1
|
Al-Azzawi HMA, Hamza SA, Paolini R, Arshad F, Patini R, O'Reilly L, McCullough M, Celentano A. Towards an emerging role for anticoagulants in cancer therapy: a systematic review and meta-analysis. FRONTIERS IN ORAL HEALTH 2024; 5:1495942. [PMID: 39568788 PMCID: PMC11576436 DOI: 10.3389/froh.2024.1495942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Background Anticoagulants, renowned for their role in preventing blood clot formation, have captivated researchers' attention for the exploitation of their potential to inhibit cancer in pre-clinical models. Objectives To undertake a systematic review and meta-analysis of the effects of anticoagulants in murine cancer research models. Further, to present a reference tool for anticoagulant therapeutic modalities relating to future animal pre-clinical models of cancer and their translation into the clinic. Methods Four databases were utilized including Medline (Ovid), Embase (Ovid), Web of science, and Scopus databases. We included studies relating to any cancer conducted in murine models that assessed the effect of traditional anticoagulants (heparin and its derivatives and warfarin) and newer oral anticoagulants on cancer. Results A total of 6,158 articles were identified in an initial multi-database search. A total of 157 records were finally included for data extraction. Studies on heparin species and warfarin demonstrated statistically significant results in favour of tumour growth and metastasis inhibition. Conclusion Our findings constitute a valuable reference guide for the application of anticoagulants in cancer research and explore the promising utilization of non-anticoagulants heparin in preclinical cancer research. Systematic Review Registration PROSPERO [CRD42024555603].
Collapse
Affiliation(s)
| | - Syed Ameer Hamza
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Fizza Arshad
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Romeo Patini
- Head and Neck Department, "Fondazione Policlinico Universitario A. Gemelli-IRCCS" School of Dentistry, Catholic University of Sacred Heart-Rome Largo A. Gemelli, Rome, Italy
| | - Lorraine O'Reilly
- Clinical Translation Centre, Cancer Biology and Stem Cells Division and Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
2
|
Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies. Carbohydr Polym 2022; 282:119110. [DOI: 10.1016/j.carbpol.2022.119110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
3
|
Anticancer Effect of Heparin-Taurocholate Conjugate on Orthotopically Induced Exocrine and Endocrine Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13225775. [PMID: 34830928 PMCID: PMC8616444 DOI: 10.3390/cancers13225775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pancreatic cancer has a less than 9% 5-year survival rate among patients because it is very difficult to detect and diagnose early. Combinatorial chemotherapy with surgery or radiotherapy is a potential remedy to treat pancreatic cancer. However, these strategies still have side effects such as hair loss, skin soreness and fatigue. To overcome these side effects, angiogenesis inhibitors such as sunitinib are used to deliver targeted blood vessels around tumor tissues, including pancreatic cancer tumors. It is still controversial whether antiangiogenesis therapy is sufficient to treat pancreatic cancer. So far, many scientists have not been focused on the tumor types of pancreatic cancer when they have developed antipancreatic cancer medication. Here, we used heparin–taurocholate (LHT) as an anticancer drug to treat pancreatic cancer through inhibition of angiogenic growth factors. In this study, we examined the anticancer efficacy of LHT on various types of pancreatic cancer in an orthotopic model. Abstract Pancreatic cancers are classified based on where they occur, and are grouped into those derived from exocrine and those derived from neuroendocrine tumors, thereby experiencing different anticancer effects under medication. Therefore, it is necessary to develop anticancer drugs that can inhibit both types. To this end, we developed a heparin–taurocholate conjugate, i.e., LHT, to suppress tumor growth via its antiangiogenic activity. Here, we conducted a study to determine the anticancer efficacy of LHT on pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine tumor (PNET), in an orthotopic animal model. LHT reduced not only proliferation of cancer cells, but also attenuated the production of VEGF through ERK dephosphorylation. LHT effectively reduced the migration, invasion and tube formation of endothelial cells via dephosphorylation of VEGFR, ERK1/2, and FAK protein. Especially, these effects of LHT were much stronger on PNET (RINm cells) than PDAC (PANC1 and MIA PaCa-2 cells). Eventually, LHT reduced ~50% of the tumor weights and tumor volumes of all three cancer cells in the orthotopic model, via antiproliferation of cancer cells and antiangiogenesis of endothelial cells. Interestingly, LHT had a more dominant effect in the PNET-induced tumor model than in PDAC in vivo. Collectively, these findings demonstrated that LHT could be a potential antipancreatic cancer medication, regardless of pancreatic cancer types.
Collapse
|
4
|
Seyyednia E, Oroojalian F, Baradaran B, Mojarrad JS, Mokhtarzadeh A, Valizadeh H. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging. J Control Release 2021; 338:367-393. [PMID: 34461174 DOI: 10.1016/j.jconrel.2021.08.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The two major challenges in cancer treatment include lack of early detection and ineffective therapies with various side effects. Angiogenesis is the key process in the growth, survival, invasiveness, and metastasis of many of cancerous tumors. Imaging of the angiogenesis could lead to diagnosis of tumors in the early stage and evaluation of the therapeutic responses. Angiogenic blood vessels express specific molecular markers different from normal blood vessels (in level or kind). This fact would make the tumor vasculature a suitable site to target therapeutics and imaging agents within the tumor. Surface modified nanoparticles using peptide ligands with high binding affinity to the vasculature markers, provide efficient delivery of therapeutic and imaging agents, while avoiding undesirable side effects. In this review, we discuss discoveries of various tumor targeting peptides useful for tumor angiogenesis imaging and targeted therapy with emphasis on surface modified nanomedicines using vasculature targeting peptides.
Collapse
Affiliation(s)
- Elham Seyyednia
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Banik N, Yang SB, Kang TB, Lim JH, Park J. Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules. Int J Mol Sci 2021; 22:ijms221910524. [PMID: 34638867 PMCID: PMC8509054 DOI: 10.3390/ijms221910524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Heparin has been extensively studied as a safe medicine and biomolecule over the past few decades. Heparin derivatives, including low-molecular-weight heparins (LMWH) and heparin pentasaccharide, are effective anticoagulants currently used in clinical settings. They have also been studied as functional biomolecules or biomaterials for various therapeutic uses to treat diseases. Heparin, which has a similar molecular structure to heparan sulfate, can be used as a remarkable biomedicine due to its uniquely high safety and biocompatibility. In particular, it has recently drawn attention for use in drug-delivery systems, biomaterial-based tissue engineering, nanoformulations, and new drug-development systems through molecular formulas. A variety of new heparin-based biomolecules and conjugates have been developed in recent years and are currently being evaluated for use in clinical applications. This article reviews heparin derivatives recently studied in the field of drug development for the treatment of various diseases.
Collapse
Affiliation(s)
- Nipa Banik
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Seong-Bin Yang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Tae-Bong Kang
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
| | - Ji-Hong Lim
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| | - Jooho Park
- Department of Integrated Biosciences, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (N.B.); (S.-B.Y.); (T.-B.K.); (J.-H.L.)
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
- Correspondence:
| |
Collapse
|
6
|
Molecular Targeting of VEGF with a Suramin Fragment-DOCA Conjugate by Mimicking the Action of Low Molecular Weight Heparins. Biomolecules 2020; 11:biom11010046. [PMID: 33396366 PMCID: PMC7823656 DOI: 10.3390/biom11010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
Molecular targeting of growth factors has shown great therapeutic potential in pharmaceutical research due to their roles in pathological conditions. In the present study, we developed a novel suramin fragment and deoxycholic acid conjugate (SFD) that exhibited the potential to bind to the heparin-binding site (HBD) of vascular endothelial growth factor (VEGF) and to inhibit its pathogenic action for the first time. Notably, SFD was optimally designed for binding to the HBD of VEGF using the naphthalenetrisulfonate group, allowing to observe its excellent binding efficacy in a surface plasmon resonance (SPR) study, showing remarkable binding affinity (KD = 3.8 nM) as a small molecule inhibitor. In the tubular formation assay, it was observed that SFD could bind to HBD and exhibit antiangiogenic efficacy by inhibiting VEGF, such as heparins. The cellular treatment of SFD resulted in VEGF-inhibitory effects in human umbilical vein endothelial cells (HUVECs). Therefore, we propose that SFD can be employed as a novel drug candidate to inhibit the pathophysiological action of VEGF in diseases. Consequently, SFD, which has a molecular structure optimized for binding to HBD, is put forward as a new chemical VEGF inhibitor.
Collapse
|
7
|
Emami J, Kazemi M, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Novel pH-triggered biocompatible polymeric micelles based on heparin-α-tocopherol conjugate for intracellular delivery of docetaxel in breast cancer. Pharm Dev Technol 2020; 25:492-509. [PMID: 31903817 DOI: 10.1080/10837450.2019.1711395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, pH-triggered polymeric micelle comprising α-tocopherol (TOC) and heparin (HEP) was developed and loaded with docetaxel (DTX). The amphiphilic copolymer was synthesized by grafting TOC onto HEP backbone by a pH-cleavable bond. DTX-loaded micelles were characterized in terms of critical micelle concentration (CMC), particle size, zeta potential, entrapment efficiency (EE), pH-responsive behavior, and drug release. In vitro cytotoxicity of the micelles against breast cancer cells was investigated by MTT assay. The cellular uptake of coumarin-loaded micelles was also evaluated. Furthermore, the pharmacokinetics of DTX-loaded micelles was evaluated and compared with that of Taxotere®.HEP-CA-TOC copolymers showed low CMC values and high EE. At pH 7.4, the micelles remained stable in size and shape, whereas considerable changes in particle size and morphology were observed at pH 5.5. DTX-loaded micelles showed pH-dependent drug release profiles. Coumarin-loaded micelles showed higher cellular uptake than free coumarin. Therefore, the DTX-loaded micelles showed more toxicity against breast cancer cells than free DTX. A significant increase in T1/2 β, AUC0-∞ and MRT was observed in DTX-loaded micelle treated group as compared to the group treated with Taxotere®.The results suggest that the pH-sensitive HEP-modified micelles could be promising for enhanced intracellular drug delivery of DTX for cancer treatment.
Collapse
Affiliation(s)
- Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moloud Kazemi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hasanzadeh
- Department of Medical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Bio-inspired drug-dominated supramolecular nanocomplex based on low molecular weight heparin for progressive tumor therapy. Carbohydr Polym 2019; 220:30-42. [DOI: 10.1016/j.carbpol.2019.05.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 01/25/2023]
|
9
|
LMWH and its derivatives represent new rational for cancer therapy: construction strategies and combination therapy. Drug Discov Today 2019; 24:2096-2104. [PMID: 31228613 DOI: 10.1016/j.drudis.2019.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Low-molecular-weight heparin (LMWH) has attracted increasing attention as a tumor treatment because of its board range of physiological functions. Over the past decade, diverse LMWH derivatives have increased the variety of antitumor strategies available, serving not only as anti-tumor agents, but also as drug delivery platforms. In this review, we introduce the basic strategy for structural modification of LMWH to attenuate its antitumor activity while reducing its risk of bleeding and immune responses, as well as highlighting current applications of LMWH and its derivatives in cancer therapy. We select representative drug delivery systems involving LMWH derivatives and discuss the construction principles and therapeutic effects associated with their use. We also analyze progress made in the development of antitumor combination therapies, in which LMWH has shown synergistic or combined effects with other treatment strategies.
Collapse
|
10
|
Xiong H, Wu Y, Jiang Z, Zhou J, Yang M, Yao J. pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release. J Colloid Interface Sci 2019; 536:135-148. [PMID: 30366179 DOI: 10.1016/j.jcis.2018.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
It was widely accepted that polymeric nanodrugs held superiority in enhancing antitumor efficacy, reducing side effect and achieving better long-term prognosis. However, there still existed disputes that whether their therapeutic efficiency was closely related to insure effective release of hydrophobic drug located in their hydrophobic core in tumor site. In order to investigate this controversy, we constructed two polymeric nanodrugs (pH-activatable sLMWH-UOA and non-sensitive LMWH-UOA) with low molecular weight heparin (LMWH) and ursolic acid (UOA) for chemo-and anti-angiogenic combination therapy in hepatocellular carcinoma. The degradation ratio of pH-activatable sLMWH-UOA increased by 33% compared with non-sensitive LMWH-UOA in in vitro degradation study. Besides, confocal microscopy captured that sLMWH-UOA could effectively release drug in acidic microenvironment of lysosome while LMWH-UOA nearly could not. More importantly, in contrast with LMWH-UOA, sLMWH-UOA presented pH-dependent cytotoxicity, indicating that promoting drug release played a key role in enhancing the cytotoxicity of polymeric nanodrugs. Additionally, in vivo pharmacodynamic evaluation showed that although non-sensitive LMWH-UOA had benefited from enhanced tumor targeting drug delivery ability to achieve absolute advantage over free drug combination therapy in antitumor combination therapy, sLMWH-UOA could acquire further optimized combined therapeutic effect with better drug release in tumor. All above, application of tumor-triggered chemical bonds to construct polymeric nanodrugs held vast prospect for improving the therapeutic efficiency for tumor cells.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuanyuan Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhijie Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Min Yang
- Jiangsu Institute of Nuclear Medicine, Molecular Imaging Center, Jiangsu Institute of Nuclear Medicine, 20 Qianrong Rd, Wuxi 214063, China.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
11
|
Li Y, Wang W, Zhang Y, Wang X, Gao X, Yuan Z, Li Y. Chitosan sulfate inhibits angiogenesis via blocking the VEGF/VEGFR2 pathway and suppresses tumor growth in vivo. Biomater Sci 2019; 7:1584-1597. [DOI: 10.1039/c8bm01337c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SCTS inhibits neovascularization by blocking the VEGF/VEGFR2 signal pathway and exerts anti-tumor effects.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yapei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xinyu Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xuefeng Gao
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yu Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
12
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
13
|
Tian F, Dahmani FZ, Qiao J, Ni J, Xiong H, Liu T, Zhou J, Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater 2018; 75:398-412. [PMID: 29874597 DOI: 10.1016/j.actbio.2018.05.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Several obstacles are currently impeding the successful treatment of breast cancer, namely impaired drug accumulation into the tumor site, toxicity to normal cells and narrow therapeutic index of chemotherapy, multidrug resistance (MDR) and the metastatic spread of cancer cells through the blood and lymphatic vessels. In this regard, we designed a novel multifunctional nano-sized drug delivery system based on LyP-1 peptide-modified low-molecular-weight heparin-quercetin conjugate (PLQ). This nanosystem was developed for targeted co-delivery of multiple anticancer drugs to p32-overexpressing tumor cells and peritumoral lymphatic vessels, using LyP-1 peptide as active targeting ligand, with the aim to achieve a targeted combinatorial chemo/angiostatic therapy and MDR reversal. The cellular uptake of PLQ nanoparticles by p32-overexpressing breast cancer cells was significantly higher than nonfunctionalized nanoparticles. Besides, the anti-angiogenic activity of PLQ nanoparticles was proven by the effective inhibition of the bFGF-induced neovascularization in subcutaneous Matrigel plugs. More importantly, PLQ/GA nanoparticles with better targeting ability toward p32-positive tumors, displayed a high antitumor outcome by inhibition of tumor cells proliferation and angiogenesis. Immunohistochemistry and western blot assay showed that PLQ/GA nanoparticles significantly disrupted the lymphatic formation of tumor, and inhibited the P-glycoprotein (P-gp) expression in MCF-7 tumor cells, respectively. In conclusion, PLQ/GA nanoparticles provide a synergistic strategy for effective targeted co-delivery of chemotherapeutic and antiangiogenic agents and reversing MDR and metastasis in breast cancer. STATEMENT OF SIGNIFICANCE Herein, we successfully developed a novel amphiphilic nanomaterial, LyP-1-LMWH-Qu (PLQ) conjugate, consisting of a tumor-targeting moiety LyP-1, a hydrophobic quercetin (a multidrug resistance [MDR]-reversing drug) inner core, and a hydrophilic low-molecular-weight heparin (an antiangiogenic agent) outer shell for encapsulating and delivering a hydrophobic chemotherapeutic agent (gambogic acid). This versatile nanoplatform with multiple targeted features, i.e., dual chemo/angiostatic effects, destruction ability of the peritumoral lymphatic vessels, and reversal of MDR, resulted in a significantly stronger antitumor efficacy and lower toxic side effect than those of nontargeted nanoparticles and the free drug solution. Therefore, this versatile nanosystem might provide a novel insight for the treatment and palliation of breast cancer by targeted co-delivery of chemo/antiangiogenic agents and reversing MDR and metastasis.
Collapse
|
14
|
Sun H, Cao D, Liu Y, Wang H, Ke X, Ci T. Low molecular weight heparin-based reduction-sensitive nanoparticles for antitumor and anti-metastasis of orthotopic breast cancer. Biomater Sci 2018; 6:2172-2188. [DOI: 10.1039/c8bm00486b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor metastasis has become a major obstacle for the clinical treatment of malignant breast cancer.
Collapse
Affiliation(s)
- Haifeng Sun
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Dinglingge Cao
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yanhong Liu
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hui Wang
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xue Ke
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Tianyuan Ci
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
15
|
Park J, Hwang SR, Choi JU, Alam F, Byun Y. Self-assembled nanocomplex of PEGylated protamine and heparin–suramin conjugate for accumulation at the tumor site. Int J Pharm 2018; 535:38-46. [DOI: 10.1016/j.ijpharm.2017.10.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022]
|
16
|
Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials 2017; 147:145-154. [DOI: 10.1016/j.biomaterials.2017.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
|
17
|
Choi JU, Chung SW, Al-Hilal TA, Alam F, Park J, Mahmud F, Jeong JH, Kim SY, Byun Y. A heparin conjugate, LHbisD4, inhibits lymphangiogenesis and attenuates lymph node metastasis by blocking VEGF-C signaling pathway. Biomaterials 2017; 139:56-66. [DOI: 10.1016/j.biomaterials.2017.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
|
18
|
Cheng W, Dahmani FZ, Zhang J, Xiong H, Wu Y, Yin L, Zhou J, Yao J. Anti-angiogenic activity and antitumor efficacy of amphiphilic twin drug from ursolic acid and low molecular weight heparin. NANOTECHNOLOGY 2017; 28:075102. [PMID: 28091396 DOI: 10.1088/1361-6528/aa53c6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Heparin, a potential blood anti-coagulant, is also known for its binding ability to several angiogenic factors through electrostatic interactions due to its polyanionic character. However, the clinical application of heparin for cancer treatment is limited by several drawbacks, such as unsatisfactory therapeutic effects and severe anticoagulant activity that could induce hemorrhaging. Herein, low molecular weight heparin (LMWH) was conjugated to ursolic acid (UA), which is also an angiogenesis inhibitor, by binding the amine group of aminoethyl-UA (UA-NH2) with the carboxylic groups of LMWH. The resulting LMWH-UA conjugate as an amphiphilic twin drug showed reduced anticoagulant activity and could also self-assemble into nanomicelles with a mean particle size ranging from 200-250 nm. An in vitro endothelial tubular formation assay and an in vivo Matrigel plug assay were performed to verify the anti-angiogenic potential of LMWH-UA. Meanwhile, the in vivo antitumor effect of LMWH-UA was also evaluated using a B16F10 mouse melanoma model. LMWH-UA nanomicelles were shown to inhibit angiogenesis both in vitro and in vivo. In addition, the i.v. administration of LMWH-UA to the B16F10 tumor-bearing mice resulted in a significant inhibition of tumor growth as compared to the free drug solutions. These findings demonstrate the therapeutic potential of LMWH-UA as a new therapeutic remedy for cancer therapy.
Collapse
Affiliation(s)
- Wenming Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Park J, Jeon OC, Yun J, Nam H, Hwang J, Al-Hilal TA, Kim K, Kim K, Byun Y. End-Site-Specific Conjugation of Enoxaparin and Tetradeoxycholic Acid Using Nonenzymatic Glycosylation for Oral Delivery. J Med Chem 2016; 59:10520-10529. [PMID: 27933952 DOI: 10.1021/acs.jmedchem.6b00936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heparin and low molecular weight heparins (LMWHs) have been the drug of choice for the treatment or the prevention of thromboembolic disease. Different methods are employed to prepare the LMWHs that are clinically approved for the market currently. In particular, enoxaparin, which has a reducing sugar moiety at the end-site of polysaccharide, is prepared by alkaline depolymerization. Focusing on this end-site-specific activity of LMWHs, we conjugated the tetraoligomer of deoxycholic acid (TetraDOCA; TD) at the end-site of enoxaparin via nonenzymatic glycosylation reaction. The end-site-specific conjugation is important for polysaccharide drug development because of the heterogeneity of polysaccharides. This study also showed that orally active enoxaparin and tetraDOCA conjugate (EnoxaTD) had therapeutic effect on deep vein thrombosis (DVT) without bleeding in animal models. Considering the importance of end-specific conjugation, these results suggest that EnoxaTD could be a drug candidate for oral heparin development.
Collapse
Affiliation(s)
- Jooho Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, South Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Seoul 136-791, South Korea
| | | | - Jisuk Yun
- ST Pharm Research & Development Center , HyeopRyeok Road, Siheung-Si, Gyeonggi-do, South Korea
| | - Hwajung Nam
- ST Pharm Research & Development Center , HyeopRyeok Road, Siheung-Si, Gyeonggi-do, South Korea
| | - Jinha Hwang
- ST Pharm Research & Development Center , HyeopRyeok Road, Siheung-Si, Gyeonggi-do, South Korea
| | - Taslim A Al-Hilal
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Seoul 136-791, South Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology , Seoul 136-791, South Korea
| | - Kyungjin Kim
- ST Pharm Research & Development Center , HyeopRyeok Road, Siheung-Si, Gyeonggi-do, South Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 151-742, South Korea
| |
Collapse
|
20
|
|
21
|
Wei X, Luo Q, Sun L, Li X, Zhu H, Guan P, Wu M, Luo K, Gong Q. Enzyme- and pH-Sensitive Branched Polymer–Doxorubicin Conjugate-Based Nanoscale Drug Delivery System for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11765-78. [PMID: 27102364 DOI: 10.1021/acsami.6b02006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaoli Wei
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| | - Ling Sun
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| | - Xue Li
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| | - Pujun Guan
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| | - Min Wu
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC),
Department of Radiology, ‡Laboratory of Stem Cell Biology, State Key Laboratory
of BiotherapyWest, and §Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041,China
| |
Collapse
|
22
|
Dahmani FZ, Xiao Y, Zhang J, Yu Y, Zhou J, Yao J. Multifunctional Polymeric Nanosystems for Dual-Targeted Combinatorial Chemo/Antiangiogenesis Therapy of Tumors. Adv Healthc Mater 2016; 5:1447-61. [DOI: 10.1002/adhm.201600169] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/29/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Fatima Zohra Dahmani
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| | - Yan Xiao
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| | - Juan Zhang
- School of Life Science & Technology China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| | - Yao Yu
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| | - Jing Yao
- State Key Laboratory of Natural Medicines Department of Pharmaceutics China Pharmaceutical University 24 Tongjiaxiang Nanjing 210009 China
| |
Collapse
|
23
|
Li Y, Wu Y, Huang L, Miao L, Zhou J, Satterlee AB, Yao J. Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy. J Control Release 2016; 228:107-119. [PMID: 26941036 DOI: 10.1016/j.jconrel.2016.02.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/31/2016] [Accepted: 02/27/2016] [Indexed: 12/12/2022]
Abstract
The potential of low molecular weight heparin (LMWH) in anti-angiogenic therapy has been tempered by poor in vivo delivery to the tumor cell and potentially harmful side effects, such as the risk of bleeding due to heparin's anticoagulant activity. In order to overcome these limitations and further improve the therapeutic effect of LMWH, we designed a novel combination nanosystem of LMWH and ursolic acid (UA), which is also an angiogenesis inhibitor for tumor therapy. In this system, an amphiphilic LMWH-UA (LHU) conjugate was synthesized and self-assembled into core/shell nanodrugs with combined anti-angiogenic activity and significantly reduced anticoagulant activity. Furthermore, DSPE-PEG-AA-modified LHU nanodrugs (A-LHU) were developed to facilitate the delivery of nanodrugs to the tumor. The anti-angiogenic activity of A-LHU was investigated both in vitro and in vivo. It was found that A-LHU significantly inhibited the tubular formation of human umbilical vein endothelial cells (HUVECs) (p<0.01) and the angiogenesis induced by basic fibroblast growth factor (bFGF) in a Matrigel plug assay (p<0.001). More importantly, A-LHU displayed significant inhibition on the tumor growth in B16F10-bearing mice in vivo. The level of CD31 and p-VEGFR-2 expression has demonstrated that the excellent efficacy of antitumor was associated with a decrease in angiogenesis. In conclusion, A-LHU nanodrugs are a promising multifunctional antitumor drug delivery system.
Collapse
Affiliation(s)
- Yuanke Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuanyuan Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA
| | - Lei Miao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Andrew Benson Satterlee
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill 27599, USA; University of North Carolina and North Carolina State University Joint Department of Biomedical Engineering, Chapel Hill, NC 27599, USA
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
24
|
Al-Hilal TA, Chung SW, Choi JU, Alam F, Park J, Kim SW, Kim SY, Ahsan F, Kim IS, Byun Y. Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. J Clin Invest 2016; 126:1251-66. [PMID: 26950422 DOI: 10.1172/jci83427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/21/2016] [Indexed: 01/06/2023] Open
Abstract
Controlled and site-specific regulation of growth factor signaling remains a major challenge for current antiangiogenic therapies, as these antiangiogenic agents target normal vasculature as well tumor vasculature. In this article, we identified the prion-like protein doppel as a potential therapeutic target for tumor angiogenesis. We investigated the interactions between doppel and VEGFR2 and evaluated whether blocking the doppel/VEGFR2 axis suppresses the process of angiogenesis. We discovered that tumor endothelial cells (TECs), but not normal ECs, express doppel; tumors from patients and mouse xenografts expressed doppel in their vasculatures. Induced doppel overexpression in ECs enhanced vascularization, whereas doppel constitutively colocalized and complexed with VEGFR2 in TECs. Doppel inhibition depleted VEGFR2 from the cell membrane, subsequently inducing the internalization and degradation of VEGFR2 and thereby attenuating VEGFR2 signaling. We also synthesized an orally active glycosaminoglycan (LHbisD4) that specifically binds with doppel. We determined that LHbisD4 concentrates over the tumor site and that genetic loss of doppel in TECs decreases LHbisD4 binding and targeting both in vitro and in vivo. Moreover, LHbisD4 eliminated VEGFR2 from the cell membrane, prevented VEGF binding in TECs, and suppressed tumor growth. Together, our results demonstrate that blocking doppel can control VEGF signaling in TECs and selectively inhibit tumor angiogenesis.
Collapse
|
25
|
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84:101-11. [DOI: 10.1016/j.ijbiomac.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/15/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
26
|
Abstract
INTRODUCTION Anticoagulants have been prescribed to patients to prevent deep vein thrombosis or pulmonary embolism. However, because of several problems in anticoagulant therapy, much attention has been directed at developing an ideal anticoagulant, and numerous attempts have been made to develop new anticoagulant delivery systems in recent years. AREAS COVERED This review discusses the challenges associated with the recent development of anticoagulants and their delivery systems. Various delivery methods have been developed to improve the use of anticoagulants. Recent advances in anticoagulant delivery and antidote development are also discussed in the context of their current progression states. EXPERT OPINION There have been many different approaches to developing the delivery system of anticoagulants. One approach has been to expand the use of new oral agents and develop their antidotes. Reducing the size of heparins to use smaller heparins for delivery, and developing oral or topical heparins are also some of the approaches used. Various physical formulations or chemical modifications are other ways that have enhanced the therapeutic potential of anticoagulant agents. On the whole, recent advances have contributed to increasing the efficacy and safety of anticoagulant clinically and have benefited the field of anticoagulant delivery.
Collapse
Affiliation(s)
- Jooho Park
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Youngro Byun
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea.,b Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
27
|
Park J, Kim JY, Hwang SR, Mahmud F, Byun Y. Chemical Conjugate of Low Molecular Weight Heparin and Suramin Fragment Inhibits Tumor Growth Possibly by Blocking VEGF165. Mol Pharm 2015; 12:3935-42. [PMID: 26448404 DOI: 10.1021/acs.molpharmaceut.5b00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Low molecular weight heparin (LMWH) and its derivatives have been reported to possess antiangiogenic effect via electrostatic interaction with various angiogenic growth factors such as VEGF165. However, clinical applications of LMWH for anticancer therapy have been restricted due to its anticoagulant effect and insufficient therapeutic efficacy. To overcome these limitations and enhance the antiangiogenic efficacy, LMWH was conjugated with suramin fragments that have a binding affinity to the heparin-binding domain (HBD) of proteins. The conjugation of suramin fragments to LMWH enhanced the antiangiogenic effect of LMWH by increasing the binding affinity to VEGF165, while decreasing its anticoagulant activity. The chemical conjugate of LMWH and suramin fragments (LHsura) showed a substantial inhibitory effect on VEGF165-mediated cell proliferation, migration, and tube formation of HUVECs without significant cytotoxicity in vitro. Finally, we confirmed the anticancer effect of LHsura (61.4% vs control) in a SCC7-bearing mouse model.
Collapse
Affiliation(s)
- Jooho Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, South Korea
| | - Ji-young Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, South Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University , 309 Pilmun-daero, Dong-gu, Gwangju 501-759, South Korea
| | - Foyez Mahmud
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 151-742, South Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University , Seoul 151-742, South Korea
| |
Collapse
|
28
|
Park J, Jeong JH, Al-Hilal TA, Kim JY, Byun Y. Size Controlled Heparin Fragment–Deoxycholic Acid Conjugate Showed Anticancer Property by Inhibiting VEGF165. Bioconjug Chem 2015; 26:932-40. [DOI: 10.1021/acs.bioconjchem.5b00133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jee-Heon Jeong
- College
of Pharmacy, Yeungnam University, Gyeongsan 712-749, Gyeongbuk South Korea
| | - Taslim A. Al-Hilal
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | | | | |
Collapse
|
29
|
Zhang T, Xiong H, Dahmani FZ, Sun L, Li Y, Yao L, Zhou J, Yao J. Combination chemotherapy of doxorubicin, all-trans retinoic acid and low molecular weight heparin based on self-assembled multi-functional polymeric nanoparticles. NANOTECHNOLOGY 2015; 26:145101. [PMID: 25771790 DOI: 10.1088/0957-4484/26/14/145101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Based on the complementary effects of doxorubicin (DOX), all-trans retinoic acid (ATRA) and low molecular weight heparin (LMWH), the combination therapy of DOX, ATRA and LMWH was expected to exert the enhanced anti-tumor effects and reduce the side effects. In this study, amphiphilic LMWH-ATRA conjugate was synthesized for encapsulating the DOX. In this way, DOX, ATRA and LMWH were assembled into a single nano-system by both chemical and physical modes to obtain a novel anti-tumor targeting drug delivery system that can realize the simultaneous delivery of multiple drugs with different properties to the tumor. LMWH-ATRA nanoparticles exhibited good loading capacities for DOX with excellent physico-chemical properties, good biocompatibility, and good differentiation-inducing activity and antiangiogenic activity. The drug-loading capacity was up to 18.7% with an entrapment efficiency of 78.8%. It was also found that DOX-loaded LMWH-ATRA nanoparticles (DHR nanoparticles) could be efficiently taken up by tumor cells via endocytic pathway, and mainly distributed in cytoplasm at first, then transferred into cell nucleus. Cell viability assays suggested that DHR nanoparticles maintained the cytotoxicity effect of DOX on MCF-7 cells. Moreover, the in vivo imaging analysis indicated that DiR-loaded LMWH-ATRA nanoparticles could target the tumor more effectively as compared to free DiR. Furthermore, DHR nanoparticles possessed much higher anticancer activity and reduced side effects compared to free drugs solution. These results suggested that DHR nanoparticles could be considered as a promising targeted delivery system for combination cancer chemotherapy with lower adverse effects.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Antiangiogenic and anticancer effect of an orally active low molecular weight heparin conjugates and its application to lung cancer chemoprevention. J Control Release 2015; 199:122-31. [DOI: 10.1016/j.jconrel.2014.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 11/24/2014] [Accepted: 12/14/2014] [Indexed: 01/15/2023]
|
31
|
Significantly inhibitory effects of low molecular weight heparin (Fraxiparine) on the motility of lung cancer cells and its related mechanism. Tumour Biol 2015; 36:4689-97. [PMID: 25619477 DOI: 10.1007/s13277-015-3117-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/14/2015] [Indexed: 02/05/2023] Open
Abstract
Low molecular weight heparin (LMWH) improving the cancer survival has been attracting attention for many years. Our previous study found that LMWH (Fraxiparine) strongly downregulated the invasive, migratory, and adhesive ability of human lung adenocarcinoma A549 cells. Here, we aimed to further identify the antitumor effects and possible mechanisms of Fraxiparine on A549 cells and human highly metastatic lung cancer 95D cells. The ability of cell invasion, migration, and adhesion were measured by Transwell, Millicell, and MTT assays. FITC-labeled phalloidin was used to detect F-actin bundles in cells. Chemotactic migration was analyzed in a modified Transwell assay. Measurement of protein expression and phosphorylation activity of PI3K, Akt, and mTOR was performed with Western blot. Our studies found that Fraxiparine significantly inhibited the invasive, migratory, and adhesive characteristics of A549 and 95D cells after 24 h incubation and showed a dose-dependent manner. Fraxiparine influenced the actin cytoskeleton rearrangement of A549 and 95D cells by preventing F-actin polymerization. Moreover, Fraxiparine could significantly inhibit CXCL12-mediated chemotactic migration of A549 and 95D cells in a concentration-dependent manner. Furthermore, Fraxiparine might destroy the interaction between CXCL12-CXCR4 axis, then suppress the PI3K-Akt-mTOR signaling pathway in lung cancer cells. For the first time, our data indicated that Fraxiparine could significantly inhibit the motility of lung cancer cells by restraining the actin cytoskeleton reorganization, and its related mechanism might be through inhibiting PI3K-Akt-mTOR signaling pathway mediated by CXCL12-CXCR4 axis. Therefore, Fraxiparine would be a potential drug for lung cancer metastasis therapy.
Collapse
|
32
|
Enhanced Anti-Angiogenic Effect of Low Molecular Weight Heparin-Bile Acid Conjugates by Co-Administration of a Selective COX-2 Inhibitor. Pharm Res 2015; 32:2318-27. [PMID: 25585956 DOI: 10.1007/s11095-015-1623-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE To overcome definite limitations of angiogenesis inhibitors such as insufficient therapeutic efficacy as a single drug and resisting or conflicting effect under chronic treatment, it is required to develop a new regimen to improve the therapeutic effect. METHODS The combination effect of a multi-targeting angiogenesis inhibitor (LHT7) and a selective cyclooxygenase-2 inhibitor (celecoxib) on neovascularization in tumor growth was studied both in vitro and vivo experiments. RESULTS While hypoxia-mediated COX-2 overexpression and macrophage recruitment were observed at LHT7-treated tumor tissues, it was well-controlled by the combination of celecoxib and LHT7. On the other hand, the in vitro tube formation and the in vivo tumor vessel formation and structure were inhibited by either LHT7 or celecoxib, but the inhibition effect was further enhanced by using them together. However, the combination therapy did not further enhance the inhibitory effect on tumor growth in terms of volume compared to single drug uses, which attributed not to increased cellular apoptosis but to decreased cell proliferation. CONCLUSIONS COX-2 inhibition could enhance the therapeutic effect of anti-angiogenic drugs both by inhibiting the inflammatory reactions induced by hypoxia and by altering the vascular stabilization that is mediated by an assembly with mural cells.
Collapse
|
33
|
Lu KY, Lin CW, Hsu CH, Ho YC, Chuang EY, Sung HW, Mi FL. FRET-based dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18275-18289. [PMID: 25260022 DOI: 10.1021/am505441p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The oral route is a convenient and commonly employed way for drug delivery. However, therapeutic proteins have poor bioavailability upon oral administration due to the impermeable barrier from intestinal epithelial tight junction (TJ). Moreover, the pH of the small intestine varies among different regions of the intestinal tract where digestion and absorption occur at different levels. In this study, a tunable dual-emitting and pH-responsive nanocarrier that can alter the fluorescent color and emission intensity in response to pH changes and can trigger the opening of intestinal epithelial TJ at different levels were developed from chitosan-N-arginine and poly(γ-glutamic acid)-taurine conjugates. As pH increased from 6.0 to 8.0, the binding affinity of the oppositely charged polyions decreased, whereas the ratio of the intensity of the donor-to-acceptor emission intensity (ID/IA) increased by 27-fold. The fluorescent and pH-responsive nanocarrier was able to monitor the pH change of intestinal environment and to control the release of an anti-angiogenic protein in response to the pH gradient. The nanocarrier triggered the opening of intestinal epithelial TJ and consequently enhanced the permeation of the released protein through the intestinal epithelial barrier model (Caco-2 cell monolayer) to inhibit tube formation of human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Kun-Ying Lu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology , Taipei 10608, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim JY, Alam F, Chung SW, Park J, Jeon OC, Kim SY, Son WC, Byun Y. Combinational chemoprevention effect of celecoxib and an oral antiangiogenic LHD4 on colorectal carcinogenesis in mice. Anticancer Drugs 2014; 25:1061-71. [DOI: 10.1097/cad.0000000000000141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Babazada H, Yamashita F, Yanamoto S, Hashida M. Self-assembling lipid modified glycol-split heparin nanoparticles suppress lipopolysaccharide-induced inflammation through TLR4-NF-κB signaling. J Control Release 2014; 194:332-40. [PMID: 25234820 DOI: 10.1016/j.jconrel.2014.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/15/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
Self-assembling heparin nanoparticles have attracted much attention as promising drug carriers for various drugs, genes and imaging agents. In the present investigation, we found that heparin nanoparticles are selective Toll-like receptor 4 (TLR-4) antagonists and have a much greater anti-inflammatory effect than native heparin. More specifically, we developed self-assembling nanoparticles composed of glycol-split heparin/D-erythro-sphingosine conjugates (NAHNP), characterized their physicochemical properties and anti-inflammatory effect in vitro. Unlike native heparin, NAHNP significantly inhibited lipopolysaccharide-induced activation of MyD88-dependent NF-κB signaling pathway and production of pro-inflammatory cytokines such as TNF-alpha from mouse macrophages with IC50 = 0.019 mg/mL. Furthermore, we investigated the structure-activity relationship of the conjugates and identified the length of attached alkyl chains of d-erythro-sphingosine to be critical for anti-inflammatory effect. Decrease in alkyl chain length of NAHNP resulted in loss of inhibitory activity. In line with these findings, 6-O-sulfate groups of D-glucosamine residue were essential for effective inhibition, while removal of 2-O-sulfo and 3-O-sulfo groups as well as replacement of N-sulfo groups with N-acetyl did not alter anti-inflammatory activity. Therefore, NAHNP would be a promising candidate in acute and chronic inflammatory disorders, in addition to the nature of a drug carrier.
Collapse
Affiliation(s)
- Hasan Babazada
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Yanamoto
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
36
|
Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 2014; 10:1588-600. [PMID: 23911941 PMCID: PMC3937301 DOI: 10.1016/j.actbio.2013.07.031] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/15/2013] [Accepted: 07/24/2013] [Indexed: 11/26/2022]
Abstract
Heparin plays an important role in many biological processes via its interaction with various proteins, and hydrogels and nanoparticles comprising heparin exhibit attractive properties, such as anticoagulant activity, growth factor binding, and antiangiogenic and apoptotic effects, making them great candidates for emerging applications. Accordingly, this review summarizes recent efforts in the preparation of heparin-based hydrogels and formation of nanoparticles, as well as the characterization of their properties and applications. The challenges and future perspectives for heparin-based materials are also discussed. Prospects are promising for heparin-containing polymeric biomaterials in diverse applications ranging from cell carriers for promoting cell differentiation to nanoparticle therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Yingkai Liang
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
37
|
Roy A, Bhattacharyya M, Ernsting MJ, May JP, Li SD. Recent progress in the development of polysaccharide conjugates of docetaxel and paclitaxel. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:349-68. [PMID: 24652678 DOI: 10.1002/wnan.1264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 11/07/2022]
Abstract
UNLABELLED Taxanes are one of the most potent and broadest spectrum chemotherapeutics used clinically, but also induce significant side effects. Different strategies have been developed to produce a safer taxane formulation. Development of polysaccharide drug conjugates has increased in the recent years because of the demonstrated biocompatibility, biodegradability, safety, and low cost of the biopolymers. This review focuses on polysaccharide-taxane conjugates and provides an overview on various conjugation strategies and their effect on the efficacy. Detailed analyses on the designing factors of an effective polysaccharide-drug conjugate are provided with a discussion on the future direction of this field. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Aniruddha Roy
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
38
|
IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 2013; 34:6853-61. [DOI: 10.1016/j.biomaterials.2013.05.071] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/27/2013] [Indexed: 12/21/2022]
|
39
|
Al-Hilal TA, Alam F, Byun Y. Oral drug delivery systems using chemical conjugates or physical complexes. Adv Drug Deliv Rev 2013; 65:845-64. [PMID: 23220326 DOI: 10.1016/j.addr.2012.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
Oral delivery of therapeutics is extremely challenging. The digestive system is designed in a way that naturally allows the degradation of proteins or peptides into small molecules prior to absorption. For systemic absorption, the intact drug molecules must traverse the impending harsh gastrointestinal environment. Technologies, such as enteric coating, with oral dosage formulation strategies have successfully provided the protection of non-peptide based therapeutics against the harsh, acidic condition of the stomach. However, these technologies showed limited success on the protection of therapeutic proteins and peptides. Importantly, inherent permeability coefficient of the therapeutics is still a major problem that has remained unresolved for decades. Addressing this issue in the context, we summarize the strategies that are developed in enhancing the intestinal permeability of a drug molecule either by modifying the intestinal epithelium or by modifying the drug itself. These modifications have been pursued by using a group of molecules that can be conjugated to the drug molecule to alter the cell permeability of the drug or mixed with the drug molecule to alter the epithelial barrier function, in order to achieve the effective drug permeation. This article will address the current trends and future perspectives of the oral delivery strategies.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | |
Collapse
|
40
|
Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis 2013; 16:503-24. [DOI: 10.1007/s10456-013-9347-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/19/2013] [Indexed: 12/28/2022]
|
41
|
Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials 2013; 34:2252-64. [PMID: 23298778 DOI: 10.1016/j.biomaterials.2012.12.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/14/2012] [Indexed: 01/10/2023]
Abstract
Heparin drug conjugates are currently investigated as excellent candidates for drug delivery vehicles. In this study, we report the preparation and characterization of dendronized heparin-doxorubicin (heparin-DOX) conjugate as pH-sensitive drug delivery vehicle by combination of the features of dendrimer and heparin. Dynamic light scattering (DLS) and transmission electron microscope (TEM) studies demonstrated the dendronized heparin-DOX conjugate self-assembled into compact nanoparticles with negatively charged surface. The nanoparticles with 9.0 wt% (weight percent) of doxorubicin (DOX) showed pH-sensitive property due to the faster drug release rate at pH 5.0 and slow release rate at pH 7.4 aqueous. The nanoparticles were shown to effectively kill cancer cells in vitro. Notablely, the nanoparticles resulted in strong antitumor activity, high antiangiogenesis effects and induced apoptosis on the 4T1 breast tumor model due to the evidences from mice weight shifts, tumor weights, tumor growth curves, immunohistochemical assessment and histological analysis. It's also noteworthy that dendronized heparin and its nanoparticle with drug demonstrated no significant toxicity to healthy organs of both tumor-bearing and healthy mice, which was confirmed by histological analysis compared with free drug DOX. The dendronized heparin-DOX conjugate based nanopatilce with high antitumor activity and low side effects may be therefore a potential nanoscale drug delivery vehicle for breast cancer therapy.
Collapse
|
42
|
Hwang SR, Seo DH, Al-Hilal TA, Jeon OC, Kang JH, Kim SH, Kim HS, Chang YT, Kang YM, Yang VC, Byun Y. Orally active desulfated low molecular weight heparin and deoxycholic acid conjugate, 6ODS-LHbD, suppresses neovascularization and bone destruction in arthritis. J Control Release 2012; 163:374-84. [DOI: 10.1016/j.jconrel.2012.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/31/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
|
43
|
Chung SW, Lee M, Bae SM, Park J, Jeon OC, Lee HS, Choe H, Kim HS, Lee BS, Park RW, Kim SY, Byun Y. Potentiation of anti-angiogenic activity of heparin by blocking the ATIII-interacting pentasaccharide unit and increasing net anionic charge. Biomaterials 2012; 33:9070-9. [PMID: 23010574 DOI: 10.1016/j.biomaterials.2012.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/02/2012] [Indexed: 11/17/2022]
Abstract
Heparin, a potent anticoagulant used for the prevention of venous thromboembolism, has been recognized as a tumor angiogenesis inhibitor. Its limitation in clinical application for cancer therapy, however, arises from its strong anticoagulant activity, which causes associated adverse effects. In this study, we show the structural correlation of LHT7, a previously developed heparin-based angiogenesis inhibitor, with its influence on VEGF blockade and its decreased anticoagulant activity. LHT7 was characterized as having average seven molecules of sodium taurocholates conjugated to one molecule of low-molecular-weight heparin (LMWH). This study showed that the conjugation of sodium taurocholates selectively blocked interaction with antithrombin III (ATIII) while enhancing the binding with VEGF. This resulted in LHT7 to have negligible anticoagulant activity but potent anti-angiogenic activity. Following up on this finding, we showed that the bidirectional effect of sodium taurocholate conjugation was due to its unique structure, that is, the sterane core hindering the ATIII-binding pentasaccharide unit of LMWH with its bulky and rigid structural characteristics while the terminal sulfate group interacts with VEGF to produce stronger binding. In addition, we showed that LHT7 was localized in the tumor, especially on the endothelial cells. One explanation for this might be that LHT7 was delivered to the tumor via platelets.
Collapse
Affiliation(s)
- Seung Woo Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Imaging of the GI tract by QDs loaded heparin-deoxycholic acid (DOCA) nanoparticles. Carbohydr Polym 2012; 90:1461-8. [PMID: 22944403 DOI: 10.1016/j.carbpol.2012.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/05/2012] [Indexed: 11/20/2022]
Abstract
This study presents an approach to deliver non invasive, near-IR imaging agent using oral delivery system. Low molecular weight heparin (LMWH)-deoxycholic acid (DOCA)/(LHD) nanoparticles formed by a self-assembly method was prepared to evaluate their physicochemical properties and oral absorption in vitro and in vivo. Near-IR QDs were prepared and loaded into LHD nanoparticles for imaging of the gastro-intestinal (GI) tract absorption. Q-LHD nanoparticles were almost spherical in shape with diameters of 194-217 nm. The size and fluorescent intensity of the Q-LHD nanoparticles were stable in 10% FBS solution and retained their fluorescent even after 5 days of incubation. Cell viability of Q-LHD nanoparticles maintained in the range of 80-95% for 24h incubation. No damage was found in tissues or organs during animal experiments. The in vivo oral absorption of Q-LHD was observed in SKH1 mice for 3h under different doses. From the results, we confirmed that Q-LHD was absorbed mostly into the ileum of small intestine containing intestinal bile acid transporter as observed in TEM and molecular imaging system. Our designed nanoparticles could be administered orally for bio-imaging and studying the bio-distribution of drug.
Collapse
|
45
|
Abstract
Macromolecular therapeutics, in particular, many biologics, is the most advancing category of drugs over conventional chemical drugs. The potency and specificity of the biologics for curing certain disease made them to be a leading compound in the pharmaceutical industry. However, due to their intrinsic nature, including high molecular weight, hydrophilicity and instability, they are difficult to be administered via non-invasive route. This is a major quest especially in biologics, as they are frequently used clinically for chronic disorders, which requires long-term administration. Therefore, many efforts have been made to develop formulation for non-invasive administration, in attempt to improve patient compliance and convenience. In this review, strategies for non-invasive delivery, in particular, oral, pulmonary and nasal delivery, that are recently adopted for delivery of biologics are discussed. Insulin, calcitonin and heparin were mainly focused for the discussion as they could represent protein, polypeptide and polysaccharide drugs, respectively. Many recent attempts for non-invasive delivery of biologics are compared to provide an insight of developing successful delivery system.
Collapse
Affiliation(s)
- Seung Woo Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
46
|
Da Pozzo E, Barsotti MC, Bendinelli S, Martelli A, Calderone V, Balbarini A, Martini C, Di Stefano R. Differential effects of fondaparinux and bemiparin on angiogenic and vasculogenesis-like processes. Thromb Res 2012; 130:e113-22. [PMID: 22497885 DOI: 10.1016/j.thromres.2012.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/14/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Conventional therapy for venous thromboembolism or acute coronary syndrome involves the administration of glycoanticoagulants (heparins) or oligosaccharides (fondaparinux). We evaluated the effects of such drugs on angiogenesis and vasculogenesis-like models. MATERIALS AND METHODS Human umbilical vein endothelial cells or human endothelial progenitor cells were treated with bemiparin, fondaparinux or unfractionated heparin, at concentrations reflecting the doses used in clinical practice. After 24h, cell viability, proliferation, tubule formation and angiogenic molecular mechanisms, such as activation of the serine/threonine kinase AKT, were assessed. In vivo angiogenesis was studied using a Matrigel sponge assay in mice. RESULTS Bemiparin gave a significant decrease of in vitro angiogenesis as shown by the reduction of endothelial cell tubule network, while both fondaparinux and unfractionated heparin did not show any significant effect. In assays of Matrigel sponge invasion in mice, unfractionated heparin was able to stimulate angiogenesis and, conversely, bemiparin inhibited angiogenesis. Furthermore, both bemiparin and fondaparinux caused a significant reduction in an in vitro vasculogenesis-like model, as demonstrated by the decrease of tubule network after co-seeding of endothelial progenitor cells and human umbilical vein endothelial cells. In addition, unfractionated heparin but not bemiparin was able to increase AKT phosphorylation. CONCLUSIONS In in vitro experiments, bemiparin was the only drug to show an anti-angiogenic and vasculogenic-like effect, unfractionated heparin showed only a trend to increase in angiogenesis assay and fondaparinux affected only the vasculogenesis-like model. Notably, the in vivo experiments corroborated these data. Such results are important for the choice of a patient-tailored therapy.
Collapse
Affiliation(s)
- Eleonora Da Pozzo
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|