1
|
Luo D, Ni X, Yang H, Feng L, Chen Z, Bai L. A comprehensive review of advanced nasal delivery: Specially insulin and calcitonin. Eur J Pharm Sci 2024; 192:106630. [PMID: 37949195 DOI: 10.1016/j.ejps.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Peptide drugs through nasal mucous membrane, such as insulin and calcitonin have been widely used in the medical field. There are always two sides to a coin. One side, intranasal drug delivery can imitate the secretion pattern in human body, having advantages of physiological structure and convenient use. Another side, the low permeability of nasal mucosa, protease environment and clearance effect of nasal cilia hinder the intranasal absorption of peptide drugs. Researchers have taken multiple means to achieve faster therapeutic concentration, lower management dose, and fewer side effects for better nasal preparations. To improve the peptide drugs absorption, various strategies had been explored via the nasal mucosa route. In this paper, we reviewed the achievements of 18 peptide drugs in the past decade about the perspectives of the efficacy, mechanism of enhancing intranasal absorption and safety. The most studies were insulin and calcitonin. As a result, absorption enhancers, nanoparticles (NPs) and bio-adhesive system are the most widely used. Among them, chitosan (CS), cell penetrating peptides (CPPs), tight junction modulators (TJMs), soft NPs and gel/hydrogel are the most promising strategies. Moreover, two or three strategies can be combined to prepare drug vectors. In addition, spray freeze dried (SFD), self-emulsifying nano-system (SEN), and intelligent glucose reaction drug delivery system are new research directions in the future.
Collapse
Affiliation(s)
- Dan Luo
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China
| | - Xiaoqing Ni
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, Sichuan, China
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Zhaoqun Chen
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Zhang S, Wang Y, Shan J, Qi X, Liu Q. Improved Bioavailability and Hepatoprotective Activity of Baicalein Via a Self-assembled Solutol HS15 Micelles System. Curr Drug Deliv 2024; 21:461-472. [PMID: 37282637 DOI: 10.2174/1567201820666230606163452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Baicalein (BA) is a flavonoid extract from the root of Scutellaria baicalensis Georgi with excellent biological activities, such as antioxidant and anti-inflammatory activities. However, its poor water solubility limits its further development. OBJECTIVE This study aims to prepare BA-loaded Solutol HS15 (HS15-BA) micelles, evaluate the bioavailability, and explore protective effects on carbon tetrachloride (CCl4) induced acute liver injury. METHODS The thin-film dispersion method was used to prepare HS15-BA micelles. The physicochemical, in vitro release, pharmacokinetics, and hepatoprotective effects of HS15-BA micelles were studied. RESULTS The optimal formulation showed a spherical shape by characterization of the transmission electron microscope (TEM) with an average small size (12.50 nm). The pharmacokinetic results illustrated that HS15-BA increased the oral bioavailability of BA. The in vivo results showed that HS15-BA micelles significantly inhibited the activity of the CCl4-induced liver injury marker enzymes aspartate transaminase (AST) and alanine transaminase (ALT). Also, CCl4 induced oxidative damage to liver tissue, leading to increased L-glutathione (GSH) and superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) activity, while HS15-BA significantly reversed the above changes. Moreover, BA also had a hepatoprotective effect through anti-inflammatory activity; the results of ELISA and RT-PCR revealed that HS15-BA pretreatment significantly inhibited the increase in the expression of inflammatory factors induced by CCl4. CONCLUSION In summary, our study confirmed that HS15-BA micelles enhanced the bioavailability of BA, and showed hepatoprotective effects through antioxidant and anti-inflammatory activities. HS15 could be considered a promising oral delivery carrier in treating liver disease.
Collapse
Affiliation(s)
- Shuna Zhang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Ying Wang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Jiaojiao Shan
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Xueju Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qun Liu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| |
Collapse
|
3
|
AbdEl-haq M, Kumar A, Ait Mohand FE, Kravchenko-Balasha N, Rottenberg Y, Domb AJ. Paclitaxel Delivery to the Brain for Glioblastoma Treatment. Int J Mol Sci 2023; 24:11722. [PMID: 37511480 PMCID: PMC10380674 DOI: 10.3390/ijms241411722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The development of paclitaxel-loaded polymeric nanoparticles for the treatment of brain tumors was investigated. Poly(lactide-glycolide) (PLGA) nanoparticles containing 10% w/w paclitaxel with a particle size of 216 nm were administered through intranasal and intravenous routes to male Sprague-Dawley rats at a dose of 5 mg/kg. Both routes of administration showed appreciable accumulation of paclitaxel in brain tissue, liver, and kidney without any sign of toxicity. The anti-proliferative effect of the nanoparticles on glioblastoma tumor cells was comparable to that of free paclitaxel.
Collapse
Affiliation(s)
- Muhammad AbdEl-haq
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Awanish Kumar
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Fatima-ezzahra Ait Mohand
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (N.K.-B.)
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (N.K.-B.)
| | - Yakir Rottenberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Abraham J. Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Hu X, Yue X, Wu C, Zhang X. Factors affecting nasal drug delivery and design strategies for intranasal drug delivery. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:328-337. [PMID: 37476944 PMCID: PMC10412955 DOI: 10.3724/zdxbyxb-2023-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
Intranasal drug delivery system is a non-invasive drug delivery route with the advantages of no first-pass effect, rapid effect and brain targeting. It is a feasible alternative to drug delivery via injection, and a potential drug delivery route for the central nervous system. However, the nasal physiological environment is complex, and the nasal delivery system requires "integration of medicine and device". Its delivery efficiency is affected by many factors such as the features and formulations of drug, delivery devices and nasal cavity physiology. Some strategies have been designed to improve the solubility, stability, membrane permeability and nasal retention time of drugs. These include the use of prodrugs, adding enzyme inhibitors and absorption enhancers to preparations, and new drug carriers, which can eventually improve the efficiency of intranasal drug delivery. This article reviews recent publications and describes the above mentioned aspects and design strategies for nasal intranasal drug delivery systems to provide insights for the development of intranasal drug delivery systems.
Collapse
Affiliation(s)
- Xiaoyun Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
- Tianjin Pharmaceutical Research Institute Co., Ltd., Tianjin 300462, China.
| | - Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Qi X, Wang J, Fei F, Gao X, Wu X, Shi D, Guo C. Myricetin-Loaded Nanomicelles Protect against Cisplatin-Induced Acute Kidney Injury by Inhibiting the DNA Damage-cGAS-STING Signaling Pathway. Mol Pharm 2023; 20:136-146. [PMID: 36326450 DOI: 10.1021/acs.molpharmaceut.2c00520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute kidney injury (AKI) is the most common side effect of the anti-cancer drug cisplatin, and currently, no effective preventive measures are available in clinical practice. Oxidative stress and DNA damage mechanisms may be involved in cisplatin-induced AKI. In this study, we prepared Kolliphor HS15-based myricetin-loaded (HS15-Myr) nanomicelles and explored the mechanism of protection against cisplatin-induced AKI. In vitro results showed that the HS15-Myr nanomicelles enhanced the antioxidant activity of myricetin (Myr) and inhibited cisplatin-induced proliferation inhibition of HK-2 cells. Moreover, the HS15-Myr nanomicelles inhibited cisplatin-induced reactive oxygen species accumulation, mitochondrial membrane potential reduction, and DNA damage, which might be related to the inhibition of the cyclic GMP-AMP synthase (cGAS)─stimulating interferon gene (STING) signaling pathway. In vivo results in mice showed that the significant reductions in body weight and renal indices and the increased blood urea nitrogen and serum creatinine levels induced by cisplatin could be significantly reversed by pretreating with the HS15-Myr nanomicelles. Furthermore, nanomicelle pretreatment significantly altered the activities of antioxidant enzymes (e.g., GSH, MDA, and SOD) induced by cisplatin. In addition, cisplatin-induced inflammatory responses in mouse kidney tissue were found to be inhibited by pretreatment with HS15-Myr nanomicelles, such as IL-1β and TNF-α expression. The nanomicelles also significantly inhibited cisplatin-induced activation of the DNA damage-cGAS-STING pathway in kidney tissues. Together, our findings suggest that Myr-loaded nanomicelles are potential nephroprotective drugs.
Collapse
Affiliation(s)
- Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Fengshu Fei
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273 Shandong, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273 Shandong, China
| |
Collapse
|
6
|
Mittal N, Sharma G, Katare OP, Bhadada SK. A Narrative Review on Non-Invasive Drug Delivery of Teriparatide: A Ray of Hope. Crit Rev Ther Drug Carrier Syst 2023; 40:117-140. [PMID: 37585311 DOI: 10.1615/critrevtherdrugcarriersyst.2023045480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In the field of pharmaceutical biotechnology and formulation development, various protein and peptide-based drugs have been used for therapeutic and clinical implications. These are mainly given via parenteral routes like intravenous, subcutaneous or intramuscular delivery. Teriparatide, also known as PTH 1-34, is a U.S. Food & Drug Administartion-approved anabolic drug to treat osteoporosis is currently available in market only as subcutaneous injection. The quest for elimination of needle in case of given peptidal delivery to replace it with alternative routes like nasal, buccal, transdermal and pulmonary pathways has driven meticulous drug research. The pharmaceutical scientists are working on innovation and approaches involving new materials and methods to develop the formulations for protein and peptides by noninvasive routes. Lately, various approaches have been carried out which involve many strategies and technologies to deliver teriparatide via alternative routes. But, physicochemical instability, proteolytic degradation, low bioavailability, etc. are some obstacles to develop suitable delivery system for teriparatide. This review intends to gather the overall developments in delivery systems specific to teriparatide which meant for better convenience and avoids vulnerability of multiple subcutaneous injections. In addition, the article emphasizes on the successes to develop noninvasive technologies and devices, and new milestones for teriparatide delivery.
Collapse
Affiliation(s)
- Neeraj Mittal
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India; Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Om Parkash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
7
|
Gao F, Chen Z, Zhou L, Xiao X, Wang L, Liu X, Wang C, Guo Q. Preparation, characterization and in vitro study of bellidifolin nano-micelles. RSC Adv 2022; 12:21982-21989. [PMID: 36043071 PMCID: PMC9364364 DOI: 10.1039/d2ra02779h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
Bellidifolin (BEL), a xanthone compound, has significant therapeutic effectiveness in cardiac diseases such as arrhythmias. However, BEL is limited in clinical applications by its hydrophobicity. In this work, we used BEL as the active pharmaceutical ingredient (API), and polyethylene glycol 15-hydroxy stearate (Kolliphor HS15) as the carrier to prepare BEL nano-micelles by a solvent-volatilization method. According to an analysis by differential scanning calorimetry (DSC), BEL was successfully encapsulated in HS15 as BEL nano-micelles with a 90% encapsulation rate, and particle size was 12.60 ± 0.074 nm in the shape of a sphere and electric potential was −4.76 ± 4.47 mV with good stability and sustained release characteristics. In addition, compared with free drugs, these nano-micelles can increase cellular uptake capacity, inhibit the proliferation of human cardiac fibroblasts, and down-regulate the expression of Smad-2, α-SMA, Collagen I, and Collagen III proteins in myocardial cells to improve myocardial fibrosis. In conclusion, the BEL nano-micelles can provide a new way for the theoretical basis for the clinical application of anti-cardiac fibrosis. Bellidifolin (BEL), a xanthone compound, has significant therapeutic effectiveness in cardiac diseases such as arrhythmias.![]()
Collapse
Affiliation(s)
- Fan Gao
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Ziyue Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine Tianjin 301617 People's Republic of China
| | - Li Zhou
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine Tianjin 301617 People's Republic of China
| | - Lin Wang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Tianjin 300301 People's Republic of China
| | - Xingchao Liu
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Chenggang Wang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Tianjin 300301 People's Republic of China
| | - Qiuhong Guo
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| |
Collapse
|
8
|
Zhang T, Li M, Han X, Nie G, Zheng A. Effect of Different Absorption Enhancers on the Nasal Absorption of Nalmefene Hydrochloride. AAPS PharmSciTech 2022; 23:143. [PMID: 35578146 DOI: 10.1208/s12249-022-02252-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
The purpose of this work is to explore the effects of novel absorption enhancers on the nasal absorption of nalmefene hydrochloride (NMF). First, the influence of absorption enhancers with different concentrations and types and drug concentrations on the nasal absorption of NMF was investigated in vivo in rats. The absorption enhancers studied include n-dodecyl-β-D-maltoside (DDM), hydroxypropyl-β-cyclodextrin (HP-β-CD), and polyethylene glycol (15)-hydroxy Stearate (Solutol®HS15). At the same time, the in situ toad palate model and rat nasal mucosa model were used to assess the cilia toxicity. The results showed that all the absorption enhancers investigated significantly promote the nasal absorption of NMF, but with different degrees and trends. Among them, the 0.5% (w/v) DDM had the strongest enhancement effect, followed by 0.5% (w/v) Solutol®HS15, 0.25% (w/v) DDM, 0.25% (w/v) Solutol®HS15, 0.1% (w/v) Solutol®HS15, 0.1% (w/v) DDM, and 0.25% (w/v) HP-β-CD, with absolute bioavailability of 76.49%, 72.14%, 71.00%, 69.46%, 60.41%, 59.42%, and 55.18%, respectively. All absorption enhancers exhibited good safety profiles in nasal ciliary toxicity tests. From the perspective of enhancing effect and safety, we considered DDM to be a promising nasal absorption enhancer. And in addition to DDM, Solutol®HS15 can also promote intranasal absorption of NMF, which will provide another option for the development of nalmefene hydrochloride nasal spray.
Collapse
|
9
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
10
|
Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev 2021; 175:113826. [PMID: 34119575 DOI: 10.1016/j.addr.2021.113826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it. Moreover, the design of the cast himself influences the choice of the 3D-printing technology, which, in its turn, bring more constraints to the nasal replica design. Consequently, the formulation of the drug, the cast preparation and its realisation should be thought of as a whole and not separately.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Clément Rigaut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Lambert
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
11
|
Wang D, Du Y, Zhang W, Han X, Zhang H, Wang Z, Liu N, Li M, Gao X, Zhuang X, Gao J, Zheng A. Development and in vivo evaluation of intranasal formulations of parathyroid hormone (1-34). Drug Deliv 2021; 28:487-498. [PMID: 33657948 PMCID: PMC7935113 DOI: 10.1080/10717544.2021.1889718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
For efficient intranasal transport of parathyroid hormone (1-34) [PTH(1-34)], there is a great medical need to investigate permeation enhancers for intranasal formulations. In this study, the development of PTH(1-34) intranasal formulations was conducted. Based on conformation and chemical stability studies, the most preferable aqueous environment was determined to be 0.008 M acetate buffer solution (ABS). Subsequently, citric acid and Kolliphor® HS·15 were compared as permeation enhancers. The mechanisms of action of citric acid and Kolliphor® HS·15 were investigated using an in vitro model of nasal mucosa, and Kolliphor® HS·15 led to higher permeability of fluorescein isothiocyanate-labeled PTH(1-34) (FITC-PTH) by enhancing both the transcellular and paracellular routes. Moreover, citric acid showed severe mucosal toxicity resulting in cilia shedding, while Kolliphor® HS·15 did not cause obvious mucosa damage. Finally, Kolliphor® HS·15 was studied as a permeation enhancer using a liquid chromatography tandem mass spectrometry (LC-MS/MS) method. The results showed that 5% and 10% Kolliphor® HS·15 increased the bioavailability of PTH(1-34) to 14.76% and 30.87%, respectively. In conclusion, an effective and biosafe PTH(1-34) intranasal formulation was developed by using 10% Kolliphor® HS·15 as a permeation enhancer. Intranasal formulations with higher concentrations of Kolliphor® HS·15 for higher bioavailability of PTH(1-34) could be further researched.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yimeng Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaolu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
12
|
Li Y, Zhu C, Wu H, Pan H, Liu H. Kolliphor® HS 15-cyclodextrin Complex for the Delivery of Voriconazole: Preparation, Characterization, and Antifungal Activity. Curr Drug Metab 2020; 21:379-389. [PMID: 32432999 DOI: 10.2174/1389200221666200520085915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study aimed to reduce the amount of sulfobutylether-β-cyclodextrin (SBECD) used in the marketed voriconazole injections to meet the clinical needs of patients with moderate-to-severe renal impairment (creatinine clearance rate <50 mL/min). OBJECTIVE This study found that the surfactant Kolliphor® HS 15 (HS 15) and SBECD had significant synergistic effects on solubilizing voriconazole, and a novel voriconazole complex delivery system (VRC-CD/HS 15) was established. METHODS The complex system was characterized, and its antifungal activity was studied by dynamic light scattering, dialysis bag method, disk diffusion, and broth microdilution. RESULTS Compared with the control, its encapsulation efficiency (90.07±0.48%), drug loading (7.37±0.25%) and zeta potential (-4.36±1.37 mV) were increased by 1.54%, 41.19%, and 296.36%, respectively; its average particle size (13.92±0.00 nm) was reduced by 15.69%, so the complex system had better stability. Simultaneously, its drug release behavior was similar to that of the control, and it was a first-order kinetic model. Antifungal studies indicated that the complex system had noticeable antifungal effects. With the increase of drug concentration, the inhibition zone increased. The minimum inhibitory concentrations of the complex system against Cryptococcus neoformans, Aspergillus niger and Candida albicans were 0.0313 μg/mL, 1 μg/mL and 128 μg/mL, respectively. CONCLUSION It showed a significant inhibitory effect on C. neoformans and had a visible therapeutic effect on Kunming mice infected with C. neoformans. Consequently, VRC-CD/HS 15 had better physicochemical properties and still had an apparent antifungal effect, and was promising as a potential alternative drug for clinical application.
Collapse
Affiliation(s)
- Yiqi Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| | - Chao Zhu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| | - Hui Wu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| | - Hongchun Pan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| | - Hong Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, China
| |
Collapse
|
13
|
Gong T, Zhang P, Deng C, Xiao Y, Gong T, Zhang Z. An effective and safe treatment strategy for rheumatoid arthritis based on human serum albumin and Kolliphor® HS 15. Nanomedicine (Lond) 2019; 14:2169-2187. [PMID: 31397202 DOI: 10.2217/nnm-2019-0110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: We aimed to construct human serum albumin-Kolliphor® HS 15 nanoparticles (HSA-HS15 NPs) to overcome the limitations in targeted therapy for rheumatoid arthritis (RA) and enhance the safety of drug-loaded HSA NPs. Methodology: Celastrol (CLT)-loaded HSA-HS15 NPs were prepared and the properties were adequately investigated; the treatment effect were evaluated in RA rats; in vitro and in vivo studies were performed to explain the mechanism. Results: CLT-HSA-HS15 NPs had remarkable treatment ability and enhanced safety in the treatment of RA compared with free CLT and CLT-HSA NPs. Conclusion: HSA-HS15 NPs could be a safe and efficient therapeutic strategy for the treatment of RA, because of the inflammatory targeting ability of albumin, the added HS15 and ELVIS effect (extravasation through leaky vasculature followed by inflammatory cell-mediated sequestration) of nanoparticles.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Pei Zhang
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Caifeng Deng
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Yu Xiao
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Tao Gong
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
14
|
Nasal Administration and Plasma Pharmacokinetics of Parathyroid Hormone Peptide PTH 1-34 for the Treatment of Osteoporosis. Pharmaceutics 2019; 11:pharmaceutics11060265. [PMID: 31181662 PMCID: PMC6631119 DOI: 10.3390/pharmaceutics11060265] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022] Open
Abstract
Nasal delivery of large peptides such as parathyroid 1-34 (PTH 1-34) can benefit from a permeation enhancer to promote absorption across the nasal mucosa into the bloodstream. Previously, we have published an encouraging bioavailability (78%), relative to subcutaneous injection in a small animal preclinical model, for a liquid nasal spray formulation containing the permeation enhancer polyethylene glycol (15)-hydroxystearate (Solutol® HS15). We report here the plasma pharmacokinetics of PTH 1-34 in healthy human volunteers receiving the liquid nasal spray formulation containing Solutol® HS15. For comparison, data for a commercially manufactured teriparatide formulation delivered via subcutaneous injection pen are also presented. Tc-99m-DTPA gamma scintigraphy monitored the deposition of the nasal spray in the nasal cavity and clearance via the inferior meatus and nasopharynx. The 50% clearance time was 17.8 min (minimum 10.9, maximum 74.3 min). For PTH 1-34, mean plasma Cmax of 5 pg/mL and 253 pg/mL were obtained for the nasal spray and subcutaneous injection respectively; relative bioavailability of the nasal spray was ≤1%. Subsequently, we investigated the pharmacokinetics of the liquid nasal spray formulation as well as a dry powder nasal formulation also containing Solutol® HS15 in a crossover study in an established ovine model. In this preclinical model, the relative bioavailability of liquid and powder nasal formulations was 1.4% and 1.0% respectively. The absolute bioavailability of subcutaneously administered PTH 1-34 (mean 77%, range 55-108%) in sheep was in agreement with published human data for teriparatide (up to 95%). These findings have important implications in the search for alternative routes of administration of peptides for the treatment of osteoporosis, and in terms of improving translation from animal models to humans.
Collapse
|
15
|
Cavanagh RJ, Smith PA, Stolnik S. Exposure to a Nonionic Surfactant Induces a Response Akin to Heat-Shock Apoptosis in Intestinal Epithelial Cells: Implications for Excipients Safety. Mol Pharm 2019; 16:618-631. [PMID: 30608696 DOI: 10.1021/acs.molpharmaceut.8b00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphipathic, nonionic, surfactants are widely used in pharmaceutical, food, and agricultural industry to enhance product features; as pharmaceutical excipients, they are also aimed at increasing cell membrane permeability and consequently improving oral drugs absorption. Here, we report on the concentration- and time-dependent succession of events occurring throughout and subsequent exposure of Caco-2 epithelium to a "typical" nonionic surfactant (Kolliphor HS15) to provide a molecular explanation for nonionic surfactant cytotoxicity. The study shows that the conditions of surfactant exposure, which increase plasma membrane fluidity and permeability, produced rapid (within 5 min) redox and mitochondrial effects. Apoptosis was triggered early during exposure (within 10 min) and relied upon an initial mitochondrial membrane hyperpolarization (5-10 min) as a crucial step, leading to its subsequent depolarization and caspase-3/7 activation (60 min). The apoptotic pathway appears to be triggered prior to substantial surfactant-induced membrane damage (observed ≥60 min). We hence propose that the cellular response to the model nonionic surfactant is triggered via surfactant-induced increase in plasma membrane fluidity, a phenomenon akin to the stress response to membrane fluidization induced by heat shock, and consequent apoptosis. Therefore, the fluidization effect that confers surfactants the ability to enhance drug permeability may also be intrinsically linked to the propagation of their cytotoxicity. The reported observations have important implications for the safety of a multitude of nonionic surfactants used in drug delivery formulations and to other permeability enhancing compounds with similar plasma membrane fluidizing mechanisms.
Collapse
Affiliation(s)
- Robert J Cavanagh
- Division of Molecular Therapeutics and Formulation, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Paul A Smith
- School of Life Science , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| |
Collapse
|
16
|
Zhou C, Guo C, Li W, Zhao J, Yang Q, Tan T, Wan Z, Dong J, Song X, Gong T. A novel honokiol liposome: formulation, pharmacokinetics, and antitumor studies. Drug Dev Ind Pharm 2018; 44:2005-2012. [PMID: 30058387 DOI: 10.1080/03639045.2018.1506475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chuchu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Chenqi Guo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Wenhao Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Juan Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Qin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Tiantian Tan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhuoya Wan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianxia Dong
- Department of Clinical Pharmacy, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
17
|
Williams AJ, Jordan F, King G, Lewis AL, Illum L, Masud T, Perkins AC, Pearson RG. In vitro and preclinical assessment of an intranasal spray formulation of parathyroid hormone PTH 1–34 for the treatment of osteoporosis. Int J Pharm 2018; 535:113-119. [DOI: 10.1016/j.ijpharm.2017.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
|
18
|
Shi Y, Li K, Tian B, Xu M, Lv Q, Zhao J, Han J, Feng D. Oral delivery of human growth hormone: Preparation, characterization, and pharmacokinetics. J Biomater Appl 2016; 31:851-858. [DOI: 10.1177/0885328216674347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Daily subcutaneous injection of human growth hormone has been used for the treatment of growth hormone deficiency and growth failure but has led to poor patient compliance and renal toxicity. Thus, it is crucial to develop favorable growth hormone delivery systems to improve patient compliance. In the present study, to increase the oral bioavailability of growth hormone and improve patient compliance, enteric-coated capsules filled with monomethoxyl poly(ethylene glycol)-b-poly(L-lactide-co-glycolide) nanoparticles were prepared to facilitate oral growth hormone delivery. The nanoparticles were less than 100 nm in size, exhibited narrow polydispersity indices < 0.3, and showed a zeta potential of −4.87 mV. The highest efficiency of growth hormone encapsulation achieved in this study was nearly 70%. An in vitro release experiment showed that adequate amounts of growth hormone were retained under simulated gastric conditions and significant amounts of growth hormone were released under simulated intestinal conditions. The bioavailability of encapsulated growth hormone relative to subcutaneously injected growth hormone in Sprague-Dawley rats was 11.06%. Thus, the use of poly(ethylene glycol)-b-poly(L-lactide-co-glycolide) nanoparticles yielded promising results, and these agents should be investigated further regarding their potential as an oral growth hormone delivery system in the future.
Collapse
Affiliation(s)
- Yanan Shi
- School of Pharmacy, Binzhou Medical University, China
| | - Keke Li
- School of Pharmacy, Binzhou Medical University, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, China
| | - Maolei Xu
- School of Pharmacy, Binzhou Medical University, China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, China
| | - Juanjuan Zhao
- School of Pharmacy, Binzhou Medical University, China
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, China
| | - Dongxiao Feng
- School of Pharmacy, Binzhou Medical University, China
| |
Collapse
|
19
|
Hou J, Sun E, Sun C, Wang J, Yang L, Jia XB, Zhang ZH. Improved oral bioavailability and anticancer efficacy on breast cancer of paclitaxel via Novel Soluplus(®)-Solutol(®) HS15 binary mixed micelles system. Int J Pharm 2016; 512:186-193. [PMID: 27567930 DOI: 10.1016/j.ijpharm.2016.08.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 11/27/2022]
Abstract
The aim of this study was to develop a novel drug delivery system using two biocompatible copolymers of Solutol(®)HS15 and Soluplus(®) to improve solubility, oral bioavailability and anticancer activity of paclitaxel (PTX). The PTX-loaded mixed micelles (PTX-M) were prepared by ethanol thin-film hydration method. The optimal PTX-M were provided with small size (164.8±2.0nm) and spherical shape at ratio of 1: 3 (Solutol(®)HS15: Soluplus(®)), thus increasing the solubility to 15.76±0.15mg/mL in water. The entrapment efficiency and drug loading of PTX-M were 98.48±0.91% and 10.59±0.09% respectively. In vitro release study indicated a sustained release of PTX-M. Transcellular transport study showed that the efflux ratio were decreased by 89.72% dramatically in Caco-2 cell transport models, and the pharmacokinetics study of PTX-M compared with PTX, showed a 3.68-fold increase in relative oral bioavailability, indicating the mixed micelles may promote absorption in the gastrointestinal tract. In addition, the MTT assay demonstrated that the IC50 value of PTX-M was reduced by 40.21% (PTX-M: 22.6±2.1μg/mL, PTX: 37.8±1.4μg/mL), and in vivo anti-tumor study (15days' therapy) showed PTX-M achieved higher anti-tumor efficacy (57.66%) compared with PTX (41.13%). Furthermore, a gastrointestinal safety assay also provided the reliability and safety of PTX-M. Collectively, these findings present an oral micelle formulation with increased solubility, oral bioavailability and anticancer activity of PTX.
Collapse
Affiliation(s)
- Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China; College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang 212013, China
| | - E Sun
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China
| | - Congyong Sun
- College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang 212013, China
| | - Jing Wang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China
| | - Lei Yang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China; College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang 212013, China
| | - Xiao-Bin Jia
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China; College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang 212013, China.
| | - Zhen-Hai Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China
| |
Collapse
|
20
|
The multilayer nanoparticles for deep penetration of docetaxel into tumor parenchyma to overcome tumor microenvironment. Colloids Surf B Biointerfaces 2016; 146:833-40. [PMID: 27451372 DOI: 10.1016/j.colsurfb.2016.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022]
Abstract
Deep penetration of the anticancer drug, docetaxel (DTX), into tumor parenchyma was demonstrated to achieve improved chemotherapy. For this purpose, a multistage nanostructure was designed and characterized using the multilayer nanoparticles (NPs). The multilayer NPs had a core/shell structure. The core was composed of the DTX-loaded Pluronic NPs (diameter: 12nm) that were transferred into the inner side of vesicles to form the vesicle NPs. Förster resonance energy transfer (FRET) in the NPs was observed to verify the incorporation of the DTX-loaded Pluronic NPs into the inner side of the vesicles during the formation of the vesicle NPs. Subsequently, the vesicle NPs were stabilized through Pluronic-lipid bilayer interaction to form the multilayer NPs. To examine the morphology and size distribution of the multilayer NPs, transmittance electron microscopy and dynamic light scattering were used. In vitro release behavior and toxicity were observed to verify the functionality of the multilayer NPs as nanocarriers for cancer therapy. Multistage functionality was evaluated by cellular uptake and tissue distribution behaviors of the multilayer NPs. The biodistribution of the multilayer NPs and their antitumor efficacy were also observed to understand the role of multistage functionality for improved chemotherapy.
Collapse
|
21
|
Liu L, Mao K, Wang W, Pan H, Wang F, Yang M, Liu H. Kolliphor® HS 15 Micelles for the Delivery of Coenzyme Q10: Preparation, Characterization, and Stability. AAPS PharmSciTech 2016; 17:757-66. [PMID: 26340950 DOI: 10.1208/s12249-015-0399-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/19/2015] [Indexed: 01/17/2023] Open
Abstract
To enhance the stability of coenzyme Q10 (CoQ10), Kolliphor® HS 15 (HS15) was employed as a carrier to build up a stable CoQ10-loaded micelle delivery system. The impact of micellar compositions, the preparation condition, and the preparation method on size characteristics, the solubilization efficiency, and micellar stability were investigated. The optimal preparation conditions were 1:6, 4, 0.2%, 118°C, and 25 min for CoQ10/HS15 mass ratio, pH value, the concentration of glucose, and the sterilization conditions. Upon these conditions, the particle size, polydispersity index (PDI), zeta potential, the entrapment efficiency, drug loading, and the critical micelle concentration (CMC) of CoQ10-loaded micelles were 19.76 nm, 0.112, -3.405 mV, 99.39%, 13.77%, and 5.623 × 10(-4) g/mL, respectively. Differential scanning calorimetry (DSC) analysis collectively corroborated that CoQ10 was entrapped into the micelles in amorphous form. The release pattern of drug was analyzed and proved to follow the first order. Additionally, the samples were exposed to the temperatures of 30°C for 6 months with more significant impact on their stabilities as compared to 4 and 25°C based on particle size and PDI. Under constant humidity with light protection long-term (25 ± 2°C, relative humidity (RH) 60 ± 10%, 18 months) conditions, there was no variation except minor changes of CoQ10 content of the samples. The shelf life of the micellar samples could be predicted as 24 months based on the stability results. Consequently, the CoQ10-loaded micelles showed excellent stabilities below 25°C as a potential drug candidate for further clinical applications.
Collapse
|
22
|
Oh KS, Kim K, Yoon BD, Lee HJ, Park DY, Kim EY, Lee K, Seo JH, Yuk SH. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy. Int J Nanomedicine 2016; 11:1077-87. [PMID: 27042062 PMCID: PMC4801198 DOI: 10.2147/ijn.s100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
Collapse
Affiliation(s)
- Keun Sang Oh
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kyungim Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Byeong Deok Yoon
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hye Jin Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dal Yong Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Eun-Yeong Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jae Hong Seo
- Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea
| | - Soon Hong Yuk
- College of Pharmacy, Korea University, Sejong, Republic of Korea; Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea
| |
Collapse
|
23
|
Andrade F, Neves JD, Gener P, Schwartz S, Ferreira D, Oliva M, Sarmento B. Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1621-31. [DOI: 10.1016/j.nano.2015.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022]
|
24
|
Zheng Z, Sun Y, Liu Z, Zhang M, Li C, Cai H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4931-42. [PMID: 26345159 PMCID: PMC4555965 DOI: 10.2147/dddt.s90147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Rheumatoid arthritis (RA), induced by the prolonged inappropriate inflammatory responses, is one of the most prevalent of all chronic inflammatory joint diseases. Curcumin (CM), a yellow hydrophobic polyphenol derived from the herb turmeric, has various pharmacological activities against many chronic diseases and acts by inhibiting cell proliferation and metastasis and downregulating various factors, including nuclear factor kappa B, interleukin-1β and TNF-α. Given the pathogenesis of RA, we hypothesized that the drug also has antiarthritic effects. The aims of the present study included the following: 1) examining the therapeutic effect of CM administered via intravenous (iv) injection on RA and 2) formulating the drug into oil–water nanoemulsions (Ns) to overcome the low oral bioavailability of CM and achieve oral delivery of the drug. Methods The effect of CM administered through iv injection on adjuvant-induced arthritis in rats was studied in terms of paw swelling, weight indices of the thymus and spleen, and pathological changes in nuclear factor kappa B expression and inflammatory cytokines. Methotrexate was used as a positive control. The CM-Ns were prepared using a high-pressure homogenizing method and characterized with respect to the particle size and morphology. The stability of the CM-Ns in simulated gastrointestinal (GI) fluids and in vitro release were also investigated. A pharmacokinetic study of the CM-Ns and suspensions in which the plasma levels were determined using an high performance liquid chromatography method and the pharmacokinetic parameters were calculated based on a statistical moment theory was also performed in rats. Results CM administered via iv injection had a therapeutic effect on RA similar to methotrexate. CM-Ns with a diameter of approximately 150 nm were successfully prepared, and the drug was well encapsulated into the Ns without degradation in simulated GI conditions. The area under the curve (AUC) and Cmax for the CM-Ns were more than threefold greater than those for the suspensions; moreover, similar decreases in the levels of TNF-α and interleukin-1β in both synovial fluid and blood serum were obtained from oral administration of CM-Ns and iv injection. Conclusion CM was an effective antiarthritic agent, and the present N formulation appeared to be a promising system that allowed RA therapy with CM to be converted from iv to oral administration.
Collapse
Affiliation(s)
- Zhaoling Zheng
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, People's Republic of China
| | - YanHua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Jinan, People's Republic of China
| | - Ziliang Liu
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, People's Republic of China
| | - Mingqin Zhang
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, People's Republic of China
| | - Chunqing Li
- Department of Traditional Chinese Medicine, Dongying People's Hospital, Dongying, People's Republic of China
| | - Hui Cai
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Nanjing Jinling Hospital, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Current understanding of nasal morphology and physiology as a drug delivery target. Drug Deliv Transl Res 2015; 3:4-15. [PMID: 25787863 DOI: 10.1007/s13346-012-0121-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nasal cavity is both a target for locally and systemically acting medications. An adequate treatment for rhinosinusitis continues to be an unmet need. With the recent approval of intranasal medications for the treatment of pain, the nasal cavity continues to be a viable route for rapid uptake into the systemic circulation. Despite the opportunities, there is still a void in the knowledge of how therapeutic entities interact with the nasal epithelium. In addition, new opportunities in mucosal immunity via nasal vaccination as well as the elusive nose to brain uptake continue to drive innovation. To facilitate understanding of the issues involved that facilitate drug delivery in the nose, a review of nasal morphology and physiology is presented.
Collapse
|
26
|
Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 2014; 193:162-73. [DOI: 10.1016/j.jconrel.2014.05.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023]
|
27
|
Shubber S, Vllasaliu D, Rauch C, Jordan F, Illum L, Stolnik S. Mechanism of mucosal permeability enhancement of CriticalSorb® (Solutol® HS15) investigated in vitro in cell cultures. Pharm Res 2014; 32:516-27. [PMID: 25190006 PMCID: PMC4300420 DOI: 10.1007/s11095-014-1481-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/15/2014] [Indexed: 02/02/2023]
Abstract
Purpose CriticalSorb™, with the principal component Solutol® HS15, is a novel mucosal drug delivery system demonstrated to improve the bioavailability of selected biotherapeutics. The intention of this study is to elucidate mechanism(s) responsible for the enhancement of trans-mucosal absorption of biological drugs by Solutol® HS15. Methods Micelle size and CMC of Solutol® HS15 were determined in biologically relevant media. Polarised airway Calu-3 cell layers were used to measure the permeability of a panel of biological drugs, and to assess changes in TEER, tight junction and F-actin morphology. The rate of cell endocytosis was measured in vitro in the presence of Solutol® HS15 using a membrane probe, FM 2–10. Results This work initially confirms surfactant-like behaviour of Solutol® HS15 in aqueous media, while subsequent experiments demonstrate that the effect of Solutol® HS15 on epithelial tight junctions is different from a ‘classical’ tight junction opening agent and illustrate the effect of Solutol® HS15 on the cell membrane (endocytosis rate) and F-actin cytoskeleton. Conclusion Solutol® HS15 is the principle component of CriticalSorb™ that has shown an enhancement in permeability of medium sized biological drugs across epithelia. This study suggests that its mechanism of action arises primarily from effects on the cell membrane and consequent impacts on the cell cytoskeleton in terms of actin organisation and tight junction opening.
Collapse
Affiliation(s)
- Saif Shubber
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
28
|
Sockolosky JT, Szoka FC. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr Purif 2013; 87:129-35. [PMID: 23168094 PMCID: PMC3537859 DOI: 10.1016/j.pep.2012.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
A pET based expression system for the production of recombinant human growth hormone (hGH) directed to the Escherichia coli periplasmic space was developed. The pET22b plasmid was used as a template for creating vectors that encode hGH fused to either a pelB or ompA secretion signal under control of the strong bacteriophage T7 promoter. The pelB- and ompA-hGH constructs expressed in BL21 (λDE3)-RIPL E. coli are secreted into the periplasm which facilitates isolation of soluble hGH by selective disruption of the outer membrane. A carboxy-terminal poly-histidine tag enabled purification by Ni(2+) affinity chromatography with an average yield of 1.4 mg/L culture of purified hGH, independent of secretion signal. Purified pelB- and ompA-hGH are monomeric based on size exclusion chromatography with an intact mass corresponding to mature hGH indicating proper cleavage of the signal peptide and folding in the periplasm. Both pelB- and ompA-hGH bind the hGH receptor with high affinity and potently stimulate Nb2 cell growth. These results demonstrate that the pET expression system is suitable for the rapid and simple isolation of bioactive, soluble hGH from E. coli.
Collapse
Affiliation(s)
- Jonathan T. Sockolosky
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 513 Parnassus Ave., Box 0912, San Francisco, California, 94143, USA
| | - Francis C. Szoka
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 513 Parnassus Ave., Box 0912, San Francisco, California, 94143, USA
| |
Collapse
|
29
|
Lewis AL, Jordan F, Illum L. CriticalSorb™: enabling systemic delivery of macromolecules via the nasal route. Drug Deliv Transl Res 2012; 3:26-32. [DOI: 10.1007/s13346-012-0089-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|