1
|
Yang SH, Song WL, Fan LL, Deng CF, Xie R, Wang W, Liu Z, Pan DW, Ju XJ, Chu LY. Microfluidic fabrication of monodisperse microcapsules with gas cores. LAB ON A CHIP 2024; 24:3556-3567. [PMID: 38949110 DOI: 10.1039/d4lc00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A facile strategy for efficient and continuous fabrication of monodisperse gas-core microcapsules with controllable sizes and excellent ultrasound-induced burst performances is developed based on droplet microfluidics and interfacial polymerization. Monodisperse gas-in-oil-in-water (G/O/W) double emulsion droplets with a gas core and monomer-contained oil layer are fabricated in the upstream of a microfluidic device as templates, and then water-soluble monomers are added into the aqueous continuous phase in the downstream to initiate rapid interfacial polymerization at the O/W interfaces to prepare monodisperse gas-in-oil-in-solid (G/O/S) microcapsules with gas cores. The sizes of both microbubbles and G/O/W droplet templates can be precisely controlled by adjusting the gas supply pressure and the fluid flow rates. Due to the very thin shells of G/O/S microcapsules fabricated via interfacial polymerization, the sizes of the resultant G/O/S microcapsules are almost the same as those of the G/O/W droplet templates, and the microcapsules exhibit excellent deformable properties and ultrasound-induced burst performances. The proposed strategy provides a facile and efficient route for controllably and continuously fabricating monodisperse microcapsules with gas cores, which are highly desired for biomedical applications.
Collapse
Affiliation(s)
- Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Wan-Lu Song
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Lin-Ling Fan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Fernandes DA. Liposomes for Cancer Theranostics. Pharmaceutics 2023; 15:2448. [PMID: 37896208 PMCID: PMC10610083 DOI: 10.3390/pharmaceutics15102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers.
Collapse
|
3
|
He Y, Zhang W, Xiao Q, Fan L, Huang D, Chen W, He W. Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment. Asian J Pharm Sci 2022; 17:817-837. [PMID: 36415834 PMCID: PMC9671608 DOI: 10.1016/j.ajps.2022.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The liposome is the first nanomedicine transformed into the market and applied to human patients. Since then, such phospholipid bilayer vesicles have undergone technological advancements in delivering small molecular-weight compounds and biological drugs. Numerous investigations about liposome uses were conducted in different treatment fields, including anti-tumor, anti-fungal, anti-bacterial, and clinical analgesia, owing to liposome's ability to reduce drug cytotoxicity and improve the therapeutic efficacy and combinatorial delivery. In particular, two liposomal vaccines were approved in 2021 to combat COVID-19. Herein, the clinically used liposomes are reviewed by introducing various liposomal preparations in detail that are currently proceeding in the clinic or on the market. Finally, we discuss the challenges of developing liposomes and cutting-edge liposomal delivery for biological drugs and combination therapy.
Collapse
Affiliation(s)
- Yonglong He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lifang Fan
- Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China
| | - Dechun Huang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
4
|
He S, Pang W, Wu X, Yang Y, Li W, Qi H, Sun C, Duan X, Wang Y. A targeted hydrodynamic gold nanorod delivery system based on gigahertz acoustic streaming. NANOSCALE 2022; 14:15281-15290. [PMID: 36112106 DOI: 10.1039/d2nr03222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hydrodynamic method mimics the in vivo environment of the mechanical effect on cell stimulation, which not only modulates cell physiology but also shows excellent intracellular delivery ability. Herein, a hydrodynamic intracellular delivery system based on the gigahertz acoustic streaming (AS) effect is proposed, which presents powerful targeted delivery capabilities with high efficiency and universality. Results indicate that the range of cells with AuNR introduction is related to that of AS, enabling a tunable delivery range due to the adjustability of the AS radius. Moreover, with the assistance of AS, the organelle localization delivery of AuNRs with different modifications is enhanced. AuNRs@RGD is inclined to accumulate in the nucleus, while AuNRs@BSA tend to enter the mitochondria and AuNRs@PEGnK tend to accumulate in the lysosome. Finally, the photothermal effect is proved based on the large quantities of AuNRs introduced via AS. The abundant introduction of AuNRs under the action of AS can achieve rapid cell heating with the irradiation of a 785 nm laser, which has great potential in shortening the treatment cycle of photothermal therapy (PTT). Thereby, an efficient hydrodynamic technology in AuNR introduction based on AS has been demonstrated. The outstanding location delivery and organelle targeting of this method provides a new idea for precise medical treatment.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wenjun Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Li L, Zhang X, Zhou J, Zhang L, Xue J, Tao W. Non-Invasive Thermal Therapy for Tissue Engineering and Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107705. [PMID: 35475541 DOI: 10.1002/smll.202107705] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Owing to the development of nanotechnology and noninvasive treatment, thermal therapy in combination with external stimuli has been applied for tissue engineering and regenerative medicine (TERM), which has attracted more and more attention in recent years. In this review, the recent progress of applying a variety of non-invasive thermal therapeutic modalities for TERM, including photothermal therapy, magnetic thermotherapy, and ultrasound thermotherapy, as well as other thermal therapeutics are discussed. The parameters and conditions that need to be considered and regulated to realize a well-controlled thermal therapy for tissue regeneration are also discussed. Afterwards, the current concerns and challenges of putting thermal therapy into clinical applications are pointed out. At last, perspectives are provided for the future development directions, aiming to providing opportunities and a novel pathway for TERM.
Collapse
Affiliation(s)
- Longfei Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaodi Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
6
|
Zhang M, Hu W, Cai C, Wu Y, Li J, Dong S. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater Today Bio 2022; 14:100223. [PMID: 35243298 PMCID: PMC8881671 DOI: 10.1016/j.mtbio.2022.100223] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
|
7
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
8
|
de la Fuente-Herreruela D, Monnappa AK, Muñoz-Úbeda M, Morallón-Piña A, Enciso E, Sánchez L, Giusti F, Natale P, López-Montero I. Lipid-peptide bioconjugation through pyridyl disulfide reaction chemistry and its application in cell targeting and drug delivery. J Nanobiotechnology 2019; 17:77. [PMID: 31226993 PMCID: PMC6587267 DOI: 10.1186/s12951-019-0509-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Background The design of efficient drug delivery vectors requires versatile formulations able to simultaneously direct a multitude of molecular targets and to bypass the endosomal recycling pathway of cells. Liposomal-based vectors need the decoration of the lipid surface with specific peptides to fulfill the functional requirements. The unspecific binding of peptides to the lipid surface is often accompanied with uncontrolled formulations and thus preventing the molecular mechanisms of a successful therapy. Results We present a simple synthesis pathway to anchor cysteine-terminal peptides to thiol-reactive lipids for adequate and quantitative liposomal formulations. As a proof of concept, we have synthesized two different lipopeptides based on (a) the truncated Fibroblast Growth Factor (tbFGF) for cell targeting and (b) the pH sensitive and fusogenic GALA peptide for endosomal scape. Conclusions The incorporation of these two lipopeptides in the liposomal formulation improves the fibroblast cell targeting and promotes the direct delivery of cargo molecules to the cytoplasm of the cell. Electronic supplementary material The online version of this article (10.1186/s12951-019-0509-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego de la Fuente-Herreruela
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Ajay K Monnappa
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Mónica Muñoz-Úbeda
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Aarón Morallón-Piña
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Enciso
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Luis Sánchez
- Dto. Química Orgánica, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Fabrice Giusti
- Institut de Chimie Séparative de Marcoule, ICSM, UMR 5257, Site de Marcoule-Bât, 426 BP 17 171, 30207, Bagnols sur Ceze, France
| | - Paolo Natale
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040, Madrid, Spain. .,Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
9
|
Ultrasound Combined With Microbubbles Increase the Delivery of Doxorubicin by Reducing the Interstitial Fluid Pressure. Ultrasound Q 2019; 35:103-109. [DOI: 10.1097/ruq.0000000000000381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Beekers I, van Rooij T, Verweij MD, Versluis M, de Jong N, Trietsch SJ, Kooiman K. Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug Delivery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:570-581. [PMID: 29610087 DOI: 10.1109/tuffc.2018.2803137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound in the presence of gas-filled microbubbles can be used to enhance local uptake of drugs and genes. To study the drug delivery potential and its underlying physical and biological mechanisms, an in vitro vessel model should ideally include 3-D cell culture, perfusion flow, and membrane-free soft boundaries. Here, we propose an organ-on-a-chip microfluidic platform to study ultrasound-mediated drug delivery: the OrganoPlate. The acoustic propagation into the OrganoPlate was determined to assess the feasibility of controlled microbubble actuation, which is required to study the microbubble-cell interaction for drug delivery. The pressure field in the OrganoPlate was characterized non-invasively by studying experimentally the well-known response of microbubbles and by simulating the acoustic wave propagation in the system. Microbubble dynamics in the OrganoPlate were recorded with the Brandaris 128 ultrahigh-speed camera (17 million frames/s) and a control experiment was performed in an OptiCell, an in vitro monolayer cell culture chamber that is conventionally used to study ultrasound-mediated drug delivery. When insonified at frequencies between 1 and 2 MHz, microbubbles in the OrganoPlate experienced larger oscillation amplitudes resulting from higher local pressures. Microbubbles responded similarly in both systems when insonified at frequencies between 2 and 4 MHz. Numerical simulations performed with a 3-D finite-element model of ultrasound propagation into the OrganoPlate and the OptiCell showed the same frequency-dependent behavior. The predictable and homogeneous pressure field in the OrganoPlate demonstrates its potential to develop an in vitro 3-D cell culture model, well suited to study ultrasound-mediated drug delivery.
Collapse
|
11
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
12
|
Nguyen AT, Sunny Y, Bawiec C, Lewin PA, Wrenn SP. Investigating the spatial extent of acoustically activated echogenic liposomes. ULTRASONICS 2017; 77:176-182. [PMID: 28246036 DOI: 10.1016/j.ultras.2017.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The purpose of this work was to investigate the ability of bubbles entrapped within echogenic liposomes (ELIP) to serve as foci for cavitational events that would cause leakage in neighboring non-echogenic liposomes (NELIP). Previous studies have shown that entrapping bubbles into liposomes increases ultrasound-mediated leakage of hydrophilic components at ultrasound settings known to induce inertial cavitation, specifically 20kHz and 2.2W/cm2. Using tone-burst approach and pulse repetition frequency of 10Hz would bring this intensity level to the one accepted (220mW/cm2) in clinical imaging. Mixed populations of ELIP and NELIP were simultaneously exposed to ultrasound at varying ratios to examine the effect of ELIP concentration on release of a hydrophilic dye, calcein, from NELIP. Calcein release from NELIP was observed to be independent of ELIP concentration, suggesting that the release enhancement from echogenicity is strictly a localized event. Additionally, it was observed that the release mechanisms independent of echogenicity were active for the duration of experiment whereas those associated with echogenicity were active for only the initial 1-2min.
Collapse
Affiliation(s)
- An T Nguyen
- School of Biomedical Engineering, Science and Health Systems, Drexel University, United States
| | - Youhan Sunny
- School of Biomedical Engineering, Science and Health Systems, Drexel University, United States
| | - Christopher Bawiec
- School of Biomedical Engineering, Science and Health Systems, Drexel University, United States
| | - Peter A Lewin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, United States
| | - Steven P Wrenn
- Department of Chemical & Biological Engineering, Drexel University, United States.
| |
Collapse
|
13
|
Gao D, Gao J, Xu M, Cao Z, Zhou L, Li Y, Xie X, Jiang Q, Wang W, Liu J. Targeted Ultrasound-Triggered Phase Transition Nanodroplets for Her2-Overexpressing Breast Cancer Diagnosis and Gene Transfection. Mol Pharm 2017; 14:984-998. [PMID: 28282145 DOI: 10.1021/acs.molpharmaceut.6b00761] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Di Gao
- Department
of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jinbiao Gao
- Department
of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ming Xu
- Department
of Medical Ultrasonics, Institute of Diagnostic and Interventional
Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhong Cao
- Department
of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Luyao Zhou
- Department
of Medical Ultrasonics, Institute of Diagnostic and Interventional
Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yingqin Li
- Department
of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaoyan Xie
- Department
of Medical Ultrasonics, Institute of Diagnostic and Interventional
Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qing Jiang
- Department
of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Wang
- Department
of Medical Ultrasonics, Institute of Diagnostic and Interventional
Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Liu
- Department
of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
14
|
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics 2017; 1:1-22. [PMID: 28191450 PMCID: PMC5298883 DOI: 10.7150/ntno.17109] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023] Open
Abstract
Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response, and, if required, initiate secondary treatments. Recent in vivo experiments demonstrate the promise of using theranostics in the clinic. In this paper, we review the use of remotely triggered theranostic nanoparticles for cancer applications, focusing heavily on advances in the past five years. Remote triggering mechanisms covered include photodynamic, photothermal, phototriggered chemotherapeutic release, ultrasound, electro-thermal, magneto-thermal, X-ray, and radiofrequency therapies. Each section includes a brief overview of the triggering mechanism and summarizes the variety of nanoparticles employed in each method. Emphasis in each category is placed on nano-theranostics with in vivo success. Some of the nanotheranostic platforms highlighted include photoactivatable multi-inhibitor nanoliposomes, plasmonic nanobubbles, reduced graphene oxide-iron oxide nanoparticles, photoswitching nanoparticles, multispectral optoacoustic tomography using indocyanine green, low temperature sensitive liposomes, and receptor-targeted iron oxide nanoparticles loaded with gemcitabine. The studies reviewed here provide strong evidence that the field of nanotheranostics is rapidly evolving. Such nanoplatforms may soon enable unique advances in the clinical management of cancer. However, reproducibility in the synthesis procedures of such "smart" platforms that lend themselves to easy scale-up in their manufacturing, as well as the development of new and improved models of cancer that are more predictive of human responses, need to happen soon for this field to make a rapid clinical impact.
Collapse
Affiliation(s)
| | | | | | - Prakash Rai
- ✉ Corresponding author: Prakash Rai, Phone 978-934-4971,
| |
Collapse
|
15
|
Multi-functional vesicles for cancer therapy: The ultimate magic bullet. Colloids Surf B Biointerfaces 2016; 147:161-171. [DOI: 10.1016/j.colsurfb.2016.07.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023]
|
16
|
Zardad AZ, Choonara YE, Du Toit LC, Kumar P, Mabrouk M, Kondiah PPD, Pillay V. A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers (Basel) 2016; 8:E359. [PMID: 30974645 PMCID: PMC6431863 DOI: 10.3390/polym8100359] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022] Open
Abstract
There has been an exponential increase in research into the development of thermal- and ultrasound-activated delivery systems for cancer therapy. The majority of researchers employ polymer technology that responds to environmental stimuli some of which are physiologically induced such as temperature, pH, as well as electrical impulses, which are considered as internal stimuli. External stimuli include ultrasound, light, laser, and magnetic induction. Biodegradable polymers may possess thermoresponsive and/or ultrasound-responsive properties that can complement cancer therapy through sonoporation and hyperthermia by means of High Intensity Focused Ultrasound (HIFU). Thermoresponsive and other stimuli-responsive polymers employed in drug delivery systems can be activated via ultrasound stimulation. Polyethylene oxide/polypropylene oxide co-block or triblock polymers and polymethacrylates are thermal- and pH-responsive polymer groups, respectively but both have proven to have successful activity and contribution in chemotherapy when exposed to ultrasound stimulation. This review focused on collating thermal- and ultrasound-responsive delivery systems, and combined thermo-ultrasonic responsive systems; and elaborating on the advantages, as well as shortcomings, of these systems in cancer chemotherapy. The mechanisms of these systems are explicated through their physical alteration when exposed to the corresponding stimuli. The properties they possess and the modifications that enhance the mechanism of chemotherapeutic drug delivery from systems are discussed, and the concept of pseudo-ultrasound responsive systems is introduced.
Collapse
Affiliation(s)
- Az-Zamakhshariy Zardad
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa Claire Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials, National Research Centre, 33 El-Bohouth St. (former El-Tahrir St.), Dokki, Giza P.O. 12622, Egypt.
| | - Pierre Pavan Demarco Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
17
|
Malik R, Pancholi K, Melzer A. Microbubble-liposome conjugate: Payload evaluation of potential theranostic vehicle. Nanobiomedicine (Rij) 2016; 3:1849543516670806. [PMID: 29942387 PMCID: PMC5998260 DOI: 10.1177/1849543516670806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022] Open
Abstract
Liposome–microbubble conjugates are considered as better targeted drug delivery vehicles compared to microbubbles alone. The microbubble in the integrated drug delivery system delivers the drug intracellularly on the target, whereas the liposome component allows loading of high drug dose and extravasation through leaky vasculature. In this work, a new high yielding microbubble production method was used to prepare microbubbles for formulation of the liposome-conjugated drug delivery system. In formulation process, the prepared liposome of 200 nm diameter was attached to the microbubble surface using the avidin–biotin interaction. The analysis of the confocal scanning laser microscope images showed that approximately 8 × 108 microbubbles per millilitre (range: 2–7 μm, mean size 5 ± 0.5 μm) can be efficiently conjugated to the liposomes. The method of conjugation was found to be effective in attaching liposome to microbubbles.
Collapse
Affiliation(s)
- Ritu Malik
- Institute of Medical Sciences and Technology, University of Dundee, Dundee, UK
| | - Ketan Pancholi
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Melzer
- Institute of Medical Sciences and Technology, University of Dundee, Dundee, UK
| |
Collapse
|
18
|
Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016; 6:1306-23. [PMID: 27375781 PMCID: PMC4924501 DOI: 10.7150/thno.14858] [Citation(s) in RCA: 553] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications.
Collapse
Affiliation(s)
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210009, China
| | | | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
19
|
Yang Y, Yang Y, Xie X, Xu X, Xia X, Wang H, Li L, Dong W, Ma P, Liu Y. Dual stimulus of hyperthermia and intracellular redox environment triggered release of siRNA for tumor-specific therapy. Int J Pharm 2016; 506:158-73. [DOI: 10.1016/j.ijpharm.2016.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 01/06/2023]
|
20
|
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23:3319-3329. [PMID: 27145899 DOI: 10.1080/10717544.2016.1177136] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposome-based systems for clinical use to market.
Collapse
|
21
|
Goins B, Phillips WT, Bao A. Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy. Expert Opin Drug Deliv 2016; 13:873-89. [PMID: 26981891 DOI: 10.1517/17425247.2016.1167035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A major limitation of current liposomal cancer therapies is the inability of liposome therapeutics to penetrate throughout the entire tumor mass. This inhomogeneous distribution of liposome therapeutics within the tumor has been linked to treatment failure and drug resistance. Both liposome particle transport properties and tumor microenvironment characteristics contribute to this challenge in cancer therapy. This limitation is relevant to both intravenously and intratumorally administered liposome therapeutics. AREAS COVERED Strategies to improve the intratumoral distribution of liposome therapeutics are described. Combination therapies of intravenous liposome therapeutics with pharmacologic agents modulating abnormal tumor vasculature, interstitial fluid pressure, extracellular matrix components, and tumor associated macrophages are discussed. Combination therapies using external stimuli (hyperthermia, radiofrequency ablation, magnetic field, radiation, and ultrasound) with intravenous liposome therapeutics are discussed. Intratumoral convection-enhanced delivery (CED) of liposomal therapeutics is reviewed. EXPERT OPINION Optimization of the combination therapies and drug delivery protocols are necessary. Further research should be conducted in appropriate cancer types with consideration of physiochemical features of liposomes and their timing sequence. More investigation of the role of tumor associated macrophages in intratumoral distribution is warranted. Intratumoral infusion of liposomes using CED is a promising approach to improve their distribution within the tumor mass.
Collapse
Affiliation(s)
- Beth Goins
- a Department of Radiology , University of Texas Health Science Center San Antonio , San Antonio , TX , USA
| | - William T Phillips
- a Department of Radiology , University of Texas Health Science Center San Antonio , San Antonio , TX , USA
| | - Ande Bao
- b Department of Radiation Oncology, School of Medicine, Case Western Reserve University/University Hospitals Case Medical Center , Cleveland , OH , USA
| |
Collapse
|
22
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 882] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Pradhan L, Srivastava R, Bahadur D. Enhanced cell apoptosis triggered by a multi modal mesoporous amphiphilic drug delivery system. NANOTECHNOLOGY 2015; 26:475101. [PMID: 26526608 DOI: 10.1088/0957-4484/26/47/475101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mesoporous magnetic nanoparticles (MMNPs) have been synthesized through a facile soft chemical route and are conjugated with multiple therapeutic agents. These MMNPs have the ability to contain and deliver both hydrophilic and hydrophobic drugs simultaneously with the mediation of an AC magnetic field (ACMF). Furthermore, the synthesis and characterization of doxorubicin hydrochloride:paclitaxel (DOX:TXL) and doxorubicin hydrochloride:cisplatin (DOX:Cis-Pt) conjugates are demonstrated. MMNPs show an excellent loading efficiency of ~96:83% (DOX:TXL) and ~93:83% (DOX:Cis-Pt) along with a loading capacity of ~0.002:0.002 mg mg(-1) (DOX:TXL) and ~0.002:0.002 mg mg(-1) (DOX:Cis-Pt), respectively. Over a period of 180 h, a sustained release of drugs is observed and shows a better efficiency at pH 4.3 (~85:63%-DOX:TXL and ~86:73%-DOX:Cis-Pt) compared to that under physiological pH conditions (~28:22%-DOX:TXL and ~26:22%-DOX:Cis-Pt). The MMNPs can release ~37:22% (DOX:TXL) and ~34:25% (DOX:Cis-Pt) within 30 min when triggered by an ACMF (at ~43 °C). The in vitro cytotoxic effect, the ROS generation level and cell cycle distribution analysis of DOX:TXL-MMNPs and DOX:Cis-Pt-MMNPs treated MDA-MB231, MCF-7 and PC3 cancer cells are demonstrated. Enhanced cell apoptosis is observed by thermo-chemotherapy which includes application of an ACMF for 15 min. Specifically, DOX:TXL-MMNPs are more effective than DOX:Cis-Pt-MMNPs towards the PC3 cell line. The internalization of multiple drug loaded MMNPs by cells and their morphological changes due to thermo-chemotherapy are confirmed through confocal microscopy. From the present results, it is observed that the DOX:TXL and DOX:Cis-Pt conjugated MMNPs, under an ACMF, can readily minimize drug resistance. This has significantly enhanced the cell apoptosis of target cancer cells.
Collapse
Affiliation(s)
- Lina Pradhan
- Centre for Research in Nanotechnology and Sciences, IIT Bombay, Mumbai, 400076, India. Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai, 400076 India
| | | | | |
Collapse
|
24
|
Zhang K, Liu M, Tong X, Sun N, Zhou L, Cao Y, Wang J, Zhang H, Pei R. Aptamer-Modified Temperature-Sensitive Liposomal Contrast Agent for Magnetic Resonance Imaging. Biomacromolecules 2015. [PMID: 26212580 DOI: 10.1021/acs.biomac.5b00250] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel aptamer modified thermosensitive liposome was designed as an efficient magnetic resonance imaging probe. In this paper, Gd-DTPA was encapsulated into an optimized thermosensitive liposome (TSL) formulation, followed by conjugation with AS1411 for specific targeting against tumor cells that overexpress nucleolin receptors. The resulting liposomes were extensively characterized in vitro as a contrast agent. As-prepared TSLs-AS1411 had a diameter about 136.1 nm. No obvious cytotoxicity was observed from MTT assay, which illustrated that the liposomes exhibited excellent biocompatibility. Compared to the control incubation at 37 °C, the liposomes modified with AS1411 exhibited much higher T1 relaxivity in MCF-7 cells incubated at 42 °C. These data indicate that the Gd-encapsulated TSLs-AS1411 may be a promising tool in early cancer diagnosis.
Collapse
Affiliation(s)
- Kunchi Zhang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Min Liu
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Xiaoyan Tong
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Na Sun
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Lu Zhou
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Yi Cao
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Jine Wang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Hailu Zhang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and Nanobionics, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| |
Collapse
|
25
|
Gao D, Xu M, Cao Z, Gao J, Chen Y, Li Y, Yang Z, Xie X, Jiang Q, Wang W, Liu J. Ultrasound-Triggered Phase-Transition Cationic Nanodroplets for Enhanced Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13524-37. [PMID: 26016606 DOI: 10.1021/acsami.5b02832] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ultrasound as an external stimulus for enhanced gene transfection represents a safe, noninvasive, cost-effective delivery strategy for gene therapy. Herein, we have developed an ultrasound-triggered phase-transition cationic nanodroplet based on a novel perfluorinated amphiphilic poly(amino acid), which could simultaneously load perfluoropentane (PFP) and nucleic acids. The heptadecafluoroundecylamine (C11F17-NH2) was chosen to initiate β-benzyl-L-aspartate N-carboxyanhydride (BLA-NCA) ring-opening polymerization to prepare C11F17-poly(β-benzyl-L-aspartate) (C11F17-PBLA). Subsequently, C11F17-poly{N-[N'-(2-aminoethyl)]aspartamide} [C11F17-PAsp(DET)] was synthesized by aminolysis reaction of C11F17-PBLA with diethylenetriamine (DET). PFP/pDNA-loaded nanodroplets PFP-TNDs [PFP/C11F17-PAsp(DET)/LucDNA/γ-PGA or poly(glutamic acid)-g-MeO-poly(ethylene glycol) (PGA-g-mPEG) ternary nanodroplets] were primarily formulated by an oil/water emulsification method, followed by surface modification with PGA-g-mPEG. The average diameter of PFP-TNDs ranged from 300 to 400 nm, and transmission electron microscopy images showed that the nanodroplets were nearly spherical in shape. The ζ potential of the nanodroplets dramatically decreased from +54.3 to +15.3 mV after modification with PGA-g-mPEG, resulting in a significant increase of the stability of the nanodroplets in the serum-containing condition. With ultrasound irradiation, the gene transfection efficiency was enhanced 14-fold on HepG2 cells, and ultrasound-triggered phase-transition cationic nanodroplets also displayed a good ultrasound contrast effect. These results suggest that the PFP/DNA-loaded phase-transition cationic nanodroplets can be utilized as efficient theranostic agents for targeting gene delivery.
Collapse
Affiliation(s)
- Di Gao
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ming Xu
- §Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhong Cao
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jinbiao Gao
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ya Chen
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yingqin Li
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhe Yang
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaoyan Xie
- §Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Qing Jiang
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Wang
- §Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Liu
- †Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
26
|
Wang C, Wang X, Zhong T, Zhao Y, Zhang WQ, Ren W, Huang D, Zhang S, Guo Y, Yao X, Tang YQ, Zhang X, Zhang Q. The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo. Int J Nanomedicine 2015; 10:2229-48. [PMID: 25834435 PMCID: PMC4372005 DOI: 10.2147/ijn.s79840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clotted plasma proteins are present on the walls of tumor vessels and in tumor stroma. Tumor-homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) could recognize the clotted plasma proteins in tumor vessels. Thermosensitive liposomes could immediately release the encapsulated drug in the vasculature of the heated tumor. In this study, we designed a novel form of targeted thermosensitive liposomes, CREKA-modified lysolipid-containing thermosensitive liposomes (LTSLs), containing doxorubicin (DOX) (DOX-LTSL-CREKA), to investigate the hypothesis that DOX-LTSL-CREKA might target the clotted plasma proteins in tumor vessels as well as tumor stroma and then exhibit burst release of the encapsulated DOX at the heated tumor site. We also hypothesized that the high local drug concentration produced by these thermosensitive liposomes after local hyperthermia treatment will be useful for treatment of multidrug resistance. The multidrug-resistant human breast adenocarcinoma (MCF-7/ADR) cell line was chosen as a tumor cell model, and the targeting and immediate release characteristics of DOX-LTSL-CREKA were investigated in vitro and in vivo. Furthermore, the antitumor activity of DOX-LTSL-CREKA was evaluated in MCF-7/ADR tumor-bearing nude mice in vivo. The targeting effect of the CREKA-modified thermosensitive liposomes on the clotted plasma proteins was confirmed in our in vivo imaging and immunohistochemistry experiments. The burst release of this delivery system was observed in our in vitro temperature-triggered DOX release and flow cytometry analysis and also by confocal microscopy experiments. The antitumor activity of the DOX-LTSL-CREKA was confirmed in tumor-bearing nude mice in vivo. Our findings suggest that the combination of targeting the clotted plasma proteins in the tumor vessel wall as well as tumor stroma by using CREKA peptide and temperature-triggered drug release from liposomes by using thermosensitive liposomes offers an attractive strategy for chemotherapeutic drug delivery to tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xin Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yang Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wei-Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wei Ren
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Dan Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Shuang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yang Guo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xin Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yi-Qun Tang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China ; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
27
|
Rizzitelli S, Giustetto P, Cutrin JC, Delli Castelli D, Boffa C, Ruzza M, Menchise V, Molinari F, Aime S, Terreno E. Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound. J Control Release 2015; 202:21-30. [PMID: 25626083 DOI: 10.1016/j.jconrel.2015.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/24/2022]
Abstract
The main goal of this study was to assess the theranostic performance of a nanomedicine able to generate MRI contrast as a response to the release from liposomes of the antitumor drug Doxorubicin triggered by the local exposure to pulsed low intensity non focused ultrasounds (pLINFU). In vitro experiments showed that Gadoteridol was an excellent imaging agent for probing the release of Doxorubicin following pLINFU stimulation. On this basis, the theranostic system was investigated in vivo on a syngeneic murine model of TS/A breast cancer. MRI offered an excellent guidance for monitoring the pLINFU-stimulated release of the drug. Moreover, it provided: i) an in vivo proof of the effective release of the liposomal content, and ii) a confirmation of the therapeutic benefits of the overall protocol. Ex vivo fluorescence microscopy indicated that the good therapeutic outcome was originated from a better diffusion of the drug in the tumor following the pLINFU stimulus. Very interestingly, the broad diffusion of the drug in the tumor stroma appeared to be mediated by the presence of the liposomes themselves. The results of this study highlighted either the great potential of US-based stimuli to safely trigger the release of a drug from its nanocarrier or the associated significant therapeutic improvement. Finally, MRI demonstrated to be a valuable technique to support chemotherapy and monitoring the outcome. Furthermore, in this specific case, the theranostic agent developed has a high clinical translatability because the MRI agent utilized is already approved for human use.
Collapse
Affiliation(s)
- S Rizzitelli
- Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - P Giustetto
- Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - J C Cutrin
- Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - D Delli Castelli
- Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - C Boffa
- Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - M Ruzza
- Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - V Menchise
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center, University of Torino, Italy
| | - F Molinari
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - S Aime
- Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - E Terreno
- Center for Molecular Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy.
| |
Collapse
|
28
|
Functionalized Lipid Particulates in Targeted Drug Delivery. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Nguyen AT, Lewin PA, Wrenn SP. Hydrophobic drug concentration affects the acoustic susceptibility of liposomes. Biochim Biophys Acta Gen Subj 2014; 1850:667-72. [PMID: 25450487 DOI: 10.1016/j.bbagen.2014.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to investigate the effect of encapsulated hydrophobic drug concentration on ultrasound-mediated leakage from liposomes. Studies have shown that membrane modifications affect the acoustic susceptibility of liposomes, likely because of changes in membrane packing. An advantage of liposome as drug carrier is its ability to encapsulate drugs of different chemistries. However, incorporation of hydrophobic molecules into the bilayer may cause changes in membrane packing, thereby affecting the release kinetics. Liposomes containing calcein and varying concentrations of papaverine, a hydrophobic drug, were exposed to 20 kHz, 2.2 Wcm(-2) ultrasound. Papaverine concentration was observed to affect calcein leakage although the effects varied widely based on liposome phase. For example, incorporation of 0.5mg/mL papaverine into Ld liposomes increased the leakage of hydrophilic encapsulants by 3× within the first minute (p=0.004) whereas the same amount of papaverine increased leakage by only 1.5× (p<0.0001). Papaverine was also encapsulated into echogenic liposomes and its concentration did not significantly affect calcein release rates, suggesting that burst release from echogenic liposomes is predictable regardless of encapsulants chemistry and concentration.
Collapse
Affiliation(s)
- An T Nguyen
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Peter A Lewin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Steven P Wrenn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Husseini GA, Pitt WG, Martins AM. Ultrasonically triggered drug delivery: breaking the barrier. Colloids Surf B Biointerfaces 2014; 123:364-86. [PMID: 25454759 DOI: 10.1016/j.colsurfb.2014.07.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
Abstract
The adverse side-effects of chemotherapy can be minimized by delivering the therapeutics in time and space to only the desired target site. Ultrasound offers one fairly non-invasive method of accomplishing such precise delivery because its energy can disrupt nanosized containers that are designed to sequester the drug until the ultrasonic event. Such containers include micelles, liposomes and solid nanoparticles. Conventional micelles and liposomes are less acoustically sensitive to ultrasound because the strongest forces associated with ultrasound are generated by gas-liquid interfaces, which both of these conventional constructs lack. Acoustically activated carriers often incorporate a gas phase, either actively as preformed bubbles, or passively such as taking advantage of dissolved gasses that form bubbles upon insonation. Newer concepts include using liquids that form gas when insonated. This review focuses on the ultrasonically activated delivery of therapeutics from micelles, liposomes and solid particles. In vitro and in vivo results are summarized and discussed. Novel structural concepts from micelles and liposomes are presented. Mechanisms of ultrasonically activated release are discussed. The future of ultrasound in drug delivery is envisioned.
Collapse
Affiliation(s)
| | | | - Ana M Martins
- American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
31
|
Dalecki D, Hocking DC. Ultrasound technologies for biomaterials fabrication and imaging. Ann Biomed Eng 2014; 43:747-61. [PMID: 25326439 DOI: 10.1007/s10439-014-1158-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
Abstract
Ultrasound is emerging as a powerful tool for developing biomaterials for regenerative medicine. Ultrasound technologies are finding wide-ranging, innovative applications for controlling the fabrication of bioengineered scaffolds, as well as for imaging and quantitatively monitoring the properties of engineered constructs both during fabrication processes and post-implantation. This review provides an overview of the biomedical applications of ultrasound for imaging and therapy, a tutorial of the physical mechanisms through which ultrasound can interact with biomaterials, and examples of how ultrasound technologies are being developed and applied for biomaterials fabrication processes, non-invasive imaging, and quantitative characterization of bioengineered scaffolds in vitro and in vivo.
Collapse
Affiliation(s)
- Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, 310 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA,
| | | |
Collapse
|
32
|
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Citation(s) in RCA: 1009] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
33
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
34
|
Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev 2014; 76:39-59. [PMID: 25016083 DOI: 10.1016/j.addr.2014.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 12/18/2022]
Abstract
One of the major limitations of current cancer therapy is the inability to deliver tumoricidal agents throughout the entire tumor mass using traditional intravenous administration. Nanoparticles carrying beta-emitting therapeutic radionuclides that are delivered using advanced image-guidance have significant potential to improve solid tumor therapy. The use of image-guidance in combination with nanoparticle carriers can improve the delivery of localized radiation to tumors. Nanoparticles labeled with certain beta-emitting radionuclides are intrinsically theranostic agents that can provide information regarding distribution and regional dosimetry within the tumor and the body. Image-guided thermal therapy results in increased uptake of intravenous nanoparticles within tumors, improving therapy. In addition, nanoparticles are ideal carriers for direct intratumoral infusion of beta-emitting radionuclides by convection enhanced delivery, permitting the delivery of localized therapeutic radiation without the requirement of the radionuclide exiting from the nanoparticle. With this approach, very high doses of radiation can be delivered to solid tumors while sparing normal organs. Recent technological developments in image-guidance, convection enhanced delivery and newly developed nanoparticles carrying beta-emitting radionuclides will be reviewed. Examples will be shown describing how this new approach has promise for the treatment of brain, head and neck, and other types of solid tumors.
Collapse
|
35
|
Zhou QL, Chen ZY, Wang YX, Yang F, Lin Y, Liao YY. Ultrasound-mediated local drug and gene delivery using nanocarriers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:963891. [PMID: 25202710 PMCID: PMC4150504 DOI: 10.1155/2014/963891] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022]
Abstract
With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.
Collapse
Affiliation(s)
- Qiu-Lan Zhou
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhi-Yi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Feng Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yan Lin
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yang-Ying Liao
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| |
Collapse
|
36
|
Pradhan L, Srivastava R, Bahadur D. pH- and thermosensitive thin lipid layer coated mesoporous magnetic nanoassemblies as a dual drug delivery system towards thermochemotherapy of cancer. Acta Biomater 2014; 10:2976-87. [PMID: 24747086 DOI: 10.1016/j.actbio.2014.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 03/27/2014] [Accepted: 04/10/2014] [Indexed: 11/30/2022]
Abstract
A new pH-sensitive and thermosensitive dual drug delivery system consisting of thin lipid layer encapsulated mesoporous magnetite nanoassemblies (MMNA) has been developed which can deliver two anticancer drugs simultaneously. The formulation of lipid layer used is 5:2:2:2 w/w, DPPC:cholesterol:DSPE-PEG2000:MMNA. The structure, morphology and magnetic properties of MMNA and lipid coated MMNA (LMMNA) were thoroughly characterized. This hybrid system was investigated for its ability to carry two anticancer drugs as well as its ability to provide heat under an alternating current magnetic field (ACMF). A very high loading efficiency of up to ∼81% of doxorubicin hydrochloride (DOX) with an ∼0.02 mg mg(-1) loading capacity and ∼60% of paclitaxel (TXL) with an ∼0.03 mg mg(-1) loading capacity are obtained with LMMNA. A sustained release of drug is observed over a period of 172 h, with better release, of ∼88:53% (DOX:TXL), at pH 4.3 compared to the ∼28:26% (DOX:TXL) in physiological conditions (pH 7.4). An enhanced release of ∼72 and ∼68% is recorded for DOX and TXL, respectively, during the first hour with the application of an ACMF (∼43°C). A greater in vitro cytotoxic effect is observed with the two drugs compared to them individually in HeLa, MCF-7 and HepG2 cancer cells. With the application of an ACMF for 10 min, the cell killing efficiency is improved substantially due to simultaneous thermo- and chemotherapy. Confocal microscopy confirms the internalization of drug loaded MMNA and LMMNA by cells and their morphological changes during thermochemotherapy.
Collapse
Affiliation(s)
- Lina Pradhan
- Centre for Research in Nanotechnology and Sciences, IIT Bombay, Mumbai 400076, India; Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai 400076, India
| | - R Srivastava
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India.
| | - D Bahadur
- Department of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai 400076, India.
| |
Collapse
|
37
|
Ninomiya K, Yamashita T, Kawabata S, Shimizu N. Targeted and ultrasound-triggered drug delivery using liposomes co-modified with cancer cell-targeting aptamers and a thermosensitive polymer. ULTRASONICS SONOCHEMISTRY 2014; 21:1482-1488. [PMID: 24418100 DOI: 10.1016/j.ultsonch.2013.12.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
In this study, we demonstrated the feasibility of targeted and ultrasound-triggered drug delivery using liposomes co-modified with single stranded DNA aptamers that recognized platelet-derived growth factor receptors (PDGFRs) as targeting ligands for breast cancer cells and poly(NIPMAM-co-NIPAM) as the thermosensitive polymer (TSP) to sensitize these liposomes to high temperature. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation for 30 s at 0.5 W/cm(2) as well as the case under incubation for 5 min at 42 °C. Ultrasound-triggered calcein release from TSP liposomes was due to an increased local temperature, resulting from cavitation bubble collapse induced by ultrasound, and not due to an increase in the bulk medium temperature. Liposomes modified with PDGFR aptamers (APT liposomes) bound to MDA-MB-231 human breast cancer cells through PDGFR aptamers; however, they did not bind to primary human mammary epithelial cells (HMECs). The binding of APT liposomes was greatest for MDA-MB-231 cells, followed by MCF-7, WiDr, and HepG2 cancer cells. In a cell injury assay using doxorubicin (DOX)-loaded APT/TSP liposomes and ultrasound irradiation, cell viability of MDA-MB-231 at 24h after ultrasound irradiation (1 MHz for 30 s at 0.5 W/cm(2)) with DOX-loaded APT/TSP liposomes was 60%, which was lower than that with ultrasound irradiation and DOX-loaded TSP liposomes or with DOX-loaded APT/TSP liposomes alone.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takahiro Yamashita
- Division of Material Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shinya Kawabata
- Division of Material Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Nobuaki Shimizu
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
38
|
Rychak JJ, Klibanov AL. Nucleic acid delivery with microbubbles and ultrasound. Adv Drug Deliv Rev 2014; 72:82-93. [PMID: 24486388 PMCID: PMC4204336 DOI: 10.1016/j.addr.2014.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 02/02/2023]
Abstract
Nucleic acid-based therapy is a growing field of drug delivery research. Although ultrasound has been suggested to enhance transfection decades ago, it took a combination of ultrasound with nucleic acid carrier systems (microbubbles, liposomes, polyplexes, and viral carriers) to achieve reasonable nucleic acid delivery efficacy. Microbubbles serve as foci for local deposition of ultrasound energy near the target cell, and greatly enhance sonoporation. The major advantage of this approach is in the minimal transfection in the non-insonated non-target tissues. Microbubbles can be simply co-administered with the nucleic acid carrier or can be modified to carry nucleic acid themselves. Liposomes with embedded gas or gas precursor particles can also be used to carry nucleic acid, release and deliver it by the ultrasound trigger. Successful testing in a wide variety of animal models (myocardium, solid tumors, skeletal muscle, and pancreas) proves the potential usefulness of this technique for nucleic acid drug delivery.
Collapse
Affiliation(s)
| | - Alexander L Klibanov
- Cardiovascular Division, University of Virginia, Charlottesville, VA 22908-1394, USA.
| |
Collapse
|
39
|
Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103:29-52. [PMID: 24338748 PMCID: PMC4074410 DOI: 10.1002/jps.23773] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
Abstract
Liposomes are spherical-enclosed membrane vesicles mainly constructed with lipids. Lipid nanoparticles are loaded with therapeutics and may not contain an enclosed bilayer. The majority of those clinically approved have diameters of 50-300 nm. The growing interest in nanomedicine has fueled lipid-drug and lipid-protein studies, which provide a foundation for developing lipid particles that improve drug potency and reduce off-target effects. Integrating advances in lipid membrane research has enabled therapeutic development. At present, about 600 clinical trials involve lipid particle drug delivery systems. Greater understanding of pharmacokinetics, biodistribution, and disposition of lipid-drug particles facilitated particle surface hydration technology (with polyethylene glycol) to reduce rapid clearance and provide sufficient blood circulation time for drug to reach target tissues and cells. Surface hydration enabled the liposome-encapsulated cancer drug doxorubicin (Doxil) to gain clinical approval in 1995. Fifteen lipidic therapeutics are now clinically approved. Although much research involves attaching lipid particles to ligands selective for occult cells and tissues, preparation procedures are often complex and pose scale-up challenges. With emerging knowledge in drug target and lipid-drug distribution in the body, a systems approach that integrates knowledge to design and scale lipid-drug particles may further advance translation of these systems to improve therapeutic safety and efficacy.
Collapse
Affiliation(s)
- John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
40
|
Ninomiya K, Kawabata S, Tashita H, Shimizu N. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer. ULTRASONICS SONOCHEMISTRY 2014; 21:310-316. [PMID: 23948493 DOI: 10.1016/j.ultsonch.2013.07.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/21/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm(2) for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm(2) for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio=1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation.
Collapse
Affiliation(s)
- Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
41
|
Mannaris C, Efthymiou E, Meyre ME, Averkiou MA. In vitro localized release of thermosensitive liposomes with ultrasound-induced hyperthermia. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2011-2020. [PMID: 23972488 DOI: 10.1016/j.ultrasmedbio.2013.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 05/24/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
Localized drug delivery with ultrasound-induced hyperthermia can enhance the therapeutic index of chemotherapeutic drugs by improving efficacy and reducing systemic toxicity. A novel in vitro method for the activation of drug-loaded thermosensitive liposomes is described. In particular, a dual-compartment, acoustically transparent container is used in which thermosensitive liposomes suspended in cell culture medium are immersed in a thermally absorptive medium, glycerol. Hyperthermia is induced with ultrasound in the glycerol, which in turn heats the culture medium by thermal conduction. The method approximately mimics the in vivo scenario of thermosensitive liposomes collected in the interstitial spaces of tumors, where ultrasound induces hyperthermia in the tumor tissue, which in turn heats the thermosensitive liposomes by conduction and induces release of the encapsulated drug. The acoustic conditions for the desired hyperthermia are derived theoretically and validated experimentally. Eighty percent release of doxorubicin from thermosensitive liposomes is achieved.
Collapse
Affiliation(s)
- Christophoros Mannaris
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | | | | |
Collapse
|
42
|
Derieppe M, Yudina A, Lepetit-Coiffé M, de Senneville BD, Bos C, Moonen C. Real-time assessment of ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy. Mol Imaging Biol 2013; 15:3-11. [PMID: 22707046 DOI: 10.1007/s11307-012-0568-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Transport across the plasma membrane is a critical step of drug delivery for weakly permeable compounds with intracellular mode of action. The purpose of this study is to demonstrate real-time monitoring of ultrasound (US)-mediated cell-impermeable model drug uptake with fibered confocal fluorescence microscopy (FCFM). PROCEDURES An in vitro setup was designed to combine a mono-element US transducer, a cell chamber with a monolayer of tumor cells together with SonoVue microbubbles, and a FCFM system. The cell-impermeable intercalating dye, SYTOX Green, was used to monitor US-mediated uptake. RESULTS The majority of the cell population showed fluorescence signal enhancement 10 s after US onset. The mean rate constant k of signal enhancement was calculated to be 0.23 ± 0.04 min(-1). CONCLUSIONS Feasibility of real-time monitoring of US-mediated intracellular delivery by FCFM has been demonstrated. The method allowed quantitative assessment of model drug uptake, holding great promise for further local drug delivery studies.
Collapse
Affiliation(s)
- Marc Derieppe
- Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, FRE 3313-CNRS and University Bordeaux Segalen, 146, rue Léo Saignat, Case 117, 33076, Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Partanen A, Tillander M, Yarmolenko PS, Wood BJ, Dreher MR, Kohler MO. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia. Med Phys 2013; 40:013301. [PMID: 23298120 DOI: 10.1118/1.4769116] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Ablative hyperthermia (>55 °C) has been used as a definitive treatment for accessible solid tumors not amenable to surgery, whereas mild hyperthermia (40-45 °C) has been shown effective as an adjuvant for both radiotherapy and chemotherapy. An optimal mild hyperthermia treatment is spatially accurate, with precise and homogeneous heating limited to the target region while also limiting the likelihood of unwanted thermal or mechanical bioeffects (tissue damage, vascular shutoff). Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) can noninvasively heat solid tumors under image-guidance. In a mild hyperthermia setting, a sonication approach utilizing multiple concurrent foci may provide the benefit of reducing acoustic pressure in the focal region (leading to reduced or no mechanical effects), while providing better control over the heating. The objective of this study was to design, implement, and characterize a multifoci sonication approach in combination with a mild hyperthermia heating algorithm, and compare it to the more conventional method of electronically sweeping a single focus. METHODS Simulations (acoustic and thermal) and measurements (acoustic, with needle hydrophone) were performed. In addition, heating performance of multifoci and single focus sonications was compared using a clinical MR-HIFU platform in a phantom (target = 4-16 mm), in normal rabbit thigh muscle (target = 8 mm), and in a Vx2 tumor (target = 8 mm). A binary control algorithm was used for real-time mild hyperthermia feedback control (target range = 40.5-41 °C). Data were analyzed for peak acoustic pressure and intensity, heating energy efficiency, temperature accuracy (mean), homogeneity of heating (standard deviation [SD], T10 and T90), diameter and length of the heated region, and thermal dose (CEM(43)). RESULTS Compared to the single focus approach, multifoci sonications showed significantly lower (67% reduction) peak acoustic pressures in simulations and hydrophone measurements. In a rabbit Vx2 tumor, both single focus and multifoci heating approaches were accurate (mean = 40.82±0.12 °C [single] and 40.70±0.09 °C [multi]) and precise (standard deviation = 0.65±0.05 °C [single] and 0.64±0.04 °C [multi]), producing homogeneous heating (T(10-90) = 1.62 °C [single] and 1.41 °C [multi]). Heated regions were significantly shorter in the beam path direction (35% reduction, p < 0.05, Tukey) for multifoci sonications, i.e., resulting in an aspect ratio closer to one. Energy efficiency was lower for the multifoci approach. Similar results were achieved in phantom and rabbit muscle heating experiments. CONCLUSIONS A multifoci sonication approach was combined with a mild hyperthermia heating algorithm, and implemented on a clinical MR-HIFU platform. This approach resulted in accurate and precise heating within the targeted region with significantly lower acoustic pressures and spatially more confined heating in the beam path direction compared to the single focus sonication method.The reduction in acoustic pressure and improvement in spatial control suggest that multifoci heating is a useful tool in mild hyperthermia applications for clinical oncology.
Collapse
Affiliation(s)
- Ari Partanen
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
44
|
Effects of surface modification on the properties of magnetic nanoparticles/PLA composite drug carriers and in vitro controlled release study. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR IN BIOMEDICINE 2013; 26:728-44. [PMID: 23703874 DOI: 10.1002/nbm.2971] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 05/07/2023]
Abstract
Liposomes are a versatile class of nanoparticles with tunable properties, and multiple liposomal drug formulations have been clinically approved for cancer treatment. In recent years, an extensive library of gadolinium (Gd)-containing liposomal MRI contrast agents has been developed for molecular and cellular imaging of disease-specific markers and for image-guided drug delivery. This review discusses the advances in the development and novel applications of paramagnetic liposomes in molecular and cellular imaging, and in image-guided drug delivery. A high targeting specificity has been achieved in vitro using ligand-conjugated paramagnetic liposomes. On targeting of internalizing cell receptors, the effective longitudinal relaxivity r1 of paramagnetic liposomes is modulated by compartmentalization effects. This provides unique opportunities to monitor the biological fate of liposomes. In vivo contrast-enhanced MRI studies with nontargeted liposomes have shown the extravasation of liposomes in diseases associated with endothelial dysfunction, such as tumors and myocardial infarction. The in vivo use of targeted paramagnetic liposomes has facilitated the specific imaging of pathophysiological processes, such as angiogenesis and inflammation. Paramagnetic liposomes loaded with drugs have been utilized for therapeutic interventions. MR image-guided drug delivery using such liposomes allows the visualization and quantification of local drug delivery.
Collapse
Affiliation(s)
- Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research Eindhoven, Eindhoven, the Netherlands
| | | | | | | | | |
Collapse
|
46
|
Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb) 2013; 5:96-107. [PMID: 22869005 DOI: 10.1039/c2ib20135f] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanopreparations such as liposomes, micelles, polymeric and inorganic nanoparticles, and small molecule/nucleic acid/protein conjugates have demonstrated various advantages over "naked" therapeutic molecules. These nanopreparations can be further engineered with functional moieties to improve their performance in terms of circulation longevity, targetability, enhanced intracellular penetration, carrier-mediated enhanced visualization, and stimuli-sensitivity. The idea of application of a stimulus-sensitive drug or imaging agent delivery system for tumor targeting is based on the significant abnormalities in the tumor microenvironment and its cells, such as an acidic pH, altered redox potential, up-regulated proteins and hyperthermia. These internal conditions as well as external stimuli, such as magnetic field, ultrasound and light, can be used to modify the behavior of the nanopreparations that control drug release, improve drug internalization, control the intracellular drug fate and even allow for certain physical interactions, resulting in an enhanced tumor targeting and antitumor effect. This article provides a critical view of current stimulus-sensitive drug delivery strategies and possible future directions in tumor targeting with primary focus on the combined use of stimulus-sensitivity with other strategies in the same nanopreparation, including multifunctional nanopreparations and theranostics.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Oerlemans C, Deckers R, Storm G, Hennink WE, Nijsen JFW. Evidence for a new mechanism behind HIFU-triggered release from liposomes. J Control Release 2013; 168:327-33. [DOI: 10.1016/j.jconrel.2013.03.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 01/08/2023]
|
48
|
Abstract
Time and space controlled drug delivery still remains a huge challenge in medicine. A novel approach that could offer a solution is ultrasound guided drug delivery. “Ultrasonic drug delivery” is often based on the use of small gas bubbles (so-called microbubbles) that oscillate and cavitate upon exposure to ultrasound waves. Some microbubbles are FDA approved contrast agents for ultrasound imaging and are nowadays widely investigated as promising drug carriers. Indeed, it has been observed that upon exposure to ultrasound waves, microbubbles may (a) release the encapsulated drugs and (b) simultaneously change the structure of the cell membranes in contact with the microbubbles which may facilitate drug entrance into cells. This review aims to highlight (a) major factors known so far which affect ultrasonic drug delivery (like the structure of the microbubbles, acoustic settings, etc.) and (b) summarizes the recent preclinical progress in this field together with a number of promising new concepts and applications.
Collapse
|
49
|
Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8:1621-33. [PMID: 23637531 PMCID: PMC3635663 DOI: 10.2147/ijn.s43589] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical College, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Lepetit-Coiffé M, Yudina A, Poujol C, de Oliveira PL, Couillaud F, Moonen CTW. Quantitative Evaluation of Ultrasound-Mediated Cellular Uptake of a Fluorescent Model Drug. Mol Imaging Biol 2013; 15:523-33. [DOI: 10.1007/s11307-013-0615-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|