1
|
Wu Z, Chen S, Wang Y, Li F, Xu H, Li M, Zeng Y, Wu Z, Gao Y. Current perspectives and trend of computer-aided drug design: a review and bibliometric analysis. Int J Surg 2024; 110:3848-3878. [PMID: 38502850 PMCID: PMC11175770 DOI: 10.1097/js9.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
AIM Computer-aided drug design (CADD) is a drug design technique for computing ligand-receptor interactions and is involved in various stages of drug development. To better grasp the frontiers and hotspots of CADD, we conducted a review analysis through bibliometrics. METHODS A systematic review of studies published between 2000 and 20 July 2023 was conducted following the PRISMA guidelines. Literature on CADD was selected from the Web of Science Core Collection. General information, publications, output trends, countries/regions, institutions, journals, keywords, and influential authors were visually analyzed using software such as Excel, VOSviewer, RStudio, and CiteSpace. RESULTS A total of 2031 publications were included. These publications primarily originated from 99 countries or regions led by the U.S. and China. Among the contributors, MacKerell AD had the highest number of articles and the greatest influence. The Journal of Medicinal Chemistry was the most cited journal, whereas the Journal of Chemical Information and Modeling had the highest number of publications. CONCLUSIONS Influential authors in the field were identified. Current research shows active collaboration between countries, institutions, and companies. CADD technologies such as homology modeling, pharmacophore modeling, quantitative conformational relationships, molecular docking, molecular dynamics simulation, binding free energy prediction, and high-throughput virtual screening can effectively improve the efficiency of new drug discovery. Artificial intelligence-assisted drug design and screening based on CADD represent key topics that will influence future development. Furthermore, this paper will be helpful in better understanding the frontiers and hotspots of CADD.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Fangyang Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Huanhua Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| | - Yingjian Zeng
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang
| | - Zhenfeng Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine
- Beijing Institute of Radiation Medicine, Academy of Military Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
3
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
4
|
Ghadiri N, Javidan M, Sheikhi S, Taştan Ö, Parodi A, Liao Z, Tayybi Azar M, Ganjalıkhani-Hakemi M. Bioactive peptides: an alternative therapeutic approach for cancer management. Front Immunol 2024; 15:1310443. [PMID: 38327525 PMCID: PMC10847386 DOI: 10.3389/fimmu.2024.1310443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer is still considered a lethal disease worldwide and the patients' quality of life is affected by major side effects of the treatments including post-surgery complications, chemo-, and radiation therapy. Recently, new therapeutic approaches were considered globally for increasing conventional cancer therapy efficacy and decreasing the adverse effects. Bioactive peptides obtained from plant and animal sources have drawn increased attention because of their potential as complementary therapy. This review presents a contemporary examination of bioactive peptides derived from natural origins with demonstrated anticancer, ant invasion, and immunomodulation properties. For example, peptides derived from common beans, chickpeas, wheat germ, and mung beans exhibited antiproliferative and toxic effects on cancer cells, favoring cell cycle arrest and apoptosis. On the other hand, peptides from marine sources showed the potential for inhibiting tumor growth and metastasis. In this review we will discuss these data highlighting the potential befits of these approaches and the need of further investigations to fully characterize their potential in clinics.
Collapse
Affiliation(s)
- Nooshin Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Moslem Javidan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Shima Sheikhi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Özge Taştan
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi, Russia
| | - Ziwei Liao
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mehdi Tayybi Azar
- Department of Biophysics, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Mazdak Ganjalıkhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
5
|
Han Z, Li Z, Raveendran R, Farazi S, Cao C, Chapman R, Stenzel MH. Peptide-Conjugated Micelles Make Effective Mimics of the TRAIL Protein for Driving Apoptosis in Colon Cancer. Biomacromolecules 2023; 24:5046-5057. [PMID: 37812059 DOI: 10.1021/acs.biomac.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) drives apoptosis selectively in cancer cells by clustering death receptors (DR4 and DR5). While it has excellent in vitro selectivity and toxicity, the TRAIL protein has a very low circulation half-life in vivo, which has hampered clinical development. Here, we developed core-cross-linked micelles that present multiple copies of a TRAIL-mimicking peptide at its surface. These micelles successfully induce apoptosis in a colon cancer cell line (COLO205) via DR4/5 clustering. Micelles with a peptide density of 15% (roughly 1 peptide/45 nm2) displayed the strongest activity with an IC50 value of 0.8 μM (relative to peptide), demonstrating that the precise spatial arrangement of ligands imparted by a protein such as a TRAIL may not be necessary for DR4/5/signaling and that a statistical network of monomeric ligands may suffice. As micelles have long circulation half-lives, we propose that this could provide a potential alternative drug to TRAIL and stimulate the use of micelles in other membrane receptor clustering networks.
Collapse
Affiliation(s)
- Zifei Han
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Zihao Li
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Radhika Raveendran
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Shegufta Farazi
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Robert Chapman
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
6
|
Alamdari-Palangi V, Jaberi KR, Shahverdi M, Naeimzadeh Y, Tajbakhsh A, Khajeh S, Razban V, Fallahi J. Recent advances and applications of peptide-agent conjugates for targeting tumor cells. J Cancer Res Clin Oncol 2023; 149:15249-15273. [PMID: 37581648 DOI: 10.1007/s00432-023-05144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/08/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Cancer, being a complex disease, presents a major challenge for the scientific and medical communities. Peptide therapeutics have played a significant role in different medical practices, including cancer treatment. METHOD This review provides an overview of the current situation and potential development prospects of anticancer peptides (ACPs), with a particular focus on peptide vaccines and peptide-drug conjugates for cancer treatment. RESULTS ACPs can be used directly as cytotoxic agents (molecularly targeted peptides) or can act as carriers (guiding missile) of chemotherapeutic agents and radionuclides by specifically targeting cancer cells. More than 60 natural and synthetic cationic peptides are approved in the USA and other major markets for the treatment of cancer and other diseases. Compared to traditional cancer treatments, peptides exhibit anticancer activity with high specificity and the ability to rapidly kill target cancer cells. ACP's target and kill cancer cells via different mechanisms, including membrane disruption, pore formation, induction of apoptosis, necrosis, autophagy, and regulation of the immune system. Modified peptides have been developed as carriers for drugs, vaccines, and peptide-drug conjugates, which have been evaluated in various phases of clinical trials for the treatment of different types of solid and leukemia cancer. CONCLUSIONS This review highlights the potential of ACPs as a promising therapeutic option for cancer treatment, particularly through the use of peptide vaccines and peptide-drug conjugates. Despite the limitations of peptides, such as poor metabolic stability and low bioavailability, modified peptides show promise in addressing these challenges. Various mechanism of action of anticancer peptides. Modes of action against cancer cells including: inducing apoptosis by cytochrome c release, direct cell membrane lysis (necrosis), inhibiting angiogenesis, inducing autophagy-mediated cell death and immune cell regulation.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Shahverdi
- Medical Biotechnology Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
7
|
Rizzo C, Cancemi P, Buttacavoli M, Di Cara G, D'Amico C, Billeci F, Marullo S, D'Anna F. Insights about the ability of folate based supramolecular gels to act as targeted therapeutic agents. J Mater Chem B 2023; 11:7721-7738. [PMID: 37466082 DOI: 10.1039/d3tb01389h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
With the aim to obtain targeted chemotherapeutic agents, imidazolium and ammonium-based folate salts were synthesized. Their photophysical behavior was investigated both in buffer and buffer/DMSO solution as well as in solid phase, performing UV-vis and fluorescence investigations. Properties of the aggregates were also analyzed by dynamic light scattering. Gelation ability of the salts was analyzed in biocompatible solvents, and gel phases obtained were characterized by determining critical gelation concentrations and gel-solution transition temperatures. Insights about gelator interactions in the tridimensional network were also gained performing ATR-FTIR investigation. Properties of soft materials were further analyzed performing rheology measurements, scanning electron microscopy, fluorescence and resonance light scattering investigations. Antiproliferative activity of organic salts was tested towards two breast cancer cell lines, expressing different levels of folate receptor, namely MDA-MB-231 and MCF-7, and a normal epithelial cell line, like h-TER T-RPE-1, by using MTT assay. Dichlodihydrofluorescein acetate test was performed to verify the role of oxidative stress in cell death. Finally, antiproliferative activity was also evaluated in gel phase, to verify if salts were able to retain biological activity also after the entrapment in the gelatinous network. Results collected evidence that folate based organic salts were able to behave as targeted chemotherapeutic agents both in solution and gel phase, showing uptake mechanism and selectivity indexes that depend on both cancer cell line nature and salt structure.
Collapse
Affiliation(s)
- Carla Rizzo
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| | - Patrizia Cancemi
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Miriam Buttacavoli
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Gianluca Di Cara
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Cesare D'Amico
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Floriana Billeci
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| | - Salvatore Marullo
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| | - Francesca D'Anna
- Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| |
Collapse
|
8
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Çalışkan E, Kaplan A, Şekerci G, Çapan İ, Tekin S, Erkan S, Koran K, Sandal S, Görgülü AO. Synthesis, docking studies, in vitro cytotoxicity evaluation and DNA damage mechanism of new tyrosine-based tripeptides. J Biochem Mol Toxicol 2023; 37:e23388. [PMID: 37243846 DOI: 10.1002/jbt.23388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Peptides are one of the leading groups of compounds that have been the subject of a great deal of biological research and still continue to attract researchers' attention. In this study, a series of tripeptides based on tyrosine amino acids were synthesized by the triazine method. The cytotoxicity properties of all compounds against human cancer cell lines (MCF-7), ovarian (A2780), prostate (PC-3), and colon cancer cell lines (Caco-2) were determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay method, and % cell viability and logIC50 values of the compounds were calculated. Significant decreases in cell viability were observed in all cells (p < 0.05). The comet assay method was used to understand that the compounds that showed a significant decrease in cell viability had this effect through DNA damage. Most of the compounds exhibited cytotoxicity by DNA damage mechanism. Besides, their interactions between investigated molecule groups with PDB ID: 3VHE, 3C0R, 2ZCL, and 2HQ6 target proteins corresponding to cancer cell lines, respectively, were investigated by docking studies. Finally, molecules with high biological activity against biological receptors were determined by ADME analysis.
Collapse
Affiliation(s)
- Eray Çalışkan
- Department of Chemistry, Faculty of Science and Arts, Bingol University, Bingöl, Türkiye
| | - Alpaslan Kaplan
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Türkiye
| | | | - İrfan Çapan
- Department of Material and Material Processing Technologies, Technical Sciences Vocational College, Gazi University, Ankara, Türkiye
| | - Suat Tekin
- Physiology Department, Inonu University, Malatya, Türkiye
| | - Sultan Erkan
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Türkiye
| | - Kenan Koran
- Department of Chemistry, Faculty of Science, Firat University, Elazig, Türkiye
| | | | - Ahmet O Görgülü
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| |
Collapse
|
10
|
Yadav S, Singh P. Advancement and application of novel cell-penetrating peptide in cancer management. 3 Biotech 2023; 13:234. [PMID: 37323859 PMCID: PMC10264343 DOI: 10.1007/s13205-023-03649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are small amino acid sequences with the potential to enter cell membranes. Along with nucleic acids, large proteins, and other chemical compounds, they can deliver several bioactive cargos inside cells. Numerous CPPs have been extracted from natural or synthetic materials since the discovery of the first CPP. In the past few decades, a significant variety of studies have shown the potential of CPPs to cure different diseases. The low toxicity in peptide compared to other drug delivery carriers is a significant benefit of CPP-based therapy, in addition to the high efficacy brought about by swift and effective delivery. A significant tendency for intracellular DNA delivery may also be observed when nanoparticles and the cell penetration peptide are combined. CPPs are frequently used to increase intracellular absorption of nucleic acid, and other therapeutic agents inside the cell. Due to long-term side effects and possible toxicity, its implementation is restricted. The use of cell-permeating peptides is a commonly used technique to increase their intracellular absorption. Additionally, CPPs have lately been sought for application in vivo, following their success in cellular studies. This review will go through the numerous CPPs, the chemical modifications that improve their cellular uptake, the various means for getting them across cell membranes, and the biological activity they acquire after being conjugate with specific chemicals.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No. 2, Sector 17-A, Yamuna Expressway, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201310 India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh India
| |
Collapse
|
11
|
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023; 296:122065. [PMID: 36841215 PMCID: PMC10542936 DOI: 10.1016/j.biomaterials.2023.122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
In recent years, nanoparticles derived from cellular membranes have been increasingly explored for the prevention and treatment of human disease. With their flexible design and ability to interface effectively with the surrounding environment, these biomimetic nanoparticles can outperform their traditional synthetic counterparts. As their popularity has increased, researchers have developed novel ways to modify the nanoparticle surface to introduce new or enhanced capabilities. Moving beyond naturally occurring materials derived from wild-type cells, genetic manipulation has proven to be a robust and flexible method by which nanoformulations with augmented functionalities can be generated. In this review, an overview of genetic engineering approaches to express novel surface proteins is provided, followed by a discussion on the various biomedical applications of genetically modified cellular nanoparticles.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Fei-Xing Peng
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
13
|
Wu J, Liu Y, Cao M, Zheng N, Ma H, Ye X, Yang N, Liu Z, Liao W, Sun L. Cancer-Responsive Multifunctional Nanoplatform Based on Peptide Self-Assembly for Highly Efficient Combined Cancer Therapy by Alleviating Hypoxia and Improving the Immunosuppressive Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5667-5678. [PMID: 36651290 DOI: 10.1021/acsami.2c20388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hypoxia, as a main feature of the tumor microenvironment, has greatly limited the efficacy of photodynamic therapy (PDT), as well as its clinical application. Here, a multifunctional composite nanoplatform, the peptide/Ce6/MnO2 nanocomposite (RKCM), has been constructed to alleviate tumor hypoxia and increase the efficacy of PDT using rationally designed peptide fibrils to encapsulate chlorin e6 (Ce6) inside and to mineralize MnO2 nanoparticles on the surface. As a result, RKCM significantly improved the PDT efficacy by increasing reactive oxygen species (ROS) generation, decreasing tumor cell viability, and inhibiting tumor growth and metastasis. Besides, decreased HIF-1α expression and increased immune-activated cell infiltration were also observed in RKCM/laser treatment xenograft. Mechanically, (1) Ce6 can induce singlet oxygen (1O2) generation under laser irradiation to give photodynamic therapy (PDT); (2) MnO2 can react with H2O2 in situ to supply additional O2 to alleviate tumor hypoxia; and (3) the released Mn2+ ions can induce a Fenton-like reaction to generate •OH for chemical dynamic therapy (CDT). Moreover, RKCM/laser treatment also presented with an abscopal effect to block the occurrence of lung metastasis by remolding the pre-metastasis immune microenvironment. With these several aspects working together, the peptide/Ce6/MnO2 nanoplatform can achieve highly efficient tumor therapy. Such a strategy based on peptide self-assembly provides a promising way to rationally design a cancer-responsive multifunctional nanoplatform for highly efficient combined cancer therapy by alleviating hypoxia and improving the immune microenvironment.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang 310022, China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Nannan Zheng
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Oncology, Air Force Medical Center of PLA, Air Force Medical University, Beijing 100089, China
| |
Collapse
|
14
|
Paulussen FM, Grossmann TN. Peptide-based covalent inhibitors of protein-protein interactions. J Pept Sci 2023; 29:e3457. [PMID: 36239115 PMCID: PMC10077911 DOI: 10.1002/psc.3457] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPI) are involved in all cellular processes and many represent attractive therapeutic targets. However, the frequently rather flat and large interaction areas render the identification of small molecular PPI inhibitors very challenging. As an alternative, peptide interaction motifs derived from a PPI interface can serve as starting points for the development of inhibitors. However, certain proteins remain challenging targets when applying inhibitors with a competitive mode of action. For that reason, peptide-based ligands with an irreversible binding mode have gained attention in recent years. This review summarizes examples of covalent inhibitors that employ peptidic binders and have been tested in a biological context.
Collapse
Affiliation(s)
- Felix M Paulussen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Liu M, Lai W, Chen M, Wang P, Liu J, Fang X, Yang Y, Wang C. Prominent Enhancement of Peptide-mediated Targeting Efficiency for Human Hepatocellular Carcinomas With Composition-engineered Protein Corona on Gold Nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Bicak B, Kecel Gunduz S, Budama Kilinc Y, Imhof P, Gok B, Akman G, Ozel AE. Structural, spectroscopic, in silico, in vitro and DNA binding evaluations of tyrosyl-lysyl-threonine. J Biomol Struct Dyn 2022; 40:12148-12164. [PMID: 34463215 DOI: 10.1080/07391102.2021.1968499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main objective of the present study is to investigate the molecular structure and DNA binding interaction of the tyrosyl-lysyl-threonine (YKT) tripeptide, which has anticancer, antioxidant and analgesic properties, using various in silico (MD, QM, molecular docking), spectroscopic (UV, FT-IR, FTIR-ATR, Raman, gel electrophoresis) and in vitro (MCF-7 and HeLa cancer cell lines and BEAS-2B cell line) methods. The optimized geometry, vibrational wavenumbers, molecular electrostatic potential (MEP), natural bond orbital (NBO) and HOMO-LUMO (highest occupied molecular orbital- lowest unoccupied molecular orbital) calculations were carried out with Density Functional Theory (DFT) using B3LYP/6-311++G(d,p) basis set to indicate conformational, vibrational and intramolecular charge transfer characteristics. The assignment of all fundamental theoretical vibration wavenumbers was performed using potential energy distribution analysis (PED). DNA is a significant pharmacological target of drugs in several diseases such as cancer. For this reason, molecular docking calculation was used to elucidate the binding and interaction between YKT tripeptide and DNA at the atomic level. Also, the dynamic behaviors of YKT and DNA was examined using MD simulations. Besides, the interaction of YKT with DNA was experimentally examined by UV titration method and agarose gel electrophoresis method. Experimental results showed that YKT was intercalatively and electrostatically bound to CT-DNA (Calf thymus DNA) and cleavage pBR322 DNA in the presence of H2O2. The pharmacokinetic profile of YKT was also obtained. Cytotoxic effect of YKT was evaluated on MCF-7, HeLa and BEAS-2B cell lines. Hence, these studies about YKT tripeptide may pave the way for the development of various cancer drugs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bilge Bicak
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Serda Kecel Gunduz
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Yasemin Budama Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Petra Imhof
- Computer Chemistry Center, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Gizem Akman
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ayşen E Ozel
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Faraji N, Arab SS, Doustmohammadi A, Daly NL, Khosroushahi AY. ApInAPDB: a database of apoptosis-inducing anticancer peptides. Sci Rep 2022; 12:21341. [PMID: 36494486 PMCID: PMC9734560 DOI: 10.1038/s41598-022-25530-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
ApInAPDB (Apoptosis-Inducing Anticancer Peptides Database) consists of 818 apoptosis-inducing anticancer peptides which are manually collected from research articles. The database provides scholars with peptide related information such as function, binding target and affinity, IC50 and etc. In addition, GRAVY (grand average of hydropathy), net charge at pH 7, hydrophobicity and other physicochemical properties are calculated and presented. Another category of information are structural information includes 3D modeling, secondary structure prediction and descriptors for QSAR (quantitative structure-activity relationship) modeling. In order to facilitate the browsing process, three types of user-friendly searching tools are provided: top categories browser, simple search and advanced search. Overall ApInAPDB as the first database presenting apoptosis-inducing anticancer peptides can be useful in the field of peptide design and especially cancer therapy. Researchers can freely access the database at http://bioinf.modares.ac.ir/software/ApInAPDB/ .
Collapse
Affiliation(s)
- Naser Faraji
- grid.412888.f0000 0001 2174 8913Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Shahriar Arab
- grid.412266.50000 0001 1781 3962Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Doustmohammadi
- grid.412266.50000 0001 1781 3962Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Norelle L. Daly
- grid.1011.10000 0004 0474 1797Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD Australia
| | - Ahmad Yari Khosroushahi
- grid.412888.f0000 0001 2174 8913Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
O’Connell C, VandenHeuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. Int J Mol Sci 2022; 23:9981. [PMID: 36077371 PMCID: PMC9456334 DOI: 10.3390/ijms23179981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of mortality globally with an overall 5-year survival of 47%. The predominant subtype of OvCa is epithelial carcinoma, which can be highly aggressive. This review launches with a summary of the clinical features of OvCa, including staging and current techniques for diagnosis and therapy. Further, the important role of proteases in OvCa progression and dissemination is described. Proteases contribute to tumor angiogenesis, remodeling of extracellular matrix, migration and invasion, major processes in OvCa pathology. Multiple proteases, such as metalloproteinases, trypsin, cathepsin and others, are overexpressed in the tumor tissue. Presence of these catabolic enzymes in OvCa tissue can be exploited for improving early diagnosis and therapeutic options in advanced cases. Nanomedicine, being on the interface of molecular and cellular scales, can be designed to be activated by proteases in the OvCa microenvironment. Various types of protease-enabled nanomedicines are described and the studies that focus on their diagnostic, therapeutic and theranostic potential are reviewed.
Collapse
Affiliation(s)
- Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Kamat
- Division of Gynecologic Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences at McGovern Medical School-UTHealth, Houston, TX 77030, USA
| |
Collapse
|
19
|
Liu T, Zou L, Ji X, Xiao G. Chicken skin-derived collagen peptides chelated zinc promotes zinc absorption and represses tumor growth and invasion in vivo by suppressing autophagy. Front Nutr 2022; 9:960926. [PMID: 35990359 PMCID: PMC9381994 DOI: 10.3389/fnut.2022.960926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
To improve the utilization value of chicken by-products, we utilized the method of step-by-step hydrolysis with bromelain and flavourzyme to prepare low molecular weight chicken skin collagen peptides (CCP) (<5 kDa) and characterized the amino acids composition of the CCP. Then, we prepared novel CCP-chelated zinc (CCP–Zn) by chelating the CCP with ZnSO4. We found that the bioavailability of CCP–Zn is higher than ZnSO4. Besides, CCP, ZnSO4, or CCP–Zn effectively repressed the tumor growth, invasion, and migration in a Drosophila malignant tumor model. Moreover, the anti-tumor activity of CCP–Zn is higher than CCP or ZnSO4. Furthermore, the functional mechanism studies indicated that CCP, ZnSO4, or CCP–Zn inhibits tumor progression by reducing the autonomous and non-autonomous autophagy in tumor cells and the microenvironment. Therefore, this research provides in vivo evidence for utilizing chicken skin in the development of zinc supplements and cancer treatment in the future.
Collapse
Affiliation(s)
- Tengfei Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
20
|
Habibullah MM, Mohan S, Syed NK, Makeen HA, Jamal QMS, Alothaid H, Bantun F, Alhazmi A, Hakamy A, Kaabi YA, Samlan G, Lohani M, Thangavel N, Al-Kasim MA. Human Growth Hormone Fragment 176–191 Peptide Enhances the Toxicity of Doxorubicin-Loaded Chitosan Nanoparticles Against MCF-7 Breast Cancer Cells. Drug Des Devel Ther 2022; 16:1963-1974. [PMID: 35783198 PMCID: PMC9249349 DOI: 10.2147/dddt.s367586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Numerous drugs with potent toxicity against cancer cells are available for treating malignancies, but therapeutic efficacies are limited due to their inefficient tumor targeting and deleterious effects on non-cancerous tissue. Therefore, two improvements are mandatory for improved chemotherapy 1) novel delivery techniques that can target cancer cells to deliver anticancer drugs and 2) methods to specifically enhance drug efficacy within tumors. The loading of inert drug carriers with anticancer agents and peptides which are able to bind (target) tumor-related proteins to enhance tumor drug accumulation and local cytotoxicity is a most promising approach. Objective To evaluate the anticancer efficacy of Chitosan nanoparticles loaded with human growth hormone hGH fragment 176–191 peptide plus the clinical chemotherapeutic doxorubicin in comparison with Chitosan loaded with doxorubicin alone. Methods Two sets of in silico experiments were performed using molecular docking simulations to determine the influence of hGH fragment 176–191 peptide on the anticancer efficacy of doxorubicin 1) the binding affinities of hGH fragment 176–191 peptide to the breast cancer receptors, 2) the effects of hGH fragment 176–191 peptide binding on doxorubicin binding to these same receptors. Further, the influence of hGH fragment 176–191 peptide on the anticancer efficacy of doxorubicin was validated using viability assay in Human MCF-7 breast cancer cells. Results In silico analysis suggested that addition of the hGH fragment to doxorubicin-loaded Chitosan nanoparticles can enhance doxorubicin binding to multiple breast cancer protein targets, while photon correlation spectroscopy revealed that the synthesized dual-loaded Chitosan nanoparticles possess clinically favorable particle size, polydispersity index, as well as zeta potential. Conclusion These dual-loaded Chitosan nanoparticles demonstrated greater anti-proliferative activity against a breast cancer cell line (MCF-7) than doxorubicin-loaded Chitosan. This dual-loading strategy may enhance the anticancer potency of doxorubicin and reduce the clinical side effects associated with non-target tissue exposure.
Collapse
Affiliation(s)
- Mahmoud M Habibullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
- Correspondence: Mahmoud M Habibullah, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Al Maarefah Road, Jazan, Saudi Arabia, Tel +966 556644205, Email
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Nabeel Kashan Syed
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Alhazmi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ali Hakamy
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Yahia A Kaabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ghalia Samlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohtashim Lohani
- Emergency Medical Services Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohamed Ahmed Al-Kasim
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
21
|
Zhu D, Fang C, Yang Z, Ren Y, Yang F, Zheng S, Jiang M, Miao X, Liu D, Chen B, Yao X, Chen Y. Tubulin-binding peptide RR-171 derived from human umbilical cord serum displays antitumor activity against hepatocellular carcinoma via inducing apoptosis and activating the NF-kappa B pathway. Cell Prolif 2022; 55:e13241. [PMID: 35504605 PMCID: PMC9136518 DOI: 10.1111/cpr.13241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Hepatocellular carcinoma (HCC) still presents a high incidence of malignant tumours with poor prognosis. There is an urgent need for new therapeutic agents with high specificity, low toxicity and favourable solubility for the clinical treatment of HCC. Materials and Methods The bioactivity of human umbilical cord serum was investigated by proteomics biotechnology and a primitive peptide with certain biological activity was identified. The antitumour effect of RR‐171 was detected by cell viability assay in vitro, and determined by subcutaneous xenograft models assay and miniPDX assay in vivo. Pull‐down experiments were conducted to identify the potential targeting proteins of RR‐171. Immunofluorescence assay and tubulin polymerization assay were conducted to explore the relationship between RR‐171 and α‐tubulin. Fluorescence imaging in xenograft models was used to explore the biodistribution of RR‐171 in vivo. A phosphospecific protein microarray was performed to uncover the underlying signalling pathway by which RR‐171 induces tumour cell death. Results The results indicated that RR‐171 could be effective in the treatment of HCC in vivo and in vitro. RR‐171 could aggregate significantly in solid tumours and had no obvious systemic toxicity in vivo. RR‐171 could interact with α‐tubulin and activate the NF‐Kappa B pathway in HCC cells. Conclusions Taken together, RR‐171 exhibited significant antitumour activity against HCC in vivo and in vitro and could potentially be used in the clinical application of HCC.
Collapse
Affiliation(s)
- Donglie Zhu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Hand and Foot Surgery, The Air Force Hospital of Northern Theater of People's Liberation Army of China, Shenyang, China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanjie Ren
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Shi Zheng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangxia Miao
- Department of General Practice, Xianyang Central Hospital, Xianyang, China
| | - Duoduo Liu
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Cho CF, Farquhar CE, Fadzen CM, Scott B, Zhuang P, von Spreckelsen N, Loas A, Hartrampf N, Pentelute BL, Lawler SE. A Tumor-Homing Peptide Platform Enhances Drug Solubility, Improves Blood-Brain Barrier Permeability and Targets Glioblastoma. Cancers (Basel) 2022; 14:cancers14092207. [PMID: 35565337 PMCID: PMC9103942 DOI: 10.3390/cancers14092207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is a fatal and incurable brain cancer, and current treatment options have demonstrated limited success. Here, we describe the use of a dg-Bcan-Targeting-Peptide (BTP-7) that has BBB-penetrating properties and targets GBM. Conjugation of BTP-7 to an insoluble anti-cancer drug, camptothecin (CPT), improves drug solubility in aqueous solution, retains drug efficacy against patient-derived GBM stem cells (GSC), enhances BBB permeability, and enables therapeutic targeting to intracranial patient-derived GBM xenograft in mice, leading to higher toxicity in GBM cells compared to normal brain tissues and prolonged animal survival. This work demonstrates a proof-of-concept for BTP-7 as a tumor-targeting peptide for therapeutic delivery to GBM. Abstract Background: Glioblastoma (GBM) is the most common and deadliest malignant primary brain tumor, contributing significant morbidity and mortality among patients. As current standard-of-care demonstrates limited success, the development of new efficacious GBM therapeutics is urgently needed. Major challenges in advancing GBM chemotherapy include poor bioavailability, lack of tumor selectivity leading to undesired side effects, poor permeability across the blood–brain barrier (BBB), and extensive intratumoral heterogeneity. Methods: We have previously identified a small, soluble peptide (BTP-7) that is able to cross the BBB and target the human GBM extracellular matrix (ECM). Here, we covalently attached BTP-7 to an insoluble anti-cancer drug, camptothecin (CPT). Results: We demonstrate that conjugation of BTP-7 to CPT improves drug solubility in aqueous solution, retains drug efficacy against patient-derived GBM stem cells (GSC), enhances BBB permeability, and enables therapeutic targeting to intracranial GBM, leading to higher toxicity in GBM cells compared to normal brain tissues, and ultimately prolongs survival in mice bearing intracranial patient-derived GBM xenograft. Conclusion: BTP-7 is a new modality that opens the door to possibilities for GBM-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Choi-Fong Cho
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Correspondence:
| | - Charlotte E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
| | - Colin M. Fadzen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
| | - Benjamin Scott
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
| | - Pei Zhuang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
| | - Niklas von Spreckelsen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
- Department of General Neurosurgery, Centre of Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, 50937 Cologne, Germany
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
| | - Nina Hartrampf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bradley L. Pentelute
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.E.F.); (C.M.F.); (A.L.); (N.H.)
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.S.); (P.Z.); (N.v.S.); (S.E.L.)
- Legorreta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
23
|
Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022; 10:830133. [PMID: 35494646 PMCID: PMC9039169 DOI: 10.3389/fchem.2022.830133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 01/28/2023] Open
Abstract
We highlight hereby recent developments in the emerging field of theranostics, which encompasses the combination of therapeutics and diagnostics in a single entity aimed for an early-stage diagnosis, image-guided therapy as well as evaluation of therapeutic outcomes of relevance to prostate cancer (PCa). Prostate cancer is one of the most common malignancies in men and a frequent cause of male cancer death. As such, this overview is concerned with recent developments in imaging and sensing of relevance to prostate cancer diagnosis and therapeutic monitoring. A major advantage for the effective treatment of PCa is an early diagnosis that would provide information for an appropriate treatment. Several imaging techniques are being developed to diagnose and monitor different stages of cancer in general, and patient stratification is particularly relevant for PCa. Hybrid imaging techniques applicable for diagnosis combine complementary structural and morphological information to enhance resolution and sensitivity of imaging. The focus of this review is to sum up some of the most recent advances in the nanotechnological approaches to the sensing and treatment of prostate cancer (PCa). Targeted imaging using nanoparticles, radiotracers and biomarkers could result to a more specialised and personalised diagnosis and treatment of PCa. A myriad of reports has been published literature proposing methods to detect and treat PCa using nanoparticles but the number of techniques approved for clinical use is relatively small. Another facet of this report is on reviewing aspects of the role of functional nanoparticles in multimodality imaging therapy considering recent developments in simultaneous PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) coupled with optical imaging in vitro and in vivo, whilst highlighting feasible case studies that hold promise for the next generation of dual modality medical imaging of PCa. It is envisaged that progress in the field of imaging and sensing domains, taken together, could benefit from the biomedical implementation of new synthetic platforms such as metal complexes and functional materials supported on organic molecular species, which can be conjugated to targeting biomolecules and encompass adaptable and versatile molecular architectures. Furthermore, we include hereby an overview of aspects of biosensing methods aimed to tackle PCa: prostate biomarkers such as Prostate Specific Antigen (PSA) have been incorporated into synthetic platforms and explored in the context of sensing and imaging applications in preclinical investigations for the early detection of PCa. Finally, some of the societal concerns around nanotechnology being used for the detection of PCa are considered and addressed together with the concerns about the toxicity of nanoparticles–these were aspects of recent lively debates that currently hamper the clinical advancements of nano-theranostics. The publications survey conducted for this review includes, to the best of our knowledge, some of the most recent relevant literature examples from the state-of-the-art. Highlighting these advances would be of interest to the biomedical research community aiming to advance the application of theranostics particularly in PCa diagnosis and treatment, but also to those interested in the development of new probes and methodologies for the simultaneous imaging and therapy monitoring employed for PCa targeting.
Collapse
Affiliation(s)
- David G. Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Electroceramics, Instituto de Ceramica y Vidrio - CSIC, Madrid, Spain
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| | - Sotia Neophytou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Eleni Nicodemou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Sofia I. Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre of Therapeutic Innovations, University of Bath, Bath, United Kingdom
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| |
Collapse
|
24
|
In Vitro and In Vivo Evaluation of a Cyclic LyP-1-Modified Nanosystem for Targeted Endostatin Delivery in a KYSE-30 Cell Xenograft Athymic Nude Mice Model. Pharmaceuticals (Basel) 2022; 15:ph15030353. [PMID: 35337150 PMCID: PMC8955112 DOI: 10.3390/ph15030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
This work investigated the use of LyP-1 as a homing peptide for p32 receptor targeting on the surface of an endostatin (ENT)-loaded chitosan-grafted nanosystem intended for intracellular delivery of ENT and mitochondrial targeting in a squamous cell carcinoma (SCC) cell line (KYSE-30) model. The angiogenic factors for VEGF-C and MMP2 were assessed with in vivo evaluation of the nanosystem upon ENT release and tumor necrosis in nude mice with a KYSE-30 cell xenograft. The LyP-1-modified nanosystem revealed a three-fold decrease in proliferation at 1000 µg/mL compared with the control and facilitated receptor-mediated cellular uptake and internalization. In addition, targeting of the Lyp-1-functionalized nanosystem to mitochondrial and nuclear proteins in vitro and in vivo was achieved. Up to 60% inhibition of KYSE-30 cell migration was observed and the expressions of VEGF-C and MMP-2 as angiogenic markers were reduced 3- and 2-fold, respectively. A marked reduction in tumor mass was recorded (43.25%) with the control, a 41.36% decrease with the nanoparticles and a 61.01% reduction with the LyP-1-modified nanosystem following treatment in mice. The LyP-1-functionalized nanosystem targeted tumor lymphatics, instigated nuclear rupture and mitochondrial distortion, and decreased cell proliferation and migration with inhibition of VEGF-C and MMP2 expression.
Collapse
|
25
|
Zhang Y, Yu Y, Gao J. Supramolecular Nanomedicines of In-Situ Self-Assembling Peptides. Front Chem 2022; 10:815551. [PMID: 35186883 PMCID: PMC8854645 DOI: 10.3389/fchem.2022.815551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomedicines provide distinct clinical advantages over traditional monomolecular therapeutic and diagnostic agents. Supramolecular nanomedicines made from in-situ self-assembling peptides have emerged as a promising strategy in designing and fabricating nanomedicines. In-situ self-assambly (SA) allows the combination of nanomedicines approach with prodrug approach, which exhibited both advantages of these strategies while addressed the problems of both and thus receiving more and more research attention. In this review, we summarized recently designed supramolecular nanomedicines of in-situ SA peptides in the manner of applications and design principles, and the interaction between the materials and biological environments was also discussed.
Collapse
|
26
|
Ochoa R, Soler MA, Gladich I, Battisti A, Minovski N, Rodriguez A, Fortuna S, Cossio P, Laio A. Computational Evolution Protocol for Peptide Design. Methods Mol Biol 2022; 2405:335-359. [PMID: 35298821 DOI: 10.1007/978-1-0716-1855-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select the most promising peptide candidates, the key is describing accurately the peptide-target interactions at the molecular level. We here review a computational peptide design protocol whose key feature is the use of all-atom explicit solvent molecular dynamics for describing the different peptide-target complexes explored during the optimization. We describe the milestones behind the development of this protocol, which is now implemented in an open-source code called PARCE. We provide a basic tutorial to run the code for an antibody fragment design example. Finally, we describe three additional applications of the method to design peptides for different targets, illustrating the broad scope of the proposed approach.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia
| | | | - Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- SISSA, Trieste, Italy
| | | | - Nikola Minovski
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Alex Rodriguez
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Genova, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Alessandro Laio
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
- SISSA, Trieste, Italy
| |
Collapse
|
27
|
Samuel G, Nazim U, Sharma A, Manuel V, Elnaggar MG, Taye A, Nasr NEH, Hofni A, Abdel Hakiem AF. Selective targeting of the novel CK-10 nanoparticles to the MDA-MB-231 breast cancer cells. J Pharm Sci 2021; 111:1197-1207. [PMID: 34929154 DOI: 10.1016/j.xphs.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
The main objective of this project was to formulate novel decorated amphiphilic PLGA nanoparticles aiming for the selective delivery of the novel peptide (CK-10) to the cancerous/tumor tissue. Novel modified microfluidic techniques were used to formulate the nanoparticles. This technique was modified by using of Nano Assemblr associated with salting out of the organic solvent using K2HPO4. This modification is associated with higher peptide loading efficiencies, smaller size and higher uniformity. Size, zeta potential & qualitative determination of the adsorbed targeting ligands were measured by dynamic light scattering and laser anemometry techniques using the zeta sizer. Quantitative estimation of the adsorbed targeting ligands was done by colorimetry and spectrophotometric techniques. Qualitative and quantitative uptakes of the various PLGA nanoparticles were examined by the fluorescence microscope and the flow cytometer while the cytotoxic effect of the nanoparticles was measured by the colorimetric MTT assay. PLGA/poloxamer.FA, PLGA/poloxamer.HA, and PLGA/poloxamer.Tf have breast cancer MDA. MB321 cellular uptakes 83.8, 75.43 & 69.37 % which are higher than those of the PLGA/B cyclodextrin.FA, PLGA/B cyclodextrin.HA and PLGA/B cyclodextrin.Tf 80.87, 74.47 & 64.67 %. Therefore, PLGA/poloxamer.FA and PLGA/poloxamer.HA show higher cytotoxicity than PLGA/ poloxamer.Tf with lower breast cancer MDA-MB-231 cell viabilities 30.74, 39.15 & 49.23 %, respectively. The design of novel decorated amphiphilic CK-10 loaded PLGA nanoparticles designed by the novel modified microfluidic technique succeeds in forming innovative anticancer formulations candidates for therapeutic use in aggressive breast cancers.
Collapse
Affiliation(s)
- Girgis Samuel
- School of Pharmacy, University of Sunderland, United Kingdom
| | - Uddin Nazim
- School of Pharmacy, University of Sunderland, United Kingdom
| | - Ankur Sharma
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, India
| | | | - Marwa G Elnaggar
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | | | - Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Ahmed Faried Abdel Hakiem
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt.
| |
Collapse
|
28
|
Bang S, Song JK, Shin SW, Lee KH. Human serum albumin fusion protein as therapeutics for targeting amyloid beta in Alzheimer's diseases. Neurosci Lett 2021; 767:136298. [PMID: 34673147 DOI: 10.1016/j.neulet.2021.136298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) plaques and neurofibrillary tangles. AD drug development has been limited due to the presence of the blood-brain barrier (BBB), which prevents efficient uptake of therapeutics into the brain. To solve this problem, we used trans-activator of transcription (TAT)-transducing domain and added the human serum albumin (HSA) carrier to increase the half-life of the drug within the body. In addition, we included the protein of interest for lowering Aβ deposition and/or neurofibrillary tangles. We made HSA fusion protein (designated AL04) which contains Cystatin C (CysC) as core mechanism of action moiety in the construct containing tandem repeat TAT (dTAT). After purification of 80KDa AL04, we investigate the therapeutic potential of AL04 in vitro and AD mouse model Tg2576. We evaluated the permeability of AL04 through the BBB using a cell-basedhuman BBB model and show that dTAT plays a role in facilitating the delivery of 80 kDa protein. We found out that AL04 attenuates Aβ-induced neurotoxicity in PC12 cells. In Tg2576 mice brain, Aβ plaques were dramatically reduced in AL04 treated mice. These data suggest that BBB-crossing albumin fusion protein AL04 with CysC active moiety can be a disease modifying treatment for AD.
Collapse
|
29
|
Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biocompatible nanosystems based on polymeric materials are promising drug delivery nanocarrier candidates for antitumor therapy. However, the efficacy is unsatisfying due to nonspecific accumulation and drug release of the nanoparticles in normal tissue. Recently, the nanosystems that can be triggered by tumor-specific stimuli have drawn great interest for drug delivery applications due to their controllable drug release properties. In this review, various polymers and external stimuli that can be employed to develop stimuli-responsive polymeric nanosystems are discussed, and finally, we delineate the challenges in designing this kind of Nanomedicine to improve the therapeutic efficacy.
Collapse
|
30
|
Virtual Screening for Biomimetic Anti-Cancer Peptides from Cordyceps militaris Putative Pepsinized Peptidome and Validation on Colon Cancer Cell Line. Molecules 2021; 26:molecules26195767. [PMID: 34641308 PMCID: PMC8510206 DOI: 10.3390/molecules26195767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related death in Thailand and many other countries. The standard practice for curing this cancer is surgery with an adjuvant chemotherapy treatment. However, the unfavorable side effects of chemotherapeutic drugs are undeniable. Recently, protein hydrolysates and anticancer peptides have become popular alternative options for colon cancer treatment. Therefore, we aimed to screen and select the anticancer peptide candidates from the in silico pepsin hydrolysate of a Cordyceps militaris (CM) proteome using machine-learning-based prediction servers for anticancer prediction, i.e., AntiCP, iACP, and MLACP. The selected CM-anticancer peptide candidates could be an alternative treatment or co-treatment agent for colorectal cancer, reducing the use of chemotherapeutic drugs. To ensure the anticancer properties, an in vitro assay was performed with "CM-biomimetic peptides" on the non-metastatic colon cancer cell line (HT-29). According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results from peptide candidate treatments at 0-400 µM, the IC50 doses of the CM-biomimetic peptide with no toxic and cancer-cell-penetrating ability, original C. militaris biomimetic peptide (C-ori), against the HT-29 cell line were 114.9 µM at 72 hours. The effects of C-ori compared to the doxorubicin, a conventional chemotherapeutic drug for colon cancer treatment, and the combination effects of both the CM-anticancer peptide and doxorubicin were observed. The results showed that C-ori increased the overall efficiency in the combination treatment with doxorubicin. According to the acridine orange/propidium iodine (AO/PI) staining assay, C-ori can induce apoptosis in HT-29 cells significantly, confirmed by chromatin condensation, membrane blebbing, apoptotic bodies, and late apoptosis which were observed under a fluorescence microscope.
Collapse
|
31
|
Zuccolo M, Arrighetti N, Perego P, Colombo D. Recent Progresses in Conjugation with Bioactive Ligands to Improve the Anticancer Activity of Platinum Compounds. Curr Med Chem 2021; 29:2566-2601. [PMID: 34365939 DOI: 10.2174/0929867328666210806110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Platinum (Pt) drugs, including cisplatin, are widely used for the treatment of solid tumors. Despite the clinical success, side effects and occurrence of resistance represent major limitations to the use of clinically available Pt drugs. To overcome these problems, a variety of derivatives have been designed and synthetized. Here, we summarize the recent progress in the development of Pt(II) and Pt(IV) complexes with bioactive ligands. The development of Pt(II) and Pt(IV) complexes with targeting molecules, clinically available agents, and other bioactive molecules is an active field of research. Even if none of the reported Pt derivatives has been yet approved for clinical use, many of these compounds exhibit promising anticancer activities with an improved pharmacological profile. Thus, planning hybrid compounds can be considered as a promising approach to improve the available Pt-based anticancer agents and to obtain new molecular tools to deepen the knowledge of cancer progression and drug resistance mechanisms.
Collapse
Affiliation(s)
- Marco Zuccolo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| |
Collapse
|
32
|
Varlas S, Maitland GL, Derry MJ. Protein-, (Poly)peptide-, and Amino Acid-Based Nanostructures Prepared via Polymerization-Induced Self-Assembly. Polymers (Basel) 2021; 13:2603. [PMID: 34451144 PMCID: PMC8402019 DOI: 10.3390/polym13162603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022] Open
Abstract
Proteins and peptides, built from precisely defined amino acid sequences, are an important class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon self-assembly of all-synthetic amphiphilic copolypept(o)ides and amino acid-containing polymers enables access to novel protein-mimicking biomaterials with superior physicochemical properties and immense biorelevant scope. In recent years, polymerization-induced self-assembly (PISA) has been established as an efficient and versatile alternative method to existing self-assembly procedures for the reproducible development of block copolymer nano-objects in situ at high concentrations and, thus, provides an ideal platform for engineering protein-inspired nanomaterials. In this review article, the different strategies employed for direct construction of protein-, (poly)peptide-, and amino acid-based nanostructures via PISA are described with particular focus on the characteristics of the developed block copolymer assemblies, as well as their utilization in various pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Spyridon Varlas
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Georgia L Maitland
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| | - Matthew J Derry
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
33
|
Zhao X, Zhang P, Li Y, Wu S, Li F, Wang Y, Liang S, He X, Zeng Y, Liu Z. Glucose-Lipopeptide Conjugates Reveal the Role of Glucose Modification Position in Complexation and the Potential of Malignant Melanoma Therapy. J Med Chem 2021; 64:11483-11495. [PMID: 34282902 DOI: 10.1021/acs.jmedchem.1c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycosylation and fatty acid modification are promising strategies to improve peptide performance. We previously studied glycosylation and fatty acid modification of the anticancer peptide R-lycosin-I. In this study, we further investigated the co-modification of fatty acids and monosaccharides in R-lycosin-I. A glucose derivative was covalently coupled to the ε-amino group of the Lys residues of the lipopeptide R-C12, which was derived from R-lycosin-I modified with dodecanoic acid, and obtained seven glycolipid peptides. They exhibited different cytotoxicity profiles, which may be related to the changes in physicochemical properties and binding ability to glucose transporter 1 (GLUT1). Among them, R-C12-4 exhibited the highest cytotoxicity and improved selectivity. A further study demonstrated that R-C12-4 showed significant cytotoxicity and antimetastasis activity in murine melanoma cells, melanoma spheroids, and animal models. Our results indicated that the glucose derivative modification position plays important roles in glucose-lipopeptide conjugates, and R-C12-4 might be a promising lead for developing anticancer drugs.
Collapse
Affiliation(s)
- Xinxin Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, College of Chemistry & Chemical Engineering, Changsha, Hunan 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Saizhi Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Fengjiao Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Youlin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, College of Chemistry & Chemical Engineering, Changsha, Hunan 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
34
|
Liu M, Fang X, Yang Y, Wang C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front Bioeng Biotechnol 2021; 9:701504. [PMID: 34277592 PMCID: PMC8281044 DOI: 10.3389/fbioe.2021.701504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Receptor-targeting peptides have been extensively pursued for improving binding specificity and effective accumulation of drugs at the site of interest, and have remained challenging for extensive research efforts relating to chemotherapy in cancer treatments. By chemically linking a ligand of interest to drug-loaded nanocarriers, active targeting systems could be constructed. Peptide-functionalized nanostructures have been extensively pursued for biomedical applications, including drug delivery, biological imaging, liquid biopsy, and targeted therapies, and widely recognized as candidates of novel therapeutics due to their high specificity, well biocompatibility, and easy availability. We will endeavor to review a variety of strategies that have been demonstrated for improving receptor-specificity of the drug-loaded nanoscale structures using peptide ligands targeting tumor-related receptors. The effort could illustrate that the synergism of nano-sized structures with receptor-targeting peptides could lead to enrichment of biofunctions of nanostructures.
Collapse
Affiliation(s)
- Mingpeng Liu
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. NANO TODAY 2021; 38:101119. [PMID: 34267794 PMCID: PMC8276870 DOI: 10.1016/j.nantod.2021.101119] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
36
|
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021; 221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
Natural peptides extracted from natural components such are known to have a relatively short in-vivo half-life and can readily metabolize by endo- and exo-peptidases. Fortunately, synthetic peptides can be easily manipulated to increase in-vivo stability, membrane permeability and target specificity with some well-known natural families. Many natural as well as synthetic peptides target to their endogenous receptors for diagnosis and therapeutic applications. In order to detect these peptides externally, they must be modified with radionuclides compatible with single photon emission computed tomography (SPECT) or positron emission tomography (PET). Although, these techniques mainly rely on physiological changes and have profound diagnostic strength over anatomical modalities such as MRI and CT. However, both SPECT and PET observed to possess lack of anatomical reference frame which is a key weakness of these techniques, and unfortunately, cannot be available freely in most clinical centres especially in under-developing countries. Hence, it is need of the time to design and develop economic, patient friendly and versatile strategies to grapple with existing problems without any hazardous side effects. Optical molecular imaging (OMI) has emerged as a novel technique in field of medical science using fluorescent probes as imaging modality and has ability to couple with organic drugs, small molecules, chemotherapeutics, DNA, RNA, anticancer peptide and protein without adding chelators as necessary for radionuclides. Furthermore, this review focuses on difference in imaging modalities and provides ample knowledge about reliable, economic and patient friendly optical imaging technique rather radionuclide-based imaging techniques.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China.
| |
Collapse
|
37
|
Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorg Chem 2021; 112:104946. [PMID: 33989916 DOI: 10.1016/j.bioorg.2021.104946] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Targeted delivery combined with controlled release of drugs has a crucial role in future of personalized medicine. The majority of cancer drugs are intended to interfere with one or more cellular events. Anticancer agents can also be toxic to healthy cells, as healthy cells may also need to proliferate and avoid apoptosis. The focus of this review covers the principles, advantages, drawbacks and summarize criteria that must be met for design of small molecule-drug conjugates (SMDCs) to achieve the desired therapeutic potency with minimal toxicity. SMDCs are composed of a targeting ligand, a releasable bridge, a spacer, and a therapeutic payload. We summarize the criteria for the effective design that influences the selection of tumor specific receptor and optimum elements in the design of SMDCs. We also discuss the criteria for selecting the optimal therapeutic drug payload, spacer and linker. The linker chemistries and cleavage strategies are also discussed. Finally, we review the folate receptor targeting SMDCs that are in preclinical development and in clinical trials.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| |
Collapse
|
38
|
Cuevas F, Saavedra CJ, Romero‐Estudillo I, Boto A, Ordóñez M, Vergara I. Structural Diversity using Hyp
“Customizable Units”
:
Proof‐of‐Concept
Synthesis of Sansalvamide‐Related Antitumoral Peptides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fernando Cuevas
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
- BIOSIGMA SL c/Antonio Dominguez Afonso 16 38003- S/C Tenerife Spain
| | - Ivan Romero‐Estudillo
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
- Catedrático CONACYT-CIQ-UAEM México
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Irene Vergara
- Departamento de Ciencias Químico-Biológicas Universidad de las Américas Puebla, ExHda Sta. Catarina Mártir s/n San Andrés Cholula Puebla 72820 México
| |
Collapse
|
39
|
Nagai K, Sato T, Kojima C. Design of a dendrimer with a matrix metalloproteinase-responsive fluorescence probe and a tumor-homing peptide for metastatic tumor cell imaging in the lymph node. Bioorg Med Chem Lett 2021; 33:127726. [PMID: 33316406 DOI: 10.1016/j.bmcl.2020.127726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/01/2023]
Abstract
Fluorescence imaging is a noninvasive technique for cancer diagnosis. Dendrimers are regularly branched macromolecules with highly controllable size and structure that are a potent multifunctional nanoparticle. Anionic-terminal polyamidoamine (PAMAM) dendrimers were previously found to be accumulated in the lymph node, which is one of the main routes of tumor metastasis. In this study, we designed and synthesized a dendrimeric imaging probe for lymph node-resident tumor cell imaging. A matrix metalloproteinase-2 (MMP-2)-responsive fluorescence peptide probe and a tumor-homing peptide were conjugated to the carboxy-terminal dendrimer. The dendrimeric imaging probe treatment showed fluorescence signals inside some tumor cells (e.g., human fibrosarcoma HT-1080 and breast cancer 4T1 cells), depending on the MMP activity, but not in macrophage-like RAW264 cells.
Collapse
Affiliation(s)
- Kento Nagai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Tatsumi Sato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
40
|
Zhao Y, Li Q, Chai J, Liu Y. Cargo‐Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Jingshan Chai
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
41
|
Chu JCH, Yang C, Fong WP, Wong CTT, Ng DKP. Facile one-pot synthesis of cyclic peptide-conjugated photosensitisers for targeted photodynamic therapy. Chem Commun (Camb) 2020; 56:11941-11944. [PMID: 32931540 DOI: 10.1039/d0cc05264g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel synthetic strategy for in situ cyclisation of peptides and conjugation with functional boron dipyrromethenes (BODIPYs) has been developed. Linear peptides with up to 16 amino acid residues can be cyclised effectively and the resulting conjugates can be isolated in higher than 20% yield. One of the conjugates having a cyclic RGD moiety has been studied both in vitro and in vivo. It exhibits high and selective affinity towards the αvβ3-positive cell lines and induces high photocytotoxicity. The conjugate can also selectively localise in and effectively inhibit the growth of αvβ3-overexpressed tumour in vivo.
Collapse
Affiliation(s)
- Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | | | | | | | | |
Collapse
|
42
|
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2020; 329:805-832. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies.
Collapse
Affiliation(s)
- Sena Karaosmanoglu
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, PR China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| |
Collapse
|
43
|
Liu H, Mei C, Deng X, Lin W, He L, Chen T. Rapid visualizing and pathological grading of bladder tumor tissues by simple nanodiagnostics. Biomaterials 2020; 264:120434. [PMID: 33070001 DOI: 10.1016/j.biomaterials.2020.120434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Developing a tissue diagnosis technology to avoid the complicated processes and the usage of expensive reagents while achieving rapid pathological grading diagnosis to provide a better strategy for clinical treatment is an important strategy of tumor diagnose. Herein, we selected the integrin αvβ3 as target based on the analysis of clinical data, and then designed a stable and cancer-targeted selenium nanosystem (RGD@SeNPs) by using RGD polypeptide as the targeting modifier. In vitro experiments showed that RGD@SeNPs could specifically recognized tumor cells, especially in co-culture cells model. The RGD@SeNPs can be used for clinical samples staining without the use of primary and secondary antibody. Fluorescence difference of the tissue specimens staining with RGD@SeNPs could be used to distinguish normal tissues and tumor tissues or estimate different pathological grades of cancer at tissue level. 132 clinical tumor specimens with three types of tumor and 76 non-tumor specimens were examined which verified that the nanoparticles could specific and sensitive distinguish tumor tissue from normal tissue with a specificity of 92% and sensitivity of 96%. These results demonstrate the potential of cancer-targeted RGD@SeNPs as translational nanodiagnostics for rapid visualizing and pathological grading of bladder tumor tissues in clinical specimens.
Collapse
Affiliation(s)
- Hongxing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Chaoming Mei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xuanru Deng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
44
|
Mehrotra N, Kharbanda S, Singh H. Peptide-based combination nanoformulations for cancer therapy. Nanomedicine (Lond) 2020; 15:2201-2217. [PMID: 32914691 DOI: 10.2217/nnm-2020-0220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Research in cancer therapy is moving towards the use of biomolecules in combination with conventional approaches for improved disease outcome. Among the biomolecules explored, peptides are strong contenders due to their small size, high specificity, low systemic toxicity and wide inter/intracellular targets. The use of nanoformulations for such combination approaches can lead to further improvement in efficacy by reducing off-target cytotoxicity, increasing circulation time, tumor penetration and accumulation. This review focuses on nanodelivery systems for peptide-based combinations with chemo, immuno, radiation and hormone therapy. It gives an overview of the latest therapeutic research being conducted using combination nanoformulations with anticancer peptides, cell penetrating/tumor targeting peptides, peptide nanocarriers, peptidomimetics, peptide-based hormones and peptide vaccines. The challenges hindering clinical translation are also discussed.
Collapse
Affiliation(s)
- Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Surender Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
45
|
Magana JR, Sproncken CCM, Voets IK. On Complex Coacervate Core Micelles: Structure-Function Perspectives. Polymers (Basel) 2020; 12:E1953. [PMID: 32872312 PMCID: PMC7565781 DOI: 10.3390/polym12091953] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
The co-assembly of ionic-neutral block copolymers with oppositely charged species produces nanometric colloidal complexes, known, among other names, as complex coacervates core micelles (C3Ms). C3Ms are of widespread interest in nanomedicine for controlled delivery and release, whilst research activity into other application areas, such as gelation, catalysis, nanoparticle synthesis, and sensing, is increasing. In this review, we discuss recent studies on the functional roles that C3Ms can fulfil in these and other fields, focusing on emerging structure-function relations and remaining knowledge gaps.
Collapse
Affiliation(s)
| | | | - Ilja K. Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (J.R.M.); (C.C.M.S.)
| |
Collapse
|
46
|
Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 2020; 10:200004. [PMID: 32692959 PMCID: PMC7574553 DOI: 10.1098/rsob.200004] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anti-cancer peptides (ACPs) are a series of short peptides composed of 10-60 amino acids that can inhibit tumour cell proliferation or migration, or suppress the formation of tumour blood vessels, and are less likely to cause drug resistance. The aforementioned merits make ACPs the most promising anti-cancer candidate. However, ACPs may be degraded by proteases, or result in cytotoxicity in many cases. To overcome these drawbacks, a plethora of research has focused on reconstruction or modification of ACPs to improve their anti-cancer activity, while reducing their cytotoxicity. The modification of ACPs mainly includes main chain reconstruction and side chain modification. After summarizing the classification and mechanism of action of ACPs, this paper focuses on recent development and progress about their reconstruction and modification. The information collected here may provide some ideas for further research on ACPs, in particular their modification.
Collapse
Affiliation(s)
- Mingfeng Xie
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| | - Dijia Liu
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| | - Yufeng Yang
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China.,Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519040, People's Republic of China
| |
Collapse
|
47
|
Radiochemical and biological properties of peptides designed to interact with EGF receptor: Relevance for glioblastoma. Nucl Med Biol 2020; 88-89:14-23. [PMID: 32663774 DOI: 10.1016/j.nucmedbio.2020.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
Radiolabeled peptides with high specificity to receptors expressed on tumor cells hold a great promise as diagnostic and therapeutic tracers. The main objective of this study was to evaluate the radiochemical and biological properties of two [131I]I-peptides, as well as their interaction with the epidermal growth factor receptor (EGFR), overexpressed in a wide variety of tumors, including glioblastoma. The EEEEYFELV peptide and its analogue DEDEYFELV, both designed to interact with EGFR, were chemically synthesized, purified and radiolabeled with iodine-131 ([131I]NaI). The radioiodination was evaluated and optimized using the chloramine-T methodology. The stability, serum proteins binding and partition coefficient were assessed for both radioconjugates. Moreover, the binding and internalization of synthesized radiopeptides with rat glioblastoma cells (C6) and with rat brain homogenates from a glioblastoma induced model were evaluated and ex vivo biodistribution studies were performed. Under optimized radiolabeling conditions, the peptides showed an average radiochemical yield of 90-95%. The stability studies showed that both peptides were stable up to 24 h in reaction medium, saline, and human serum. Furthermore, [131I]I-peptides have hydrophilic features and showed binding percentage to serum proteins of around 50%, which is highly compatible with clinical applications. Moreover, the radiopeptides presented capacity for binding and internalization in both tumor cells (C6) and rat brain tissues after tumor induction. Biodistribution studies corroborated the cell culture studies and confirmed the different binding characteristics derived from a simple change of two amino acids (Glu ➔ Asp1,3) in their sequences. The results obtained are consistent enough to motivate further studies. Thereby, these radiolabeled peptides might be useful for diagnostic applications.
Collapse
|
48
|
Pereira-Silva M, Jarak I, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J Control Release 2020; 323:442-462. [DOI: 10.1016/j.jconrel.2020.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/09/2023]
|
49
|
Conibear AC, Schmid A, Kamalov M, Becker CFW, Bello C. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Curr Med Chem 2020; 27:1174-1205. [PMID: 29173146 DOI: 10.2174/0929867325666171123204851] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peptide-based pharmaceuticals have recently experienced a renaissance due to their ability to fill the gap between the two main classes of available drugs, small molecules and biologics. Peptides combine the high potency and selectivity typical of large proteins with some of the characteristic advantages of small molecules such as synthetic accessibility, stability and the potential of oral bioavailability. METHODS In the present manuscript we review the recent literature on selected peptide-based approaches for cancer treatment, emphasizing recent advances, advantages and challenges of each strategy. RESULTS One of the applications in which peptide-based approaches have grown rapidly is cancer therapy, with a focus on new and established targets. We describe, with selected examples, some of the novel peptide-based methods for cancer treatment that have been developed in the last few years, ranging from naturally-occurring and modified peptides to peptidedrug conjugates, peptide nanomaterials and peptide-based vaccines. CONCLUSION This review brings out the emerging role of peptide-based strategies in oncology research, critically analyzing the advantages and limitations of these approaches and the potential for their development as effective anti-cancer therapies.
Collapse
Affiliation(s)
- Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Alanca Schmid
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Meder Kamalov
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria
| | - Claudia Bello
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Wahringer Straße 38, 1090 Vienna, Austria.,Department of Chemistry "Ugo Schiff", University of Florence, Laboratory of Peptide and Protein Chemistry and Biolology-PeptLab, Via della Lastruccia 13, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
50
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 2020; 321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|