cancer-associated signaling and loss of tumorigenic potential. Here, we review the current knowledge of the FAM83 proteins’ involvement in cancer signaling and discuss the potential mechanisms by which they contribute to tumorigenesis. Both redundant activities shared by all 8 FAM83 members and non-redundant activities unique to each member are highlighted. We discuss the promise and challenges of the FAM83 proteins as novel points of attack for future cancer therapies.
Collapse
|
15
|
Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, Guo S, Hovgaard L, Yang M, Gan Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 2018; 151:13-23. [DOI: 10.1016/j.biomaterials.2017.10.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023]
|
16
|
Bang EK, Cho H, Jeon SSH, Tran NL, Lim DK, Hur W, Sim T. Amphiphilic small peptides for delivery of plasmid DNAs and siRNAs. Chem Biol Drug Des 2017; 91:575-587. [DOI: 10.1111/cbdd.13122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/08/2017] [Accepted: 09/13/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Eun-Kyoung Bang
- Chemical Kinomics Research Center; Korea Institute of Science and Technology; Seoul Korea
| | - Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology; Seoul Korea
| | - Sean S.-H. Jeon
- KU-KIST Graduate School of Converging Science and Technology; Seoul Korea
| | - Na Ly Tran
- Chemical Kinomics Research Center; Korea Institute of Science and Technology; Seoul Korea
- University of Science and Technology (UST); Daejoen Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology; Seoul Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center; Korea Institute of Science and Technology; Seoul Korea
| | - Taebo Sim
- Chemical Kinomics Research Center; Korea Institute of Science and Technology; Seoul Korea
- KU-KIST Graduate School of Converging Science and Technology; Seoul Korea
| |
Collapse
|
17
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
18
|
Acharya R, Saha S, Ray S, Hazra S, Mitra MK, Chakraborty J. siRNA-nanoparticle conjugate in gene silencing: A future cure to deadly diseases? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1378-1400. [DOI: 10.1016/j.msec.2017.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
|
19
|
Cai X, Zhu H, Zhang Y, Gu Z. Highly Efficient and Safe Delivery of VEGF siRNA by Bioreducible Fluorinated Peptide Dendrimers for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9402-9415. [PMID: 28228013 DOI: 10.1021/acsami.6b16689] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RNA interference (RNAi) has a great promise in treating various acquired and hereditary diseases. However, it remains highly desirable to develop new delivery system to circumvent complex extra- and intracellular barriers for successful clinical translation. Here, we report on a versatile polymeric vector, bioreducible fluorinated peptide dendrimers (BFPD), for efficient and safe small interfering RNA (siRNA) delivery. In virtue of skillfully integrating all of the unique advantages of reversible cross-linking, fluorination, and peptide dendrimers, this novel vector can surmount almost all extra- and intracellular barriers associated with local siRNA delivery through highly improved physiological stability and serum resistance, significantly increased intratumoral enrichment, cellular internalization, successful facilitation of endosomal escape, and cytosolic siRNA release. BFPD polyplexes, carrying small interfering vascular endothelial growth factor (siVEGF), demonstrated excellent VEGF silencing efficacy (∼65%) and a strong capability for inhibiting HeLa cell proliferation. More importantly, these polyplexes showed superior performance in long-term enrichment in the tumor sites and had a high level of tumor growth inhibition. Furthermore, these polyplexes not only exhibited excellent in vivo antitumor efficacy but also demonstrated superior biocompatibility, compared with LPF2000, both in vivo and in vitro. These findings indicate that BFPD is an efficient and safe siRNA delivery system and has remarkable potential for RNAi-based cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Cai
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Haofang Zhu
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yanmei Zhang
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University , 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
20
|
Eldredge AC, Johnson ME, Oldenhuis NJ, Guan Z. Focused Library Approach to Discover Discrete Dipeptide Bolaamphiphiles for siRNA Delivery. Biomacromolecules 2016; 17:3138-3144. [PMID: 27563833 DOI: 10.1021/acs.biomac.6b00635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, we report a new dipeptide functionalization strategy for developing new dendritic bolaamphiphile vectors for efficient siRNA transfection. A focused library of dipeptides was constructed using four amino acids: l-arginine, l-histidine, l-lysine, and l-tryptophan. The dipeptides were coupled to two dendritic bolaamphiphile scaffolds that we developed previously, allowing us to quickly access a focused library of discrete vectors with multivalent dendritic dipeptide functionalities. The resulting discrete bolaamphiphiles were screened for siRNA delivery in vitro in HEK-293 and HeLa cells. Bolaamphiphiles functionalized with dipeptides containing Lys or Arg and either His or Trp were the most effective for in vitro siRNA delivery. Necessary cationic charge to ensure efficient siRNA binding are provided by Arg and Lys residues, whereas endosomal escape is provided through pH responsive buffering of His or membrane interactions of Trp. The most effective vectors (F10 HR/RH) exhibited greater than 75% gene silencing in multiple cell lines and exhibited serum stability.
Collapse
Affiliation(s)
- Alexander C Eldredge
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Mark E Johnson
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Nathan J Oldenhuis
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
21
|
Müller K, Kessel E, Klein PM, Höhn M, Wagner E. Post-PEGylation of siRNA Lipo-oligoamino Amide Polyplexes Using Tetra-glutamylated Folic Acid as Ligand for Receptor-Targeted Delivery. Mol Pharm 2016; 13:2332-45. [DOI: 10.1021/acs.molpharmaceut.6b00102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Katharina Müller
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Eva Kessel
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| | - Philipp M. Klein
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
22
|
Bessho T, Okada T, Kimura C, Shinohara T, Tomiyama A, Imamura A, Kuwamura M, Nishimura K, Fujimori K, Shuto S, Ishibashi O, Kubata BK, Inui T. Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals. PLoS Negl Trop Dis 2016; 10:e0004339. [PMID: 26731263 PMCID: PMC4701174 DOI: 10.1371/journal.pntd.0004339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/08/2015] [Indexed: 12/02/2022] Open
Abstract
The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis. Only a limited number of therapeutics for human African trypanosomiasis also known as African sleeping sickness is available today, and it narrows the choice of the drugs to escape from the side effects and the emergence of drug-resistant pathogens. The parasitic protozoa Trypanosoma brucei is the causative reagent of African trypanosomiasis, and is infective to various mammalian species. T. brucei and its mammalian hosts share almost the same metabolic machinery, and therefore it is important to understand the differences in biochemical properties of the metabolic enzymes between T. brucei and its hosts. Here we report that guanosine 5’-monophosphate reductase (GMPR) of T. brucei showed apparent differences in its primary structure and biochemical properties from those of its host counterparts, and was more sensitive to purine nucleotide analogs such as monophosphate forms of ribavirin and mizoribine than were the host GMPRs. Furthermore, ribavirin prevented the proliferation of trypanosomes in vitro. Our present findings may imply the availability of ribavirin and/or its derivatives in a treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Tomoaki Bessho
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tetsuya Okada
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Chihiro Kimura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takahiro Shinohara
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Ai Tomiyama
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Akira Imamura
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kazuhiko Nishimura
- Laboratory of Toxicology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Satoshi Shuto
- Laboratory of Organic Chemistry for Drug Development, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Ishibashi
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | - Takashi Inui
- Laboratory of Biological Macromolecules, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- * E-mail:
| |
Collapse
|
23
|
Roberts TC, Ezzat K, El Andaloussi S, Weinberg MS. Synthetic SiRNA Delivery: Progress and Prospects. Methods Mol Biol 2016; 1364:291-310. [PMID: 26472459 DOI: 10.1007/978-1-4939-3112-5_23] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Small interfering RNA (siRNA) is a powerful tool for modulating gene expression by RNA interference (RNAi). Duplex RNA oligonucleotides induce cleavage of homologous target transcripts, thereby enabling posttranscriptional silencing of potentially any gene. As such, siRNAs may have utility as novel pharmaceuticals for a wide range of diseases. However, a lack of "drug-likeness," physiological barriers, and potential toxicities have meant that systemic delivery of SiRNAs in vivo remains a major challenge. Here we discuss various strategies that have been employed to solve the problem of SiRNA delivery. These include chemical modification of the SiRNA, direct conjugation to bioactive moieties, and nanoparticle formulations.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kariem Ezzat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, WITS 2050, South Africa.
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, WITS 2050, South Africa.
| |
Collapse
|
24
|
Abstract
RNA interference (RNAi) represents a powerful modality for human disease therapy that can regulate gene expression signature using small interfering RNA (siRNA). Successful delivery of siRNA into the cytoplasm of target cells is imperative for efficient RNAi and also constitutes the primary stumbling block in the clinical applicability of RNAi. Significant progress has been made in the development of lipid-based siRNA delivery systems, which have practical advantages like simple chemistry and easy formulation of nanoparticles with siRNA. This review discusses the recent development of pH-sensitive amino lipids, with particular focus on multifunctional pH-sensitive amino lipids for siRNA delivery. The key components of these multifunctional lipids include a protonatable amino head group, distal lipid tails, and two cross-linkable thiol groups, which together facilitate the facile formation of stable siRNA-nanoparticles, easy surface modification for target-specific delivery, endosomal escape in response to the pH decrease during subcellular trafficking, and reductive dissociation of the siRNA-nanoparticles for cytoplasmic release of free siRNA. By virtue of these properties, multifunctional pH-sensitive lipids can mediate efficient cytosolic siRNA delivery and gene silencing. Targeted siRNA nanoparticles can be readily formulated with these lipids, without the need for other helper lipids, to promote systemic delivery of therapeutic siRNAs. Such targeted siRNA nanoparticles have been shown to effectively regulate the expression of cancer-related genes, resulting in significant efficacy in the treatment of aggressive tumors, including metastatic triple negative breast cancer. These multifunctional pH-sensitive lipids constitute a promising platform for the systemic and targeted delivery of therapeutic siRNA for the treatment of human diseases. This review summarizes the structure-property relationship of the multifunctional pH-sensitive lipids and their efficacy in in vitro and in vivo siRNA delivery and gene silencing.
Collapse
Affiliation(s)
- Maneesh Gujrati
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Amita Vaidya
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
25
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
26
|
Pan D, Pham CTN, Weilbaecher KN, Tomasson MH, Wickline SA, Lanza GM. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:85-106. [PMID: 26296541 PMCID: PMC4709477 DOI: 10.1002/wnan.1355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023]
Abstract
Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a 'Grail Quest' by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made 'made the turn' toward meaningful translational success.
Collapse
Affiliation(s)
- Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute, University of Illinois, Urbana-Champaign, IL, USA
| | - Christine T N Pham
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine N Weilbaecher
- Division of Oncology, Department of Medicine, Washington University Medical School, St. Louis, MO, USA
| | - Michael H Tomasson
- Division of Oncology, Department of Medicine, Washington University Medical School, St. Louis, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory M Lanza
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Lehto T, Wagner E. Sequence-defined polymers for the delivery of oligonucleotides. Nanomedicine (Lond) 2015; 9:2843-59. [PMID: 25535686 DOI: 10.2217/nnm.14.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Short synthetic oligonucleotides (ONs) are a group of therapeutic molecules with enormous clinical potential owing to their high specificity and ability to target the expression of virtually any single or group of genes. Clinical translation of ONs is hampered by the inadequate bioavailability in the target cells due to the substantial extracellular and intracellular barriers exposed to these molecules. Different cationic polymers have been successfully deployed for the delivery of ONs. However, heterogeneous nature of these classical polymers is not suitable for clinical applications and hence vectors with completely defined structure are required. In this review, we discuss recent advances with sequence-defined polymers and their application for the delivery of short ONs.
Collapse
Affiliation(s)
- Taavi Lehto
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
28
|
Klein PM, Wagner E. Bioreducible polycations as shuttles for therapeutic nucleic acid and protein transfection. Antioxid Redox Signal 2014; 21:804-17. [PMID: 24219092 PMCID: PMC4098974 DOI: 10.1089/ars.2013.5714] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/12/2013] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Nucleic acids such as gene-encoding DNAs, gene-silencing small interfering RNAs, or recombinant proteins addressing intracellular molecular targets present a major new therapeutic modality, provided efficient solutions for intracellular delivery can be found. The different physiological redox environments inside and outside the cell can be utilized for optimizing the involved transport processes. RECENT ADVANCES Intracellular delivery of nucleic acids or proteins requires dynamic carriers that discriminate between different cellular locations. Bioreducible cationic polymers can package their therapeutic cargo stably in the extracellular environment, but sense the reducing intracellular cytosolic environment. Based on disulfide cleavage, carriers are degraded into biocompatible fragments and release the cargo in functional form. Disulfide linkages between oligocations, between the carrier and the cargo, or spatial caging of complexed cargo by disulfides have been pursued, with polymers or precise sequence-defined peptides and oligomers. CRITICAL ISSUES A quantitative knowledge of the bioreductive capacities within different biological compartments and the involved cellular reduction processes would be greatly helpful for improved carriers with disulfides cleaved within the right compartment at the right time. FUTURE DIRECTIONS Novel designs of multifunctional nanocarriers will incorporate macromolecular disulfide entry mechanisms previously optimized by natural evolution of toxins and viruses. In addition to extracellular stabilization and intracellular disassembly, tuned disulfides will contribute to deshielding at the cell surface, or translocation from intracellular compartments to the cytosol.
Collapse
Affiliation(s)
- Philipp M. Klein
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-University, Munich, Germany
- Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-University, Munich, Germany
- Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
29
|
Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 2014; 11:2734-44. [PMID: 25020033 DOI: 10.1021/mp400787s] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems.
Collapse
Affiliation(s)
- Maneesh Gujrati
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
30
|
Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SRP. Poly(amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm 2014; 11:1808-22. [PMID: 24811243 PMCID: PMC4051247 DOI: 10.1021/mp4006358] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Small interfering RNA (siRNA)-based
therapies have great promise
in the treatment of a number of prevalent pulmonary disorders including
lung cancer, asthma and cystic fibrosis. However, progress in this
area has been hindered due to the lack of carriers that can efficiently
deliver siRNA to lung epithelial cells, and also due to challenges
in developing oral inhalation (OI) formulations for the regional administration
of siRNA and their carriers to the lungs. In this work we report the
ability of generation four, amine-terminated poly(amidoamine) (PAMAM)
dendrimer (G4NH2)–siRNA complexes (dendriplexes) to silence
the enhanced green fluorescent protein (eGFP) gene on A549 lung alveolar
epithelial cells stably expressing eGFP. We also report the formulation
of the dendriplexes and their aerosol characteristics in propellant-based
portable OI devices. The size and gene silencing ability of the dendriplexes
was seen not to be a strong function of the N/P ratio. Silencing efficiencies
of up to 40% are reported. Stable dispersions of the dendriplexes
encapsulated in mannitol and also in a biodegradable and water-soluble
co-oligomer were prepared in hydrofluoroalkane (HFA)-based pressurized
metered-dose inhalers (pMDIs). Their aerosol characteristics were
very favorable, and conducive to deep lung deposition, with respirable
fractions of up to 77%. Importantly, siRNA formulated as dendriplexes
in pMDIs was shown to keep its integrity after the particle preparation
processes, and also after long-term exposures to HFA. The relevance
of this study stems from the fact that this is the first work to report
the formulation of inhalable siRNA with aerosol properties suitable
to deep lung deposition using pMDIs devices that are the least expensive
and most widely used portable inhalers. This study is relevant because,
also for the first time, it shows that siRNA–G4NH2 dendriplexes
can efficiently target lung alveolar epithelial A549 cells and silence
genes even after siRNA has been exposed to the propellant environment.
Collapse
Affiliation(s)
- Denise S Conti
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University , 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | | | | | | | | |
Collapse
|
31
|
Gu L, Nusblat LM, Tishbi N, Noble SC, Pinson CM, Mintzer E, Roth CM, Uhrich KE. Cationic amphiphilic macromolecule (CAM)-lipid complexes for efficient siRNA gene silencing. J Control Release 2014; 184:28-35. [PMID: 24727076 DOI: 10.1016/j.jconrel.2014.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
The accumulated evidence has shown that lipids and polymers each have distinct advantages as carriers for siRNA delivery. Composite materials comprising both lipids and polymers may present improved properties that combine the advantage of each. Cationic amphiphilic macromolecules (CAMs) containing a hydrophobic alkylated mucic acid segment and a hydrophilic poly(ethylene glycol) (PEG) tail were non-covalently complexed with two lipids, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), to serve as a siRNA delivery vehicle. By varying the weight ratio of CAM to lipid, cationic complexes with varying compositions were obtained in aqueous media and their properties evaluated. CAM-lipid complex sizes were relatively independent of composition, ranging from 100 to 200nm, and zeta potentials varied from 10 to 30mV. Transmission electron microscopy confirmed the spherical morphology of the complexes. The optimal N/P ratio was 50 as determined by electrophoretic mobility shift assay. The ability to achieve gene silencing was evaluated by anti-luciferase siRNA delivery to a U87-luciferase cell line. Several weight ratios of CAM-lipid complexes were found to have similar delivery efficiency compared to the gold standard, Lipofectamine. Isothermal titration calorimetry revealed that siRNA binds more tightly at pH=7.4 than pH=5 to CAM-lipid (1:10 w/w). Further intracellular trafficking studies monitored the siRNA escape from the endosomes at 24h following transfection of cells. The findings in the paper indicate that CAM-lipid complexes can serve as a novel and efficient siRNA delivery vehicle.
Collapse
Affiliation(s)
- Li Gu
- Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854, United States
| | - Leora M Nusblat
- Rutgers, The State University of New Jersey, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Nasim Tishbi
- Yeshiva University, Stern College for Women, Department of Chemistry and Biochemistry, New York, NY 10016, United States
| | - Sarah C Noble
- Yeshiva University, Stern College for Women, Department of Chemistry and Biochemistry, New York, NY 10016, United States
| | - Chaya M Pinson
- Yeshiva University, Stern College for Women, Department of Chemistry and Biochemistry, New York, NY 10016, United States
| | - Evan Mintzer
- Yeshiva University, Stern College for Women, Department of Chemistry and Biochemistry, New York, NY 10016, United States
| | - Charles M Roth
- Rutgers, The State University of New Jersey, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Kathryn E Uhrich
- Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854, United States; Rutgers, The State University of New Jersey, Department of Biomedical Engineering, 599 Taylor Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
32
|
Zeng H, Little HC, Tiambeng TN, Williams GA, Guan Z. Multifunctional Dendronized Peptide Polymer Platform for Safe and Effective siRNA Delivery. J Am Chem Soc 2013; 135:4962-5. [DOI: 10.1021/ja400986u] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hanxiang Zeng
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| | - Hannah C. Little
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| | - Timothy N. Tiambeng
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| | - Gregory A. Williams
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| | - Zhibin Guan
- Department of Chemistry, 1102 Natural
Sciences 2, University of California, Irvine, California 92697-2025,
United States
| |
Collapse
|
33
|
Kummitha CM, Malamas AS, Lu ZR. Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles. Int J Nanomedicine 2012; 7:5205-14. [PMID: 23055731 PMCID: PMC3464083 DOI: 10.2147/ijn.s34288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Nonspecific association of serum molecules with short-interfering RNA (siRNA) nanoparticles can change their physiochemical characteristics, and results in reduced cellular uptake in the target tissue during the systemic siRNA delivery process. Serum albumin is the most abundant protein in the body and has been used to modify the surface of nanoparticles, to inhibit association of other serum molecules. Here, we hypothesized that surface modification of lipid-based nanoparticular siRNA delivery systems with albumin could prevent their interaction with serum proteins, and improve intracellular uptake. In this study, we investigated the influence of albumin on the stability and intracellular siRNA delivery of the targeted siRNA nanoparticles of a polymerizable and pH-sensitive multifunctional surfactant N-(1-aminoethyl) iminobis[N-(oleoylcysteinylhistinyl-1-aminoethyl)propionamide] (EHCO) in serum. Serum resulted in a significant increase in the size of targeted EHCO/siRNA nanoparticles and inhibited cellular uptake of the nanoparticles. Coating of targeted EHCO/siRNA nanoparticles with bovine serum albumin at 9.4 μM prior to cell transfection improved cellular uptake and gene silencing efficacy of EHCO/siRNA targeted nanoparticles in serum-containing media, as compared with the uncoated nanoparticles. At a proper concentration, albumin has the potential to minimize interactions of serum proteins with siRNA nanoparticles for effective systemic in vivo siRNA delivery.
Collapse
Affiliation(s)
- China M Kummitha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|
34
|
Li S, Su Z, Sun M, Xiao Y, Cao F, Huang A, Li H, Ping Q, Zhang C. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery. Int J Pharm 2012; 436:248-57. [DOI: 10.1016/j.ijpharm.2012.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 06/15/2012] [Indexed: 12/16/2022]
|
35
|
Xu R, Wang X, Lu ZR. Intracellular siRNA delivery with novel spermine based surfactants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5381-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Wu ZW, Chien CT, Liu CY, Yan JY, Lin SY. Recent progress in copolymer-mediated siRNA delivery. J Drug Target 2012; 20:551-60. [DOI: 10.3109/1061186x.2012.699057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Järver P, Coursindel T, Andaloussi SEL, Godfrey C, Wood MJA, Gait MJ. Peptide-mediated Cell and In Vivo Delivery of Antisense Oligonucleotides and siRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e27. [PMID: 23344079 PMCID: PMC3390225 DOI: 10.1038/mtna.2012.18] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Järver
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Samir EL Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institute, Hudidnge, Sweden
| | - Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew JA Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Michael J Gait
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
38
|
Zhao P, Astruc D. Docetaxel nanotechnology in anticancer therapy. ChemMedChem 2012; 7:952-72. [PMID: 22517723 DOI: 10.1002/cmdc.201200052] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/16/2012] [Indexed: 01/05/2023]
Abstract
Taxanes have been recognized as a family of very efficient anticancer drugs, but the formulation in use for the two main taxanes-Taxol for paclitaxel and Taxotere for docetaxel-have shown dramatic side effects. Whereas several new formulations for paclitaxel have recently appeared, such as Abraxane and others currently in various phases of clinical trials, there is no new formulation in clinical trials for the other main taxane, docetaxel, except BIND-014, a polymeric nanoparticle, which recently entered phase I clinical testing. Therefore, we review herein the state of the art and recent abundance in published results of academic approaches toward nanotechnology-based drug-delivery systems containing nanocarriers and targeting agents for docetaxel formulations. These efforts will certainly enrich the spectrum of docetaxel treatments in the near future. Taxotere's systemic toxicity, low water solubility, and other side effects are significant problems that must be overcome. To avoid the limitations of docetaxel in clinical use, researchers have developed efficient drug-delivery assemblies that consist of a nanocarrier, a targeting agent, and the drug. A wide variety of such engineered nanosystems have been shown to transport and eventually vectorize docetaxel more efficiently than Taxotere in vitro, in vivo, and in pre-clinical administration. Recent progress in drug vectorization has involved a combined therapy and diagnostic ("theranostic") approach in a single drug-delivery vector and could significantly improve the efficiency of such an anticancer drug as well as other drug types.
Collapse
Affiliation(s)
- Pengxiang Zhao
- ISM, UMR CNRS No. 5255, Univ. Bordeaux, 33405 Talence Cedex, France
| | | |
Collapse
|
39
|
Aliabadi HM, Landry B, Sun C, Tang T, Uludağ H. Supramolecular assemblies in functional siRNA delivery: Where do we stand? Biomaterials 2012; 33:2546-69. [DOI: 10.1016/j.biomaterials.2011.11.079] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/26/2011] [Indexed: 12/14/2022]
|
40
|
Nakase I, Konishi Y, Ueda M, Saji H, Futaki S. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. J Control Release 2012; 159:181-8. [PMID: 22285548 DOI: 10.1016/j.jconrel.2012.01.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 12/05/2011] [Accepted: 01/13/2012] [Indexed: 12/31/2022]
Abstract
We investigated the biodistribution of arginine-rich cell-penetrating peptides (CPPs) in tumor-xenografted nude mice after intravenous injection of fluorescently labeled CPPs using in vivo imaging. The CPPs used included HIV-1 Tat (48-60), penetratin, and the L- and D-enantiomers of oligoarginines (8, 12, and 16 residues), all of which are reported to have high cell penetration. Among the tested peptides, high accumulation in tumors was observed for the D-form of octaarginine (r8), and glycosaminoglycans played a key role. Injection of an r8-doxorubicin conjugate (4mg doxorubicin/kg) effectively suppressed tumor proliferation, with no significant decrease in mouse weight, whereas administration of doxorubicin itself (6mg/kg), yielding a similar degree of tumor-growth suppression, resulted in significant weight loss. These results suggest the potential of r8 as a prototypic tumor-targeting vector.
Collapse
Affiliation(s)
- Ikuhiko Nakase
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Membrane-destabilizing activity of pH-responsive cationic lysine-based surfactants: role of charge position and alkyl chain length. Amino Acids 2011; 43:1203-15. [DOI: 10.1007/s00726-011-1176-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/22/2011] [Indexed: 10/15/2022]
|
43
|
Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes. Biochem Biophys Res Commun 2011; 414:635-40. [DOI: 10.1016/j.bbrc.2011.09.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 01/09/2023]
|
44
|
Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011; 17:293-319. [PMID: 21348831 DOI: 10.2174/138161211795049642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide "stapling", cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
45
|
Troiber C, Wagner E. Nucleic Acid Carriers Based on Precise Polymer Conjugates. Bioconjug Chem 2011; 22:1737-52. [DOI: 10.1021/bc200251r] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Christina Troiber
- Pharmaceutical Biotechnology, Center for System-based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
46
|
Ogris M, Wagner E. To Be Targeted: Is the Magic Bullet Concept a Viable Option for Synthetic Nucleic Acid Therapeutics? Hum Gene Ther 2011; 22:799-807. [DOI: 10.1089/hum.2011.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Manfred Ogris
- Pharmaceutical Biotechnology, Ludwig Maximilians University, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Ludwig Maximilians University, Munich 81377, Germany
| |
Collapse
|
47
|
Nogueira DR, Mitjans M, Infante MR, Vinardell MP. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants. Acta Biomater 2011; 7:2846-56. [PMID: 21421083 DOI: 10.1016/j.actbio.2011.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/04/2011] [Accepted: 03/15/2011] [Indexed: 12/29/2022]
Abstract
Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications.
Collapse
Affiliation(s)
- D R Nogueira
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
A novel tumor-targeted delivery system with hydrophobized hyaluronic acid–spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery. Int J Pharm 2011; 414:233-43. [DOI: 10.1016/j.ijpharm.2011.04.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/21/2022]
|
49
|
Ming X. Cellular delivery of siRNA and antisense oligonucleotides via receptor-mediated endocytosis. Expert Opin Drug Deliv 2011; 8:435-49. [PMID: 21381985 DOI: 10.1517/17425247.2011.561313] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There is great potential for antisense and siRNA oligonucleotides to become mainstream therapeutic entities thanks to their high specificity and wide therapeutic target space compared with small molecules. Despite this potential, the pharmacological targets within the cells are less accessible to oligonucleotides that are hydrophilic and often charged. Oligonucleotides access their intracellular targets mainly by means of endocytosis, but only a fraction of them reach their targets, as delivery requires functional synergy of cellular uptake and intracellular trafficking. AREAS COVERED This review provides an update on the progress of receptor-targeted delivery of oligonucleotides over the last 15 years and summarizes various targeting moieties for oligonucleotide delivery and coupling strategies. To inspire new strategies that can lead to oligonucleotides in the clinic, this review highlights how oligonucleotides successfully reach their intracellular targets by means of receptor-mediated endocytosis. EXPERT OPINION Understanding the mechanisms of oligonucleotide internalization has led to greater cellular uptake and superior endosomal release through the rational design of receptor-targeted delivery systems. Further improvements will again depend on a better understanding of the intracellular trafficking of oligonucleotides.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
50
|
Abstract
Integrins have become key targets for molecular imaging and for selective delivery of anti-cancer agents. Here we review recent work concerning the targeted delivery of antisense and siRNA oligonucleotides via integrins. A variety of approaches have been used to link oligonucleotides to ligands capable of binding integrins with high specificity and affinity. This includes direct chemical conjugation, incorporating oligonucleotides into lipoplexes, and use of various polymeric nanocarriers including dendrimers. The ligand-oligonucleotide conjugate or complex associates selectively with the integrin, followed by internalization into endosomes and trafficking through subcellular compartments. Escape of antisense or siRNA from the endosome to the cytosol and nucleus may come about through endogenous trafficking mechanisms, or because of membrane disrupting capabilities built into the conjugate or complex. Thus a variety of useful strategies are available for using integrins to enhance the pharmacological efficacy of therapeutic oligonucleotides.
Collapse
|