1
|
Asad S, Ahl D, Suárez-López YDC, Erdélyi M, Phillipson M, Teleki A. Click Chemistry-Based Bioconjugation of Iron Oxide Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407883. [PMID: 39924809 PMCID: PMC11922026 DOI: 10.1002/smll.202407883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/19/2025] [Indexed: 02/11/2025]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) exhibit unique properties for diverse biomedical applications, including drug delivery and diagnostic imaging. Actively targeted SPIONs enhance delivery to diseased sites, reducing side effects and enhancing treatment efficacy. However, the development of reproducible functionalization protocols is challenged by the erratic behavior of nanoparticles in suspensions, such as agglomeration and sedimentation. In this study, a functionalization method is developed and systematically optimized to attach the Fc-region of antibodies onto silica-coated SPIONs via click chemistry, ensuring controlled ligand orientation on the particle surface. The synthesis and successive modifications of silica-coated SPIONs with organic moieties are presented resulting in the final click conjugation with antibodies targeting intercellular adhesion molecule 1 (ICAM1). This protein is upregulated on epithelial cell surfaces during gastrointestinal inflammation. Thermogravimetric analysis and infrared spectroscopy confirm successful SPION functionalization after each modification step. Cell viability assessment indicates no adverse effects of bioconjugated particles. Quantitative elemental analysis reveals significantly higher iron concentration in inflammation-induced Caco-2 cells exposed to ICAM1-modified particles compared to non-conjugated counterparts. Furthermore, laser scanning confocal microscopy of these cells suggests surface interaction and internalization of bioconjugated SPIONs, underscoring their potential for targeted imaging and therapy in inflammatory diseases.
Collapse
Affiliation(s)
- Shno Asad
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
| | | | - Máté Erdélyi
- Department of Chemistry - BMC, Uppsala University, Uppsala, SE-75123, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
| | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
| |
Collapse
|
2
|
Cho H, Huh KM, Cho HJ, Kim B, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Beyond nanoparticle-based oral drug delivery: transporter-mediated absorption and disease targeting. Biomater Sci 2024; 12:3045-3067. [PMID: 38712883 DOI: 10.1039/d4bm00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ji Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Bogeon Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
3
|
He J, Cao Y, Zhu Q, Wang X, Cheng G, Wang Q, He R, Lu H, Weng Y, Mao G, Bao Y, Wang J, Liu X, Han F, Shi P, Shen XZ. Renal macrophages monitor and remove particles from urine to prevent tubule obstruction. Immunity 2024; 57:106-123.e7. [PMID: 38159573 DOI: 10.1016/j.immuni.2023.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
When the filtrate of the glomerulus flows through the renal tubular system, various microscopic sediment particles, including mineral crystals, are generated. Dislodging these particles is critical to ensuring the free flow of filtrate, whereas failure to remove them will result in kidney stone formation and obstruction. However, the underlying mechanism for the clearance is unclear. Here, using high-resolution microscopy, we found that the juxtatubular macrophages in the renal medulla constitutively formed transepithelial protrusions and "sampled" urine contents. They efficiently sequestered and phagocytosed intraluminal sediment particles and occasionally transmigrated to the tubule lumen to escort the excretion of urine particles. Mice with decreased renal macrophage numbers were prone to developing various intratubular sediments, including kidney stones. Mechanistically, the transepithelial behaviors of medulla macrophages required integrin β1-mediated ligation to the tubular epithelium. These findings indicate that medulla macrophages sample urine content and remove intratubular particles to keep the tubular system unobstructed.
Collapse
Affiliation(s)
- Jian He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Cao
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinge Wang
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo Cheng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rukun He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoran Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
| | - Yuancheng Weng
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Lei P, Yu H, Ma J, Du J, Fang Y, Yang Q, Zhang K, Luo L, Jin L, Wu W, Sun D. Cell membrane nanomaterials composed of phospholipids and glycoproteins for drug delivery in inflammatory bowel disease: A review. Int J Biol Macromol 2023; 249:126000. [PMID: 37532186 DOI: 10.1016/j.ijbiomac.2023.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic intestinal disorder with an increasing global incidence. However, current treatment strategies, such as anti-inflammatory drugs and probiotics, have limitations in terms of safety, stability, and effectiveness. The emergence of targeted nanoparticles has revolutionized IBD treatment by enhancing the biological properties of drugs and promoting efficiency and safety. Unlike synthetic nanoparticles, cell membrane nanomaterials (CMNs) consist primarily of biological macromolecules, including phospholipids, proteins, and sugars. CMNs include red blood cell membranes, macrophage membranes, and leukocyte membranes, which possess abundant glycoprotein receptors and ligands on their surfaces, allowing for the formation of cell-to-cell connections with other biological macromolecules. Consequently, they exhibit superior cell affinity, evade immune responses, and target inflammation effectively, making them ideal material for targeted delivery of IBD therapies. This review explores various CMNs delivery systems for IBD treatment. However, due to the complexity and harsh nature of the intestinal microenvironment, the lack of flexibility or loss of selectivity poses challenges in designing single CMNs delivery strategies. Therefore, we propose a hierarchically programmed delivery modality that combines CMNs with pH, charge, ROS and ligand-modified responsive nanoparticles. This approach significantly improves delivery efficiency and points the way for future research in this area.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Li Luo
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
5
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
6
|
Montalbo RCK, Tu HL. Micropatterning of functional lipid bilayer assays for quantitative bioanalysis. BIOMICROFLUIDICS 2023; 17:031302. [PMID: 37179590 PMCID: PMC10171888 DOI: 10.1063/5.0145997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Interactions of the cell with its environment are mediated by the cell membrane and membrane-localized molecules. Supported lipid bilayers have enabled the recapitulation of the basic properties of cell membranes and have been broadly used to further our understanding of cellular behavior. Coupled with micropatterning techniques, lipid bilayer platforms have allowed for high throughput assays capable of performing quantitative analysis at a high spatiotemporal resolution. Here, an overview of the current methods of the lipid membrane patterning is presented. The fabrication and pattern characteristics are briefly described to present an idea of the quality and notable features of the methods, their utilizations for quantitative bioanalysis, as well as to highlight possible directions for the advanced micropatterning lipid membrane assays.
Collapse
|
7
|
Solomon M, Loeck M, Silva-Abreu M, Moscoso R, Bautista R, Vigo M, Muro S. Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases. J Control Release 2022; 349:1031-1044. [PMID: 35901858 PMCID: PMC10550198 DOI: 10.1016/j.jconrel.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/02/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022]
Abstract
Treatment of neurological lysosomal storage disorders (LSDs) are limited because of impermeability of the blood-brain barrier (BBB) to macromolecules. Nanoformulations targeting BBB transcytosis are being explored, but the status of these routes in LSDs is unknown. We studied nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM1, associated to the clathrin, caveolar or cell adhesion molecule (CAM) routes, respectively. We used brain endothelial cells and mouse models of acid sphingomyelinase-deficient Niemann Pick disease (NPD), and postmortem LSD patients' brains, all compared to respective controls. NC transcytosis across brain endothelial cells and brain distribution in mice were affected, yet through different mechanisms. Reduced TfR and clathrin expression were found, along with decreased transcytosis in cells and mouse brain distribution. Caveolin-1 expression and GM1 transcytosis were also reduced, yet increased GM1 levels seemed to compensate, providing similar NC brain distribution in NPD vs. control mice. A tendency to lower NHE-1 levels was seen, but highly increased ICAM1 expression in cells and human brains correlated with increased transcytosis and brain distribution in mice. Thus, transcytosis-related alterations in NPD and likely other LSDs may impact therapeutic access to the brain, illustrating the need for these mechanistic studies.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcelle Silva-Abreu
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ronaldo Moscoso
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Ronelle Bautista
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Marco Vigo
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA; Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain; Institute of Catalonia for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
8
|
Surwase SS, Shahriar SMS, An JM, Ha J, Mirzaaghasi A, Bagheri B, Park JH, Lee YK, Kim YC. Engineered Nanoparticles inside a Microparticle Oral System for Enhanced Mucosal and Systemic Immunity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11124-11143. [PMID: 35227057 DOI: 10.1021/acsami.1c24982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antigen delivery through an oral route requires overcoming multiple challenges, including gastrointestinal enzymes, mucus, and epithelial tight junctions. Although each barrier has a crucial role in determining the final efficiency of the oral vaccination, transcytosis of antigens through follicle-associated epithelium (FAE) represents a major challenge. Most of the research is focused on delivering an antigen to the M-cell for FAE transcytosis because M-cells can easily transport the antigen from the luminal site. However, the fact is that the M-cell population is less than 1% of the total gastrointestinal cells, and most of the oral vaccines have failed to show any effect in clinical trials. To challenge the current dogma of M-cell targeting, in this study, we designed a novel tandem peptide with a FAE-targeting peptide at the front position and a cell-penetrating peptide at the back position. The tandem peptide was attached to a smart delivery system, which overcomes the enzymatic barrier and the mucosal barrier. The result showed that the engineered system could target the FAE (enterocytes and M-cells) and successfully penetrate the enterocytes to reach the dendritic cells located at the subepithelium dome. There was successful maturation and activation of dendritic cells in vitro confirmed by a significant increase in maturation markers such as CD40, CD86, presentation marker MHC I, and proinflammatory cytokines (TNF-α, IL-6, and IL-10). The in vivo results showed a high production of CD4+ T-lymphocytes (helper T-cell) and a significantly higher production of CD8+ T-lymphocytes (killer T-cell). Finally, the production of mucosal immunity (IgA) in the trachea, intestine, and fecal extracts and systemic immunity (IgG, IgG1, and IgG2a) was successfully confirmed. To the best of our knowledge, this is the first study that designed a novel tandem peptide to target the FAE, which includes M-cells and enterocytes rather than M-cell targeting and showed that a significant induction of both the mucosal and systemic immune response was achieved compared to M-cell targeting.
Collapse
Affiliation(s)
- Sachin S Surwase
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5940, United States
- KB Biomed Inc., Chungju 27469, Republic of Korea
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeong Man An
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - JongHoon Ha
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Amin Mirzaaghasi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Babak Bagheri
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yong-Kyu Lee
- KB Biomed Inc., Chungju 27469, Republic of Korea
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Advancedoral vaccine delivery strategies for improving the immunity. Adv Drug Deliv Rev 2021; 177:113928. [PMID: 34411689 DOI: 10.1016/j.addr.2021.113928] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Infectious diseases continue to inflict a high global disease burden. The consensus is that vaccination is the most effective option against infectious diseases. Oral vaccines have unique advantages in the prevention of global pandemics due to their ease of use, high compliance, low cost, and the ability to induce both systemic and mucosal immune responses. However, challenges of adapting vaccines for oral administration remain significant. Foremost among these are enzymatic and pH-dependent degradation of antigens in the stomach and intestines, the low permeability of mucus barrier, the nonspecific uptake of antigens at the intestinal mucosal site, and the immune suppression result from the elusive immune tolerance mechanisms. Innovative delivery techniques promise great potential for improving the flexibility and efficiency of oral vaccines. A better understanding of the delivery approaches and the immunological mechanisms of oral vaccine delivery systems may provide new scientific insight and tools for developing the next-generation oral vaccine. Here, an overview of the advanced technologies in the field of oral vaccination is proposed, including mucus-penetrating nanoparticle (NP), mucoadhesive delivery vehicles, targeting antigen-presenting cell (APC) nanocarriers and enhanced paracellular delivery strategies and so on. Meanwhile, the mechanisms of delivery vectors interact with mucosal barriers are discussed.
Collapse
|
10
|
Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, Wang S, Wang Y. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: Opportunities and emerging strategies. Acta Pharm Sin B 2021; 11:2798-2818. [PMID: 34589398 PMCID: PMC8463263 DOI: 10.1016/j.apsb.2020.11.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ADR, adverse drug reaction
- AIE, aggregation-induced emission
- Active target
- BSA, bovine serum albumin
- CAM, cell adhesion molecule
- CD, Crohn's disease
- CRD, cysteine-rich domain
- CS, chondroitin sulfate
- CT, computed tomography
- CTLD, c-type lectin-like domain
- Cell adhesion molecule
- Crohn's disease
- DCs, dendritic cells
- DSS, dextran sulfate sodium salt
- Drug delivery
- EGF, epidermal growth factor
- EPR, enhanced permeability and retention
- FNII, fibronectin type II domain
- FR, folate receptor
- FRET, fluorescence resonance energy transfer
- GIT, gastrointestinal tract
- HA, hyaluronic acid
- HUVEC, human umbilical vein endothelial cells
- IBD, inflammatory bowel disease
- ICAM, intercellular adhesion molecule
- Inflammatory bowel disease
- LMWC, low molecular weight chitosan
- LPS, lipopolysaccharide
- MAP4K4, mitogen-activated protein kinase kinase kinase kinase 4
- MGL, macrophage galactose lectin
- MPO, myeloperoxidase
- MPS, mononuclear phagocyte system
- MR, mannose receptor
- MRI, magnetic resonance imaging
- PAMAM, poly(amidoamine)
- PEI, polyethylenimine
- PSGL-1, P-selectin glycoprotein ligand-1
- PepT1, peptide transporter 1
- QDs, quantum dots
- RES, reticuloendothelial system
- Receptor-mediated target
- Targeted therapy
- TfR, transferrin receptor
- UC, ulcerative colitis
- Ulcerative colitis
- VCAM, vascular cell adhesion molecule
Collapse
|
11
|
Qamar B, Solomon M, Marin A, Fuerst TR, Andrianov AK, Muro S. Intracellular Delivery of Active Proteins by Polyphosphazene Polymers. Pharmaceutics 2021; 13:249. [PMID: 33578893 PMCID: PMC7916676 DOI: 10.3390/pharmaceutics13020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Achieving intracellular delivery of protein therapeutics within cells remains a significant challenge. Although custom formulations are available for some protein therapeutics, the development of non-toxic delivery systems that can incorporate a variety of active protein cargo and maintain their stability, is a topic of great relevance. This study utilized ionic polyphosphazenes (PZ) that can assemble into supramolecular complexes through non-covalent interactions with different types of protein cargo. We tested a PEGylated graft copolymer (PZ-PEG) and a pyrrolidone containing linear derivative (PZ-PYR) for their ability to intracellularly deliver FITC-avidin, a model protein. In endothelial cells, PZ-PYR/protein exhibited both faster internalization and higher uptake levels than PZ-PEG/protein, while in cancer cells both polymers achieved similar uptake levels over time, although the internalization rate was slower for PZ-PYR/protein. Uptake was mediated by endocytosis through multiple mechanisms, PZ-PEG/avidin colocalized more profusely with endo-lysosomes, and PZ-PYR/avidin achieved greater cytosolic delivery. Consequently, a PZ-PYR-delivered anti-F-actin antibody was able to bind to cytosolic actin filaments without needing cell permeabilization. Similarly, a cell-impermeable Bax-BH3 peptide known to induce apoptosis, decreased cell viability when complexed with PZ-PYR, demonstrating endo-lysosomal escape. These biodegradable PZs were non-toxic to cells and represent a promising platform for drug delivery of protein therapeutics.
Collapse
Affiliation(s)
- Bareera Qamar
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
- Institute of Catalonia for Research and Advanced Studies, 08010 Barcelona, Spain
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Ito S, Oishi M, Ogata S, Uemura T, Couraud PO, Masuda T, Ohtsuki S. Identification of Cell-Surface Proteins Endocytosed by Human Brain Microvascular Endothelial Cells In Vitro. Pharmaceutics 2020; 12:pharmaceutics12060579. [PMID: 32585920 PMCID: PMC7356521 DOI: 10.3390/pharmaceutics12060579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-surface proteins that can endocytose into brain microvascular endothelial cells serve as promising candidates for receptor-mediated transcytosis across the blood–brain barrier (BBB). Here, we comprehensively screened endocytic cell-surface proteins in hCMEC/D3 cells, a model of human brain microvascular endothelial cells, using surface biotinylation methodology and sequential window acquisition of all theoretical fragment-ion spectra-mass spectrometry (SWATH-MS)-based quantitative proteomics. Using this method, we identified 125 endocytic cell-surface proteins from hCMEC/D3 cells. Of these, 34 cell-surface proteins were selectively internalized into human brain microvascular endothelial cells, but not into human umbilical vein endothelial cells (HUVECs), a model of human peripheral microvascular endothelial cells. Two cell-surface proteins, intercellular adhesion molecule-1 (ICAM1) and podocalyxin (PODXL), were identified as BBB-localized endocytic cell-surface proteins in humans, using open mRNA and protein databases. Immunohistochemical evaluation confirmed PODXL expression in the plasma membrane of hCMEC/D3 cells and revealed that anti-PODXL antibody-labeled cell-surface PODXL internalized into hCMEC/D3 cells. Immunohistochemistry further revealed that PODXL is localized at the luminal side of human brain microvessels, supporting its potential suitability for translational applications. In conclusion, our findings highlight novel endocytic cell-surface proteins capable of internalizing into human brain microvascular endothelial cells. ICAM1 or PODXL targeted antibody or ligand-labeled biopharmaceuticals and nanocarriers may provide effective targeted delivery to the brain across the BBB for the treatment of central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Mariko Oishi
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Tatsuki Uemura
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Pierre-Olivier Couraud
- Institut Cochin, Universite de Paris, Inserm U1016, CNRS UMR8104, 22 rue Méchain, 75014 Paris, France;
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
- Correspondence: ; Tel.: +81-96-371-4323
| |
Collapse
|
13
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
14
|
Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:338-353. [PMID: 32117671 PMCID: PMC7034226 DOI: 10.3762/bjnano.11.25] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/27/2020] [Indexed: 05/17/2023]
Abstract
Nano-sized materials have great potential as drug carriers for nanomedicine applications. Thanks to their size, they can exploit the cellular machinery to enter cells and be trafficked intracellularly, thus they can be used to overcome some of the cellular barriers to drug delivery. Nano-sized drug carriers of very different properties can be prepared, and their surface can be modified by the addition of targeting moieties to recognize specific cells. However, it is still difficult to understand how the material properties affect the subsequent interactions and outcomes at cellular level. As a consequence of this, designing targeted drugs remains a major challenge in drug delivery. Within this context, we discuss the current understanding of the initial steps in the interactions of nano-sized materials with cells in relation to nanomedicine applications. In particular, we focus on the difficult interplay between the initial adhesion of nano-sized materials to the cell surface, the potential recognition by cell receptors, and the subsequent mechanisms cells use to internalize them. The factors affecting these initial events are discussed. Then, we briefly describe the different pathways of endocytosis in cells and illustrate with some examples the challenges in understanding how nanomaterial properties, such as size, charge, and shape, affect the mechanisms cells use for their internalization. Technical difficulties in characterizing these mechanisms are presented. A better understanding of the first interactions of nano-sized materials with cells will help to design nanomedicines with improved targeting.
Collapse
Affiliation(s)
- Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Daphne Montizaan
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| |
Collapse
|
15
|
Song Y, Shi Y, Zhang L, Hu H, Zhang C, Yin M, Chu L, Yan X, Zhao M, Zhang X, Mu H, Sun K. Synthesis of CSK-DEX-PLGA Nanoparticles for the Oral Delivery of Exenatide to Improve Its Mucus Penetration and Intestinal Absorption. Mol Pharm 2019; 16:518-532. [PMID: 30601014 DOI: 10.1021/acs.molpharmaceut.8b00809] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The oral absorption of exenatide, a drug for type 2 diabetes treatment, can be improved by using nanoparticles (NPs) for its delivery. To improve the mucus penetration and intestinal absorption of exenatide, we designed a block copolymer, CSKSSDYQC-dextran-poly(lactic-co-glycolic acid) (CSK-DEX-PLGA), and used it for the preparation of exenatide-loaded NPs. The functionalized exenatide-loaded NPs composed of CSK-DEX-PLGA were able to target intestinal epithelial cells and reduce the mucus-blocking effect of the intestine. Moreover, the CSK modification of DEX-PLGA was found to significantly promote the absorption efficiency of NPs in the small intestine based on in vitro ligation of the intestinal rings and an examination of different intestinal absorption sites. Compared to DEX-PLGA-NPs (DPs), the absorption of CSK-DEX-PLGA-NPs (CDPs) was increased in the villi, allowing the drug to act on gobletlike Caco-2 cells through clathrin-, caveolin-, and gap-mediated endocytosis. Furthermore, the enhanced transport ability of CDPs was observed in a study on Caco-2/HT-29-MTX cocultured cells. CDPs exhibited a prolonged hypoglycemic response with a relative bioavailability of 9.2% in diabetic rats after oral administration. In conclusion, CDPs can target small intestinal goblet cells and have a beneficial effect on the oral administration of macromolecular peptides as a nanometer-sized carrier.
Collapse
Affiliation(s)
- Yina Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Yanan Shi
- School of Pharmacy , Binzhou Medical University , Yantai 264005 , China
| | - Liping Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Haiyan Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Chunyan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Liuxiang Chu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Xiuju Yan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Mingyu Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Xuemei Zhang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System , Luye Pharmaceutical Co. Ltd. , Yantai 264005 , China
| | - Hongjie Mu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong , Yantai University , Yantai 264005 , China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System , Luye Pharmaceutical Co. Ltd. , Yantai 264005 , China
| |
Collapse
|
16
|
Francia V, Aliyandi A, Salvati A. Effect of the development of a cell barrier on nanoparticle uptake in endothelial cells. NANOSCALE 2018; 10:16645-16656. [PMID: 30155550 DOI: 10.1039/c8nr03171a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In order to improve the current success of nanomedicine, a better understanding of how nano-sized materials interact with and are processed by cells is required. Typical in vitro nanoparticle-cell interaction studies often make use of cells cultured at different cell densities. However, in vivo, for their successful delivery to the target tissue, nanomedicines need to overcome several barriers, such as endothelial and epithelial cell barriers. Unlike sub-confluent or confluent cell cultures, cell barriers are tight cell monolayers, expressing a series of specialized tight junction proteins between adjacent cells to limit paracellular transport and ensure close cell-to-cell interactions. A clear understanding on how the development of cells into a cell barrier may affect the uptake of nano-sized drug carriers is still missing. To this aim, here, human primary umbilical vein endothelial cells (HUVEC) are used as a model cell line to form endothelial cell barriers. Then, nanoparticle uptake is assessed in the developed endothelial barriers and compared to the uptake in sub-confluent or confluent HUVEC cultures. The results clearly show that the organization of cells into a cell barrier leads to a differential gene expression of endocytic markers, and - interestingly - this is accompanied by reduced nanoparticle uptake levels. Transport inhibitors are used to characterise the mechanisms involved in the uptake. However, we show that some of them can strongly compromise barrier integrity, thus impairing the interpretation of the outcomes, and overall, only a partial inhibition of nanoparticle uptake could be obtained.
Collapse
Affiliation(s)
- Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
17
|
Muro S. Alterations in Cellular Processes Involving Vesicular Trafficking and Implications in Drug Delivery. Biomimetics (Basel) 2018; 3:biomimetics3030019. [PMID: 31105241 PMCID: PMC6352689 DOI: 10.3390/biomimetics3030019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
18
|
Huckaby JT, Lai SK. PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev 2018; 124:125-139. [PMID: 28882703 DOI: 10.1016/j.addr.2017.08.010] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The viscoelastic mucus secretions coating exposed organs such as the lung airways and the female reproductive tract can trap and quickly eliminate not only foreign pathogens and ultrafine particles but also particle-based drug delivery systems, thus limiting sustained and targeted drug delivery at mucosal surfaces. To improve particle distribution across the mucosa and enhance delivery to the underlying epithelium, many investigators have sought to develop nanoparticles capable of readily traversing mucus. The first synthetic nanoparticles shown capable of rapidly penetrating physiological mucus secretions utilized a dense coating of polyethylene glycol (PEG) covalently grafted onto the surface of preformed polymeric nanoparticles. In the decade since, PEG has become the gold standard in engineering mucus-penetrating drug carriers for sustained and targeted drug delivery to the lungs, gastrointestinal tract, eyes, and female reproductive tract. This review summarizes the history of the development of various PEG-based mucus-penetrating particles, and highlights the key physicochemical properties of PEG coatings and PEGylation strategies to achieve muco-inert PEG coatings on nanoparticle drug carriers for improved drug and gene delivery at mucosal surfaces.
Collapse
|
19
|
Brenner JS, Kiseleva RY, Glassman PM, Parhiz H, Greineder CF, Hood ED, Shuvaev VV, Muzykantov VR. The new frontiers of the targeted interventions in the pulmonary vasculature: precision and safety (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752329. [PMID: 29261028 PMCID: PMC5768280 DOI: 10.1177/2045893217752329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pulmonary vasculature plays an important role in many lung pathologies, such as pulmonary arterial hypertension, primary graft dysfunction of lung transplant, and acute respiratory distress syndrome. Therapy for these diseases is quite limited, largely due to dose-limiting side effects of numerous drugs that have been trialed or approved. High doses of drugs targeting the pulmonary vasculature are needed due to the lack of specific affinity of therapeutic compounds to the vasculature. To overcome this problem, the field of targeted drug delivery aims to target drugs to the pulmonary endothelial cells, especially those in pathological regions. The field uses a variety of drug delivery systems (DDSs), ranging from nano-scale drug carriers, such as liposomes, to methods of conjugating drugs to affinity moieites, such as antibodies. These DDSs can deliver small molecule drugs, protein therapeutics, and imaging agents. Here we review targeted drug delivery to the pulmonary endothelium for the treatment of pulmonary diseases. Cautionary notes are made of the risk–benefit ratio and safety—parameters one should keep in mind when developing a translational therapeutic.
Collapse
Affiliation(s)
- Jacob S Brenner
- 1 14640 Pulmonary, Allergy, & Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Raisa Yu Kiseleva
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick M Glassman
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamideh Parhiz
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth D Hood
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir V Shuvaev
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R Muzykantov
- 2 14640 Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Wu L, Liu M, Shan W, Zhu X, Li L, Zhang Z, Huang Y. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release 2017; 262:273-283. [DOI: 10.1016/j.jconrel.2017.07.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
|
21
|
Miller PG, Wang YI, Swan G, Shuler ML. A simple cell transport device keeps culture alive and functional during shipping. Biotechnol Prog 2017; 33:1257-1266. [PMID: 28597974 PMCID: PMC5647209 DOI: 10.1002/btpr.2512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/25/2017] [Indexed: 11/10/2022]
Abstract
Transporting living complex cellular constructs through the mail while retaining their full viability and functionality is challenging. During this process, cells often suffer from exposure to suboptimal life-sustaining conditions (e.g. temperature, pH), as well as damage due to shear stress. We have developed a transport device for shipping intact cell/tissue constructs from one facility to another that overcomes these obstacles. Our transport device maintained three different cell lines (Caco2, A549, and HepG2 C3A) individually on transwell membranes with high viability (above 97%) for 48 h under simulated shipping conditions without an incubator. The device was also tested by actual overnight shipping of blood brain barrier constructs consisting of human induced pluripotent brain microvascular endothelial cells and rat astrocytes on transwell membranes to a remote facility (approximately 1200 miles away). The blood brain barrier constructs arrived with high cell viability and were able to regain full barrier integrity after equilibrating in the incubator for 24 h; this was assessed by the presence of continuous tight junction networks and in vivo-like values for trans-endothelial electrical resistance (TEER). These results demonstrated that our cell transport device could be a useful tool for long-distance transport of membrane-bound cell cultures and functional tissue constructs. Studies that involve various cell and tissue constructs, such as the "Multi-Organ-on-Chip" devices (where multiple microscale tissue constructs are integrated on a single microfluidic device) and studies that involve microenvironments where multiple tissue interactions are of interest, would benefit from the ability to transport or receive these constructs. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1257-1266, 2017.
Collapse
Affiliation(s)
- Paula G. Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ying I. Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Glen Swan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Michael L. Shuler
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
23
|
Shi Y, Shi Z, Li S, Zhang Y, He B, Peng D, Tian J, Zhao M, Wang X, Zhang Q. The interactions of single-wall carbon nanohorns with polar epithelium. Int J Nanomedicine 2017; 12:4177-4194. [PMID: 28615944 PMCID: PMC5459976 DOI: 10.2147/ijn.s133295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Single-wall carbon nanohorns (SWCNHs), which have multitudes of horn interstices, an extensive surface area, and a spherical aggregate structure, offer many advantages over other carbon nanomaterials being used as a drug nanovector. The previous studies on the interaction between SWCNHs and cells have mostly emphasized on cellular uptake and intracellular trafficking, but seldom on epithelial cells. Polar epithelium as a typical biological barrier constitutes the prime obstacle for the transport of therapeutic agents to target site. This work tried to explore the permeability of SWCNHs through polar epithelium and their abilities to modulate transcellular transport, and evaluate the potential of SWCNHs in drug delivery. Madin-Darby canine kidney (MDCK) cell monolayer was used as a polar epithelial cell model, and as-grown SWCNHs, together with oxidized and fluorescein isothiocyanate-conjugated bovine serum albumin-labeled forms, were constructed and comprehensively investigated in vitro and in vivo. Various methods such as transmission electron microscopy and confocal imaging were used to visualize their intracellular uptake and localization, as well as to investigate the potential transcytotic process. The related mechanism was explored by specific inhibitors. Additionally, fast multispectral optoacoustic tomography imaging was used for monitoring the distribution and transport process of SWCNHs in vivo after oral administration in nude mice, as an evidence for their interaction with the intestinal epithelium. The results showed that SWCNHs had a strong bioadhesion property, and parts of them could be uptaken and transcytosed across the MDCK monolayer. Multiple mechanisms were involved in the uptake and transcytosis of SWCNHs with varying degrees. After oral administration, oxidized SWCNHs were distributed in the gastrointestinal tract and retained in the intestine for up to 36 h probably due to their surface adhesion and endocytosis into the intestinal epithelium. Overall, this comprehensive investigation demonstrated that SWCNHs can serve as a promising nanovector that can cross the barrier of polar epithelial cells and deliver drugs effectively.
Collapse
Affiliation(s)
- Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| | - Zujin Shi
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Suxin Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| | - Yuan Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| | - Dong Peng
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences
| | - Ming Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences
| |
Collapse
|
24
|
Lee JJ, Saiful Yazan L, Che Abdullah CA. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int J Nanomedicine 2017; 12:2373-2384. [PMID: 28392694 PMCID: PMC5376210 DOI: 10.2147/ijn.s127329] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common malignancy worldwide, especially among women, with substantial after-treatment effects. The survival rates of breast cancer have decreased over the years even with the existence of various therapeutic strategies, specifically, chemotherapy. Clinical drugs administered for breast cancer appear to be non-targeting to specific cancer sites leading to severe side effects and potentially harming healthy cells instead of just killing cancer cells. This leads to the need for designing a targeted drug delivery system. Nanomaterials, both organic and inorganic, are potential drug nanocarriers with the ability of targeting, imaging and tracking. Various types of nanomaterials have been actively researched together with their drug conjugate. In this review, we focus on selected nanomaterials, namely solid-lipid, liposomal, polymeric, magnetic nanoparticles, quantum dots, and carbon nanotubes and their drug conjugates, for breast cancer studies. Their advantages, disadvantages and previously conducted studies were highlighted.
Collapse
|
25
|
Price D, Ackland ML, Suphioglu C. Identifying Epithelial Endocytotic Mechanisms of the Peanut Allergens Ara h 1 and Ara h 2. Int Arch Allergy Immunol 2017; 172:106-115. [DOI: 10.1159/000451085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
|
26
|
Manthe RL, Muro S. ICAM-1-Targeted Nanocarriers Attenuate Endothelial Release of Soluble ICAM-1, an Inflammatory Regulator. Bioeng Transl Med 2017; 2:109-119. [PMID: 28713860 PMCID: PMC5510616 DOI: 10.1002/btm2.10050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Targeting of drug nanocarriers (NCs) to intercellular adhesion molecule-1 (ICAM-1), an endothelial-surface protein overexpressed in many pathologies, has shown promise for therapeutic delivery into and across this lining. Yet, due to the role of ICAM-1 in inflammation, the effects of targeting this receptor need investigation. Since ICAM-1 binding by natural ligands (leukocyte integrins) results in release of the "soluble ICAM-1" ectodomain (sICAM-1), an inflammatory regulator, we investigated the influence of targeting ICAM-1 with NCs on this process. For this, sICAM-1 was measured by ELISA from cell-medium supernatants, after incubation of endothelial cell (EC) monolayers in the absence versus presence of anti-ICAM NCs. In the absence of NCs, ECs released sICAM-1 when treated with a pro-inflammatory cytokine (TNFα). This was reduced by inhibiting matrix metalloproteinases MMP-9 or MMP-2, yet inhibiting both did not render additive effects. Release of sICAM-1 mainly occurred at the basolateral versus apical side, and both MMP-9 and MMP-2 influenced apical release, while basolateral release depended on MMP-9. Interestingly, anti-ICAM NCs reduced sICAM-1 to a greater extent than MMP inhibition, both at the apical and basolateral sides. This effect was enhanced with time, although NCs had been removed after binding to cells, ruling out a "trapping" effect of NCs. Instead, inhibiting anti-ICAM NC endocytosis counteracted their inhibition on sICAM-1 release. Hence, anti-ICAM NCs inhibited sICAM-1 release by mobilizing ICAM-1 from the cell-surface into intracellular vesicles. Since elevated levels of sICAM-1 associate with numerous diseases, this effect represents a secondary benefit of using ICAM-1-targeted NCs for drug delivery.
Collapse
Affiliation(s)
- Rachel L Manthe
- Fischell Department of Bioengineering, Research, University of Maryland, College Park, MD 20742-4450, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, Research, University of Maryland, College Park, MD 20742-4450, USA.,Institute for Bioscience and Biotechnology, Research, University of Maryland, College Park, MD 20742-4450, USA
| |
Collapse
|
27
|
Wang G, Wang JJ, Chen XL, Du L, Li F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release 2016; 235:276-290. [PMID: 27242199 DOI: 10.1016/j.jconrel.2016.05.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 02/05/2023]
Abstract
To improve its poor aqueous solubility and stability, the potential chemopreventive agent quercetin was encapsulated in freeze-dried polymeric micelles by a thin film hydration and vacuum freeze-drying process before being used for glioma chemotherapy. The micelle characteristics, release profile, cellular uptake, intracellular drug concentration, transport across the blood-brain barrier, and antitumor efficiency in vivo were investigated. Results showed that the particle size of quercetin-loaded freeze-dried nanomicelles (QUE-FD-NMs) ranged from 20 to 80nm, with an efficiently sustained release profile. Increased intracellular uptake into Caco-2 cells with low cytotoxicity, efficient penetration of BBB, and powerful cytotoxicity on C6 glioma cells were observed. QUE-FD-NMs accumulated in tumor-bearing brain tissues and exhibited significant antitumor effects in vivo, which significantly benefited the survival of glioma-bearing mice. These findings suggest that freeze-drying micelles loaded with quercetin is a promising drug delivery method for glioma therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, China.
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, China; Hubei University of Medicine, No. 30 Renmin South Road, Shiyan City, Hubei Province 442000, China
| | - Xuan-Li Chen
- Hubei University of Medicine, No. 30 Renmin South Road, Shiyan City, Hubei Province 442000, China
| | - Li Du
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, China
| |
Collapse
|
28
|
Ghaffarian R, Roki N, Abouzeid A, Vreeland W, Muro S. Intra- and trans-cellular delivery of enzymes by direct conjugation with non-multivalent anti-ICAM molecules. J Control Release 2016; 238:221-230. [PMID: 27473764 DOI: 10.1016/j.jconrel.2016.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a cell-surface protein overexpressed in many diseases and explored for endocytosis and transcytosis of drug delivery systems. All previous evidence demonstrating ICAM-1-mediated transport of therapeutics into or across cells was obtained using nanocarriers or conjugates coupled to multiple copies of anti-ICAM antibodies or peptides. Yet, transport of therapeutics linked to non-multivalent anti-ICAM ligands has never been shown, since multivalency was believed to be necessary to induce transport. Our goal was to explore whether non-multivalent binding to ICAM-1 could drive endocytosis and/or transcytosis of model cargo in different cell types. We found that anti-ICAM was specifically internalized by all tested ICAM-1-expressing cells, including epithelial, fibroblast and neuroblastoma cells, primary or established cell lines. Uptake was inhibited at 4°C and in the presence of an inhibitor of the ICAM-1-associated pathway, rather than inhibitors of the clathrin or caveolar routes. We observed minimal transport of anti-ICAM to lysosomes, yet prominent and specific transcytosis across epithelial monolayers. Finally, we coupled a model cargo (the enzyme horseradish peroxidase (HRP)) to anti-ICAM and separated a 1:2 antibody:enzyme conjugate for non-multivalent ICAM-1 targeting. Similar to anti-ICAM, anti-ICAM-HRP was specifically internalized and transported across cells, which rendered intra- and trans-cellular enzyme activity. Therefore, non-multivalent ICAM-1 targeting also provides transport of cargoes into and across cells, representing a new alternative for future therapeutic applications via this route.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Niksa Roki
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Abraham Abouzeid
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Wyatt Vreeland
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute of Bioscience & Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
29
|
Ghaffarian R, Herrero EP, Oh H, Raghavan SR, Muro S. Chitosan-Alginate Microcapsules Provide Gastric Protection and Intestinal Release of ICAM-1-Targeting Nanocarriers, Enabling GI Targeting In Vivo. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3382-3393. [PMID: 27375374 PMCID: PMC4926773 DOI: 10.1002/adfm.201600084] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
When administered intravenously, active targeting of drug nanocarriers (NCs) improves biodistribution and endocytosis. Targeting may also improve oral delivery of NCs to treat gastrointestinal (GI) pathologies or for systemic absoption. However, GI instability of targeting moieties compromises this strategy. We explored whether encapsulation of antibody-coated NCs in microcapsules would protect against gastric degradation, providing NCs release and targeting in intestinal conditions. We used nanoparticles coated with antibodies against intercellular adhesion molecule-1 (anti-ICAM) or non-specific IgG. NCs (~160-nm) were encapsulated in ~180-μm microcapsules with an alginate core, in the absence or presence of a chitosan shell. We found >95% NC encapsulation within microcapsules and <10% NC release from microcapsules in storage. There was minimal NC release at gastric pH (<10%) and burst release at intestinal pH (75-85%), slightly attenuated by chitosan. Encapsulated NCs afforded increased protection against degradation (3-4 fold) and increased cell targeting (8-20 fold) after release vs. non-encapsulated NCs. Mouse oral gavage showed that microencapsulation provided 38-65% greater protection of anti-ICAM NCs in the GI tract, 40% lower gastric retention, and 4-9-fold enhanced intestinal biodistribution vs. non-encapsulated NCs. Therefore, microencapsulation of antibody-targeted NCs may enable active targeting strategies to be effective in the context of oral drug delivery.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, 2330 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Edgar Pérez Herrero
- Institute for Bioscience and Biotechnology Research, 5115 Plant Sciences Building, University of Maryland, College Park, MD 20742, USA
| | - Hyuntaek Oh
- Department of Chemical and Biomolecular Engineering, 1227C Chemical & Nuclear Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Srinivasa R. Raghavan
- Department of Chemical and Biomolecular Engineering, 1227C Chemical & Nuclear Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Fischell Department of Bioengineering and Institute for Bioscience and Biotechnology Research, 5115 Plant Sciences Building, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
30
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
31
|
Targeting, endocytosis, and lysosomal delivery of active enzymes to model human neurons by ICAM-1-targeted nanocarriers. Pharm Res 2014; 32:1264-78. [PMID: 25319100 DOI: 10.1007/s11095-014-1531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE Delivery of therapeutics to neurons is paramount to treat neurological conditions, including many lysosomal storage disorders. However, key aspects of drug-carrier behavior in neurons are relatively unknown: the occurrence of non-canonical endocytic pathways (present in other cells); whether carriers that traverse the blood-brain barrier are, contrarily, retained within neurons; if neuron-surface receptors are accessible to bulky carriers compared to small ligands; or if there are differences regarding neuronal compartments (neuron body vs. neurites) pertaining said parameters. We have explored these questions using model polymer nanocarriers targeting intercellular adhesion molecule-1 (ICAM-1). METHODS Differentiated human neuroblastoma cells were incubated with anti-ICAM-coated polystyrene nanocarriers and analyzed by fluorescence microscopy. RESULTS ICAM-1 expression and nanocarrier binding was enhanced in altered (TNFα) vs. control conditions. While small ICAM-1 ligands (anti-ICAM) preferentially accessed the cell body, anti-ICAM nanocarriers bound with faster kinetics to neurites, yet reached similar saturation over time. Anti-ICAM nanocarriers were also endocytosed with faster kinetics and lower saturation levels in neurites. Non-classical cell adhesion molecule (CAM) endocytosis ruled uptake, and neurite-to-cell body transport was inferred. Nanocarriers trafficked to lysosomes, delivering active enzymes (dextranase) with substrate reduction in a lysosomal-storage disease model. CONCLUSION ICAM-1-targeting holds potential for intracellular delivery of therapeutics to neurons.
Collapse
|
32
|
Li X, Yu M, Fan W, Gan Y, Hovgaard L, Yang M. Orally active-targeted drug delivery systems for proteins and peptides. Expert Opin Drug Deliv 2014; 11:1435-47. [DOI: 10.1517/17425247.2014.924500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO 2014; 8:4100-32. [PMID: 24787360 PMCID: PMC4046791 DOI: 10.1021/nn500136z] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
Collapse
Affiliation(s)
- Melissa Howard
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir V. Shuvaev
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Hsu J, Bhowmick T, Burks SR, Kao JPY, Muro S. Enhancing biodistribution of therapeutic enzymes in vivo by modulating surface coating and concentration of ICAM-1-targeted nanocarriers. J Biomed Nanotechnol 2014; 10:345-54. [PMID: 24738342 DOI: 10.1166/jbn.2014.1718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coupling therapeutic proteins to targeted nanocarriers can enhance their biodistribution. This is the case for enzyme replacement therapies where intravenously injected enzymes must avoid prolonged blood exposure while reaching body organs. We have shown enhanced tissue targeting of various lysosomal enzymes by coupling to nanocarriers targeted to intercellular adhesion molecule-1 (ICAM-1). Here, we varied design parameters to modify tissue enzyme levels without affecting specific targeting and relative biodistribution. We coupled a-galactosidase (aGal; affected in Fabry disease) to model polymer nanocarriers and varied enzyme load (50 vs. 500 molecules/particle), anti-ICAM surface density (80 vs. 180 molecules/particle), and nanocarrier concentration (1.6 x 1013 vs. 2.4 x 1013 carriers/kg) to render three formulations (45, 449, 555 microg alphaGal/kg). Naked alpha Gal preferentially distributed in blood vs. organs, while nanocarriers shifted biodistribution from blood to tissues. Accumulation in brain, kidneys, heart, liver, lungs, and spleen did not vary among nanocarrier formulations, with enhanced specific tissue accumulation compared to naked aGal. The highest specificity was associated with lowest antibody density and nanocarrier concentration, but highest enzyme load; possibly because of synergistic enzyme affinity toward cell-surface markers. Variation of these parameters significantly increased absolute enzyme accumulation. This strategy may help optimize delivery of lysosomal enzyme replacement and, likely, other protein delivery approaches.
Collapse
|
35
|
Hsu J, Rappaport J, Muro S. Specific binding, uptake, and transport of ICAM-1-targeted nanocarriers across endothelial and subendothelial cell components of the blood-brain barrier. Pharm Res 2014; 31:1855-66. [PMID: 24558007 DOI: 10.1007/s11095-013-1289-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transport drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule -1 (ICAM-1), to transport drug carriers into and across BBB models. METHODS Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. RESULTS ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. CONCLUSIONS CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier.
Collapse
Affiliation(s)
- Janet Hsu
- Fischell Department of Bioengineering, University of Maryland College Park, Maryland, USA
| | | | | |
Collapse
|
36
|
Preston JE, Joan Abbott N, Begley DJ. Transcytosis of Macromolecules at the Blood–Brain Barrier. PHARMACOLOGY OF THE BLOOD BRAIN BARRIER: TARGETING CNS DISORDERS 2014; 71:147-63. [DOI: 10.1016/bs.apha.2014.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Ansar M, Serrano D, Papademetriou I, Bhowmick TK, Muro S. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting. ACS NANO 2013; 7:10597-10611. [PMID: 24237309 PMCID: PMC3901850 DOI: 10.1021/nn404719c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.
Collapse
Affiliation(s)
- Maria Ansar
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
| | - Daniel Serrano
- Department of Cell Biology & Molecular Genetics and Biological Sciences Graduate Program, University of Maryland, College Park, MD
| | - Iason Papademetriou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Tridib Kumar Bhowmick
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| |
Collapse
|
38
|
Lanza GM, Moonen C, Baker JR, Chang E, Cheng Z, Grodzinski P, Ferrara K, Hynynen K, Kelloff G, Lee YEK, Patri AK, Sept D, Schnitzer JE, Wood BJ, Zhang M, Zheng G, Farahani K. Assessing the barriers to image-guided drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:1-14. [PMID: 24339356 DOI: 10.1002/wnan.1247] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
Imaging has become a cornerstone for medical diagnosis and the guidance of patient management. A new field called image-guided drug delivery (IGDD) now combines the vast potential of the radiological sciences with the delivery of treatment and promises to fulfill the vision of personalized medicine. Whether imaging is used to deliver focused energy to drug-laden particles for enhanced, local drug release around tumors, or it is invoked in the context of nanoparticle-based agents to quantify distinctive biomarkers that could risk stratify patients for improved targeted drug delivery efficiency, the overarching goal of IGDD is to use imaging to maximize effective therapy in diseased tissues and to minimize systemic drug exposure in order to reduce toxicities. Over the last several years, innumerable reports and reviews covering the gamut of IGDD technologies have been published, but inadequate attention has been directed toward identifying and addressing the barriers limiting clinical translation. In this consensus opinion, the opportunities and challenges impacting the clinical realization of IGDD-based personalized medicine were discussed as a panel and recommendations were proffered to accelerate the field forward.
Collapse
Affiliation(s)
- Gregory M Lanza
- Division of Cardiology, Washington University Medical School, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ghaffarian R, Muro S. Models and methods to evaluate transport of drug delivery systems across cellular barriers. J Vis Exp 2013:e50638. [PMID: 24192611 DOI: 10.3791/50638] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with (125)I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free (125)I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, University of Maryland
| | | |
Collapse
|
40
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
41
|
Papisov MI, Belov VV, Gannon KS. Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol Pharm 2013; 10:1522-32. [PMID: 23316936 PMCID: PMC3646927 DOI: 10.1021/mp300474m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Presently, there are no effective treatments for several diseases involving the CNS, which is protected by the blood-brain, blood-CSF, and blood-arachnoid barriers. Traversing any of these barriers is difficult, especially for macromolecular drugs and particulates. However, there is significant experimental evidence that large molecules can be delivered to the CNS through the cerebrospinal fluid (CSF). The flux of the interstitial fluid in the CNS parenchyma, as well as the macro flux of CSF in the leptomeningeal space, are believed to be generally opposite to the desirable direction of CNS-targeted drug delivery. On the other hand, the available data suggest that the layer of pia mater lining the CNS surface is not continuous, and the continuity of the leptomeningeal space (LMS) with the perivascular spaces penetrating into the parenchyma provides an unexplored avenue for drug transport deep into the brain via CSF. The published data generally do not support the view that macromolecule transport from the LMS to CNS is hindered by the interstitial and CSF fluxes. The data strongly suggest that leptomeningeal transport depends on the location and volume of the administered bolus and consists of four processes: (i) pulsation-assisted convectional transport of the solutes with CSF, (ii) active "pumping" of CSF into the periarterial spaces, (iii) solute transport from the latter to and within the parenchyma, and (iv) neuronal uptake and axonal transport. The final outcome will depend on the drug molecule behavior in each of these processes, which have not been studied systematically. The data available to date suggest that many macromolecules and nanoparticles can be delivered to CNS in biologically significant amounts (>1% of the administered dose); mechanistic investigation of macromolecule and particle behavior in CSF may result in a significantly more efficient leptomeningeal drug delivery than previously thought.
Collapse
Affiliation(s)
- Mikhail I. Papisov
- Massachusetts General Hospital, Shriners Hospitals for Children – Boston, and Harvard Medical School, 51 Blossom St, Boston, MA 02114 USA
| | - Vasily V. Belov
- Massachusetts General Hospital, Shriners Hospitals for Children – Boston, and Harvard Medical School, 51 Blossom St, Boston, MA 02114 USA
| | - Kimberley S. Gannon
- NeuroPhage Pharmaceuticals, Inc. 3222 Third Street, Suite 31203 Cambridge, MA 02142 USA
| |
Collapse
|
42
|
Papademetriou J, Garnacho C, Serrano D, Bhowmick T, Schuchman EH, Muro S. Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor. J Inherit Metab Dis 2013; 36:467-77. [PMID: 22968581 PMCID: PMC3556357 DOI: 10.1007/s10545-012-9534-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/13/2022]
Abstract
Targeting lysosomal enzymes to receptors involved in transport into and across cells holds promise to enhance peripheral and brain delivery of enzyme replacement therapies (ERTs) for lysosomal storage disorders. Receptors being explored include those associated with clathrin-mediated pathways, yet other pathways seem also viable. Well characterized examples are that of transferrin receptor (TfR) and intercellular adhesion molecule 1 (ICAM-1), involved in iron transport and leukocyte extravasation, respectively. TfR and ICAM-1 support ERT delivery via clathrin- vs. cell adhesion molecule-mediated mechanisms, displaying different valency and size restrictions. To comparatively assess this, we used antibodies vs. larger multivalent antibody-coated carriers and evaluated TfR vs. ICAM-1 binding and endocytosis in endothelial cells, as well as in vivo biodistribution and delivery of a model lysosomal enzyme required in peripheral organs and brain: acid sphingomyelinase (ASM), deficient in types A-B Niemann Pick disease. We found similar binding of antibodies to both receptors under control conditions, with enhanced binding to activated endothelium for ICAM-1, yet only anti-TfR induced endocytosis efficiently. Contrarily, antibody-coated carriers showed enhanced binding, engulfment, and endocytosis for ICAM-1. In mice, anti-TfR enhanced brain targeting over anti-ICAM, with an opposite outcome in the lungs, while carriers enhanced ICAM-1 targeting over TfR in both organs. Both targeted carriers enhanced ASM delivery to the brain and lungs vs. free ASM, with greater enhancement for anti-ICAM carriers. Therefore, targeting TfR or ICAM-1 improves lysosomal enzyme delivery. Yet, TfR targeting may be more efficient for smaller conjugates or fusion proteins, while ICAM-1 targeting seems superior for multivalent carrier formulations.
Collapse
Affiliation(s)
- Jason Papademetriou
- Fischell Department of Bioengineering, School of Engineering, University of Maryland College Park, College Park, MD 20742, USA
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville 41009, Spain
| | - Daniel Serrano
- Department of Cell Biology & Molecular Genetics and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Tridib Bhowmick
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Edward H. Schuchman
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, School of Engineering, University of Maryland College Park, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Author to whom correspondence should be addressed: Silvia Muro, Institute for Bioscience and Biotechnology Research, 5115 Plant Sciences Building, College Park, MD 20742-4450.
| |
Collapse
|
43
|
Pepić I, Lovrić J, Filipović-Grčić J. How do polymeric micelles cross epithelial barriers? Eur J Pharm Sci 2013; 50:42-55. [PMID: 23619286 DOI: 10.1016/j.ejps.2013.04.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 12/22/2022]
Abstract
Non-parenteral delivery of drugs using nanotechnology-based delivery systems is a promising non-invasive way to achieve effective local or systemic drug delivery. The efficacy of drugs administered non-parenterally is limited by their ability to cross biological barriers, and epithelial tissues particularly present challenges. Polymeric micelles can achieve transepithelial drug delivery because of their ability to be internalized into cells and/or cross epithelial barriers, thereby delivering drugs either locally or systematically following non-parenteral administration. This review discusses the particular characteristics of various epithelial barriers and assesses their potential as non-parenteral routes of delivery. The material characteristics of polymeric micelles (e.g., size, surface charge, and surface decoration) and of unimers dissociated from polymeric micelles determine their interactions (non-specific and/or specific) with mucus and epithelial cells as well as their intracellular fate. This paper outlines the mechanisms governing the major modes of internalization of polymeric micelles into epithelial cells, with an emphasis on specific recent examples of the transport of drug-loaded polymeric micelles across epithelial barriers.
Collapse
Affiliation(s)
- Ivan Pepić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| | | | | |
Collapse
|
44
|
Papademetriou IT, Garnacho C, Schuchman EH, Muro S. In vivo performance of polymer nanocarriers dually-targeted to epitopes of the same or different receptors. Biomaterials 2013; 34:3459-66. [PMID: 23398883 DOI: 10.1016/j.biomaterials.2013.01.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022]
Abstract
Modification of drug delivery nanomaterials with affinity molecules that facilitate targeting, has rendered a new class of ligands for cell receptors, which often possess valency and dimensions different from natural counterparts. Designing strategies to target multiple receptors or, never explored, multiple epitopes on the same receptor may modulate the biodistribution properties of these nanomaterials. We examined this using antibody-directed targeting of polymer nanocarriers to transferrin receptor (TfR) and intercellular adhesion molecule 1 (ICAM-1). Regarding epitopes on one receptor, nanocarriers addressed with anti-TfR-R17 maintained brain and lung targeting in mice, compared with "free" antibody, while anti-TfR-8D3 nanocarriers lost specificity. Coating nanocarriers with both antibodies decreased targeting in brain and liver, not lungs, modulating biodistribution. Regarding different receptors, nanocarriers coated with both anti-ICAM and anti-TfR displayed intermediate specific accumulation in lungs and higher in liver, compared to single-targeted nanocarriers, while brain targeting was comparable to TfR- and lower than ICAM-1-targeted nanocarriers. Tracing a model therapeutic cargo, acid sphingomyelinase (enzyme replacement for Niemann-Pick Disease A-B), showed that combined-targeted anti-ICAM/TfR nanocarriers enhanced enzyme delivery versus "free" enzyme, with biodistribution patterns different from single-targeted nanocarriers. Hence, targeting nanocarriers to multiple epitopes or receptors holds promise to control distribution of drug delivery nanomaterials in the body.
Collapse
Affiliation(s)
- Iason T Papademetriou
- Fischell Department of Bioengineering, School of Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
45
|
Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 2012; 164:125-37. [PMID: 22709588 PMCID: PMC3481020 DOI: 10.1016/j.jconrel.2012.05.052] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 05/19/2012] [Accepted: 05/26/2012] [Indexed: 01/11/2023]
Abstract
Targeting of therapeutic agents to molecular markers expressed on the surface of cells requiring clinical intervention holds promise to improve specificity of delivery, enhancing therapeutic effects while decreasing potential damage to healthy tissues. Drug targeting to cellular receptors involved in endocytic transport facilitates intracellular delivery, a requirement for a number of therapeutic goals. However, after several decades of experimental design, there is still considerable controversy on the practical outcome of drug targeting strategies. The plethora of factors contributing to the relative efficacy of targeting makes the success of these approaches hardly predictable. Lack of fully specific targets, along with selection of targets with spatial and temporal expression well aligned to interventional requirements, pose difficulties to this process. Selection of adequate sub-molecular target epitopes determines accessibility for anchoring of drug conjugates and bulkier drug carriers, as well as proper signaling for uptake within the cell. Targeting design must adapt to physiological variables of blood flow, disease status, and tissue architecture by accommodating physicochemical parameters such as carrier composition, functionalization, geometry, and avidity. In many cases, opposite features need to meet a balance, e.g., sustained circulation versus efficient targeting, penetration through tissues versus uptake within cells, internalization within endocytic compartment to avoid efflux pumps versus accessibility to molecular targets within the cytosol, etc. Detailed characterization of these complex physiological factors and design parameters, along with a deep understanding of the mechanisms governing the interaction of targeted drugs and carriers with the biological environment, are necessary steps toward achieving efficient drug targeting systems.
Collapse
Affiliation(s)
- Silvia Muro
- Fischell Department of Bioengineering, School of Engineering, University of Maryland College Park, College Park, MD 20742, USA.
| |
Collapse
|
46
|
Mane V, Muro S. Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice. Int J Nanomedicine 2012; 7:4223-37. [PMID: 22915850 PMCID: PMC3418107 DOI: 10.2147/ijn.s34105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Indexed: 11/23/2022] Open
Abstract
Drug delivery to the gastrointestinal (GI) tract is key for improving treatment of GI maladies, developing oral vaccines, and facilitating drug transport into circulation. However, delivery of formulations to the GI tract is hindered by pH changes, degradative enzymes, mucus, and peristalsis, leading to poor GI retention. Targeting may prolong residence of therapeutics in the GI tract and enhance their interaction with this tissue, improving such aspects. We evaluated nanocarrier (NC) and ligand-mediated targeting in the GI tract following gastric gavage in mice. We compared GI biodistribution, degradation, and endocytosis between control antibodies and antibodies targeting the cell surface determinant intercellular adhesion molecule 1 (ICAM-1), expressed on GI epithelium and other cell types. These antibodies were administered either as free entities or coated onto polymer NCs. Fluorescence and radioisotope tracing showed proximal accumulation, with preferential retention in the stomach, jejunum, and ileum; and minimal presence in the duodenum, cecum, and colon by 1 hour after administration. Upstream (gastric) retention was enhanced in NC formulations, with decreased downstream (jejunal) accumulation. Of the total dose delivered to the GI tract, ∼60% was susceptible to enzymatic (but not pH-mediated) degradation, verified both in vitro and in vivo. Attenuation of peristalsis by sedation increased upstream retention (stomach, duodenum, and jejunum). Conversely, alkaline NaHCO(3), which enhances GI transit by decreasing mucosal viscosity, favored downstream (ileal) passage. This suggests passive transit through the GI tract, governed by mucoadhesion and peristalsis. In contrast, both free anti-ICAM and anti-ICAM NCs demonstrated significantly enhanced upstream (stomach and duodenum) retention when compared to control IgG counterparts, suggesting GI targeting. This was validated by transmission electron microscopy and energy dispersive X-ray spectroscopy, which revealed anti-ICAM NCs in vesicular compartments within duodenal epithelial cells. These results will guide future work aimed at improving intraoral delivery of targeted therapeutics for the treatment of GI pathologies.
Collapse
Affiliation(s)
- Viraj Mane
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | | |
Collapse
|