1
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
2
|
Ramesh VH, Goudanavar P, Ramesh B, Naveen NR, Gowthami B. Pharmaceutical/Biomedical Applications of Electrospun Nanofibers - Comprehensive Review, Attentive to Process Parameters and Patent Landscape. Pharm Nanotechnol 2024; 12:412-427. [PMID: 37702161 DOI: 10.2174/2211738511666230911163249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
Nanotechnology is a new science and business endeavour with worldwide economic benefits. Growing knowledge of nanomaterial fabrication techniques has increased the focus on nanomaterial preparation for various purposes. Nanofibers are one-dimensional nanomaterials having distinct physicochemical properties and characteristics. Nanofibers are nanomaterial types with a cross-sectional dimension of tens to hundreds of nanometres. They may create high porosity mesh networks with significant interconnections among pores, making them suitable for advanced applications. Electrospinning stands out for its ease of use, flexibility, low cost, and variety among the approaches described in the literature. The most common method for making nanofibers is electrospinning. This article extensively describes and summarizes the impact of various process variables on the fabrication of nanofibers. Special attention has been given to scientific and patent prospection to confirm the research interests in nanofibers.
Collapse
Affiliation(s)
- Varshini Hemmanahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Bevenahalli Ramesh
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka, 571448, India
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, 516126, Andhra Pradesh, India
| |
Collapse
|
3
|
Tincu (Iurciuc) CE, Bouhadiba B, Atanase LI, Stan CS, Popa M, Ochiuz L. An Accessible Method to Improve the Stability and Reusability of Porcine Pancreatic α-Amylase via Immobilization in Gellan-Based Hydrogel Particles Obtained by Ionic Cross-Linking with Mg 2+ Ions. Molecules 2023; 28:4695. [PMID: 37375250 PMCID: PMC10302431 DOI: 10.3390/molecules28124695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amylase is an enzyme used to hydrolyze starch in order to obtain different products that are mainly used in the food industry. The results reported in this article refer to the immobilization of α-amylase in gellan hydrogel particles ionically cross-linked with Mg2+ ions. The obtained hydrogel particles were characterized physicochemically and morphologically. Their enzymatic activity was tested using starch as a substrate in several hydrolytic cycles. The results showed that the properties of the particles are influenced by the degree of cross-linking and the amount of immobilized α-amylase enzyme. The temperature and pH at which the immobilized enzyme activity is maximum were T = 60 °C and pH = 5.6. The enzymatic activity and affinity of the enzyme to the substrate depend on the particle type, and this decreases for particles with a higher cross-linking degree owing to the slow diffusion of the enzyme molecules inside the polymer's network. By immobilization, α-amylase is protected from environmental factors, and the obtained particles can be quickly recovered from the hydrolysis medium, thus being able to be reused in repeated hydrolytic cycles (at least 11 cycles) without a substantial decrease in enzymatic activity. Moreover, α-amylase immobilized in gellan particles can be reactivated via treatment with a more acidic medium.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| | - Brahim Bouhadiba
- Laboratory of Engineering of Industrial Safety and Sustainable Development LISIDD, Institute of Maintenance and Industrial Safety, University of Oran 2, Mohammed Benahmed, Oran 31000, Algeria
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iași, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Corneliu Sergiu Stan
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| |
Collapse
|
4
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
5
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Firoozbahr M, Kingshott P, Palombo EA, Zaferanloo B. Recent Advances in Using Natural Antibacterial Additives in Bioactive Wound Dressings. Pharmaceutics 2023; 15:644. [PMID: 36839966 PMCID: PMC10004169 DOI: 10.3390/pharmaceutics15020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound care is a global health issue with a financial burden of up to US $96.8 billion annually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing are especially problematic. Although there are more than 3000 dressing types in the wound management market, new developments in more efficient wound dressings will require innovative approaches such as embedding antibacterial additives into wound-dressing materials. The lack of novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimicrobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in wound dressings targeting microbial pathogens. Natural products and their derivatives have long been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved drugs has identified plants as one of the biggest and most important sources in the development of novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and plant extracts, have been previously used in wound dressings; however, there is another source of plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show great potential in wound dressing applications. Endophytes represent a novel, natural, and sustainable source of bioactive compounds for therapeutic applications, including as efficient antibacterial additives for chronic wound dressings. This review examines and appraises recent developments in bioactive wound dressings that incorporate natural products as antibacterial agents as well as advances in endophyte research that show great potential in treating chronic wounds.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
7
|
Chakraborty R, Borah P, Dutta PP, Sen S. Evolving spectrum of diabetic wound: Mechanistic insights and therapeutic targets. World J Diabetes 2022; 13:696-716. [PMID: 36188143 PMCID: PMC9521443 DOI: 10.4239/wjd.v13.i9.696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder resulting in an increased blood glucose level and prolonged hyperglycemia, causes long term health conse-quences. Chronic wound is frequently occurring in diabetes patients due to compromised wound healing capability. Management of wounds in diabetic patients remains a clinical challenge despite many advancements in the field of science and technology. Increasing evidence indicates that alteration of the biochemical milieu resulting from alteration in inflammatory cytokines and matrix metalloproteinase, decrease in fibroblast and keratinocyte functioning, neuropathy, altered leukocyte functioning, infection, etc., plays a significant role in impaired wound healing in diabetic people. Apart from the current pharmacotherapy, different other approaches like the use of conventional drugs, antidiabetic medication, antibiotics, debridement, offloading, platelet-rich plasma, growth factor, oxygen therapy, negative pressure wound therapy, low-level laser, extracorporeal shock wave bioengineered substitute can be considered in the management of diabetic wounds. Drugs/therapeutic strategy that induce angiogenesis and collagen synthesis, inhibition of MMPs, reduction of oxidative stress, controlling hyperglycemia, increase growth factors, regulate inflammatory cytokines, cause NO induction, induce fibroblast and keratinocyte proliferation, control microbial infections are considered important in controlling diabetic wound. Further, medicinal plants and/or phytoconstituents also offer a viable alternative in the treatment of diabetic wound. The focus of the present review is to highlight the molecular and cellular mechanisms, and discuss the drug targets and treatment strategies involved in the diabetic wound.
Collapse
Affiliation(s)
- Raja Chakraborty
- Institute of Pharmacy, Assam Don Bosco University, Kamrup 782402, Assam, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| |
Collapse
|
8
|
Zhao X, Li Q, Guo Z, Li Z. Constructing a cell microenvironment with biomaterial scaffolds for stem cell therapy. Stem Cell Res Ther 2021; 12:583. [PMID: 34809719 PMCID: PMC8607654 DOI: 10.1186/s13287-021-02650-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
Stem cell therapy is widely recognized as a promising strategy for exerting therapeutic effects after injury in degenerative diseases. However, limitations such as low cell retention and survival rates after transplantation exist in clinical applications. In recent years, emerging biomaterials that provide a supportable cellular microenvironment for transplanted cells have optimized the therapeutic efficacy of stem cells in injured tissues or organs. Advances in the engineered microenvironment are revolutionizing our understanding of stem cell-based therapies by co-transplanting with synthetic and tissue-derived biomaterials, which offer a scaffold for stem cells and propose an unprecedented opportunity to further employ significant influences in tissue repair and regeneration.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.,Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,Department of Cardiology, Zhengzhou Seventh People's Hospital, Zhengzhou, China.
| | - Zongjin Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
9
|
Wang H, Pei S, Fang S, Jin S, Deng S, Zhao Y, Feng Y. Irisin restores high glucose-induced cell injury in vascular endothelial cells by activating Notch pathway via Notch receptor 1. Biosci Biotechnol Biochem 2021; 85:2093-2102. [PMID: 34329390 DOI: 10.1093/bbb/zbab137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023]
Abstract
Diabetic foot ulcers (DFU) are a vascular complication of diabetes mellitus (DM). It has been confirmed that irisin is closely related to DM. However, the effect of irisin on DFU is obscure and needs further study. After human umbilical vein endothelial cell lines (HUVECs) were treated with different concentrations' irisin, normal glucose, high glucose (HG), HG plus irisin-high (H) or sh-Notch1, cell biological behaviors, LDH, and VEGFA were detected by cell function experiments. Apoptosis- and Notch pathway-related protein levels were evaluated by Western blot. Irisin has no cytotoxicity, and irisin-H elevated cell viability and inhibited apoptosis and LDH level in HG-induced HUVECs. Meanwhile, irisin-H restored HG-repressed migration and angiogenesis in HUVECs. Irisin-H inhibited apoptosis-related protein levels and promoted VEGFA and Notch pathway-related protein levels in HG-treated HUVECs. Additionally, sh-Notch1 reversed the protective effect of irisin-H in HG-treated HUVECs. Irisin restores HG-induced cell injury and angiogenesis in HUVECs by activating Notch pathway via Notch1.
Collapse
Affiliation(s)
- Hanrui Wang
- Departement of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Siying Pei
- Department of Biochemistry, School of Basic Medical Science, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shuqing Fang
- Department of Nephrology, The Central Hospital of Jia Mu Si City, Jiamusi, Heilongjiang, China
| | - Song Jin
- Departement of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shuhua Deng
- Nursing Department, The Central Hospital of Jia Mu Si City, Jiamusi, Heilongjiang, China
| | - Yanan Zhao
- Department of Internal Medicine, Hospital of Traditional Chinese Medicine of Qingan County, Suihua, Heilongjiang, China
| | - Yao Feng
- Department of TCM, The First Affiliated Hospital of Jiamusi University; Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
10
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
11
|
Puri D, Mishra A, Singh AP, Gaur PK, Singh M, Yasir M. Formulation Development of Topical Preparation Containing Nanoparticles of Povidone-Iodine for Wound Healing. Assay Drug Dev Technol 2021; 19:115-123. [PMID: 33535009 DOI: 10.1089/adt.2020.1029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Povidone-iodine (PVI) is an antiseptic drug that is used for wound healing or for repair of the damaged tissue. Studies on solid lipid nanoparticles (SLNs) indicate that this system could potentially be used as a delivery system with improved drug entrapment efficiency and controlled drug release for hydrophilic actives. This study focuses on developing a topical gel containing SLNs of PVI for wound healing. SLNs were prepared by using the solvent emulsification diffusion method. Lipids such as glycerol monostearate, palmitic acid, and stearic acid, and surfactants such as polysorbate 80, soyalecithin, and Pluronic F-68 were used for the preparation of SLN. These were screened out based on particle size and entrapment efficiency of SLN. Gel was prepared by using Carbopol 940 (1% w/w) and propylene glycol (10% w/w). Formulated SLNs were evaluated by various in vitro and in vivo techniques. Based on the results, the drug-to-lipid ratio (1:3) and 2% polysorbate 80 (surfactant) along with stirring rate (3,000 rpm) produced the desired particle size (285.4 nm) with good stability. 22.85% drug loading and 88.83% drug entrapment efficiency were found in the optimized formulation. In vitro drug release shows that it follows the Korsmeyer-Peppas model. The animal study shows that the period of epithelization produced by the test group was 17.14 ± 1.35 days, which was near to that of the standard group (16.25 ± 1.24 days). Clinical Trial Registration number: 1044/PO/Re/S/07/CPCSEA.
Collapse
Affiliation(s)
- Dinesh Puri
- Department of Pharmaceutics, I.T.S. College of Pharmacy, Ghaziabad, India.,Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Ankit Mishra
- Department of Pharmaceutics, I.T.S. College of Pharmacy, Ghaziabad, India
| | - Alok Pratap Singh
- Department of Pharmaceutics, I.T.S. College of Pharmacy, Ghaziabad, India
| | - Praveen Kumar Gaur
- Department of Pharmaceutics, I.T.S. College of Pharmacy, Ghaziabad, India
| | - Monika Singh
- Department of Pharmacology, I.T.S. College of Pharmacy, Ghaziabad, India
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella, Ethiopia
| |
Collapse
|
12
|
The Therapeutic Effect and In Vivo Assessment of Palmitoyl-GDPH on the Wound Healing Process. Pharmaceutics 2021; 13:pharmaceutics13020193. [PMID: 33535623 PMCID: PMC7912838 DOI: 10.3390/pharmaceutics13020193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
The standard treatment of open wounds via the direct usage of therapeutic agents is not without limitations with respect to healing. Small peptides can create a favorable milieu for accelerating the healing of wounds. This study presents the potential of a novel fatty acid conjugated tetrapeptide (palmitic acid-glycine-aspartic acid-proline-histidine; Palmitoyl-GDPH) in alleviating wound healing. Tetracycline was employed as a standard control drug following its significance in wound healing including biologically active and antimicrobial effects. The peptide in liquid form was applied on to a 4 cm2 full thickness wound surgically induced at the dorsum of Sprague Dawley (SD) rats. The in vivo wound treatment with Palmitoyl-GDPH for eighteen days, histologically demonstrated an almost perfect healing exhibited by increased re-epithelialization, enhanced collagen deposition, and diminished scar formation compared to the controls. In addition, the well-developed epidermal-dermal junction and ultimate stimulation of hair follicle-growth in the Palmitoyl-GDPH treated group indicated the wound to have healed as functionally viable tissues. In general, the much lower hemogram values in the Palmitoyl-GDPH group indicated that the ongoing healing is en route to an earlier recovery. Additionally, the liver, kidney, and pancreas function biomarkers being within normal limits indicated the relatively non-toxic nature of Palmitoyl-GDPH at the used dosage. These results indisputably supported the great potential of this newly synthesized Palmitoyl-GDPH to be used as an effective therapeutic agent for wound healing (this actually means creating a new wound).
Collapse
|
13
|
Rezapour-Lactoee A, Yeganeh H, Gharibi R, Milan PB. Enhanced healing of a full-thickness wound by a thermoresponsive dressing utilized for simultaneous transfer and protection of adipose-derived mesenchymal stem cells sheet. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:101. [PMID: 33140201 DOI: 10.1007/s10856-020-06433-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
To boost the healing process in a full-thickness wound, a simple and efficient strategy based on adipose-derived mesenchymal stem cells (ADSCs) transplantation is described in this work. To increase the chance of ADSCs immobilization in the wound bed and prevent its migration, these cells are fully grown on the surface of a thermoresponsive dressing membrane under in vitro condition. Then, the cells sheet with their secreted extracellular matrix (ECM) is transferred to the damaged skin with the help of this dressing membrane. This membrane remains on wound bed and acts both as a cell sheet transfer vehicle, after external reduction of temperature, and protect wound during the healing process like a common wound dressing. The visual inspection of wounded skin (rat animal model) at selected time intervals shows a higher wound closure rate for ADSCs treated group. For this group of rats, the better quality of reconstructed tissue is approved by results of histological and immunohistochemical analysis since the higher length of the new epidermis, the higher thickness of re-epithelialization layer, a higher level of neovascularization and capillary density, and the least collagen deposition are detected in the healed tissue.
Collapse
Affiliation(s)
- Alireza Rezapour-Lactoee
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, P.O. Box:14965/115, Iran.
| | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kim S, Kim M, Jung S, Kwon K, Park J, Kim S, Kwon I, Tae G. Co-delivery of therapeutic protein and catalase-mimic nanoparticle using a biocompatible nanocarrier for enhanced therapeutic effect. J Control Release 2019; 309:181-189. [PMID: 31356840 DOI: 10.1016/j.jconrel.2019.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
Abstract
Therapeutic proteins are indispensable in the treatment of various human diseases. Despite the many benefits of therapeutic proteins, they also exhibit diverse side effects. Therefore, reducing unwanted side effects of therapeutic proteins as well as enhancing their therapeutic efficacy are very important in developing therapeutic proteins. Urate oxidase (UOX) is a therapeutic enzyme that catalyzes the conversion of uric acid (UA) into a soluble metabolite, and it is used clinically for the treatment of hyperuricemia. Since UA degradation by UOX generates H2O2 (a cytotoxic side product), UOX was co-delivered with catalase-mimic nanoparticles (AuNPs) using biocompatible pluronic-based nanocarriers (NCs) to effectively reduce H2O2-associated toxicity in cultured cells and to enhance UA degradation efficiency in vivo. Simple temperature-dependent size changes of NCs allowed co-encapsulation of both UOX and AuNPs at a high loading efficiency without compromising critical properties, resulting in efficient modulation of a mixing ratio of UOX and AuNPs encapsulated in NCs. Co-localizing UOX and AuNPs in the NCs led to enhanced UA degradation and H2O2 removal in vitro, leading to a great reduction in H2O2-associated cytotoxicity compared with UOX alone or a free mixture of UOX and AuNPs. Furthermore, we demonstrated that co-delivery of UOX and AuNPs using NCs significantly improves in vivo UA degradation compared to simple co-injection of free UOX and AuNPs. More broadly, we showed that biocompatible pluronic-based nanocarriers can be used to deliver a target therapeutic protein along with its toxicity-eliminating agent in order to reduce side effects and enhance efficacy.
Collapse
Affiliation(s)
- Seoungkyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Manse Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Secheon Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Junyong Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sukhwan Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
15
|
Kim YS, Sung DK, Kim H, Kong WH, Kim YE, Hahn SK. Nose-to-brain delivery of hyaluronate - FG loop peptide conjugate for non-invasive hypoxic-ischemic encephalopathy therapy. J Control Release 2019; 307:76-89. [PMID: 31229472 DOI: 10.1016/j.jconrel.2019.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 01/13/2023]
Abstract
The intranasal drug administration has attracted great interest as a non-invasive route allowing targeted delivery of drugs directly to the brain. However, one of the main issues in nasal drug administration is mucociliary clearance. Hyaluronate (HA) has been widely used as a mucoadhesive excipient for ocular, rectal, and vaginal delivery. Here, FG loop peptide (FGL) was conjugated to HA for improving enzymatic stability and delivery efficiency from the nose to the brain. The successful conjugation of FGL to aldehyde modified HA was confirmed by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR). The outstanding enzymatic stability of HA-FGL conjugate was also corroborated by the GPC. The HA-FGL conjugate showed enhanced binding affinity onto nasal epithelial cells. In addition, in vivo nose-to-brain delivery of HA-FGL conjugate could be visualized by using an IVIS imaging system and fluorescence microscopy. Finally, in vivo therapeutic effect of HA-FGL conjugate was successfully confirmed by histological analysis, transferase-mediated uridine 5-triphosphate-biotin nick end-labeling (TUNEL) assay, immunofluorescent staining, transmission electron microscopy (TEM), and rotarod tests in hypoxic-ischemic encephalopathy model animals.
Collapse
Affiliation(s)
- Yun Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Hyemin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, Republic of Korea
| | - Won Ho Kong
- Advanced Bio Convergence Center, Pohang Techno Park 394 Jigok-ro, Nam-gu, Pohang 37668, Gyeoungbuk, Republic of Korea
| | - Young Eun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, Republic of Korea.
| |
Collapse
|
16
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
17
|
Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 2019; 18:273-294. [PMID: 30542076 DOI: 10.1038/s41573-018-0005-0] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymer-drug conjugates have long been a mainstay of the drug delivery field, with several conjugates successfully translated into clinical practice. The conjugation of therapeutic agents to polymeric carriers, such as polyethylene glycol, offers several advantages, including improved drug solubilization, prolonged circulation, reduced immunogenicity, controlled release and enhanced safety. In this Review, we discuss the rational design, physicochemical characteristics and recent advances in the development of different classes of polymer-drug conjugates, including polymer-protein and polymer-small-molecule drug conjugates, dendrimers, polymer nanoparticles and multifunctional systems. Current obstacles hampering the clinical translation of polymer-drug conjugate therapeutics and future prospects are also presented.
Collapse
Affiliation(s)
- Iriny Ekladious
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA
| | - Yolonda L Colson
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
18
|
Zhou C, Huang Z, Huang Y, Wang B, Yang P, Fan Y, Hou A, Yang B, Zhao Z, Quan G, Pan X, Wu C. In situ gelation of rhEGF-containing liquid crystalline precursor with good cargo stability and system mechanical properties: a novel delivery system for chronic wounds treatment. Biomater Sci 2019; 7:995-1010. [PMID: 30603758 DOI: 10.1039/c8bm01196f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The objective of this study was to develop a novel delivery system for recombinant human epidermal growth factor (rhEGF) for chronic wound treatment. Such a delivery system should be of good cargo stability and system mechanical properties in order to guarantee a satisfactory wound-healing effect. rhEGF-containing lyotropic liquid crystalline precursors (rhEGF-LLCPs) with in situ gelation capability were considered as a promising candidate to achieve this aim. Various properties of the optimal formulations (rhEGF-LLCP1 and rhEGF-LLCP2) were characterized, including apparent viscosity, gelation time, in vitro release and phase behavior. The stability of rhEGF and system mechanical properties (i.e. mechanical rigidity and bioadhesive force) were verified. Interestingly, rhEGF-LLCP2 with a larger internal water channel diameter exhibited faster release rate in vitro and then better bioactivity in Balb/c 3T3 and HaCaT cell models. Moreover, rhEGF-LLCP2 showed distinct promotion effects on wound closure, inflammatory recovery and re-epithelization process in Sprague-Dawley rat models. In conclusion, rhEGF-LLCP emerged as a prospective candidate to preserve the stability and enhance the wound-healing effect of rhEGF, which might serve as a new delivery system for chronic wound therapies.
Collapse
Affiliation(s)
- Chan Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 2019; 112:108615. [PMID: 30784919 DOI: 10.1016/j.biopha.2019.108615] [Citation(s) in RCA: 468] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Wound management in diabetic patient is of an extreme clinical and social concern. The delayed and impaired healing makes it more critical for research focus. The research on impaired healing process is proceeding hastily evident by new therapeutic approaches other than conventional such as single growth factor, dual growth factor, skin substitutes, cytokine stimulators, cytokine inhibitors, matrix metalloproteinase inhibitors, gene and stem cell therapy, extracellular matrix and angiogenesis stimulators. Although numerous studies are available that support delayed wound healing in diabetes but detailed mechanistic insight including factors involved and their role still needs to be revealed. This review mainly focuses on the molecular cascades of cytokines (with growth factors) and erstwhile factors responsible for delayed wound healing, molecular targets and recent advancements in complete healing and its cure. Present article briefed recent pioneering information on possible molecular targets and treatment strategies including clinical trials to clinicians and researchers working in similar area.
Collapse
Affiliation(s)
- Satish Patel
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Shikha Srivastava
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India.
| |
Collapse
|
20
|
Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 2018; 120:385-393. [DOI: 10.1016/j.ijbiomac.2018.08.057] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
|
21
|
Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M. In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. Int J Biol Macromol 2018; 120:2418-2430. [DOI: 10.1016/j.ijbiomac.2018.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
|
22
|
Ferguson EL, Naseer S, Powell LC, Hardwicke J, Young FI, Zhu B, Liu Q, Song B, Thomas DW. Controlled release of dextrin-conjugated growth factors to support growth and differentiation of neural stem cells. Stem Cell Res 2018; 33:69-78. [PMID: 30321831 PMCID: PMC6288241 DOI: 10.1016/j.scr.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/06/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022] Open
Abstract
An essential aspect of stem cell in vitro culture and in vivo therapy is achieving sustained levels of growth factors to support stem cell survival and expansion, while maintaining their multipotency and differentiation potential. This study investigated the ability of dextrin (~74,000 g/mol; 27.8 mol% succinoylation) conjugated to epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF; or FGF-2) (3.9 and 6.7% w/w protein loading, respectively) to support the expansion and differentiation of stem cells in vitro via sustained, controllable growth factor release. Supplementation of mouse neural stem cells (mNSCs) with dextrin-growth factor conjugates led to greater and prolonged proliferation compared to unbound EGF/bFGF controls, with no detectable apoptosis after 7 days of treatment. Immunocytochemical detection of neural precursor (nestin) and differentiation (Olig2, MAP2, GFAP) markers verified that controlled release of dextrin-conjugated growth factors preserves stem cell properties of mNSCs for up to 7 days. These results show the potential of dextrin-growth factor conjugates for localized delivery of bioactive therapeutic agents to support stem cell expansion and differentiation, and as an adjunct to direct neuronal repair.
Collapse
Affiliation(s)
- Elaine L Ferguson
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK.
| | - Sameza Naseer
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Lydia C Powell
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Joseph Hardwicke
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Fraser I Young
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - Bangfu Zhu
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Qian Liu
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Bing Song
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| | - David W Thomas
- Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, 10 Museum Place, Cardiff, South Glamorgan, CF10 3BG, UK
| |
Collapse
|
23
|
Sun T, Zhan B, Zhang W, Qin D, Xia G, Zhang H, Peng M, Li SA, Zhang Y, Gao Y, Lee WH. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int J Nanomedicine 2018; 13:5771-5786. [PMID: 30310280 PMCID: PMC6165789 DOI: 10.2147/ijn.s156206] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Nonscar wound healing is a desirable treatment for cutaneous wounds worldwide. Peptide OH-CATH30 (OH30) from king cobra can selectively regulate the innate immunity and create an anti-inflammatory micro-environment which might benefit nonscar wound healing. Purpose To overcome the enzymatic digestion and control release of OH30, OH30 encapsulated in carboxymethyl chitosan nanoparticles (CMCS-OH30 NP) were prepared and their effects on wound healing were evaluated. Methods CMCS-OH30 NP were prepared by mild ionic gelation method and properties of the prepared CMCS-OH30 NP were determined by dynamic light scattering. Encapsulation efficiency, stability and release profile of OH30 from prepared CMCS-OH30 NP were determined by HPLC. Cytotoxicity, cell migration and cellular uptake of CMCS-OH30 NP were determined by conventional methods. The effects of prepared CMCS-OH30 NP on the wound healing was investigated by full-thickness excision animal models. Results The release of encapsulated OH30 from prepared CMCS-OH30 NP was maintained for at least 24 h in a controlled manner. CMCSOH30 NP enhanced the cell migration but had no effects on the metabolism and proliferation of keratinocytes. In the full-thickness excision animal models, the CMCS-OH30 NP treatment significantly accelerated the wound healing compared with CMCS or OH30 administration alone. Histopathological examination suggested that CMCS-OH30 NP promoted wound healing by enhancing the granulation tissue formation through the re-epithelialized and neovascularized composition. CMCS-OH30 NP induced a steady anti-inflammatory cytokine IL10 expression but downregulated the expressions of several pro-inflammatory cytokines. Conclusion The prepared biodegradable drug delivery system accelerates the healing and shows better prognosis because of the combined effects of OH30 released from the nanoparticles.
Collapse
Affiliation(s)
- Tongyi Sun
- Department of Bioengineering, School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Bo Zhan
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China, .,Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| | - Weifen Zhang
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Di Qin
- Department of Bioengineering, School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Guixue Xia
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Huijie Zhang
- Department of Bioengineering, School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China, .,Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| | - Meiyu Peng
- Department of Immunology, School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Sheng-An Li
- Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| | - Yun Zhang
- Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| | - Yuanyuan Gao
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China,
| | - Wen-Hui Lee
- Department of Bioengineering, School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China, .,Key Laboratory of Bioactive Peptide of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China,
| |
Collapse
|
24
|
Kim YS, Sung DK, Kong WH, Kim H, Hahn SK. Synergistic effects of hyaluronate - epidermal growth factor conjugate patch on chronic wound healing. Biomater Sci 2018; 6:1020-1030. [PMID: 29616250 DOI: 10.1039/c8bm00079d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proteolytic microenvironment in the wound area reduces the stability and the half-life of growth factors in vivo, making difficult the topical delivery of growth factors. Here, epidermal growth factor (EGF) was conjugated to hyaluronate (HA) to improve the long-term stability against enzymatic degradation and the therapeutic effect by enhancing the biological interaction with HA receptors on skin cells. After the synthesis of HA-EGF conjugates, they were incorporated into a patch-type formulation for the facile topical application and sustained release of EGF. According to ELISA, the HA-EGF conjugates showed a long-term stability compared with native EGF. Furthermore, HA-EGF conjugates appeared to interact with skin cells through two types of HA and EGF receptors, resulting in a synergistically improved healing effect. Taken together, we could confirm the feasibility of HA-EGF conjugates for the transdermal treatment of chronic wounds.
Collapse
Affiliation(s)
- Yun Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongamro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | | | | | | | | |
Collapse
|
25
|
Liu X, Sun J, Gao W. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018; 178:413-434. [DOI: 10.1016/j.biomaterials.2018.04.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
|
26
|
Hu X, Wang Y, Liu C, Jin Z, Tian Y. Dextrin-uricase conjugate: Preparation, characterization, and enzymatic properties. Int J Biol Macromol 2018; 111:28-32. [DOI: 10.1016/j.ijbiomac.2017.12.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 01/13/2023]
|
27
|
Yen YH, Pu CM, Liu CW, Chen YC, Chen YC, Liang CJ, Hsieh JH, Huang HF, Chen YL. Curcumin accelerates cutaneous wound healing via multiple biological actions: The involvement of TNF-α, MMP-9, α-SMA, and collagen. Int Wound J 2018; 15:605-617. [PMID: 29659146 DOI: 10.1111/iwj.12904] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Curcumin, a constituent of the turmeric plant, has antitumor, anti-inflammatory, and antioxidative effects, but its effects on wound healing are unclear. We created back wounds in 72 mice and treated them with or without topical curcumin (0.2 mg/mL) in Pluronic F127 gel (20%) daily for 3, 5, 7, 9, and 12 days. Healing in wounds was evaluated from gross appearance, microscopically by haematoxylin and eosin staining, by immunohistochemistry for tumour necrosis factor alpha and alpha smooth muscle actin, and by polymerase chain reaction amplification of mRNA expression levels. Treatment caused fast wound closure with well-formed granulation tissue dominated by collagen deposition and regenerating epithelium. Curcumin increased the levels of tumour necrosis factor alpha mRNA and protein in the early phase of healing, which then decreased significantly. However, these levels remained high in controls. Levels of collagen were significantly higher in curcumin-treated wounds. Immunohistochemical staining for alpha smooth muscle actin was increased in curcumin-treated mice on days 7 and 12. Curcumin treatment significantly suppressed matrix metallopeptidase-9 and stimulated alpha smooth muscle levels in tumour necrosis factor alpha-treated fibroblasts via nuclear factor kappa B signalling. Thus, topical curcumin accelerated wound healing in mice by regulating the levels of various cytokines.
Collapse
Affiliation(s)
- Yu-Hsiu Yen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan.,Department of Tourism and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chi-Ming Pu
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Chun Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Hsien Hsieh
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Fu Huang
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Atkinson SP, Andreu Z, Vicent MJ. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. J Pers Med 2018; 8:E6. [PMID: 29360800 PMCID: PMC5872080 DOI: 10.3390/jpm8010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Zoraida Andreu
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
29
|
Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12:e296-e312. [PMID: 28482114 PMCID: PMC5813216 DOI: 10.1002/term.2443] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off-the-shelf treatment; however, the dose- and time-dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Trinity Centre for BioengineeringTrinity Biomedical Sciences Institute, Trinity College DublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Medical University of BahrainAdliyaKingdom of Bahrain
| |
Collapse
|
30
|
Escalona GR, Sanchis J, Vicent MJ. pH-Responsive Polyacetal-Protein Conjugates Designed for Polymer Masked-Unmasked Protein Therapy (PUMPT). Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/23/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Gabriela Rodríguez Escalona
- Centro de Investigación Príncipe Felipe (CIPF); C/Eduardo Primo Yúfera, 3 46012 Valencia Spain
- Centro de Biomateriales e Ingeniería Tisular; Universidad Politécnica de Valencia; Camino de Vera, s/n 46022 Valencia Spain
| | - Joaquin Sanchis
- Centro de Investigación Príncipe Felipe (CIPF); C/Eduardo Primo Yúfera, 3 46012 Valencia Spain
- Faculty of Pharmacy and Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville VIC 3052 Australia
| | - María J. Vicent
- Centro de Investigación Príncipe Felipe (CIPF); C/Eduardo Primo Yúfera, 3 46012 Valencia Spain
| |
Collapse
|
31
|
Grip J, Engstad RE, Skjæveland I, Škalko-Basnet N, Holsæter AM. Sprayable Carbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing – Development and in-vivo evaluation. Eur J Pharm Sci 2017. [DOI: 10.1016/j.ejps.2017.06.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Avachat AM, Takudage PJ. Design and characterization of multifaceted lyophilized liposomal wafers with promising wound healing potential. J Liposome Res 2017; 28:193-208. [DOI: 10.1080/08982104.2017.1335319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Amelia M. Avachat
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Pune, India
| | - Pooja J. Takudage
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Pune, India
| |
Collapse
|
33
|
Shou K, Huang Y, Qi B, Hu X, Ma Z, Lu A, Jian C, Zhang L, Yu A. Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber-based hydrogel. J Tissue Eng Regen Med 2017; 12:e867-e880. [PMID: 28079980 DOI: 10.1002/term.2400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 10/05/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been considered to be a promising strategy for wound healing. However, poor viability of engrafted BMSCs and limited capabilities of differentiation into the desired cell types in wounds often hinder its application. Few studies report the induction of BMSC differentiation into the skin regeneration-related cell types using natural biopolymer, e.g. chitin and its derivative. Here we utilized a chitin nanofiber (CNF) hydrogel as a directive cue to induce BMSC differentiation for enhancing cutaneous wound regeneration in the absence of cell-differentiating factors. First, a 'green' fabrication of CNF hydrogels encapsulating green fluorescence protein (GFP)-transfected rat BMSCs was performed via in-situ physical gelation without chemical cross-linking. Without soluble differentiation inducers, CNF hydrogels decreased the expression of BMSC transcription factors (Oct4 and Klf4) and concomitantly induced their differentiation into the angiogenic cells and fibroblasts, which are indispensable for wound regeneration. In vivo, rat full-thickness cutaneous wounds treated with BMSC hydrogel exhibited better viability of the cells than did local BMSC injection-treated wounds. Similar to that of the in vitro result, CNF hydrogels induced BMSCs to differentiate into beneficial cell types, resulting in accelerated wound repair characterized by granulation tissue formation. Our data suggest that three-dimensional CNF hydrogel may not only serve as a 'protection' to improve the viability of exogenous BMSCs, but also provide a functional scaffold capable of enhancing BMSC regenerative potential to promote wound healing. This may help to overcome the current limitations to stem cell therapy that are faced in the field of wound regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kangquan Shou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Huang
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Baiwen Qi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhanjun Ma
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ang Lu
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lina Zhang
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Enhancement of Bone-Marrow-Derived Mesenchymal Stem Cell Angiogenic Capacity by NPWT for a Combinatorial Therapy to Promote Wound Healing with Large Defect. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7920265. [PMID: 28243602 PMCID: PMC5294348 DOI: 10.1155/2017/7920265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022]
Abstract
Poor viability of engrafted bone marrow mesenchymal stem cells (BMSCs) often hinders their application for wound healing, and the strategy of how to take full advantage of their angiogenic capacity within wounds still remains unclear. Negative pressure wound therapy (NPWT) has been demonstrated to be effective for enhancing wound healing, especially for the promotion of angiogenesis within wounds. Here we utilized combinatory strategy using the transplantation of BMSCs and NPWT to investigate whether this combinatory therapy could accelerate angiogenesis in wounds. In vitro, after 9-day culture, BMSCs proliferation significantly increased in NPWT group. Furthermore, NPWT induced their differentiation into the angiogenic related cells, which are indispensable for wound angiogenesis. In vivo, rat full-thickness cutaneous wounds treated with BMSCs combined with NPWT exhibited better viability of the cells and enhanced angiogenesis and maturation of functional blood vessels than did local BMSC injection or NPWT alone. Expression of angiogenesis markers (NG2, VEGF, CD31, and α-SMA) was upregulated in wounds treated with combined BMSCs with NPWT. Our data suggest that NPWT may act as an inductive role to enhance BMSCs angiogenic capacity and this combinatorial therapy may serve as a simple but efficient clinical solution for complex wounds with large defects.
Collapse
|
35
|
Mei L, Fan R, Li X, Wang Y, Han B, Gu Y, Zhou L, Zheng Y, Tong A, Guo G. Nanofibers for improving the wound repair process: the combination of a grafted chitosan and an antioxidant agent. Polym Chem 2017. [DOI: 10.1039/c7py00038c] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wound healing, a complex process involving several important biomolecules and pathways, requires efficient dressings to enhance the therapy effects.
Collapse
|
36
|
Milan PB, Lotfibakhshaiesh N, Joghataie M, Ai J, Pazouki A, Kaplan D, Kargozar S, Amini N, Hamblin M, Mozafari M, Samadikuchaksaraei A. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater 2016; 45:234-246. [PMID: 27591919 DOI: 10.1016/j.actbio.2016.08.053] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
There is an unmet clinical need for novel wound healing strategies to treat full thickness skin defects, especially in diabetic patients. We hypothesized that a scaffold could perform dual roles of a biomechanical support and a favorable biochemical environment for stem cells. Human umbilical cord perivascular cells (HUCPVCs) have been recently reported as a type of mesenchymal stem cell that can accelerate early wound healing in skin defects. However, there are only a limited number of studies that have incorporated these cells into natural scaffolds for dermal tissue engineering. The aim of the present study was to promote angiogenesis and accelerate wound healing by using HUCPVCs and decellularized dermal matrix (DDM) in a rat model of diabetic wounds. The DDM scaffolds were prepared from harvested human skin samples and histological, ultrastructural, molecular and mechanical assessments were carried out. In comparison with the control (without any treatment) and DDM alone group, full thickness excisional wounds treated with HUCPVCs-loaded DDM scaffolds demonstrated an accelerated wound closure rate, faster re-epithelization, more granulation tissue formation and decreased collagen deposition. Furthermore, immunofluorescence analysis showed that the VEGFR-2 expression and vascular density in the HUCPVCs-loaded DDM scaffold treated group were also significantly higher than the other groups at 7days post implantation. Since the rates of angiogenesis, re-epithelization and formation of granulation tissue are directly correlated with full thickness wound healing in patients, the proposed HUCPVCs-loaded DDM scaffolds may fulfil a role neglected by current treatment strategies. This pre-clinical proof-of-concept study warrants further clinical evaluation. STATEMENT OF SIGNIFICANCE The aim of the present study was to design a novel tissue-engineered system to promote angiogenesis, re-epithelization and granulation of skin tissue using human umbilical cord perivascular stem cells and decellularized dermal matrix natural scaffolds in rat diabetic wound models. The authors of this research article have been working on stem cells and tissue engineering scaffolds for years. According to our knowledge, there is a lack of an efficient system for the treatment of skin defects using tissue engineering strategy. Since the rates of angiogenesis, re-epithelization and granulation tissue are directly correlated with full thickness wound healing, the proposed HUCPVCs-loaded DDM scaffolds perfectly fills the niche neglected by current treatment strategies. This pre-clinical study demonstrates the proof-of-concept that necessitates clinical evaluations.
Collapse
|
37
|
Tronci G, Yin J, Holmes RA, Liang H, Russell SJ, Wood DJ. Protease-sensitive atelocollagen hydrogels promote healing in a diabetic wound model. J Mater Chem B 2016; 4:7249-7258. [PMID: 32263727 DOI: 10.1039/c6tb02268e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The design of exudate-managing wound dressings is an established route to accelerated healing, although such design remains a challenge from material and manufacturing standpoints. Aiming towards the clinical translation of knowledge gained in vitro with highly-swollen rat tail collagen hydrogels, this study investigated the healing capability in a diabetic mouse wound model of telopeptide-free, protease-inhibiting collagen networks. 4-Vinylbenzylation and UV irradiation of type I atelocollagen (AC) led to hydrogel networks with chemical and macroscopic properties comparable to previous collagen analogues, attributable to similar lysine content and dichroic properties. After 4 days in vitro, hydrogels induced nearly 50 RFU% reduction in matrix metalloproteinase (MMP)-9 activity, whilst showing less than 20 wt% mass loss. After 20 days in vivo, dry networks promoted 99% closure of 10 × 10 mm full thickness wounds and accelerated neo-dermal tissue formation compared to Mepilex®. This collagen system can be equipped with multiple, customisable properties and functions key to personalised chronic wound care.
Collapse
Affiliation(s)
- Giuseppe Tronci
- Nonwovens Research Group, School of Design, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
38
|
Azzopardi EA, Conlan RS, Whitaker IS. Polymer therapeutics in surgery: the next frontier. ACTA ACUST UNITED AC 2016; 1:19-29. [PMID: 27588210 PMCID: PMC4985703 DOI: 10.1002/jin2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 01/13/2023]
Abstract
Polymer therapeutics is a successful branch of nanomedicine, which is now established in several facets of everyday practice. However, to our knowledge, no literature regarding the application of the underpinning principles, general safety, and potential of this versatile class to the perioperative patient has been published. This study provides an overview of polymer therapeutics applied to clinical surgery, including the evolution of this demand‐oriented scientific field, cutting‐edge concepts, its implications, and limitations, illustrated by products already in clinical use and promising ones in development. In particular, the effect of design of polymer therapeutics on biophysical and biochemical properties, the potential for targeted delivery, smart release, and safety are addressed. Emphasis is made on principles, giving examples in salient areas of demand in current surgical practice. Exposure of the practising surgeon to this versatile class is crucial to evaluate and maximise the benefits that this established field presents and to attract a new generation of clinician–scientists with the necessary knowledge mix to drive highly successful innovation.
Collapse
Affiliation(s)
- Ernest A Azzopardi
- Reconstructive Surgery and Regenerative Medicine Research Unit, Institute for Life Science Swansea University Medical School, Swansea University Singleton Park Campus SwanseaSA2 8PP UK; The Welsh Centre for Burns and Plastic Surgery Moriston Hospital Swansea Swansea SA6 6NL UK; Institute for Life Science and Centre for NanoHealth Swansea University Medical School, Swansea University Singleton Park Campus Swansea SA2 8PP UK
| | - R Steven Conlan
- Institute for Life Science and Centre for NanoHealth Swansea University Medical School, Swansea University Singleton Park Campus Swansea SA2 8PP UK
| | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Unit, Institute for Life Science Swansea University Medical School, Swansea University Singleton Park Campus SwanseaSA2 8PP UK; The Welsh Centre for Burns and Plastic Surgery Moriston Hospital Swansea Swansea SA6 6NL UK; Institute for Life Science and Centre for NanoHealth Swansea University Medical School, Swansea University Singleton Park Campus Swansea SA2 8PP UK
| |
Collapse
|
39
|
Li X, Ye X, Qi J, Fan R, Gao X, Wu Y, Zhou L, Tong A, Guo G. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent. Int J Nanomedicine 2016; 11:3993-4009. [PMID: 27574428 PMCID: PMC4993277 DOI: 10.2147/ijn.s104350] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Epidermal growth factor (EGF) is a mitogenic polypeptide that stimulates wound repair; however, precise control over its application is necessary to reduce the side effects and achieve desired therapeutic benefits. Moreover, the extensive oxidative stress during the wound healing process generally inhibits repair of the injured tissues. Topical applications of antioxidants like curcumin (Cur) could protect tissues from oxidative damage and significantly improve tissue remodeling. To achieve much accelerated wound healing effects, we designed a novel dual drug co-loaded in situ gel-forming nanoparticle/hydrogel system (EGF-Cur-NP/H) which acted not only as a supportive matrix for the regenerative tissue, but also as a sustained drug depot for EGF and Cur. In the established excisional full-thickness wound model, EGF-Cur-NP/H treatment significantly enhanced wound closure through increasing granulation tissue formation, collagen deposition, and angiogenesis, relative to normal saline, nanoparticle/hydrogel (NP/H), Cur-NP/H, and EGF-NP/H treated groups. In conclusion, this study provides a biocompatible in situ gel-forming system for efficient topical application of EGF and Cur in the landscape of tissue repair.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xianlong Ye
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Jianying Qi
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Yunzhou Wu
- College of Life Science, Northeast Agriculture University, Harbin, People's Republic of China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
40
|
Qiu M, Chen D, Shen C, Shen J, Zhao H, He Y. Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model. Int J Mol Sci 2016; 17:ijms17071001. [PMID: 27347938 PMCID: PMC4964377 DOI: 10.3390/ijms17071001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
Traditional therapeutic methods for skin wounds have many disadvantages, and new wound dressings that can facilitate the healing process are thus urgently needed. Platelet-rich plasma (PRP) contains multiple growth factors (GFs) and shows a significant capacity to heal soft tissue wounds. However, these GFs have a short half-life and deactivate rapidly; we therefore need a sustained delivery system to overcome this shortcoming. In this study, poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA: PLEL) hydrogel was successfully created as delivery vehicle for PRP GFs and was evaluated systematically. PLEL hydrogel was injectable at room temperature and exhibited a smart thermosensitive in situ gel-formation behavior at body temperature. In vitro cell culture showed PRP-loaded PLEL hydrogel (PRP/PLEL) had little cytotoxicity, and promoted EaHy926 proliferation, migration and tube formation; the factor release assay additionally indicated that PLEL realized the controlled release of PRP GFs for as long as 14 days. When employed to treat rodents’ full-thickness skin defects, PRP/PLEL showed a significantly better ability to raise the number of both newly formed and mature blood vessels compared to the control, PLEL and PRP groups. Furthermore, the PRP/PLEL-treated group displayed faster wound closure, better reepithelialization and collagen formation. Taken together, PRP/PLEL provides a promising strategy for promoting angiogenesis and skin wound healing, which extends the potential of this dressing for clinical application.
Collapse
Affiliation(s)
- Manle Qiu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Daoyun Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Chaoyong Shen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ji Shen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Huakun Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Yaohua He
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
41
|
Johnson NR, Wang Y. Drug delivery systems for wound healing. Curr Pharm Biotechnol 2016; 16:621-9. [PMID: 25658378 DOI: 10.2174/1389201016666150206113720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/19/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
Protein, gene, and small molecule therapies hold great potential for facilitating comprehensive tissue repair and regeneration. However, their clinical value will rely on effective delivery systems which maximize their therapeutic benefit. Significant advances have been made in recent years towards biomaterial delivery systems to satisfy this clinical need. Here we summarize the most outstanding advances in drug delivery technology for cutaneous wound healing.
Collapse
Affiliation(s)
| | - Yadong Wang
- 320 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15261 USA.
| |
Collapse
|
42
|
Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci Rep 2015; 5:18104. [PMID: 26643550 PMCID: PMC4672289 DOI: 10.1038/srep18104] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to permit bone marrow mesenchymal stem cells (BMSCs) to reach their full potential in the treatment of chronic wounds. A biocompatible multifunctional crosslinker based temperature sensitive hydrogel was developed to deliver BMSCs, which improve the chronic inflammation microenvironments of wounds. A detailed in vitro investigation found that the hydrogel is suitable for BMSC encapsulation and can promote BMSC secretion of TGF-β1 and bFGF. In vivo, full-thickness skin defects were made on the backs of db/db mice to mimic diabetic ulcers. It was revealed that the hydrogel can inhibit pro-inflammatory M1 macrophage expression. After hydrogel association with BMSCs treated the wound, significantly greater wound contraction was observed in the hydrogel + BMSCs group. Histology and immunohistochemistry results confirmed that this treatment contributed to the rapid healing of diabetic skin wounds by promoting granulation tissue formation, angiogenesis, extracellular matrix secretion, wound contraction, and re-epithelialization. These results show that a hydrogel laden with BMSCs may be a promising therapeutic strategy for the management of diabetic ulcers.
Collapse
|
43
|
In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int J Pharm 2015; 495:560-571. [PMID: 26363112 DOI: 10.1016/j.ijpharm.2015.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Accepted: 09/07/2015] [Indexed: 02/05/2023]
Abstract
In situ gel-forming system as local drug delivery system in dermal traumas has generated a great interest. Accumulating evidence shows that antimicrobial peptides play pivotal roles in the process of wound healing. Here in this study, to explore the potential application of antimicrobial peptide in wound healing, biodegradable poly(L-lactic acid)-Pluronic L35-poly(L-lactic acid) (PLLA-L35-PLLA) was developed at first. Then based on this polymer, an injectable in situ gel-forming system composed of human antimicrobial peptides 57 (AP-57) loaded nanoparticles and thermosensitive hydrogel was prepared and applied for cutaneous wound healing. AP-57 peptides were enclosed with biocompatible nanoparticles (AP-57-NPs) with high drug loading and encapsulation efficiency. AP-57-NPs were further encapsulated in a thermosensitive hydrogel (AP-57-NPs-H) to facilitate its application in cutaneous wound repair. As a result, AP-57-NPs-H released AP-57 in an extended period and exhibited quite low cytotoxicity and high anti-oxidant activity in vitro. Moreover, AP-57-NPs-H was free-flowing liquid at room temperature, and can form non-flowing gel without any crosslink agent upon applied on the wounds. In vivo wound healing assay using full-thickness dermal defect model of SD rats indicated that AP-57-NPs-H could significantly promote wound healing. At day 14 after operation, AP-57-NPs-H treated group showed nearly complete wound closure of 96.78 ± 3.12%, whereas NS, NPs-H and AP-57-NPs group recovered by about 68.78 ± 4.93%, 81.96 ± 3.26% and 87.80 ± 4.62%, respectively. Histopathological examination suggested that AP-57-NPs-H could promote cutaneous wound healing through enhancing granulation tissue formation, increasing collagen deposition and promoting angiogenesis in the wound tissue. Therefore, AP-57-NPs-H might have potential application in wound healing.
Collapse
|
44
|
Hajimiri M, Shahverdi S, Esfandiari MA, Larijani B, Atyabi F, Rajabiani A, Dehpour AR, Amini M, Dinarvand R. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev Ind Pharm 2015; 42:707-19. [DOI: 10.3109/03639045.2015.1075030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mirhamed Hajimiri
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nano Alvand Co., Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, Iran,
| | - Sheida Shahverdi
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mohammad Amin Esfandiari
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center (EMRC), Tehran University Medical Sciences, Tehran, Iran,
| | - Fatemeh Atyabi
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Afsaneh Rajabiani
- Department of Pathology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran, and
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
45
|
The topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. J Control Release 2015; 197:41-7. [DOI: 10.1016/j.jconrel.2014.10.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/22/2014] [Accepted: 10/31/2014] [Indexed: 12/21/2022]
|
46
|
Wu Z, Tang Y, Fang H, Su Z, Xu B, Lin Y, Zhang P, Wei X. Decellularized scaffolds containing hyaluronic acid and EGF for promoting the recovery of skin wounds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5322. [PMID: 25604697 DOI: 10.1007/s10856-014-5322-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 05/04/2014] [Indexed: 06/04/2023]
Abstract
There is no effective therapy for the treatment of deep and large area skin wounds. Decellularized scaffolds can be prepared from animal tissues and represent a promising biomaterial for investigation in tissue regeneration studies. In this study, MTT assay showed that epidermal growth factor (EGF) increased NIH3T3 cell proliferation in a bell-shaped dose response, and the maximum cell proliferation was achieved at a concentration of 25 ng/ml. Decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments. Hyaluronic acid (HA) increased EGF adsorption to the scaffolds. Decellularized scaffolds containing HA sustained the release of EGF compared to no HA. Rabbits contain relatively large skin surface and are less expensive and easy to be taken care, so that a rabbit wound healing model was use in this study. Four full-thickness skin wounds were created in each rabbit for evaluation of the effects of the scaffolds on the skin regeneration. Wounds covered with scaffolds containing either 1 or 3 μg/ml EGF were significantly smaller than with vaseline oil gauzes or with scaffolds alone, and the wounds covered with scaffolds containing 1 μg/ml EGF recovered best among all four wounds. Hematoxylin-Eosin staining confirmed these results by demonstrating that significantly thicker dermis layers were also observed in the wounds covered by the decellularized scaffolds containing HA and either 1 or 3 μg/ml EGF than with vaseline oil gauzes or with scaffolds alone. In addition, the scaffolds containing HA and 1 μg/ml EGF gave thicker dermis layers than HA and 3 μg/ml EGF and showed the regeneration of skin appendages on day 28 post-transplantation. These results demonstrated that decellularized scaffolds containing HA and EGF could provide a promising way for the treatment of human skin injuries.
Collapse
Affiliation(s)
- Zhengzheng Wu
- Key Lab for Genetic Medicine of Guangdong Province, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ferguson EL, Azzopardi E, Roberts JL, Walsh TR, Thomas DW. Dextrin-colistin conjugates as a model bioresponsive treatment for multidrug resistant bacterial infections. Mol Pharm 2014; 11:4437-47. [PMID: 25360900 DOI: 10.1021/mp500584u] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymer therapeutics offer potential benefits in the treatment of multidrug resistant (MDR) infections; affording targeted delivery of biologically active agents to the site of inflammation, potential decreases in systemic toxicity, and the retention of antimicrobial activity at the target site. As a prototype model, these studies developed and characterized a library of dextrin-colistin conjugates (dextrin molecular weight: 7500-48,000 g/mol) as a means of targeting the delivery of colistin. Optimum colistin release kinetics (following dextrin degradation by physiological concentrations of amylase (100 IU/L)) were observed in conjugates containing low molecular weight (∼7500 g/mol) dextrin with ∼1 mol % succinoylation (∼80% drug release within 48 h, compared to ∼33% from sodium colistin methanesulfonate (CMS, Colomycin)). These conjugates exhibited comparable antimicrobial activity to CMS in conventional MIC assays against a range of Gram-negative pathogens, but with significantly reduced in vitro toxicity toward kidney (IC₅₀ = CMS, 15.4 μg/mL; dextrin-colistin, 63.9 μg/mL) and macrophage (IC₅₀ = CMS, 111.3 μg/mL; dextrin-colistin, 303.9 μg/mL) cells. In vivo dose-escalation studies in rats demonstrated improved pharmacokinetics of the conjugates, with prolonged plasma levels of colistin (t₁/₂ 135-1271 min vs 53 min) and decreased toxicity, compared to colistin sulfate. These studies highlight the potential utility of "nanoantibiotic" polymer therapeutics to aid the safe, effective, and targeted delivery of colistin in the management of MDR infections.
Collapse
Affiliation(s)
- Elaine L Ferguson
- Advanced Therapies Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, ‡Microbiology and Infection Translational Research Group (MITReG), §Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University , Heath Park, Cardiff CF14 4XY, U.K
| | | | | | | | | |
Collapse
|
48
|
Talelli M, Vicent MJ. Reduction Sensitive Poly(l-glutamic acid) (PGA)-Protein Conjugates Designed for Polymer Masked–Unmasked Protein Therapy. Biomacromolecules 2014; 15:4168-77. [DOI: 10.1021/bm5011883] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marina Talelli
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo
Yúfera 3, 46012 Valencia, Spain
| | - María J. Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo
Yúfera 3, 46012 Valencia, Spain
| |
Collapse
|
49
|
Pelegri-O'Day EM, Lin EW, Maynard HD. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J Am Chem Soc 2014; 136:14323-32. [PMID: 25216406 DOI: 10.1021/ja504390x] [Citation(s) in RCA: 468] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-polymer conjugates are widely used as therapeutics. All Food and Drug Administration (FDA)-approved protein conjugates are covalently linked to poly(ethylene glycol) (PEG). These PEGylated drugs have longer half-lives in the bloodstream, leading to less frequent dosing, which is a significant advantage for patients. However, there are some potential drawbacks to PEG that are driving the development of alternatives. Polymers that display enhanced pharmacokinetic properties along with additional advantages such as improved stability or degradability will be important to advance the field of protein therapeutics. This perspective presents a summary of protein-PEG conjugates for therapeutic use and alternative technologies in various stages of development as well as suggestions for future directions. Established methods of producing protein-PEG conjugates and new approaches utilizing controlled radical polymerization are also covered.
Collapse
Affiliation(s)
- Emma M Pelegri-O'Day
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
50
|
Duncan R. Polymer therapeutics: Top 10 selling pharmaceuticals — What next? J Control Release 2014; 190:371-80. [DOI: 10.1016/j.jconrel.2014.05.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/27/2014] [Accepted: 05/02/2014] [Indexed: 01/02/2023]
|