1
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Chitas R, Fonseca DR, Parreira P, Martins MCL. Targeted nanotherapeutics for the treatment of Helicobacter pylori infection. J Biomed Sci 2024; 31:78. [PMID: 39128983 DOI: 10.1186/s12929-024-01068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Helicobacter pylori infection is involved in gastric diseases such as peptic ulcer and adenocarcinoma. Approved antibiotherapies still fail in 10 to 40% of the infected patients and, in this scenario, targeted nanotherapeutics emerged as powerful allies for H. pylori eradication. Nano/microparticles conjugated with H. pylori binding molecules were developed to eliminate H. pylori by either (i) blocking essential mechanisms of infection, such as adhesion to gastric mucosa or (ii) binding and killing H. pylori through the release of drugs within the bacteria or at the site of infection. Glycan antigens (as Lewis B and sialyl-Lewis X), pectins, lectins, phosphatidylethanolamine and epithelial cell membranes were conjugated with nano/microparticles to successfully block H. pylori adhesion. Urea-coated nanoparticles were used to improve drug delivery inside bacteria through H. pylori UreI channel. Moreover, nanoparticles coated with antibodies against H. pylori and loaded with sono/photosensitizers, were promising for their application as targeted sono/photodynamic therapies. Further, non-specific H. pylori nano/microparticles, but only active in the acidic gastric environment, coated with binders to bacterial membrane, extracellular polymeric substances or to high temperature requirement A protease, were evaluated. In this review, an overview of the existing nanotherapeutics targeting H. pylori will be given and their rational, potential to counteract infection, as well as level of development will be presented and discussed.
Collapse
Affiliation(s)
- Rute Chitas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana R Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Porto, Portugal
| | - Paula Parreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
4
|
Garg A, Karhana S, Khan MA. Nanomedicine for the eradication of Helicobacter pylori: recent advances, challenges and future perspective. Future Microbiol 2024; 19:431-447. [PMID: 38381027 DOI: 10.2217/fmb-2023-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/31/2023] [Indexed: 02/22/2024] Open
Abstract
Helicobacter pylori infection is linked to gastritis, ulcers and gastric cancer. Nanomedicine offers a promising solution by utilizing nanoparticles for precise drug delivery, countering antibiotic resistance and delivery issues. Nanocarriers such as liposomes and nanoparticles enhance drug stability and circulation, targeting infection sites through gastric mucosa characteristics. Challenges include biocompatibility, stability, scalability and personalized therapies. Despite obstacles, nanomedicine's potential for reshaping H. pylori eradication is significant and showcased in this review focusing on benefits, limitations and future prospects of nanomedicine-based strategies.
Collapse
Affiliation(s)
- Aakriti Garg
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd A Khan
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
5
|
Kaveh-Samani A, Dalali S, Kaviani F, Piri-Gharaghie T, Doosti A. Oral administration of DNA alginate nanovaccine induced immune-protection against Helicobacter pylori in Balb/C mice. BMC Immunol 2024; 25:11. [PMID: 38310250 PMCID: PMC10838413 DOI: 10.1186/s12865-024-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. Pylori), is an established causative factor for the development of gastric cancer and the induction of persistent stomach infections that may lead to peptic ulcers. In recent decades, several endeavours have been undertaken to develop a vaccine for H. pylori, although none have advanced to the clinical phase. The development of a successful H. pylori vaccine is hindered by particular challenges, such as the absence of secure mucosal vaccines to enhance local immune responses, the absence of identified antigens that are effective in vaccinations, and the absence of recognized indicators of protection. METHODS The DNA vaccine was chemically cloned, and the cloning was verified using PCR and restriction enzyme digestion. The efficacy of the vaccination was investigated. The immunogenicity and immune-protective efficacy of the vaccination were assessed in BALB/c mice. This study demonstrated that administering a preventive Alginate/pCI-neo-UreH Nanovaccine directly into the stomach effectively triggered a robust immune response to protect against H. pylori infection in mice. RESULTS The level of immune protection achieved with this nano vaccine was similar to that observed when using the widely accepted formalin-killed H. pylori Hel 305 as a positive control. The Alginate/pCI-neo-UreH Nanovaccine composition elicited significant mucosal and systemic antigen-specific antibody responses and strong intestinal and systemic Th1 responses. Moreover, the activation of IL-17R signaling is necessary for the defensive Th1 immune responses in the intestines triggered by Alginate/pCI-neo-UreH. CONCLUSION Alginate/pCI-neo-UreH is a potential Nanovaccine for use in an oral vaccine versus H. pylori infection, according to our findings.
Collapse
Affiliation(s)
- Arezo Kaveh-Samani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Dalali
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Kaviani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Biotechnology Research Center, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
6
|
Kamankesh M, Yadegar A, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Miri AH, Rad-Malekshahi M, Hamblin MR, Wacker MG. Future Nanotechnology-Based Strategies for Improved Management of Helicobacter pylori Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302532. [PMID: 37697021 DOI: 10.1002/smll.202302532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Indexed: 09/13/2023]
Abstract
Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.
Collapse
Affiliation(s)
- Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, PO Box 14155-6455, Tehran, 14144-6455, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Insituto de Salud Carlos III, Valencia, 46022, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore, 117545, Singapore
| |
Collapse
|
7
|
Bahramikia S, Izadi R. Plant-based green synthesis of nanoparticles as an effective and safe treatment for gastric ulcer. Inflammopharmacology 2023; 31:2843-2855. [PMID: 37921959 DOI: 10.1007/s10787-023-01367-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Gastric ulcer is a chronic disease that affects about 10% of the world's population. This disease is caused by factors such as stress, smoking, alcohol consumption, nonsteroidal anti-inflammatory drugs (NSAIDs), Helicobacter pylori infection, and genetic factors. Herbal medicines such as plant extracts are new sources of drugs with promising results in treating gastric ulcers. Nanotechnology and nanomedicine have been able to reach this objective to some extent. Green synthesis is an alternative method adapted for chemical and physical methods. In the last few years, fungi, bacteria, viruses, algae, and plants have been used to produce metallic nanoparticles. Since nanoparticles synthesized by the green method can be effective in anticancer, antidiabetic, antiulcer, anti-inflammatory, and antioxidant treatments, the aim of this review was to study the effect of metal nanoparticles and metal oxides produced by the green method on the treatment of gastric ulcers. For this purpose, an electronic search of published research and review articles in PubMed, Scopus, Science Direct, Cochrane databases, and Google Scholar was conducted using a combination of keywords of "gastric ulcers and nanoparticles", "gastric ulcers and Green synthesis" and "stomach ulcers and nanoparticles". After a full review of published articles and their references, 120 articles were identified for further detailed review. The articles selected were between 2000 and March 2023, and 2 articles published in 1972 and 1997 were utilized. The results of this study have shown that polymeric, metal, and metal oxide nanoparticles synthesized from plants can be effective in treating gastric ulcers, especially ulcers caused by H. pylori, ethanol, and NSAIDs.
Collapse
Affiliation(s)
- Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| | - Rezvan Izadi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| |
Collapse
|
8
|
Gupta A, Shetty S, Mutalik S, Chandrashekar H R, K N, Mathew EM, Jha A, Mishra B, Rajpurohit S, Ravi G, Saha M, Moorkoth S. Treatment of H. pylori infection and gastric ulcer: Need for novel Pharmaceutical formulation. Heliyon 2023; 9:e20406. [PMID: 37810864 PMCID: PMC10550623 DOI: 10.1016/j.heliyon.2023.e20406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Peptic ulcer disease (PUD) is one of the most prevalent gastro intestinal disorder which often leads to painful sores in the stomach lining and intestinal bleeding. Untreated Helicobacter pylori (H. pylori) infection is one of the major reasons for chronic PUD which, if left untreated, may also result in gastric cancer. Treatment of H. pylori is always a challenge to the treating doctor because of the poor bioavailability of the drug at the inner layers of gastric mucosa where the bacteria resides. This results in ineffective therapy and antibiotic resistance. Current treatment regimens available for gastric ulcer and H. pylori infection uses a combination of multiple antimicrobial agents, proton pump inhibitors (PPIs), H2-receptor antagonists, dual therapy, triple therapy, quadruple therapy and sequential therapy. This polypharmacy approach leads to patient noncompliance during long term therapy. Management of H. pylori induced gastric ulcer is a burning issue that necessitates alternative treatment options. Novel formulation strategies such as extended-release gastro retentive drug delivery systems (GRDDS) and nanoformulations have the potential to overcome the current bioavailability challenges. This review discusses the current status of H. pylori treatment, their limitations and the formulation strategies to overcome these shortcomings. Authors propose here an innovative strategy to improve the H. pylori eradication efficiency.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nandakumar K
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Elizabeth Mary Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gundawar Ravi
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
9
|
Deng R, Liu L, Xie W, Lu W, Liu Z, Wang Y. Prevalence of Helicobacter pylori Antibiotic Resistance in Patients Enrolled in Guangzhou, China. Infect Drug Resist 2023; 16:5033-5038. [PMID: 37554543 PMCID: PMC10406106 DOI: 10.2147/idr.s418482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE Helicobacter pylori (H. pylori) infection is a high-risk factor for the occurrence of gastric cancer. The quadruple therapy has been widely used as the first-line treatment for H. pylori in China. However, the increasing resistance rate to antibiotics has become a major challenge in the treatment of H. pylori. Therefore, there is an urgent need for rapid and cost-effective detection of antibiotic resistance to different antibiotics. To evaluate the prevalence of H. pylori antibiotic resistance in Guangzhou and the diagnostic performance of DOB value of 13C UBT in predicting antibiotic resistance. PATIENTS AND METHODS In this retrospective study, we collected data from 193 H. pylori culture-positive patients in Guangzhou on their DOB values and resistance to antibiotics. We analyzed the antibiotic resistance rate of commonly used antibiotics in quadruple therapy, and the diagnostic efficacy of DOB value was evaluated. RESULTS The resistance rates of clarithromycin (CLA) and levofloxacin (LEV) were 46.1% and 44.0%, respectively. In the age group under 40, the resistance rate of LEV was lower than that of CLA. However, the diagnostic efficacy of DOB value was found to be low and it could not serve as an independent indicator for diagnosing resistance to CLA and LEV. CONCLUSION The high resistance rates of CLA and LEV in H. pylori patients in Guangzhou indicate the urgent need for effective detection methods. The DOB value is not a direct indicator of antibiotic resistance to CLA and LEV. Therefore, it is important to use a combination of diagnostic methods to accurately assess antibiotic resistance in H. pylori infection.
Collapse
Affiliation(s)
- RiHui Deng
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - LiYan Liu
- Shanghai Xinchao Medical Laboratory, Shanghai, People’s Republic of China
| | - WeiKe Xie
- Equipment Management Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Weiguo Lu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhihui Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Mestrovic A, Perkovic N, Tonkic A, Sundov Z, Kumric M, Bozic J. Personalized Approach in Eradication of Helicobacter pylori Infection. Antibiotics (Basel) 2022; 12:7. [PMID: 36671208 PMCID: PMC9854992 DOI: 10.3390/antibiotics12010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in antibiotic resistance to Helicobacter pylori (H. pylori) is associated with a decrease in the effectiveness of eradication therapy. Although some success has been achieved by adjusting therapeutic regimens according to local data on resistance to certain antibiotics, a new approach is needed to ensure a better therapeutic response. Tailored therapy, based on sensitivity tests to antibiotics, is increasingly proving to be a superior therapeutic option, even as a first-line therapy. Moreover, the recently published Maastricht VI guidelines emphasize utilizing a susceptibility-guided strategy in respect to antibiotic stewardship as the first choice for eradication therapy. In addition, polymerase chain reaction (PCR) technology is becoming a standard tool in the diagnosis of H. pylori infections through non-invasive testing, which further optimizes the eradication process. We provide a review regarding the current position of the individualized approach in eradication therapy and its future prospects. Based on novel understandings, the personalized approach is an effective strategy to increase the successful eradication of H. pylori infections.
Collapse
Affiliation(s)
- Antonio Mestrovic
- Department of Gastroenterology and Hepatology, University Hospital of Split, 21000 Split, Croatia
| | - Nikola Perkovic
- Department of Gastroenterology and Hepatology, University Hospital of Split, 21000 Split, Croatia
| | - Ante Tonkic
- Department of Gastroenterology and Hepatology, University Hospital of Split, 21000 Split, Croatia
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Zeljko Sundov
- Department of Gastroenterology and Hepatology, University Hospital of Split, 21000 Split, Croatia
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
11
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022; 13:1072685. [PMID: 36425579 PMCID: PMC9679422 DOI: 10.3389/fphar.2022.1072685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
One of the main obstacles to most medication administrations (such as the vaccine constructs) is the cellular membrane's inadequate permeability, which reduces their efficiency. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are well-known as potent biological nanocarriers to overcome this natural barrier, and to deliver membrane-impermeable substances into cells. The physicochemical properties of CPPs, the attached cargo, concentration, and cell type substantially influence the internalization mechanism. Although the exact mechanism of cellular uptake and the following processing of CPPs are still uncertain; but however, they can facilitate intracellular transfer through both endocytic and non-endocytic pathways. Improved endosomal escape efficiency, selective cell targeting, and improved uptake, processing, and presentation of antigen by antigen-presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo investigations using CPP conjugates show their potential as therapeutic agents in various medical areas such as infectious and non-infectious disorders. Effective treatments for a variety of diseases may be provided by vaccines that can cooperatively stimulate T cell-mediated immunity (T helper cell activity or cytotoxic T cell function), and immunologic memory. Delivery of antigen epitopes to APCs, and generation of a potent immune response is essential for an efficacious vaccine that can be facilitated by CPPs. The current review describes the delivery of numerous vaccine components by various CPPs and their immunostimulatory properties.
Collapse
Affiliation(s)
- Behnam Hasannejad-Asl
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pooresmaeil
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehran Dabiri
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Huang S, Zhu Y, Zhang L, Zhang Z. Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107946. [PMID: 34914144 DOI: 10.1002/adma.202107946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is one of the most successful and cost-effective prophylactic measures against diseases, especially infectious diseases including smallpox and polio. However, the development of effective prophylactic or therapeutic vaccines for other diseases such as cancer remains challenging. This is often due to the imprecise control of vaccine activity in vivo which leads to insufficient/inappropriate immune responses or short immune memory. The development of new vaccine types in recent decades has created the potential for improving the protective potency against these diseases. Genetic and subunit vaccines are two major categories of these emerging vaccines. Owing to their nature, they rely heavily on delivery systems with various functions, such as effective cargo protection, immunogenicity enhancement, targeted delivery, sustained release of antigens, selective activation of humoral and/or cellular immune responses against specific antigens, and reduced adverse effects. Therefore, vaccine delivery systems may significantly affect the final outcome of genetic and other novel vaccines and are vital for their development. This review introduces these studies based on their research emphasis on functional design or administration route optimization, presents recent progress, and discusses features of new vaccine delivery systems, providing an overview of this field.
Collapse
Affiliation(s)
- Shiqi Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Yining Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
13
|
Yao CJ, Yang SJ, Huang CH, Chang YT, Wang CH, Shieh MJ, Young TH. Retention Time Extended by Nanoparticles Improves the Eradication of Highly Antibiotic-Resistant Helicobacter pylori. Pharmaceutics 2022; 14:pharmaceutics14102117. [PMID: 36297552 PMCID: PMC9608011 DOI: 10.3390/pharmaceutics14102117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori infection usually causes gastrointestinal complications, including gastrointestinal bleeding or perforation, and serious infections may lead to gastric cancer. Amoxicillin is used to treat numerous bacterial infections but is easily decomposed in the gastric acid environment via the hydrolyzation of the β-lactam ring. In this study, we develop chitosan-based nanoparticles loaded with amoxicillin (CAANs) as an H. pylori eradication platform. The CAANs were biocompatible and could retain the antibiotic activity of amoxicillin against H. pylori growth. The mucoadhesive property of chitosan and alginate enabled the CAANs to adhere to the mucus layers and penetrate through these to release amoxicillin in the space between the layers and the gastric epithelium. The use of this nanoparticle could prolong the retention time and preserve the antibiotic activity of amoxicillin in the stomach and help enhance the eradication rate of H. pylori and reduce treatment time. These CAANs, therefore, show potential for the effective treatment of highly antibiotic-resistant H. pylori infection using amoxicillin.
Collapse
Affiliation(s)
- Cheng-Jung Yao
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, No. 111, Section 3, Xinglong Road, Taipei 116, Taiwan
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yuan-Ting Chang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene’e Tech Co., Ltd., 2nd Floor, No. 661, Bannan Road, Zhonghe District, New Taipei City 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
- Correspondence: (M.-J.S.); (T.-H.Y.); Tel.: +886-2-23123456 (ext. 81444) (M.-J.S.)
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Correspondence: (M.-J.S.); (T.-H.Y.); Tel.: +886-2-23123456 (ext. 81444) (M.-J.S.)
| |
Collapse
|
14
|
Qaiser A, Kiani MH, Parveen R, Sarfraz M, Shahnaz G, Rahdar A, Taboada P. Design and synthesis of multifunctional polymeric micelles for targeted delivery in Helicobacter pylori infection. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
The effect of cranberry supplementation on Helicobacter pylori eradication in H. pylori positive subjects: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2022; 128:1090-1099. [PMID: 34670631 DOI: 10.1017/s0007114521004256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Helicobacter pylori infection is one of the most common chronic bacterial infections. Cranberry has been suggested for H. pylori eradication. We aimed to conduct the first meta-analysis to summarise current evidence on effects of cranberry supplementation on H. pylori eradication in H. pylori positive subjects. We searched the online databases up to December 2020. Four randomised clinical trials (RCT) were included with human subjects, investigating the effect of cranberry on H. pylori eradication. The pooled results were expressed as the OR with 95 % CI. Based on five effect sizes with a total sample size of 1935 individuals, we found that according to the OR, there was a positive effect of cranberry supplementation on H. pylori eradication, increasing the chance of H. pylori eradication by 1·27 times, but this relationship was not statistically significant (overall OR: 1·27; 95 % CI 0·63, 2·58). The results also indicated the moderate between-study heterogeneity (I2 = 63·40 %; P = 0·03) of the studies. However, there were no significant differences in some subgroup analyses in the duration of treatment, the duration of follow-up and the Jadad score. Our findings revealed that although cranberry had a positive effect on H. pylori eradication in adults, this effect was not statistically significant. Due to the small number of included studies and moderate heterogeneities, the potential of cranberry supplementation on H. pylori eradication should be validated in large, multicentre and well-designed RCT in the future.
Collapse
|
16
|
Wu Y, Geng J, Cheng X, Yang Y, Yu Y, Wang L, Dong Q, Chi Z, Liu C. Cosmetic-Derived Mannosylerythritol Lipid-B-Phospholipid Nanoliposome: An Acid-Stabilized Carrier for Efficient Gastromucosal Delivery of Amoxicillin for In Vivo Treatment of Helicobacter pylori. ACS OMEGA 2022; 7:29086-29099. [PMID: 36033659 PMCID: PMC9404470 DOI: 10.1021/acsomega.2c02953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/03/2022] [Indexed: 05/26/2023]
Abstract
Helicobacter pylori infection is a leading cause of gastritis and peptic ulcer. Current treatments for H. pylori are limited by the increase in antibiotic-resistant strains and low drug delivery to the infection site, indicating the need for effective delivery systems of antibiotics. Although liposomes are the most successful drug delivery carriers that have already been applied commercially, their acidic stability still stands as a problem. Herein, we developed a novel nanoliposome using cosmetic raw materials of mannosylerythritol lipid-B (MEL-B), soy bean lecithin, and cholesterol, namely, LipoSC-MELB. LipoSC-MELB exhibited enhanced stability under the simulated gastric-acid condition, owing to its strong intermolecular hydrogen-bond interactions caused by the incorporation of MEL-B. Moreover, amoxicillin-loaded LipoSC-MELB (LipoSC-MELB/AMX) had a particle size of approximately 100 nm and exhibited sustained drug release under varying pH conditions (pH 3-7). Besides, LipoSC-MELB/AMX exhibited significantly higher anti-H. pylori and anti-H. pylori biofilm activity as compared with free AMX. Furthermore, LipoSC-MELB was able to carry AMX across the barriers of gastric mucus and H. pylori biofilms. Remarkably, in vivo assays indicated that LipoSC-MELB/AMX was effective in treating H. pylori infection and its associated gastritis and gastric ulcers. Overall, the findings of this study showed that LipoSC-MELB was effective for gastromucosal delivery of amoxicillin to improve its bioavailability for the treatment of H. pylori infection.
Collapse
Affiliation(s)
- Yanping Wu
- College
of Marine Life Sciences, Ocean University
of China, No.5 Yushan Road, Qingdao 266003, China
| | - Jiayue Geng
- College
of Marine Life Sciences, Ocean University
of China, No.5 Yushan Road, Qingdao 266003, China
| | - Xiaohong Cheng
- College
of Marine Life Sciences, Ocean University
of China, No.5 Yushan Road, Qingdao 266003, China
| | - Ying Yang
- College
of Marine Life Sciences, Ocean University
of China, No.5 Yushan Road, Qingdao 266003, China
- Qingdao
Youdo Bioengineering Co. Ltd., No. 175 Zhuzhou Road, Qingdao 266101, China
| | - Yu Yu
- College
of Marine Life Sciences, Ocean University
of China, No.5 Yushan Road, Qingdao 266003, China
- Qingdao
Youdo Bioengineering Co. Ltd., No. 175 Zhuzhou Road, Qingdao 266101, China
| | - Lili Wang
- Central
Laboratory and Department of Gastroenterology, Qingdao Municipal Hospital, No.5 Donghai Middle Road, Qingdao 266071, China
| | - Quanjiang Dong
- Central
Laboratory and Department of Gastroenterology, Qingdao Municipal Hospital, No.5 Donghai Middle Road, Qingdao 266071, China
| | - Zhe Chi
- College
of Marine Life Sciences, Ocean University
of China, No.5 Yushan Road, Qingdao 266003, China
| | - Chenguang Liu
- College
of Marine Life Sciences, Ocean University
of China, No.5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
17
|
Ferreira R, Sousa C, Gonçalves RFS, Pinheiro AC, Oleastro M, Wagemans J, Lavigne R, Figueiredo C, Azeredo J, Melo LDR. Characterization and Genomic Analysis of a New Phage Infecting Helicobacter pylori. Int J Mol Sci 2022; 23:ijms23147885. [PMID: 35887231 PMCID: PMC9319048 DOI: 10.3390/ijms23147885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori, a significant human gastric pathogen, has been demonstrating increased antibiotic resistance, causing difficulties in infection treatment. It is therefore important to develop alternatives or complementary approaches to antibiotics to tackle H. pylori infections, and (bacterio)phages have proven to be effective antibacterial agents. In this work, prophage isolation was attempted using H. pylori strains and UV radiation. One phage was isolated and further characterized to assess potential phage-inspired therapeutic alternatives to H. pylori infections. HPy1R is a new podovirus prophage with a genome length of 31,162 bp, 37.1% GC, encoding 36 predicted proteins, of which 17 were identified as structural. Phage particles remained stable at 37 °C, from pH 3 to 11, for 24 h in standard assays. Moreover, when submitted to an in vitro gastric digestion model, only a small decrease was observed in the gastric phase, suggesting that it is adapted to the gastric tract environment. Together with its other characteristics, its capability to suppress H. pylori population levels for up to 24 h post-infection at multiplicities of infection of 0.01, 0.1, and 1 suggests that this newly isolated phage is a potential candidate for phage therapy in the absence of strictly lytic phages.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal;
| | - Cláudia Sousa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel F. S. Gonçalves
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Cristina Pinheiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Doctor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Ceu Figueiredo
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal;
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Azeredo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís D. R. Melo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
18
|
Pop R, Tăbăran AF, Ungur AP, Negoescu A, Cătoi C. Helicobacter Pylori-Induced Gastric Infections: From Pathogenesis to Novel Therapeutic Approaches Using Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071463. [PMID: 35890358 PMCID: PMC9318142 DOI: 10.3390/pharmaceutics14071463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and the most important single digestive pathogen responsible for the induction of gastroduodenal diseases such as gastritis, peptic ulcer, and, finally, gastric neoplasia. The recently reported high rates of antimicrobial drug resistance hamper the current therapies of H. pylori, with therapeutic failure reaching up to 40% of patients. In this context, new treatment options and strategies are urgently needed, but the successful development of these new therapeutic tools is conditioned by the understanding of the high adaptability of H. pylori to the gastric acidic environment and the complex pathogenic mechanism. Due to several advantages, including good antibacterial efficiency, possible targeted delivery, and long tissular persistence, silver nanoparticles (AgNPs) offer the opportunity of exploring new strategies to improve the H. pylori therapy. A new paradigm in the therapy of H. pylori gastric infections using AgNPs has the potential to overcome the current medical limitations imposed by the H. pylori drug resistance, which is reported for most of the current organic antibiotics employed in the classical therapies. This manuscript provides an extensive overview of the pathology of H. pylori-induced gastritis, gastric cancer, and extradigestive diseases and highlights the possible benefits and limitations of employing AgNPs in the therapeutic strategies against H. pylori infections.
Collapse
|
19
|
Mohammed M. Ways T, Filippov SK, Maji S, Glassner M, Cegłowski M, Hoogenboom R, King S, Man Lau W, Khutoryanskiy VV. Mucus-penetrating nanoparticles based on chitosan grafted with various non-ionic polymers: synthesis, structural characterisation and diffusion studies. J Colloid Interface Sci 2022; 626:251-264. [DOI: 10.1016/j.jcis.2022.06.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
|
20
|
Wang R, Song C, Gao A, Liu Q, Guan W, Mei J, Ma L, Cui D. Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection. Acta Biomater 2022; 143:418-427. [PMID: 35219867 DOI: 10.1016/j.actbio.2022.02.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori is a causative factor of various gastrointestinal tract diseases. As clinical antibiotic-based therapy for H. pylori infection might induce bacterial drug resistance, the in vivo eradication of H. pylori remains a huge challenge. In the present study, monoclonal antibody-conjugated liposomes loaded with indocyanine green (ICG) (HpAb-LiP-ICG) were successfully developed for targeted photoacoustic (PA) imaging-guided sonodynamic therapy (SDT) of H. pylori infection in vivo. HpAb-LiP-ICG showed high stability and favorable biocompatibility in acidic environment (pH 1.5) and was used for treating H. pylori-infected mice through oral administration. PA imaging showed that HpAb-LiP-ICG could precisely recognize and target H. pylori in the stomach. Following the targeting of HpAb-LiP-ICG to H. pylori, ICG was activated to generate singlet oxygen (1O2) for eliminating H. pylori under ultrasound (US) irradiation. Pathological analysis revealed that the HpAb-LiP-ICG-mediated SDT eradicated H. pylori without unintended toxicity to normal tissues. In conclusion, the HpAb-LiP-ICG-mediated SDT might shed new light on treating H. pylori infection, indicating the clinical translational prospects of this therapy in near future. STATEMENT OF SIGNIFICANCE: Traditional antibiotic-based therapy for Helicobacter pylori infections suffers from the risk of drug resistance. To meet this challenge, a monoclonal antibody-conjugated nanoliposome loaded with indocyanine green (ICG) (HpAb-LiP-ICG) was successfully developed, and efficient eradication of H. pylori was achieved in vivo by visual sonodynamic therapy (SDT). HpAb-LiP-ICG exhibited biocompatibility, targeting, and stability in the acidic microenvironment. Under ultrasound (US) irradiation in vitro, the HpAb-LiP-ICG nanoliposomes accumulated on the surface of H. pylori were activated to produce adequate singlet oxygen (1O2) to eliminate H. pylori. Gastric mucous tissues infected with H. pylori recovered to the normal state after HpAb-LiP-ICG-mediated SDT without side effects, thus highlighting the clinical translational prospects of the prepared HpAb-LiP-ICG nanoliposome in near future.
Collapse
|
21
|
Papakonstantinou E, Io Diakou K, Mitsis T, Dragoumani K, Bacopoulou F, Megalooikonomou V, Kossida S, Chrousos GP, Vlachakis D. Molecular fusion events in carcinogenic organisms: a bioinformatics study for the detection of fused proteins between viruses, bacteria and eukaryotes. EMBNET.JOURNAL 2022; 27:e1004. [PMID: 35464257 PMCID: PMC9029568 DOI: 10.14806/ej.27.0.1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular fusion events have a prominent role in the initial steps of carcinogenesis. In this study, a bioinformatics analysis was performed between four organisms that are known to induce cancer development in humans: two viruses, Human Herpesvirus 4, and Human T-cell leukaemia virus, one bacterium, Helicobacter Pylori, and one trematode, Schistosoma mansoni. The annotated proteomes from these organisms were analysed using the SAFE software to identify protein fusion events, which may provide insight into protein function similarities and possible merging events during the course of evolution. Based on the results, five fused proteins with very similar functions were detected, whereas proteins with different functions that might act in the same molecular complex or biochemical pathway were not found. Thus, this study analysed the above four well-known cancer-related organisms with de novo bioinformatics programs and provided useful information on protein fusion events, hopefully leading to deeper understanding of carcinogenenesis.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Kalliopi Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilis Megalooikonomou
- Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras. Greece
| | - Sophia Kossida
- IMGT, The International ImMunoGeneTics Information System, Université de Montpellier, Laboratoire d'ImmunoGénétique Moléculaire and Institut de Génétique Humaine, University of Montpellier, Montpellier, France
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
22
|
Lopes-de-Campos D, Leal Seabra C, Pinto RM, Adam Słowiński M, Sarmento B, Nunes C, Cristina L Martins M, Reis S. Targeting and Killing the Ever-Challenging Ulcer Bug. Int J Pharm 2022; 617:121582. [PMID: 35176334 DOI: 10.1016/j.ijpharm.2022.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
TreatingHelicobacter pylori(H. pylori) infections has been a never-ending challenge, which has contributed to the high incidence of gastric cancer. The antibiotics commonly used are not reaching the infection site in its active state and in a concentration high enough to effectively kill the bacteria. In this context, amoxicillin-loaded lipid nanoparticles with carefully chosen materials were developed, namely dioleoylphosphatidylethanolamine (DOPE) as a targeting agent and Tween®80 and linolenic acid as antimicrobial agents. This work shows the ability of these nanoparticles in (i) targeting the bacteria (imaging flow cytometry) and inhibiting their adhesion to MKN-74 cells (bacteria-gastric cells adhesion model); (ii) killing the bacteria even as an antibiotic-free strategy (time-kill kineticstudies, scanning electron microscopy, and bacterial membrane permeability studies); (iii)overcoming gastrointestinal features using a newly developedin vitroinfection model that includes both physical (epithelial cells and mucus) and the chemical (acid medium) barriers; and in (iv) being incorporated in a floating system that can increase the retention time at the stomach. Overall, this work presents an effective nanosystem to deal with the ulcer-bug. Besides, it also provides two innovative tools transferable to other fields-anin vitroinfection model and a floating system to incorporate nanoparticles.
Collapse
Affiliation(s)
- Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal
| | - Catarina Leal Seabra
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal; i3S - Instituto de Investigacao e Inovacao em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto de Engenharia Biomedica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal
| | - Mateusz Adam Słowiński
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigacao e Inovacao em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto de Engenharia Biomedica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; IINFACTS, Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, Gandra, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigacao e Inovacao em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto de Engenharia Biomedica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciencias Biomedicas Abel Salazar, Universidade do Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal.
| |
Collapse
|
23
|
Qin Y, Lao YH, Wang H, Zhang J, Yi K, Chen Z, Han J, Song W, Tao Y, Li M. Combatting Helicobacter pylori with oral nanomedicines. J Mater Chem B 2021; 9:9826-9838. [PMID: 34854456 DOI: 10.1039/d1tb02038b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori (H. pylori) infection is considered to be the main cause of most digestive diseases,such as chronic active gastritis, gastroduodenal ulcers, or even gastric cancer. Oral medication is a transformative approach to treat H. pylori-induced infections. However, unlike intravenous administration, orally administrated drugs have to overcome various barriers before reaching the infected sites, which significantly limits the therapeutic efficacy. These challenges may be addressed by emerging nanomedicine that is equipped with nanotechnology approaches to enable efficient and effective targeted delivery of drugs. Herein, in this review, we first discuss the conventional therapy for the eradication of H. pylori. Through the introduction of the critical barriers of oral administration, the benefits of nanomedicine are highlighted. Recently-published examples of nanocarriers for combating H. pylori in terms of design, preparation, and antimicrobial mechanisms are then presented, followed by our perspective on potential future research directions of oral nanomedicines.
Collapse
Affiliation(s)
- Yuan Qin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhuanggui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
24
|
Khan S, Sharaf M, Ahmed I, Khan TU, Shabana S, Arif M, Kazmi SSUH, Liu C. Potential utility of nano-based treatment approaches to address the risk of Helicobacter pylori. Expert Rev Anti Infect Ther 2021; 20:407-424. [PMID: 34658307 DOI: 10.1080/14787210.2022.1990041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) has occupied a significant place among infectious pathogens and it has been documented as a leading challenge due to its higher resistance to the commonly used drugs, higher adaptability, and lower targeting specificity of the available drugs. AREAS COVERED New treatment strategies are urgently needed in order to improve the current advancement in modern medicine. Nanocarriers have gained an advantage of drug encapsulation and high retention time in the stomach with a prolonged drug release rate at the targeted site. This article aims to highlight the recent advances in nanotechnology with special emphasis on metallic, polymeric, lipid, membrane coated, and target-specific nanoparticles (NPs), as well as, natural products for treating H. pylori infection. We discussed a comprehensive approach to understand H. pylori infection and elicits to rethink about the increasing threat posed by H. pylori and its treatment strategies. EXPERT OPINION To address these issues, nanotechnology has got huge potential to combat H. pylori infection and has made great progress in the field of biomedicine. Moreover, combinatory studies of natural products and probiotics in conjugation with NPs have proven efficiency against H. pylori infection, with an advantage of lower cytotoxicity, minimal side effects, and stronger antibacterial potential.[Figure: see text].
Collapse
Affiliation(s)
- Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Egypt
| | | | | | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
25
|
Arif M, Sharaf M, Samreen, Dong Q, Wang L, Chi Z, Liu CG. Bacteria-targeting chitosan/carbon dots nanocomposite with membrane disruptive properties improve eradication rate of Helicobacter pylori. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2423-2447. [PMID: 34644235 DOI: 10.1080/09205063.2021.1972559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We designed a bacteria-targeting and membrane disrupting nanocomposite for successful antibiotic treatment of Helicobacter pylori (H. pylori) infections in the present study. The antibacterial nanocomposite was prepared from thiolated-ureido-chitosan (Cys-U-CS) and anionic poly (malic acid) (PMLA) via electrostatic interaction decorated with dual functional ammonium citrate carbon quantum dots (CDs). Cys-U-CS serves as a targeting building block for attaching antibacterial nanocomposite onto bacterial cell surface through Urel-mediated protein channel. Simultaneously, membrane disrupting CDs generate ROS and lyse the bacterial outer membrane, allowing antibiotics to enter the intracellular cytoplasm. As a result, Cys-U-CS/PMLA@CDs nanocomposite (UCPM-NPs) loaded with the antibiotic amoxicillin (AMX) not only effectively target and kill bacteria in vitro via Urel-mediated adhesion but also efficiently retain in the stomach where H. pylori reside, serving as an effective drug carrier for abrupt on-site release of AMX into the bacterial cytoplasm. Furthermore, since thiolated-chitosan has a mucoadhesive property, UCPM-NPs may adhere to the stomach mucus layer and pass through it swiftly. According to our results, bacterial targeting is crucial for guaranteeing successful antibiotic treatment. The bacteria targeting UCPM-NPs with membrane disruptive ability may establish a promising drug delivery system for the effective targeted delivery of antibiotics to treat H. pylori infections.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Mohamed Sharaf
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China.,Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Samreen
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Quanjiang Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Lili Wang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Zhe Chi
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Chen-Guang Liu
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| |
Collapse
|
26
|
Sousa C, Ferreira R, Azevedo NF, Oleastro M, Azeredo J, Figueiredo C, Melo LDR. Helicobacter pylori infection: from standard to alternative treatment strategies. Crit Rev Microbiol 2021; 48:376-396. [PMID: 34569892 DOI: 10.1080/1040841x.2021.1975643] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is the major component of the gastric microbiome of infected individuals and one of the aetiological factors of chronic gastritis, peptic ulcer disease and gastric cancer. The increasing resistance to antibiotics worldwide has made the treatment of H. pylori infection a challenge. As a way to overhaul the efficacy of currently used H. pylori antibiotic-based eradication therapies, alternative treatment strategies are being devised. These include probiotics and prebiotics as adjuvants in H. pylori treatment, antimicrobial peptides as alternatives to antibiotics, photodynamic therapy ingestible devices, microparticles and nanoparticles applied as drug delivery systems, vaccines, natural products, and phage therapy. This review provides an updated synopsis of these emerging H. pylori control strategies and discusses the advantages, hurdles, and challenges associated with their development and implementation. An effective human vaccine would be a major achievement although, until now, projects regarding vaccine development have failed or were discontinued. Numerous natural products have demonstrated anti-H. pylori activity, mostly in vitro, but further clinical studies are needed to fully disclose their role in H. pylori eradication. Finally, phage therapy has the potential to emerge as a valid alternative, but major challenges remain, namely the isolation of more H. pylori strictly virulent bacterio(phages).
Collapse
Affiliation(s)
- Cláudia Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Rute Ferreira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F Azevedo
- Faculty of Engineering, LEPABE - Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, Department of Pathology, University of Porto, Porto, Portugal
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
27
|
Synthesis and characterization of amoxicillin-loaded polymeric nanocapsules as a drug delivery system targeting Helicobacter pylori. Arab J Gastroenterol 2021; 22:278-284. [PMID: 34509390 DOI: 10.1016/j.ajg.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/07/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND STUDY AIMS Helicobacter pylori (H. pylori) is well known as the main cause of gastritis, gastroduodenal ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Approximately 50% of the world's population is infected with H. pylori. In Egypt, a high prevalence of H. pylori infections has been reported in the general population. This study aimed to prepare amoxicillin-loaded poly (ɛ-caprolactone) nanocapsules to increase its gastric stability and therapeutic activity of the molecule against H. pylori. MATERIALS AND METHODS In this study, we used the water-oil-water double-emulsion technique to prepare spherical-shaped polymeric nanocapsules containing amoxicillin trihydrate as the core substance and biodegradable biocompatible poly (ɛ-caprolactone) as the shell material. RESULTS The encapsulation efficiency obtained was 97.2% ± 0.8%. The hydrodynamic diameter of the prepared nanocapsules was 287 ± 8 nm with a positive zeta potential. In vitro release studies indicated that the polymeric nanocapsules showed decreased release percentages at pH 1.2, simulating the gastric fluid while relatively increased release at pH 7.0 where the H. pylori reside. The in vitro antibacterial assay showed better efficiency for amoxicillin nanocapsules than for the uncapsulated free amoxicillin, no efficiency was detected for the PCL nanocapsules indicated that the antibacterial due to amoxicillin alone. Cytotoxicity studies demonstrated less cytotoxicity for the polymeric nanocapsules in comparison with amoxicillin. CONCLUSIONS In conclusion, we have demonstrated that biodegradable polymeric nanocapsules are useful drug delivery agents for increasing the gastric stability and therapeutic activity of amoxicillin trihydrate against H. pylori.
Collapse
|
28
|
Taghizadeh S, Falsafi T, Kermanshahi RK, Ramezani R. Antagonistic and Immunomodulant Effects of Two Probiotic Strains of Lactobacillus on Clinical Strains of Helicobacter pylori. Galen Med J 2021; 9:e1794. [PMID: 34466594 PMCID: PMC8343775 DOI: 10.31661/gmj.v9i0.1794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background:
The present study aimed to evaluate the in vitro and in situ antagonistic effects of Lactobacillus probiotic strains on clinical strains of Helicobacter pylori. Also to investigate their immunomodulation effects on a macrophage cell model.
Materials and Methods:
Anti-microbial effects of probiotic lactobacilli against H. pylori was assessed using the well and disk diffusion methods. Effects of lactobacilli probiotics strains, as well as their cell-free supernatant on adhesion of H. pylori to MKN-45 gastric epithelial cells, were examined in their presence and absence. Immunomodulation effects of probiotic lactobacilli were performed using the U937 macrophage cell model. Incubation of host cells with probiotics and their cell-free supernatants with cultured host cells was performed in different optimized conditions. The supernatant of host cells cultured in their presence and absence was used for cytokines measurement.
Results:
Two probiotics,Lactobacillus acidophilus ATCC4356, and Lactobacillus rhamnosus PTCC1607, could inhibit the growth of clinical H. pylori in vitro. They could also inhibit attachment of H. pylori to MKN-45 cells. Cell-free supernatant of L. acidophilus had a stimulating effect on the production of Interferon-gamma (IFN-γ) by U937 cells.
Conclusion:
The present study demonstrates that, L. acidophilus ATCC4356 and L. rhamnosus PTCC1607 probiotic strains can inhibit the growth of clinical H. pylori in vitro. Treatment of U937 with alive H. pylori plus cell-free supernatant of L. acidophilus, have a significantly higher capacity to stimulate IFN-γ production than H. pylori alone. So, the metabolite (s) of this probiotic may have an immunomodulatory effect in immune response versus H. pylori.
Collapse
Affiliation(s)
- Somayyeh Taghizadeh
- Microbiology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Tahereh Falsafi
- Microbiology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Correspondence to: Tahereh Falsafi, Microbiology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran Telephone Number: +989127095294 Email Address:
| | | | - Reihaneh Ramezani
- Department of Biomedical Sciences, Woman Research Center, Alzahra University, Tehran, Iran
| |
Collapse
|
29
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
30
|
Srivastava A, Verma A, Saraf S, Jain A, Tiwari A, Panda PK, Jain SK. Mucoadhesive gastroretentive microparticulate system for programmed delivery of famotidine and clarithromycin. J Microencapsul 2021; 38:151-163. [PMID: 33205689 DOI: 10.1080/02652048.2020.1851787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM The present research was aimed to develop thiolated polyacrylic acid (TPA) based microspheres (MSPs) containing famotidine (FX) and clarithromycin (CLX). METHODS TPA was synthesised from polyacrylic acid and l-cysteine in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC). The prepared TPA was characterised using FT-IR (Fourier transform-infra red), 1H-NMR (proton nuclear magnetic resonance) spectroscopy, P-XRD (powder X ray diffraction) method, and zeta potential. The analytical tools have supported the formation of TPA. The thiolated microspheres were prepared by emulsion solvent evaporation method using 0.75% w/v polymer concentration and stirring at 400 rpm for 8 hr. RESULTS The average particle size and zeta potential of optimised formulation was found to be 25.2 ± 1.87 μm and -26.68 mV, respectively. The entrapment efficiency of the optimised formulation was obtained 67.20% for FX and 70.20% for CLX. The developed microspheres were swelled only in 4 h from 0.5 to 0.9. The in vitro mucoadhesive study and in vitro drug release studies demonstrated that microspheres showed mucoadhesive property. In in vitro drug release studies, the release of FX and CLX were observed to be 58.68% and 60.48%, respectively from microspheres in 8 h. The thiolated microspheres showed higher adhesion time (7.0 ± 0.8 h) in comparison to the plain microspheres (2.6 ± 0.4 h). CONCLUSION The prepared TPA based mucoadhesive microspheres can be utilised as carriers for the treatment of peptic ulcer caused by Helicobacter pylori which will offer enhanced residence time for the rational drug combination in the gastric region.
Collapse
Affiliation(s)
- Aakanksha Srivastava
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Hari Singh Gour Central University, Sagar, India
| | - Amit Verma
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Hari Singh Gour Central University, Sagar, India
| | - Shivani Saraf
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Hari Singh Gour Central University, Sagar, India
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Hari Singh Gour Central University, Sagar, India.,Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Ankita Tiwari
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Hari Singh Gour Central University, Sagar, India
| | - Pritish K Panda
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Hari Singh Gour Central University, Sagar, India
| | - Sanjay Kumar Jain
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Hari Singh Gour Central University, Sagar, India
| |
Collapse
|
31
|
Shen Y, Zou Y, Chen X, Li P, Rao Y, Yang X, Sun Y, Hu H. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori. J Control Release 2020; 328:575-586. [PMID: 32946873 DOI: 10.1016/j.jconrel.2020.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
The prevalence of infections with Helicobacter pylori (H. pylori) has progressively increased worldwide, which demonstrated to be closely correlated to its biofilm formation. H. pylori biofilms protect the bacteria by significantly decreasing their sensitivity to antibiotics. Moreover, H. pylori colonizes on the gastrointestinal tract epithelium which is covered by mucus layer, acting as another barrier to prevent antibacterial agents from reaching the colonization sites. Herein, we prepared four types of versatile self-assembled nanodrugs (BD/RHL NDs) containing lipophilic alkyl berberine derivatives (BDs) and rhamnolipids (RHL) to overcome the dual obstructions of both mucus layer and biofilms. Molecular dynamics simulations estimated that the driving forces for self-assembly of BD/RHL NDs were electrostatic and hydrophobic interactions. BD/RHL NDs, characterized by appropriate size, negative charge and enhanced hydrophilicity, successfully penetrated through mucus layer without interacting with mucins. In in vitro experiments, BD/RHL NDs exhibited substantial ability to eradicate H. pylori biofilms by destroying their extracellular polymeric substances (EPS) and killing planktonic H. pylori. Furthermore, BD/RHL NDs inhibited the adherence of H. pylori on both biotic and abiotic surfaces, therefore cut off the critical step of the biofilm re-formation which was associated with the recrudescence of infections. In an H. pylori-infected mice model, C10-BD/RHL NDs group showed 40 folds less remnant H. pylori and greater mucosal protection compared with the conventional clinical triple therapy. In conclusion, BD/RHL NDs could penetrate through mucus layer and effectively eradicate H. pylori biofilms in vitro and in vivo, providing a novel strategy for clinical treatment of biofilm-related infections.
Collapse
Affiliation(s)
- Yuanna Shen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yiqing Zou
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Xiaonan Chen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Pengyu Li
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yiqin Rao
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Xuan Yang
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yingying Sun
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Haiyan Hu
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
32
|
Yang SJ, Huang CH, Yang JC, Wang CH, Shieh MJ. Residence Time-Extended Nanoparticles by Magnetic Field Improve the Eradication Efficiency of Helicobacter pylori. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54316-54327. [PMID: 33236884 DOI: 10.1021/acsami.0c13101] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Helicobacter pylori infection is one of the leading causes of several gastroduodenal diseases, such as gastritis, peptic ulcer, and gastric cancer. In fact, H. pylori eradication provides a preventive effect against the incidence of gastric cancer. Amoxicillin is a commonly used antibiotic for H. pylori eradication. However, due to its easy degradation by gastric acid, it is necessary to administer it in a large dosage and to combine it with other antibiotics. This complexity and the strong side effects of H. pylori eradication therapy often lead to treatment failure. In this study, the chitosan/poly (acrylic acid) particles co-loaded with superparamagnetic iron oxide nanoparticles and amoxicillin (SPIO/AMO@PAA/CHI) are used as drug nano-carriers for H. pylori eradication therapy. In vitro and in vivo results show that the designed SPIO/AMO@PAA/CHI nanoparticles are biocompatible and could retain the biofilm inhibition and the bactericidal effect of amoxicillin against H. pylori. Moreover, the mucoadhesive property of chitosan allows SPIO/AMO@PAA/CHI nanoparticles to adhere to the gastric mucus layer and rapidly pass through the mucus layer after exposure to a magnetic field. When PAA is added, it competes with amoxicillin for chitosan, so that amoxicillin is quickly and continuously released between the mucus layer and the gastric epithelium and directly acts on H. pylori. Consequently, the use of this nano-carrier can extend the drug residence time in the stomach, reducing the drug dose and treatment period of H. pylori eradication therapy.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Chung-Hao Wang
- Gene'e Tech Co. Ltd. 2F., No. 661, Bannan Road, Zhonghe District, New Taipei City 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
33
|
Sun X, Zhang S, Ren J, Udenigwe CC. Sialic acid-based strategies for the prevention and treatment of Helicobacter pylori infection: Emerging trends in food industry. Crit Rev Food Sci Nutr 2020; 62:1713-1724. [DOI: 10.1080/10408398.2020.1846157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaohong Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Songyuan Zhang
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Jian Ren
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Pinto RM, Lopes-de-Campos D, Martins MCL, Van Dijck P, Nunes C, Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol Rev 2020; 43:622-641. [PMID: 31420962 PMCID: PMC8038934 DOI: 10.1093/femsre/fuz021] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is considered by the World Health Organization as a high priority pathogen for which new therapies are needed. This is particularly important for biofilm implant-associated infections once the only available treatment option implies a surgical procedure combined with antibiotic therapy. Consequently, these infections represent an economic burden for Healthcare Systems. A new strategy has emerged to tackle this problem: for small bugs, small particles. Here, we describe how nanotechnology-based systems have been studied to treat S. aureus biofilms. Their features, drawbacks and potentialities to impact the treatment of these infections are highlighted. Furthermore, we also outline biofilm models and assays required for preclinical validation of those nanosystems to smooth the process of clinical translation.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
35
|
Zhang Q, Wu W, Zhang J, Xia X. Eradication of Helicobacter pylori: the power of nanosized formulations. Nanomedicine (Lond) 2020; 15:527-542. [PMID: 32028847 DOI: 10.2217/nnm-2019-0329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a pathogen that is considered to cause several gastric disorders such as chronic gastritis, peptic ulcer and even gastric carcinoma. The current therapeutic regimens mainly constitute of a combination of several antimicrobial agents and proton pump inhibitors. However, the prevalence of antibiotic resistance has been significantly lowering the cure rates over the years. Nanocarriers possess unique strengths in this regard owing to the fact that they can protect the drugs (such as antibiotics) from the harsh environment in the stomach, penetrate the mucosal barrier and deliver drugs to the desired site. In this review we summarized recent studies of different antibacterial agents orally delivered by nanosized carriers for the eradication of H. pylori.
Collapse
Affiliation(s)
- Qianyu Zhang
- Innovative Drug Research Center (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Wen Wu
- Innovative Drug Research Center (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Jinqiang Zhang
- Innovative Drug Research Center (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Xuefeng Xia
- Innovative Drug Research Center (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, PR China
| |
Collapse
|
36
|
Is tailored therapy based on antibiotic susceptibility effective ? a multicenter, open-label, randomized trial. Front Med 2020; 14:43-50. [PMID: 31907860 DOI: 10.1007/s11684-019-0706-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 01/06/2023]
Abstract
An effective eradication therapy of Helicobacter pylori (H. pylori) should be used for the first time. In this study, we assessed whether tailored therapy based on antibiotic susceptibility testing is more effective than traditional therapy. We also evaluated the factors that cause treatment failure in high-resistance areas. For this multicenter trial, we recruited 467 H. pylori-positive patients. The patients were randomly assigned to receive tailored triple therapy (TATT), tailored bismuth-containing quadruple therapy (TABQT), or traditional bismuth-containing quadruple therapy (TRBQT). For the TATT and TABQT groups, antibiotic selection proceeded via susceptibility testing using an agar-dilution test. The patients in the TRBQT group were given amoxicillin, clarithromycin, esomeprazole, and bismuth. Successful eradication was defined as a negative 13C-urea breath test at least eight weeks after the treatment ended. Susceptibility testing was conducted using an agar-dilution test. The eradication rate was examined via intention-to-treat (ITT) and per-protocol (PP) analyses. The clarithromycin, levofloxacin, and metronidazole resistance rates were 26.12%, 28.69%, and 96.79%, respectively. Resistance against amoxicillin and furazolidone was rare. The eradication rates for TATT, TRBQT, and TABQT were 67.32%, 63.69%, and 85.99% in the ITT analysis (P 0.001) and 74.64%, 68.49%, and 91.22% in the PP analysis (P 0.001), respectively. The efficacy of TABQT was affected by clarithromycin resistance, and bismuth exerted a direct influence on TATT failure. TABQT was the most efficacious regimen for use in high-resistance regions, especially among clarithromycin-susceptible patients.
Collapse
|
37
|
Safarov T, Kiran B, Bagirova M, Allahverdiyev AM, Abamor ES. An overview of nanotechnology-based treatment approaches against Helicobacter Pylori. Expert Rev Anti Infect Ther 2019; 17:829-840. [PMID: 31591930 DOI: 10.1080/14787210.2019.1677464] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tural Safarov
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Bukre Kiran
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Melahat Bagirova
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Adil M Allahverdiyev
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
38
|
Menchicchi B, Savvaidou E, Thöle C, Hensel A, Goycoolea FM. Low-Molecular-Weight Dextran Sulfate Nanocapsules Inhibit the Adhesion of Helicobacter pylori to Gastric Cells. ACS APPLIED BIO MATERIALS 2019; 2:4777-4789. [DOI: 10.1021/acsabm.9b00523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bianca Menchicchi
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- Department of Medicine 1, University of Erlangen-Nüremberg, D-91054 Erlangen, Germany
| | - Eleni Savvaidou
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Christian Thöle
- Institute for Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Correnstrasse 48, D-48149 Münster, Germany
| | - Andreas Hensel
- Institute for Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Correnstrasse 48, D-48149 Münster, Germany
| | - Francisco M. Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
39
|
Lopes-de-Campos D, Pinto RM, Lima SAC, Santos T, Sarmento B, Nunes C, Reis S. Delivering amoxicillin at the infection site - a rational design through lipid nanoparticles. Int J Nanomedicine 2019; 14:2781-2795. [PMID: 31114195 PMCID: PMC6488159 DOI: 10.2147/ijn.s193992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Amoxicillin is a commonly used antibiotic, although degraded by the acidic pH of the stomach. This is an important limitation for the treatment of Helicobacter pylori infections. The purpose of this work was to encapsulate amoxicillin in lipid nanoparticles, increasing the retention time at the site of infection (gastric mucosa), while protecting the drug from the harsh conditions of the stomach lumen. Materials and methods The nanoparticles were produced by the double emulsion technique and optimized by a three-level Box-Behnken design. Tween 80 and linolenic acid were used as potential therapeutic adjuvants and dioleoylphosphatidylethanolamine as a targeting agent to Helicobacter pylori. Nanoparticles were characterized regarding their physico-chemical features, their storage stability, and their usability for oral administration (assessment of in vitro release, in vitro cell viability, permeability, and interaction with mucins). Results The nanoparticles were stable for at least 6 months at 4°C. In vitro release studies revealed a high resistance to harsh conditions, including acidic pH and physiologic temperature. The nanoparticles have a low cytotoxicity effect in both fibroblasts and gastric cell lines, and they have the potential to be retained at the gastric mucosa. Conclusion Overall, the designed formulations present suitable physico-chemical features for being henceforward used by oral administration to treat Helicobacter pylori infections.
Collapse
Affiliation(s)
- Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal,
| | - Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal,
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal,
| | - Tiago Santos
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IINFACTS, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal,
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal,
| |
Collapse
|
40
|
Soisuwan S, Teeranachaideekul V, Wongrakpanich A, Langguth P, Junyaprasert VB. Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur J Pharm Biopharm 2019; 137:68-76. [DOI: 10.1016/j.ejpb.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 11/29/2022]
|
41
|
Kowalik M, Masternak J, Barszcz B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Curr Med Chem 2019; 26:729-759. [DOI: 10.2174/0929867324666171003113540] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
Background:Application of coordination chemistry in nanotechnology is a rapidly developing research field in medicine. Bismuth complexes have been widely used in biomedicine with satisfactory therapeutic effects, mostly in Helicobacter pylori eradication, but also as potential antimicrobial and anti-leishmanial agents. Additionally, in recent years, application of bismuth-based compounds as potent anticancer drugs has been studied extensively.Methods:Search for data connected with recent trends on bismuth compounds in cancer chemo- and radiotherapy was carried out using web-based literature searching tools such as ScienceDirect, Springer, Royal Society of Chemistry, American Chemical Society and Wiley. Pertinent literature is covered up to 2016.Results:In this review, based on 213 papers, we highlighted a number of current problems connected with: (i) characterization of bismuth complexes with selected thiosemicarbazone, hydrazone, and dithiocarbamate classes of ligands as potential chemotherapeutics. Literature results derived from 50 papers show that almost all bismuth compounds inhibit growth and proliferation of breast, colon, ovarian, lung, and other tumours; (ii) pioneering research on application of bismuth-based nanoparticles and nanodots for radiosensitization. Results show great promise for improvement in therapeutic efficacy of ionizing radiation in advanced radiotherapy (described in 36 papers); and (iii) research challenges in using bismuth radionuclides in targeted radioimmunotherapy, connected with choice of adequate radionuclide, targeting vector, proper bifunctional ligand and problems with 213Bi recoil daughters toxicity (derived from 92 papers).Conclusion:This review presents recent research trends on bismuth compounds in cancer chemo- and radiotherapy, suggesting directions for future research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
42
|
Soisuwan S, Teeranachaideekul V, Wongrakpanich A, Langguth P, Junyaprasert VB. In vitro performances and cellular uptake of clarithromycin nanocrystals produced by media milling technique. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Lopo I, Libânio D, Pita I, Dinis-Ribeiro M, Pimentel-Nunes P. Helicobacter pylori antibiotic resistance in Portugal: Systematic review and meta-analysis. Helicobacter 2018; 23:e12493. [PMID: 29911329 DOI: 10.1111/hel.12493] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Portugal presents both a high prevalence of Helicobacter pylori (Hp) infection and a high prevalence of antibiotic resistance. However, conclusive data on its magnitude are lacking. We aimed at summarizing the existing data. MATERIALS AND METHODS A systematic review was conducted after searching in two databases (PubMed and SciELO). Meta-analysis was performed, and comparison of resistance rates between children and adults and by type of resistance (primary and secondary) was made. RESULTS Eight cross-sectional studies assessing Hp resistance to antibiotics were included. Overall resistance rates were as follows: clarithromycin (CLA) 42% (95% CI: 30-54), metronidazole (MTZ) 25% (95% CI: 15-38), ciprofloxacin (CIP) 9% (95% CI: 3-18), levofloxacin (LVX) 18% (95% CI: 2-42), tetracycline (TTC) 0.2% (95% CI: 0-1), and amoxicillin (AMX) 0.1% (95% CI: 0-0.2). Multidrug resistance was also an important problem, with the following global resistance rates: CLA plus MTZ of 10% (adults 20% (95% CI: 15-26) vs children 6% (95% CI: 4-9)) and CLA plus CIP of 2% (primary resistance in children's group). High secondary resistance rates were found for all antibiotics. Resistance was higher among adults for all antibiotics, except CLA that had high resistance levels both among adults and children (42% 95% CI: 14-71 and 40% 95% CI: 33-47). CONCLUSIONS Hp resistance to the most widely used antibiotics is high in Portugal. Accordingly, our results suggest that the best therapeutic strategy for Hp in Portugal may be quadruple therapy with bismuth for adults and triple therapy including AMX plus MTZ or bismuth-based therapy for children.
Collapse
Affiliation(s)
- Inês Lopo
- Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diogo Libânio
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Pita
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Pimentel-Nunes
- Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
| |
Collapse
|
44
|
Rech TF, Mazzoleni LE, Mazzoleni F, Francesconi CFDM, Sander GB, Michita RT, Nabinger DD, Milbradt TC, Torresini RJS, Simon D. Helicobacter pylori eradication: influence of interleukin-1beta -31 C/T polymorphism. Braz J Infect Dis 2018; 22:311-316. [PMID: 30048609 PMCID: PMC9428014 DOI: 10.1016/j.bjid.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Aim To analyze the influence of the –31 C/T polymorphism of the interleukin-1β gene on Helicobacter pylori eradication therapy success in patients with functional dyspepsia. Methods Functional dyspepsia was diagnosed according to the Rome III criteria. All patients underwent upper gastrointestinal endoscopy, and gastric biopsies were obtained at screening and 12 months after randomization (last follow-up visit). Urease test and histological examination were performed to define the H. pylori status. Patients received twice-daily amoxicillin, clarithromycin and omeprazole for 10 days. Genotyping of the interleukin-1beta –31 C/T polymorphism (rs1143627) was performed using polymerase chain reaction-restriction fragment length polymorphism. Results One hundred forty-nine patients received treatment with triple therapy for H. pylori eradication. Only one patient was lost to follow-up, and adherence to study medication was 94.6%. A total of 148 patients (mean age 46.08 ± 12.24 years; 81.8% women) were evaluated for the influence of the interleukin-1beta –31 C/T polymorphism on the outcome of H. pylori eradication therapy. After treatment, bacteria were eradicated in 87% of patients (129/148). Genotype frequencies of the polymorphism were as follows: CC, 38/148 (25.7%); CT, 71/148 (47.9%); and TT, 39/148 (26.4%). Successful eradication rate was 78.9%, 94.4% and 82.1% for the CC, CT and TT genotypes, respectively. The CT genotype was significantly associated with successful H. pylori eradication (p = 0.039). Conclusion This study suggests that the CT genotype of the interleukin-1beta –31 C/T polymorphism plays a role in the successful eradication of H. pylori among patients with functional dyspepsia.
Collapse
Affiliation(s)
- Tássia Flores Rech
- Universidade Luterana do Brasil, Laboratório de Genética Molecular Humana, Canoas, RS, Brazil
| | - Luiz Edmundo Mazzoleni
- Hospital de Clínicas de Porto Alegre, Serviço de Gastroenterologia, Porto Alegre, RS, Brazil
| | - Felipe Mazzoleni
- Hospital de Clínicas de Porto Alegre, Serviço de Gastroenterologia, Porto Alegre, RS, Brazil
| | | | - Guilherme Becker Sander
- Hospital de Clínicas de Porto Alegre, Serviço de Gastroenterologia, Porto Alegre, RS, Brazil
| | - Rafael Tomoya Michita
- Universidade Luterana do Brasil, Laboratório de Genética Molecular Humana, Canoas, RS, Brazil
| | - Débora Dreher Nabinger
- Universidade Luterana do Brasil, Laboratório de Genética Molecular Humana, Canoas, RS, Brazil
| | - Tobias Cancian Milbradt
- Hospital de Clínicas de Porto Alegre, Serviço de Gastroenterologia, Porto Alegre, RS, Brazil
| | | | - Daniel Simon
- Universidade Luterana do Brasil, Laboratório de Genética Molecular Humana, Canoas, RS, Brazil.
| |
Collapse
|
45
|
Seabra CL, Nunes C, Brás M, Gomez-Lazaro M, Reis CA, Gonçalves IC, Reis S, Martins MCL. Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. Eur J Pharm Biopharm 2018. [DOI: 10.1016/j.ejpb.2018.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Metronidazole within phosphatidylcholine lipid membranes: New insights to improve the design of imidazole derivatives. Eur J Pharm Biopharm 2018; 129:204-214. [PMID: 29859282 DOI: 10.1016/j.ejpb.2018.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Metronidazole is a imidazole derivative with antibacterial and antiprotozoal activity. Despite its therapeutic efficacy, several studies have been developing new imidazole derivatives with lower toxicity. Considering that drug-membrane interactions are key factors for drugs pharmacokinetic and pharmacodynamic properties, the aim of this work is to provide new insights into the structure-toxicity relationship of metronidazole within phosphatidylcholine membranes. For that purpose, lipid membrane models (liposomes and monolayers) composed of dipalmitoylphosphatidylcholine were used. Experimental techniques (determination of partition coefficients and Langmuir isotherm measurements) were combined with molecular dynamics simulations. Different pHs and lipid phases were evaluated to enable a better extrapolation for in vivo conditions. The partition of metronidazole depends on the pH and on the biphasic system (octanol/water or DPPC/water system). At pH 1.2, metronidazole is hydrophilic. At pH 7.4, metronidazole disturbs the order and the packing of phospholipids. For this toxic effect, the hydroxyl group of the side chain of metronidazole is crucial by interacting with the water embedded in the membrane and with the phosphate group and the apolar chains of phospholipids.
Collapse
|
47
|
Chung JW, Kim SY, Park HJ, Chung CS, Lee HW, Lee SM, Kim I, Pak JH, Lee GH, Jeong JY. In Vitro Activity of Diphenyleneiodonium toward Multidrug-Resistant Helicobacter pylori Strains. Gut Liver 2018; 11:648-654. [PMID: 28750485 PMCID: PMC5593327 DOI: 10.5009/gnl16503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
Background/Aims The increased resistance of Helicobacter pylori to antibiotics has increased the need to develop new treatments for this bacterium. The aim of our study was to identify new drugs with anti-H. pylori activity. Methods We screened a small molecule library—the library of pharmacologically active compounds (LOPAC), which includes 1,280 pharmacologically active compounds—to identify inhibitors of H. pylori growth. The minimal inhibitory concentrations (MICs) of antibiotics against multidrug-resistant H. pylori strains were determined using the agar dilution method. Results We identified diphenyleneiodonium (DPI) as a novel anti-H. pylori agent. The MIC values for DPI were <0.03 μg/mL against all tested H. pylori strains. DPI also exhibited strong antibacterial activity against common gram-negative and gram-positive pathogenic bacteria. Conclusions DPI may be a candidate anti-H. pylori drug for future development.
Collapse
Affiliation(s)
- Jun-Won Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Su Young Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Hee Jung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Su Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Hee Woo Lee
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Sun Mi Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inki Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gin Hyug Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Yong Jeong
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Secretion expression of human neutrophil peptide 1 (HNP1) in Pichia pastoris and its functional analysis against antibiotic-resistant Helicobacter pylori. Appl Microbiol Biotechnol 2018; 102:4817-4827. [DOI: 10.1007/s00253-018-8982-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022]
|
49
|
Jing ZW, Luo M, Jia YY, Li C, Zhou SY, Mei QB, Zhang BL. Anti-Helicobacterpylori effectiveness and targeted delivery performance of amoxicillin-UCCs-2/TPP nanoparticles based on ureido-modified chitosan derivative. Int J Biol Macromol 2018; 115:367-374. [PMID: 29660462 DOI: 10.1016/j.ijbiomac.2018.04.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
The amoxicillin-UCCs-2/TPP nanoparticles constructed with ureido-modified chitosan derivative UCCs-2 and sodium tripolyphosphate (TPP) played an important role to deliver drug to achieve more efficacious and specific eradication of Helicobacterpylori (H. pylori) in vitro. In this study, the anti-H. pylori effectiveness in vivo and uptake mechanism was investigated in details, including the effect of temperature, pH values and the addition of competitive substrate urea on uptake. Compared with unmodified nanoparticles, a more efficacious and specific anti-H. pylori activities were obtained in vivo by using this biological chitosan derivative UCCs-2. Histological staining and immunological analysis verified that the amoxicillin-UCCs-2/TPP nanoparticles could diminish the proinflammatory cytokines levels and alleviate the inflammatory damages caused by H. pylori infection. The uredio-modified nanoparticles also have favorable gastric retention property, which is beneficial for the oral drug delivery to targeted eradicate H. pylori infection in stomach. These findings suggest that this targeted drug delivery system may serve for specific treatment of H. pylori infection both in vitro and in vivo, which can also be used as promising nanocarriers for other therapeutic reagents to target H. pylori.
Collapse
Affiliation(s)
- Zi-Wei Jing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Min Luo
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yi-Yang Jia
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Chen Li
- Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
50
|
Moss DM, Curley P, Kinvig H, Hoskins C, Owen A. The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Rev Gastroenterol Hepatol 2018; 12:223-236. [PMID: 29088978 DOI: 10.1080/17474124.2018.1399794] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nano-scale formulations are being developed to improve the delivery of orally administered medicines, and the interactions between nanoformulations and the gastrointestinal luminal, mucosal and epithelial environment is currently being investigated. The mucosal surface of the gastrointestinal tract is capable of trapping and eliminating large particles and pathogens as part of the natural defences of the body, it is becoming clearer that nanoformulation properties such as particle size, charge, and shape, as well as mucous properties such as viscoelasticity, thickness, density, and turn-over time are all relevant to these interactions. However, progress has been slow to utilise this information to produce effective mucous-penetrating particles. Areas covered: This review focuses on delivery method of nanomedicines both into and across the gastrointestinal mucosal surface, and aims to summarise the biological barriers that exist to successful oral nanomedicine delivery and how these barriers may be investigated and overcome. Expert commentary: Despite successes in the laboratory, no nanotechnology-enabled products are currently in clinical use which either specifically target the intestinal mucous surface or cross the epithelial barrier intact. New nanomedicine-based treatments of local diseases (intestinal cancer, inflammation, infection) and systemic diseases are advancing towards clinical use, and offer genuine opportunities to improve therapy.
Collapse
Affiliation(s)
- Darren Michael Moss
- a School of Pharmacy, Faculty of Medicine and Health Sciences , Keele University , Keele , UK
| | - Paul Curley
- b Molecular and Clinical Pharmacology, Institute of Translational Medicine , University of Liverpool , Liverpool , UK
| | - Hannah Kinvig
- b Molecular and Clinical Pharmacology, Institute of Translational Medicine , University of Liverpool , Liverpool , UK
| | - Clare Hoskins
- a School of Pharmacy, Faculty of Medicine and Health Sciences , Keele University , Keele , UK
| | - Andrew Owen
- b Molecular and Clinical Pharmacology, Institute of Translational Medicine , University of Liverpool , Liverpool , UK
| |
Collapse
|