1
|
Kanp T, Dhuri A, Aalhate M, Mahajan S, Munagalasetty S, Kumar Sah S, Kaity S, Sharma B, Bhandari V, Kumar Singh P. Manifesting the Dasatinib-gallic acid co-amorphous system to augment anticancer potential: Physicochemical characterization, in silico molecular simulation, ex vivo permeability, and in vitro efficacy. Int J Pharm 2024; 665:124672. [PMID: 39245084 DOI: 10.1016/j.ijpharm.2024.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Dasatinib (DAB) has been explored for repurposing in the treatment of breast cancer (BC) due to its known effectiveness in treating leukemia, in addition to its role as a tyrosine kinase inhibitor. Gallic acid (GA) was chosen as a co-former due to its anticancer potential in BC, as demonstrated in several previous studies. DAB is a low-solubility drug, which is a significant hurdle for its oral bioavailability. To address this limitation, a DAB and GA co-amorphous (DAB-GA-CA) system was developed using liquid-assisted grinding and ball mill technology to enhance solubility, bioavailability, and anti-tumor efficacy. Physical characterization investigation revealed that the emergence of the halo diffractogram in PXRD, single glass transition temperature (Tg) value at 111.7 °C in DSC thermogram, and irregularly shaped blocks with loose, porous surfaces in SEM analysis indicated the formation of the DAB-GA-CA system at 1:1 M ratio. Furthermore, FTIR, Raman spectroscopy, in-silico molecular docking, and molecular dynamic studies confirmed the intermolecular hydrogen connections between DAB and GA. Moreover, the outcomes of the ligands (DAB and GA) and receptors (BCL-2, mTOR, estrogen receptor, and HER-2) docking studies demonstrated that both DAB and GA could interact with those receptors, leading to preventive action on BC cells. Additionally, the solubility and dissolution rate significantly improved at pH 6.8, and the permeability study indicated that DAB-GA-CA showed 1.9 times higher apparent permeability compared to crystalline DAB. Furthermore, in vitro cytotoxicity assessments of the DAB-GA-CA system revealed 3.42 times lower IC50 than free DAB. The mitochondrial membrane depolarization, apoptotic index, and reactive oxygen species formation in MCF-7 cells were also notably higher in the DAB-GA-CA system than in free DAB. Hence, this research suggests that the DAB-GA-CA system could substantially enhance oral delivery, solubility, and therapeutic efficacy.
Collapse
Affiliation(s)
- Tanmoy Kanp
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sharon Munagalasetty
- Department of Pharmacoinformatic, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sunil Kumar Sah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatic, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
2
|
Morgan NR, Ramdas P, Bhuvanendran S, Radhakrishnan AK. Delineating the Immunotherapeutic Potential of Vitamin E and Its Analogues in Cancer: A Comprehensive Narrative Review. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5512422. [PMID: 39416707 PMCID: PMC11480965 DOI: 10.1155/2024/5512422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
Cancer is a disease resulting from uncontrolled cell division, which significantly contributes to human mortality rates. An alternative approach to cancer treatment, such as cancer immunotherapy, is needed as the existing chemotherapy and radiotherapy approaches target the cancer cells and healthy dividing cells. Vitamin E is a plant-derived lipid-soluble antioxidant with numerous health-promoting benefits, including anticancer and immunomodulatory properties. Vitamin E comprises eight natural isoforms: tocopherols (α, β, δ, and γ) and tocotrienols (α, β, δ, and γ). While initial research focused on the anticancer properties of α-tocopherol, there is growing interest in other natural forms and modified synthetic analogues of vitamin E due to their unique properties and enhanced anticancer effects. Hence, this review is aimed at outlining the effect of vitamin E and its analogues at various steps of the cancer-immunity cycle that can be used to stimulate anticancer immune responses.
Collapse
Affiliation(s)
- Nevvin Raaj Morgan
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Ammu Kutty Radhakrishnan
- Food as Medicine Research StrengthJeffrey Cheah School of Medicine and Health SciencesMonash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Yadav PK, Verma S, Chauhan D, Yadav P, Tiwari AK, Saklani R, Gupta D, Rana R, Shah AA, Verma S, Naresh K, Gayen JR, Chourasia MK. Simultaneous estimation of paclitaxel and bortezomib via LC-MS/MS: pharmaceutical and pharmacokinetic applications. Nanomedicine (Lond) 2024; 19:1995-2010. [PMID: 39115873 PMCID: PMC11485926 DOI: 10.1080/17435889.2024.2382668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 10/09/2024] Open
Abstract
Aim & Objective: This study evaluates the potential of combining paclitaxel (PTX) and bortezomib (BTZ) for breast cancer therapy.Materials & Methods: The nanoformulation was optimized via Box-Behnken Design (BBD), with method validation adhering to US-FDA guidelines.Results: Multiple reaction monitoring transitions for PTX, BTZ and internal standard were m/z 855.80→286.60, 366.80→226.00 and 179.80→110.00, respectively. Elution done on C18 Luna column with 0.1% FA in MeOH:10 mM ammonium acetate. The size of nanoformulation was 133.9 ± 1.97 nm, PDI 0.19 ± 0.01 and zeta potential -19.20 ± 1.36 mV. Pharmacokinetics showed higher Cmax for PTX-BTZ-NE (313.75 ± 10.71 ng/ml PTX, 11.92 ± 0.53 ng/ml BTZ) versus free PTX-BTZ (104 ± 13.06 ng/ml PTX, 1.9 ± 0.08 ng/ml BTZ).Conclusion: Future findings will contribute to the treatment of breast cancer using PTX and BTZ.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Saklani
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Deepak Gupta
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Rafquat Rana
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Aarti Abhishek Shah
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Sonia Verma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Kothuri Naresh
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Saklani R, Yadav PK, Tiwari AK, Gawali SL, Hassan PA, Yadav K, Mugale MN, Kalleti N, Rath SK, Mishra DP, Dierking I, Chourasia MK. Synchronized Codelivery of Combination Chemotherapies Intratumorally Using a Lipidic Lyotropic Liquid Crystal System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29098-29111. [PMID: 38780083 DOI: 10.1021/acsami.4c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this work, an injectable in situ depot-forming lipidic lyotropic liquid crystal (L3C) system is developed to codeliver a precisely synchronized combination of chemotherapeutics intratumorally. The developed L3C system is composed of amphiphilic lipids and surfactants, including monoolein, phosphatidylcholine, tocopherol acetate, and d-α-tocopherol polyethylene glycol 1000 succinate. Owing to its amphiphilic nature, the developed formulation can coaccommodate both hydrophobic and hydrophilic chemotherapeutic moieties simultaneously. The study presents a proof of concept by designing a combination chemotherapy regimen in vitro and demonstrating its in vivo translation using doxorubicin and paclitaxel as model hydrophilic and hydrophobic drug moieties, respectively. The synchronized combination of the two chemotherapeutics with maximum synergistic activity was identified, coloaded in the developed L3C system at predefined stoichiometric ratios, and evaluated for antitumor efficacy in the 4T1 breast tumor model in BALB/c mice. The drug-loaded L3C formulation is a low-viscosity injectable fluid with a lamellar phase that transforms into a hexagonal mesophase depot system upon intratumoral injection. The drug-loaded depot system locally provides sustained intratumoral delivery of the chemotherapeutics combination at their precisely synchronized ratio for over a period of one month. Results demonstrate that the exposure of the tumor to the precisely synchronized intratumoral chemotherapeutics combination via the developed L3C system resulted in significantly higher antitumor activity and reduced cardiotoxicity compared to the unsynchronized combination chemotherapy or the synchronized but uncoordinated drug delivery administered by a conventional intravenous route. These findings demonstrate the potential of the developed L3C system for achieving synchronized codelivery of the chemotherapeutics combination intratumorally and improving the efficacy of combination chemotherapy.
Collapse
Affiliation(s)
- Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh L Gawali
- Nanotherapeutics and Biosensors Section, Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Puthusserickal A Hassan
- Nanotherapeutics and Biosensors Section, Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Karan Yadav
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031 India
| | - Madhav N Mugale
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031 India
| | - Navodayam Kalleti
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031 India
| | - Srikanta K Rath
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031 India
| | - Durga P Mishra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ingo Dierking
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Chauhan D, Maity D, Yadav PK, Vishwakarma S, Agarwal A, Chourasia MK, Gayen JR. Enhanced oral bioavailability of levormeloxifene and raloxifene by nanoemulsion: simultaneous bioanalysis using liquid chromatography-tandem mass spectrometry. Nanomedicine (Lond) 2024; 19:1051-1068. [PMID: 38639565 PMCID: PMC11225398 DOI: 10.2217/nnm-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Aim & objective: Levormeloxifene (L-ORM) and raloxifene (RAL) are selective estrogen receptor modulators used in the treatment of postmenopausal osteoporosis and breast cancer. Here, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous estimation of both drugs. Materials & methods: A quality-by-design (QbD) approach was used for the optimization of the nanoemulsion, and US FDA guidelines were followed for method validation. Results: Multiple reaction monitoring transitions were used for L-ORM (459.05→98.50), RAL (475.00→112.02) and internal standard (180.10→110.2). Analytes were resolved in a C18 column with 80:20 v/v% acetonitrile (ACN), 0.1% formic acid in triple-distilled water as a mobile phase. The developed method was linear over a concentration range of 1-600 ng/ml. Pharmacokinetic results of free L-ORM-RAL and the L-ORM-RAL nanoemulsion showed Cmax of free L-ORM - 70.65 ± 16.64, free RAL 13.53 ± 2.72, L-ORM nanoemulsion 65.07 ± 14.0 and RAL-nanoemulsion 59.27 ± 17.44 ng/ml. Conclusion: Future findings will contribute to the treatment of postmenopausal osteoporosis and breast cancer using L-ORM and RAL.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debalina Maity
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sachin Vishwakarma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Mehandole A, Mahajan S, Aalhate M, Kumar R, Maji I, Gupta U, Kumar Guru S, Kumar Singh P. Dasatinib loaded mucoadhesive lecithin-chitosan hybrid nanoparticles for its augmented oral delivery, in-vitro efficacy and safety. Int J Pharm 2024; 651:123784. [PMID: 38185340 DOI: 10.1016/j.ijpharm.2024.123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Dasatinib (DAS) is an oral tyrosine kinase inhibitor; however, its efficacy is significantly subsided by its low oral bioavailability. The present research aimed to improve DAS's oral delivery and efficacy in triple-negative breast cancer by fabricating its mucoadhesive lecithin-chitosan hybrid nanoparticles (DAS-L/CS-NPs). DAS-L/CS-NPs were optimized using Box-Behnken design which showed mean particle size and percent entrapment efficiency of 179.7 ± 5.42 nm and 64.65 ± 0.06 %, respectively. DAS-L/CS-NPs demonstrated sustained release profile in different release media up to 48 h and showed 10 times higher apparent permeability coefficient and flux than free DAS suspension. The binding of DAS-L/CS-NPs to the mucus layer was demonstrated via ex-vivo mucoadhesion study and change in absorbance using turbidimetry. In cell culture studies, DAS-L/CS-NPs revealed a 4.14-fold decrease in IC50, significantly higher cellular uptake and mitochondrial membrane depolarization, 3.82-fold increased reactive oxygen species generation and 2.10-fold enhanced apoptosis in MDA-MB-231 cells than free DAS. In in-vivo pharmacokinetic assessment, DAS-L/CS-NPs showed a 5.08-fold and 3.74-fold rise in AUC (0-t) and Cmax than free DAS suspension, respectively. An acute toxicity study revealed a good safety profile of DAS-L/CS-NPs. In a nutshell, proposed hybrid nanoparticles are promising carriers for improved oral delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
8
|
Kumar V, Garg V, Saini N, Aggarwal N, Kumar H, Kumar D, Chopra H, Kamal MA, Dureja H. An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery. Curr Pharm Biotechnol 2024; 25:2218-2252. [PMID: 38415490 DOI: 10.2174/0113892010267771240211124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Nakul Saini
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
9
|
Saren BN, Mahajan S, Aalhate M, Kumar R, Chatterjee E, Maji I, Gupta U, Guru SK, Singh PK. Fucoidan-mediated targeted delivery of dasatinib-loaded nanoparticles amplifies apoptosis and endows cytotoxic potential in triple-negative breast cancer. Colloids Surf B Biointerfaces 2024; 233:113631. [PMID: 37979483 DOI: 10.1016/j.colsurfb.2023.113631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
Dasatinib (DST) is a tyrosine kinase inhibitor with established antiproliferative activity in Triple-negative breast cancer. Conventional treatment strategies with DST have several pitfalls related to the development of resistance, lower cellular uptake and unwanted adverse effects. To address these issues, we have prepared P-selectin-targeted nanoparticles of DST with fucoidan (FUC) as a ligand. Poly lactide-co-glycolide nanoparticles of DST were coated with chitosan (CH) and FUC via electrostatic interaction (DST-CH-FUC-NPs). The mean particle size of 210.36 ± 0.66 nm and a polydispersity index of 0.234 ± 0.013 was observed for DST-CH-FUC-NPs. TEM and FTIR analysis proved CH coating followed by an FUC layer on nanoparticles. DST-CH-FUC-NPs showed a sustained release profile up to 120 h and 2.9 times less hemolytic potential than free DST suspension. DST-CH-FUC-NPs demonstrated 8-fold higher cytotoxicity compared to free DST in MDA-MB-231 cells. Rhodamine-CH-FUC- NPs showed 19 times and 3 times higher cellular uptake than free Rhodamine and Rhodamine-CH-NPs, respectively. DST-CH-FUC-NPs also displayed increased ROS production and mitochondrial membrane potential damage. Apoptosis study revealed a 7.5-fold higher apoptosis index for DST-CH-FUC-NPs than free DST. Subsequently, the DST-CH-FUC-NPs showed increased inhibition of cell migration, where approximately 5 % wound closure was noted. Further, DST-CH-FUC-NPs confirmed higher disruption of lysosomal membrane integrity, which is well correlated with apoptosis results. In addition, developed NPs were nontoxic on MCF 10 A normal cells. All these findings suggest that fabricated DST-CH-FUC-NPs are promising biocompatible carriers for tumor-targeted delivery and enhanced efficacy of dasatinib.
Collapse
Affiliation(s)
- Brojendra Nath Saren
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Essha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
10
|
Preeti, Sambhakar S, Malik R, Bhatia S, Al Harrasi A, Rani C, Saharan R, Kumar S, Geeta, Sehrawat R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. SCIENTIFICA 2023; 2023:6640103. [PMID: 37928749 PMCID: PMC10625491 DOI: 10.1155/2023/6640103] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
The pharmaceutical sector has made considerable strides recently, emphasizing improving drug delivery methods to increase the bioavailability of various drugs. When used as a medication delivery method, nanoemulsions have multiple benefits. Their small droplet size, which is generally between 20 and 200 nanometers, creates a significant interfacial area for drug dissolution, improving the solubility and bioavailability of drugs that are weakly water-soluble. Additionally, nanoemulsions are a flexible platform for drug administration across various therapeutic areas since they can encapsulate hydrophilic and hydrophobic medicines. Nanoemulsion can be formulated in multiple dosage forms, for example, gels, creams, foams, aerosols, and sprays by using low-cost standard operative processes and also be taken orally, topically, topically, intravenously, intrapulmonary, intranasally, and intraocularly. The article explores nanoemulsion formulation and production methods, emphasizing the role of surfactants and cosurfactants in creating stable formulations. In order to customize nanoemulsions to particular medication delivery requirements, the choice of components and production techniques is crucial in assuring the stability and efficacy of the finished product. Nanoemulsions are a cutting-edge technology with a lot of potential for improving medication bioavailability in a variety of therapeutic contexts. They are a useful tool in the creation of innovative pharmaceutical formulations due to their capacity to enhance drug solubility, stability, and delivery. Nanoemulsions are positioned to play a crucial role in boosting medication delivery and enhancing patient outcomes as this field of study continues to advance.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Ahmed Al Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Oman
| | - Chanchal Rani
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Renu Saharan
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Maharishi Markandeswar Deemed to be University, Mullana, Ambala, Haryana 133203, India
| | - Suresh Kumar
- Ganpati Institute of Pharmacy, Yamunanagar, Haryana 135102, India
| | - Geeta
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Renu Sehrawat
- School of Medical & Allied Sciences, K R Mangalam University, Gurugram, Haryana 122103, India
| |
Collapse
|
11
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
12
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Chauhan D, Yadav P, Rana R, Kalleti N, Gayen JR, Wahajuddin, Rath SK, Mugale MN, Mitra K, Chourasia MK. Ratiometric codelivery of Paclitaxel and Baicalein loaded nanoemulsion for enhancement of breast cancer treatment. Int J Pharm 2023; 643:123209. [PMID: 37422142 DOI: 10.1016/j.ijpharm.2023.123209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
The most prevalent clinical option for treating cancer is combination chemotherapy. In combination therapy, assessment and optimization for obtaining a synergistic ratio could be obtained by various preclinical setups. Currently, in vitro optimization is used to get synergistic cytotoxicity while constructing combinations. Herein, we co-encapsulated Paclitaxel (PTX) and Baicalein (BCLN) with TPP-TPGS1000 containing nanoemulsion (TPP-TPGS1000-PTX-BCLN-NE) for breast cancer treatment. The assessment of cytotoxicity of PTX and BCLN at different molar weight ratios provided an optimized synergistic ratio (1:5). Quality by Design (QbD) approach was later applied for the optimization as well as characterization of nanoformulation for its droplet size, zeta potential and drug content. TPP-TPGS1000-PTX-BCLN-NE significantly enhanced cellular ROS, cell cycle arrest, and depolarization of mitochondrial membrane potential in the 4T1 breast cancer cell line compared to other treatments. In the syngeneic 4T1 BALB/c tumor model, TPP-TPGS1000-PTX-BCLN-NE outperformed other nanoformulation treatments. The pharmacokinetic, biodistribution and live imaging studies pivoted TPP-TPGS1000-PTX-BCLN-NE enhanced bioavailability and PTX accumulation at tumor site. Later, histology studies confirmed nanoemulsion non-toxicity, expressing new opportunities and potential to treat breast cancer. These results suggested that current nanoformulation can be a potential therapeutic approach to effectively address breast cancer therapy.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Navodayam Kalleti
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Srikanta K Rath
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Madhav N Mugale
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
13
|
Fan S, Han H, Yan Z, Lu Y, He B, Zhang Q. Lipid-based nanoparticles for cancer immunotherapy. MEDICAL REVIEW (2021) 2023; 3:230-269. [PMID: 37789955 PMCID: PMC10542882 DOI: 10.1515/mr-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
As the fourth most important cancer management strategy except surgery, chemotherapy and radiotherapy, cancer immunotherapy has been confirmed to elicit durable antitumor effects in the clinic by leveraging the patient's own immune system to eradicate the cancer cells. However, the limited population of patients who benefit from the current immunotherapies and the immune related adverse events hinder its development. The immunosuppressive microenvironment is the main cause of the failure, which leads to cancer immune evasion and immunity cycle blockade. Encouragingly, nanotechnology has been engineered to enhance the efficacy and reduce off-target toxicity of their therapeutic cargos by spatiotemporally controlling the biodistribution and release kinetics. Among them, lipid-based nanoparticles are the first nanomedicines to make clinical translation, which are now established platforms for diverse areas. In this perspective, we discuss the available lipid-based nanoparticles in research and market here, then describe their application in cancer immunotherapy, with special emphasis on the T cells-activated and macrophages-targeted delivery system. Through perpetuating each step of cancer immunity cycle, lipid-based nanoparticles can reduce immunosuppression and promote drug delivery to trigger robust antitumor response.
Collapse
Affiliation(s)
- Shumin Fan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhicheng Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yao Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
14
|
Yadav PK, Saklani R, Tiwari AK, Verma S, Rana R, Chauhan D, Yadav P, Mishra K, Kedar AS, Kalleti N, Gayen JR, Wahajuddin M, Rath SK, Mugale MN, Mitra K, Sharma D, Chourasia MK. Enhanced apoptosis and mitochondrial cell death by paclitaxel-loaded TPP-TPGS 1000-functionalized nanoemulsion. Nanomedicine (Lond) 2023; 18:343-366. [PMID: 37140535 DOI: 10.2217/nnm-2022-0268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Saklani
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rafquat Rana
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Mishra
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Ashwini S Kedar
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Navodayam Kalleti
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Muhammad Wahajuddin
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Srikanta K Rath
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Madhav N Mugale
- Division of Toxicology & Experiment Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Kalyan Mitra
- Electron Microscopy Division, Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Deepak Sharma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
15
|
de Oliveira VA, Monteiro Fernandes ANR, Dos Santos Leal LM, Ferreira Lima PA, Silva Pereira AR, Pereira IC, Negreiros HA, Pereira-Freire JA, da Silva FCC, de Carvalho Melo Cavalcante AA, Torres-Leal FL, Azevedo AP, de Castro E Sousa JM. α-tocopherol as a selective modulator of toxicogenic damage induced by antineoplastic agents cyclophosphamide and doxorubicin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:87-102. [PMID: 36756732 DOI: 10.1080/15287394.2023.2168224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aim of this study was to determine the oxidative/antioxidative effects, modulatory and selective potential of α-tocopherol (vitamin E) on antineoplastic drug-induced toxicogenetic damage. The toxicity, cytotoxicity and genotoxicity induced by antineoplastic agents cyclophosphamide (CPA) and doxorubicin (DOX) was examined utilizing as models Saccharomyces cerevisiae, Allium cepa, Artemia salina and human peripheral blood mononuclear cells (PBMCs) in the presence of α-tocopherol. For these tests, concentrations of α- tocopherol 100 IU/ml (67mg/ml), CPA 20 µg/ml, DOX 2 µg/ml were used. The selectivity of α-tocopherol was assessed by the MTT test using human mammary gland non-tumor (MCF10A) and tumor (MCF-7) cell lines. Data showed cytoplasmic and mitochondrial oxidative damage induced by CPA or DOX was significantly diminished by α-tocopherol in S. cerevisiae. In addition, the toxic effects on A. salina and cytotoxic and mutagenic effects on A. cepa were significantly reduced by α-tocopherol. In PBMCs, α-tocopherol alone did not markedly affect these cells, and when treated in conjunction with CPA or DOX, α-tocopherol reduced the toxicogenetic effects noted after antineoplastic drug administration as evidenced by decreased chromosomal alterations and lowered cell death rate. In human mammary gland non-tumor and tumor cell lines, α-tocopherol produced selective cytotoxicity with 2-fold higher effect in tumor cells. Evidence indicates that vitamin E (1) produced anti-cytotoxic and anti-mutagenic effects against CPA and DOX (2) increased higher selectivity toward tumor cells, and (3) presented chemoprotective activity in PBMCs.
Collapse
Affiliation(s)
- Victor Alves de Oliveira
- Department of Nutrition, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | | | - Lauana Maria Dos Santos Leal
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Paloma Alves Ferreira Lima
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Ana Rafaela Silva Pereira
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Irislene Costa Pereira
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Helber Alves Negreiros
- Laboratory of Research, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | - Joilane Alves Pereira-Freire
- Department of Nutrition, Campus Senador Helvídio Nunes de Barros - CSHNB, Federal University of Piauí - UFPI, Picos, Brazil
| | | | - Ana Amélia de Carvalho Melo Cavalcante
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Francisco Leonardo Torres-Leal
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Adriana Paiva Azevedo
- Post-graduate program of Food and Nutrition, Federal University of Piauí - UFPI, Picos, Brazil
| | - João Marcelo de Castro E Sousa
- Post-graduate program of Biotechnology (RENORBIO), Federal University of Piauí - UFPI, Picos, Brazil
- Department of Biochemistry and Pharmacology, Post-graduate program of Pharmaceutical sciences, Federal University of Piauí - UFPI, Picos, Brazil
| |
Collapse
|
16
|
HPLC method for simultaneous estimation of paclitaxel and baicalein: pharmaceutical and pharmacokinetic applications. Bioanalysis 2022; 14:1005-1020. [PMID: 36066029 DOI: 10.4155/bio-2022-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A novel HPLC method was developed and validated for the simultaneous estimation of paclitaxel (PTX) and baicalein (BAC). Materials & methods: The analytes were resolved in a C18 column using the aqueous solution of formic acid (0.10% v/v) and MeOH (30:70 v/v). Results: The developed method was found to be linear over the concentration ranges 0.039-10 μg/ml and 0.019-10 μg/ml for PTX and BAC, respectively. The lower limits of quantification obtained were 0.042 μg/ml and 0.361 μg/ml for PTX and BAC, respectively. Conclusion: The developed method was found to be precise and accurate as per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines, for simultaneous estimation of PTX and BAC, having an application in formulation development and bioanalytical studies.
Collapse
|
17
|
Development and Characterization of Azithromycin-Loaded Microemulsions: A Promising Tool for the Treatment of Bacterial Skin Infections. Antibiotics (Basel) 2022; 11:antibiotics11081040. [PMID: 36009909 PMCID: PMC9404999 DOI: 10.3390/antibiotics11081040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, the treatment of bacterial skin infections has been considered a major healthcare issue due to the growing emergence of antibiotic-resistant strains of Staphylococcus aureus. The incorporation of antibiotics in appropriate nanosystems could represent a promising strategy, able to overcome several drawbacks of the topical treatment of infections, including poor drug retention within the skin. The present work aims to develop microemulsions containing azithromycin (AZT), a broad-spectrum macrolide antibiotic. Firstly, AZT solubility in various oils, surfactants and co-surfactants was assessed to select the main components. Subsequently, microemulsions composed of vitamin E acetate, Labrasol® and Transcutol® P were prepared and characterized for their pH, viscosity, droplet size, zeta potential and ability to release the drug and to promote its retention inside porcine skin. Antimicrobial activity against S. aureus methicillin-resistant strains (MRSA) and the biocompatibility of microemulsions were evaluated. Microemulsions showed an acceptable pH and were characterized by different droplet sizes and viscosities depending on their composition. Interestingly, they provided a prolonged release of AZT and promoted its accumulation inside the skin. Finally, microemulsions retained AZT efficacy on MRSA and were not cytotoxic. Hence, the developed AZT-loaded microemulsions could be considered as useful nanocarriers for the treatment of antibiotic-resistant infections of the skin.
Collapse
|
18
|
Tamang N, Shrestha P, Khadka B, Mondal MH, Saha B, Bhattarai A. A Review of Biopolymers' Utility as Emulsion Stabilizers. Polymers (Basel) 2021; 14:127. [PMID: 35012149 PMCID: PMC8747219 DOI: 10.3390/polym14010127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides, polynucleotides, and polypeptides are basic natural polymers. They have various applications based on their properties. This review mostly discusses the application of natural polymers as emulsion stabilizers. Natural emulsion stabilizers are polymers of amino acid, nucleic acid, carbohydrate, etc., which are derived from microorganisms, bacteria, and other organic materials. Plant and animal proteins are basic sources of natural emulsion stabilizers. Pea protein-maltodextrin and lentil protein feature entrapment capacity up to 88%, (1-10% concentrated), zein proteins feature 74-89% entrapment efficiency, soy proteins in various concentrations increase dissolution, retention, and stability to the emulsion and whey proteins, egg proteins, and proteins from all other animals are applicable in membrane formation and encapsulation to stabilize emulsion/nanoemulsion. In pharmaceutical industries, phospholipids, phosphatidyl choline (PC), phosphatidyl ethanol-amine (PE), and phosphatidyl glycerol (PG)-based stabilizers are very effective as emulsion stabilizers. Lecithin (a combination of phospholipids) is used in the cosmetics and food industries. Various factors such as temperature, pH, droplets size, etc. destabilize the emulsion. Therefore, the emulsion stabilizers are used to stabilize, preserve and safely deliver the formulated drugs, also as a preservative in food and stabilizer in cosmetic products. Natural emulsion stabilizers offer great advantages because they are naturally degradable, ecologically effective, non-toxic, easily available in nature, non-carcinogenic, and not harmful to health.
Collapse
Affiliation(s)
- Nirmala Tamang
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (M.M.A.M.C.), Tribhuvan University, Biratnagar 56613, Nepal;
| | - Pooja Shrestha
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal; (P.S.); (B.K.)
| | - Binita Khadka
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal; (P.S.); (B.K.)
| | | | - Bidyut Saha
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan, Burdwan 713104, India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (M.M.A.M.C.), Tribhuvan University, Biratnagar 56613, Nepal;
| |
Collapse
|
19
|
Encapsulation of Baicalein in Cinnamon Essential Oil Nanoemulsion for Enhanced Anticancer Efficacy Against MDA-MB-231 Cells. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00900-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Baveloni FG, Riccio BVF, Di Filippo LD, Fernandes MA, Meneguin AB, Chorilli M. Nanotechnology-based Drug Delivery Systems as Potential for Skin Application: A Review. Curr Med Chem 2021; 28:3216-3248. [PMID: 32867631 DOI: 10.2174/0929867327666200831125656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022]
Abstract
Administration of substances through the skin represents a promising alternative, in relation to other drug administration routes, due to its large body surface area, in order to offer ideal and multiple sites for drug administration. In addition, the administration of drugs through the skin avoids the first-pass metabolism, allowing an increase in the bioavailability of drugs, as well as reducing their side effects. However, the stratum corneum (SC) comprises the main barrier of protection against external agents, mainly due to its structure, composition and physicochemical properties, becoming the main limitation for the administration of substances through the skin. In view of the above, pharmaceutical technology has allowed the development of multiple drug delivery systems (DDS), which include liquid crystals (LC), cubosomes, liposomes, polymeric nanoparticles (PNP), nanoemulsions (NE), as well as cyclodextrins (CD) and dendrimers (DND). It appears that the DDS circumvents the problems of drug absorption through the SC layer of the skin, ensuring the release of the drug, as well as optimizing the therapeutic effect locally. This review aims to highlight the DDS that include LC, cubosomes, lipid systems, PNP, as well as CD and DND, to optimize topical skin therapies.
Collapse
Affiliation(s)
- Franciele Garcia Baveloni
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Leonardo Delello Di Filippo
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Mariza Aires Fernandes
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| |
Collapse
|
21
|
Belcastro E, Rehman AU, Remila L, Park SH, Gong DS, Anton N, Auger C, Lefebvre O, Goetz JG, Collot M, Klymchenko AS, Vandamme TF, Schini-Kerth VB. Fluorescent nanocarriers targeting VCAM-1 for early detection of senescent endothelial cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102379. [PMID: 33713860 DOI: 10.1016/j.nano.2021.102379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Endothelial senescence has been identified as an early event in the development of endothelial dysfunction, a hallmark of cardiovascular disease. This study developed theranostic nanocarriers (NC) decorated with VCAM-1 antibodies (NC-VCAM-1) in order to target cell surface VCAM-1, which is overexpressed in senescent endothelial cells (ECs) for diagnostic and therapeutic purposes. Incubation of Ang II-induced premature senescent ECs or replicative senescent ECs with NC-VCAM-1 loaded with lipophilic fluorescent dyes showed higher fluorescence signals than healthy EC, which was dependent on the NC size and VCAM-1 antibodies concentration, and not observed following masking of VCAM-1. NC loaded with omega 3 polyunsaturated fatty acid (NC-EPA:DHA6:1) were more effective than native EPA:DHA 6:1 to prevent Ang II-induced VCAM-1 and p53 upregulation, and SA-β-galactosidase activity in coronary artery segments. These theranostic NC might be of interest to evaluate the extent and localization of endothelial senescence and to prevent pro-senescent endothelial responses.
Collapse
Affiliation(s)
- Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Asad Ur Rehman
- University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Lamia Remila
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Dal Seong Gong
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Nicolas Anton
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy; University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | | | | | - Mayeul Collot
- CNRS UMR 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, Strasbourg, France
| | - Andrey S Klymchenko
- CNRS UMR 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, Strasbourg, France
| | - Thierry F Vandamme
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy; University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy.
| |
Collapse
|
22
|
Rehman AU, Anton N, Bou S, Schild J, Messaddeq N, Vandamme T, Akram S, Klymchenko A, Collot M. Tunable functionalization of nano-emulsions using amphiphilic polymers. SOFT MATTER 2021; 17:1788-1795. [PMID: 33398307 DOI: 10.1039/d0sm01952f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nano-emulsions are defined as stable oil droplets sizing below 300 nm. Their singular particularity lies in the loading capabilities of their oily core, much higher than other kinds of carrier. On the other hand, functionalizing the dynamic oil/water interface, to date, has remained a challenge. To ensure the best anchoring of the reactive functions onto the surface of the droplets, we have designed specific amphiphilic polymers (APs) based on poly(maleic anhydride-alt-1-octadecene), stabilizing the nano-emulsions instead of surfactants. Aliphatic C18 chains of the APs are anchored in the droplet core, while the hydrophilic parts of the APs are poly(ethylene glycol) (PEG) chains. In addition, PEG chains are terminated with reactive (i) azide functions in order to prove the concept of the droplet decoration with clickable rhodamine (Rh-DBCO, specifically synthesized for this study), or (ii) biotin functions to verify the potential droplet functionalization with fluorescent streptavidin (streptavidin-AF-488). This study describes AP synthesis, physico-chemical characterization of the functional droplets (electron microscopy), and finally fluorescence labeling and droplet decoration. To conclude, these APs constitute an interesting solution for the stable functionalization of nano-emulsion droplets, paving a new way for the applications of nano-emulsions in targeting drug delivery.
Collapse
Affiliation(s)
- Asad Ur Rehman
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France. and INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Sophie Bou
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Jérémy Schild
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Nadia Messaddeq
- Université de Strasbourg, IGBMC, Inserm U1258, CNRS UMR7104, F-67000 Strasbourg, France.
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France. and INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Salman Akram
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Andrey Klymchenko
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Mayeul Collot
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| |
Collapse
|
23
|
Griñan-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, González-González A, Lorente JA, Marchal JA, Granados-Principal S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants (Basel) 2021; 10:205. [PMID: 33572626 PMCID: PMC7911462 DOI: 10.3390/antiox10020205] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.
Collapse
Affiliation(s)
- Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
24
|
de Oliveira VA, Pereira IC, Nogueira TR, Martins JA, Péres-Rodrigues G, de Jesus e Silva de Almendra B, Silva VC, Júnior DD, Leal FL, de Castro e Sousa JM, da Silva FC, de Carvalho Melo Cavalcanti AA, de Azevedo Paiva A. The Role of Vitamin E in Breast Cancer Treatment and Prevention: Current Perspectives. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200614164711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Regarding the multifactorial etiology of breast cancer, food choices, as well
as dietary intake, are the main modified factors in cancer prevention. In this sense, understanding
molecular pathways involved in breast cancer proliferation can help determine the mechanisms of
action of organic compounds such as antioxidant vitamins that are known to protect against cancer.
Objective:
Assess the mechanism of action of vitamin E in breast cancer modulation, with emphasis
on important markers of tumor development.
Methods:
It is a systematic review carried out in PubMed and Web of Science databases, from the
last 5 years, in Portuguese, English and Spanish. The following terms were selected according to The
Medical Subject Headings (MeSH): “breast cancer” OR “breast neoplasms”, “tocopherol” OR
“tocotrienols” OR “vitamin E”, as equated terms.
Results:
A total of 595 articles were found and 25 were selected according to inclusion criteria.
Vitamin E has been related to suppression/overexpression of important tumorigenic pathways,
mainly associated with proliferation, energy metabolism, chemosensitivity and invasion/metastasis.
Clinical studies of vitamin E supplementation are needed to assess the dose/response effect on breast
cancer patients.
Conclusion:
The safety of vitamin E supplementation is still controversial due to current studies design
available. However, when vitamin E is supplemented, the dose and therapeutic regimen must be
carefully decided, including the route of administration and breast cancer subtypes to enhance
desired effects and minimize unwanted side effects.
Collapse
Affiliation(s)
- Victor A. de Oliveira
- Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Irislene C. Pereira
- Postgraduate Program in Food and Nutrition, Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Thaís R. Nogueira
- Postgraduate Program in Food and Nutrition, Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Jorddam A. Martins
- Postgraduate Program in Food and Nutrition, Department of Nutrition, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | | | | | - Vladimir C. Silva
- Department of Biochemistry and Pharmacology, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Dalton D. Júnior
- Department of Biochemistry and Pharmacology, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Francisco L.T. Leal
- Department of Biophysics and Physiology, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Joáo M. de Castro e Sousa
- Department of Biochemistry and Pharmacology, Federal University of Piaui, UFPI, Piaui State, Teresina, Brazil
| | - Felipe C.C. da Silva
- Department of Biology, Federal University of Piaui, UFPI, Piaui State, Picos, Brazil
| | | | | |
Collapse
|
25
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|
26
|
Copetti PM, Gündel SDS, de Oliveira PSB, Favarin FR, Ramos AP, Pintos FG, Pappis L, Gündel A, Machado AK, Ourique AF, Sagrillo MR. Development, characterisation, stability study and antileukemic evaluation of nanoemulsions containing Astrocaryum aculeatum extract. Nat Prod Res 2020; 36:1321-1326. [PMID: 33356570 DOI: 10.1080/14786419.2020.1862830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The objective of this work was to produce and characterise nanoemulsions containing tucumã extract and to evaluate the performance of the nanostructure and the free compound regarding antitumor activity, cytotoxicity, and oxidative metabolism in NB4/APL cells. The nanoemulsions showed adequate physicochemical characteristics (average size approx. 200 nm, polydispersity index less than 0.3, negative zeta potential and acid pH) maintained stable up to 90 days of storage in refrigeration condition. The nanoformulations did not present protein corona formation. Blank nanoemulsion treatments showed moderate toxicity. Furthermore, the nanoemulsion loaded with extract showed better antileukemic results than the free extract. However, nanoemulsions can be promising carriers of natural compounds, emphasising their biological properties and constituting alternatives in treating diseases.
Collapse
Affiliation(s)
- Priscila Marquezan Copetti
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | | | - Francieli Guedes Pintos
- Multicenter Graduate Program in Physiological Sciences, Federal University of Pampa, Uruguaiana, Brazil
| | - Lauren Pappis
- Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | | |
Collapse
|
27
|
Barkat MA, Harshita, Rizwanullah M, Pottoo FH, Beg S, Akhter S, Ahmad FJ. Therapeutic Nanoemulsion: Concept to Delivery. Curr Pharm Des 2020; 26:1145-1166. [PMID: 32183664 DOI: 10.2174/1381612826666200317140600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
Nanoemulsions (NEs) or nanometric-scaled emulsions are transparent or translucent, optically isotropic and kinetically stable heterogeneous system of two different immiscible liquids namely, water and oil stabilized with an amphiphilic surfactant having droplet size ranges up to 100 nm. They offer a variety of potential interests for certain applications: improved deep-rooted stability; excellent optical clarity; and, enhanced bioavailability due to its nanoscale of particles. Though there is still comparatively narrow insight apropos design, development, and optimization of NEs, which mainly stems from the fact that conventional characteristics of emulsion development and stabilization only partly apply to NEs. The contemporary article focuses on the nanoemulsion dosage form journey from concept to key application in drug delivery. In addition, industrial scalability of the nanoemulsion, as well as its presence in commercial and clinical practice, are also addressed.
Collapse
Affiliation(s)
- Md A Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Rizwanullah
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), 31441, Dammam, Saudi Arabia
| | - Sarwar Beg
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sohail Akhter
- Le Studium research fellow for Centre de Biophysique Moléculaire (CBM)-CNRS, University of Orléans, UPR4301, Orléans, France
| | - Farhan J Ahmad
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
28
|
Meher JG, Dixit S, Singh Y, Pawar VK, Konwar R, Saklani R, Chourasia MK. Paclitaxel-Loaded Colloidal Silica and TPGS-Based Solid Self-Emulsifying System Interferes Akt/mTOR Pathway in MDA-MB-231 and Demonstrates Anti-tumor Effect in Syngeneic Mammary Tumors. AAPS PharmSciTech 2020; 21:313. [PMID: 33165766 DOI: 10.1208/s12249-020-01855-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
A solid self-emulsifying drug delivery system (SEDDS) of paclitaxel (PTX) was developed that could enhance its oral bioavailability and neutralize other niggles associated with conventional delivery systems of PTX. TPGS-centered SEDDS containing PTX was optimized by Box-Behnken experimental design and then formulated as fumed colloidal silica-based solid SEDDS microparticles (Si-PTX-S-SEDDS). AFM analysis exhibited round-shaped microparticles of approximately 2-3 μM diameter, whereas after reconstitution, particle size measurement showed nanoemulsion droplets of 30.00 ± 2.00 nm with a zeta potential of 17.38 ± 2.88 mV. Si-PTX-S-SEDDS displayed improved efficacy proven by reduced IC50 of 0.19 ± 0.03 μM against MDA-MB-231 cells and a 45.83-fold higher cellular uptake in comparison to free PTX. Molecular mechanistic studies showed mitochondria-mediated intrinsic pathway of apoptosis following Akt/mTOR pathway, which is accompanied by survivin downregulation. Rhodamine 123 assay and chylomicron flow blocking studies revealed P-gp inhibition potential and lymphatic uptake of Si-PTX-S-SEDDS, responsible for over 4-fold increment in oral bioavailability compared to PTX administered as Taxol. In vivo anti-tumor studies in syngeneic mammary tumor model in SD rats revealed higher efficacy of Si-PTX-S-SEDDS as evident from significant reduction in tumor burden. In total, the developed Si-PTX-S-SEDDS formulation was found as an appropriate option for oral delivery of PTX.
Collapse
|
29
|
Said Suliman A, Tom R, Palmer K, Tolaymat I, Younes HM, Arafat B, Elhissi AMA, Najlah M. Development, characterization and stability evaluation of ciprofloxacin-loaded parenteral nutrition nanoemulsions. Pharm Dev Technol 2020; 25:579-587. [PMID: 31967908 DOI: 10.1080/10837450.2020.1720237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, two licensed total parenteral nanoemulsion formulations (Clinoleic® and Intralipid®) were loaded with ciprofloxacin (CP). The physicochemical characteristics and stability profiles of the formulations were investigated using a range of drug concentrations. Furthermore, formulation stability was evaluated over a period of six months at room temperature (RT) or 4 °C. Loading CP into nanoemulsions resulted in no significant differences in their measured droplet size, polydispersity index (PI), zeta potential, and pH. Drug entrapment efficiency (EE) was relatively high for all formulations, regardless of nanoemulsion type, and the drug release was sustained over 24 h. Stability studies of all formulations were performed at 4 °C and RT for 180 and 60 days, respectively. At 4 °C for 180 days, both Clinoleic® and Intralipid® formulations at a range of drug concentrations (1-10 mg/ml) showed high stabilities measured periodically by the average droplet sizes, PI, pH, and zeta potential values. Similar results, but pH values, were shown when the formulations for both nanoemulsion stored at RT for 60 days. Overall, this study has shown that CP was successfully loaded into clinically licensed TPN lipid nanoemulsions. The resultant CP-loaded nanoemulsion formulations demonstrated desirable physicochemical properties and were stable upon storage at 4 °C for up to six months.
Collapse
Affiliation(s)
- Ammar Said Suliman
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Rose Tom
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Kirsty Palmer
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Ibrahim Tolaymat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Husam M Younes
- Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Basel Arafat
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Abdelbary M A Elhissi
- Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar.,Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
| | - Mohammad Najlah
- Pharmaceutical Research Group, School of Allied Health, Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
30
|
Zhu C, Luo L, jiang X, Jiang M, Luo Z, Li X, Qiu W, Jin Z, Shen T, Li C, Li Q, Qiu Y, You J. Selective Intratumoral Drug Release and Simultaneous Inhibition of Oxidative Stress by a Highly Reductive Nanosystem and Its Application as an Anti-tumor Agent. Theranostics 2020; 10:1166-1180. [PMID: 31938058 PMCID: PMC6956823 DOI: 10.7150/thno.38627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
Excessive oxidative stress is always associated with the serious side effects of chemotherapy. In the current study, we developed a vitamin E based strongly reductive nanosystem to increase the loading efficiency of docetaxel (DTX, DTX-VNS), reduce its side toxicity and enhance the antitumor effect. Methods: We used Förster Resonance Energy Transfer (FRET) to reveal the in vivo and in vitro fate of DTX-VNS over time. All FRET images were observed using the Maestro imaging system (CRI, Inc., Woburn, MA) and Fluo-View software (Olympus LX83-FV3000). Results: Through FRET analyzing, we found that our nanosystem showed a selective rapider release of drugs in tumors compared to normal organs due to the higher levels of ROS in tumor cells than normal cells, and the accumulation of DTX at tumor sites in the DTX-VNS group was also notably more than that in the Taxotere group after 24 h injection. Meanwhile, DTX-VNS had a prominently stronger anti-tumor effect in various models than Taxotere, and had a synergistic effect of immunotherapy. Conclusions: Our work presented a useful reference for clinical exploration of the in vivo behavior of nanocarriers (DTX-VNS), inhibition oxidative stress and selective release of drugs at tumor sites, thus reducing the side effects and enhancing the anti-tumor effects.
Collapse
Affiliation(s)
- Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xindong jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Weigen Qiu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhaolei Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Tianxiang Shen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Chunlong Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 31003, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
31
|
Feng ZQ, Yan K, Li J, Xu X, Yuan T, Wang T, Zheng J. Magnetic Janus particles as a multifunctional drug delivery system for paclitaxel in efficient cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110001. [DOI: 10.1016/j.msec.2019.110001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
|
32
|
Feng J, Wen W, Jia YG, Liu S, Guo J. pH-Responsive Micelles Assembled by Three-Armed Degradable Block Copolymers with a Cholic Acid Core for Drug Controlled-Release. Polymers (Basel) 2019; 11:E511. [PMID: 30960495 PMCID: PMC6473676 DOI: 10.3390/polym11030511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
One of the most famous anticancer drugs, paclitaxel (PTX), has often been used in drug controlled-release studies. The polymers derived from bio-compound bile acids and degradable poly(ε-caprolactone) (PCL) form a reservoir and have been used as a drug delivery system with great advantages. Herein, we grafted poly(N,N-diethylaminoethyl methacrylate) and poly(poly(ethylene glycol) methyl ether methacrylate) into the bile acid-derived three-armed macroinitiator CA-(PCL)₃, resulting in the amphiphilic block copolymers CA-(PCL-b-PDEAEMA-b-PPEGMA)₃. These pH-responsive three-armed block copolymers self-assembled into micelles in aqueous solution and PTX was encapsulated into the micellar core to form PTX-loaded micelles with a drug loading of 29.92 wt %. The micelles were stable in PBS at pH 7.4 and showed a pH-triggered release behavior of PTX under acidic environments, in which 55% of PTX was released at pH 5.0 in 80 h. These cholic acid-based functionalized three-armed block polymers present good biocompatibility, showing great potential for drug controlled-release.
Collapse
Affiliation(s)
- Jingjie Feng
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Weiqiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jianwei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
33
|
Rehman AU, Collot M, Klymchenko AS, Akram S, Mustafa B, Vandamme T, Anton N. Spontaneous nano-emulsification with tailor-made amphiphilic polymers and related monomers. ACTA ACUST UNITED AC 2019. [DOI: 10.34154/2019-ejpr.01(01).pp-27-36/euraass] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In general, nano-emulsions are submicron droplets composed of liquid oil phase dispersed in liquid aqueous bulk phase. They are stable and very powerful systems when it regards the encapsulation of lipophilic compounds and their dispersion in aqueous medium. On the other hand, when the properties of the nano-emulsions aim to be modified, e.g. for changing their surface properties, decorating the droplets with targeting ligands, or modifying the surface charge, the dynamic liquid / liquid interfaces make it relatively challenging. In this study, we have explored the development of nano-emulsions which were not anymore stabilized with a classical low-molecular weight surfactant, but instead, with an amphiphilic polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) and Jeffamine®, a hydrophilic amino-terminated PPG/PEG copolymer. Using a polymer as stabilizer is a potential solution for the nano-emulsion functionalization, ensuring the droplet stabilization as well as being a platform for the droplet decoration with ligands (for instance after addition of function groups in the terminations of the chains). The main idea of the present work was to understand if the spontaneous emulsification –commonly performed with nonionic surfactants– can be transposed with amphiphilic polymers, and a secondary objective was to identify the main parameters impacting on the process. PMAO was modified with two different Jeffamine®, additionally different oils and different formulation conditions were evaluated. As a control, the parent monomer, octadecyl succinic anhydride (OSA) was also modified and studied in the similar way as that of polymer. The generated nano-emulsions were mainly studied by dynamic light scattering and electron microscopy, that allows discriminating the crucial parameters in the spontaneous process, originally conducted with polymers as only stabilizer.
Collapse
Affiliation(s)
- Asad Ur Rehman
- University of Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France AND Bahauddin Zakariya University (BZU) Multan, Pakistan
| | - Mayeul Collot
- University of Strasbourg, CNRS, LBP UMR 7021, F-67000 Strasbourg, France
| | | | - Salman Akram
- University of Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Bilal Mustafa
- University of Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Thierry Vandamme
- University of Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Nicolas Anton
- University of Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| |
Collapse
|
34
|
Pawar VK, Singh Y, Sharma K, Shrivastav A, Sharma A, Singh A, Meher JG, Singh P, Raval K, Kumar A, Bora HK, Datta D, Lal J, Chourasia MK. Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. Int J Biol Macromol 2019; 122:1100-1114. [DOI: 10.1016/j.ijbiomac.2018.09.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
|
35
|
Park S, Lim W, Song G. Chrysophanol selectively represses breast cancer cell growth by inducing reactive oxygen species production and endoplasmic reticulum stress via AKT and mitogen-activated protein kinase signal pathways. Toxicol Appl Pharmacol 2018; 360:201-211. [DOI: 10.1016/j.taap.2018.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
|
36
|
Meher JG, Dixit S, Pathan DK, Singh Y, Chandasana H, Pawar VK, Sharma M, Bhatta RS, Konwar R, Kesharwani P, Chourasia MK. Paclitaxel-loaded TPGS enriched self-emulsifying carrier causes apoptosis by modulating survivin expression and inhibits tumour growth in syngeneic mammary tumours. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S344-S358. [PMID: 30282466 DOI: 10.1080/21691401.2018.1492933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Paclitaxel (PTX) in its commercial products exhibits adverse effects owing to excipients and also has poor oral bioavailability. Present work is directed towards development of tocopheryl polyethylene glycol succinate-assisted self-nanoemulsifying system (SEDDS) for oral delivery of PTX. Box-Behnken design of experiment was employed to optimize PTX-SEDDS and was characterized for droplet size (29.76 ± 2.64 nm), zeta potential (-21.46 ± 2.52 mV), PDI (0.177 ± 0.012), drug content (4.97 ± 0.98 mg), entrapment efficiency (98.33 ± 0.54%) and in vitro drug release (51.03 ± 2.23% PTX at 72 h). PTX-SEDDS exhibited IC50; 1.58 ± 0.12 µM and a 52.46-folds higher cell uptake in MDA-MB-231 cells along with cellular and nuclear morphology changes. Significantly higher G2M cell cycle arrest, apoptosis, mitochondrial membrane potential disruption and ROS production was exhibited by PTX-SEDDS in comparison to Taxol. Up-regulation of Bax, p21, cleaved-caspase 3, -caspase 9 and down-regulation of Bcl2 and survivin suggested apoptosis via intrinsic pathways. Pharmacokinetic study showed approximately 4-folds higher oral bioavailability of PTX-SEDDS than Taxol. Significant reduction in tumour volume and weight was observed in syngeneic mammary tumour in SD rats. Tumour histopathology and TUNEL assay showed apoptosis in tumour tissue. PTX-SEDDS caused low lung metastasis, and was safe and stable. Conclusively, PTX-SEDDS could be suitable option for oral delivery of PTX.
Collapse
Affiliation(s)
- Jaya Gopal Meher
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Shivani Dixit
- b Endocrinology Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Darshad Khan Pathan
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Yuvraj Singh
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Hardik Chandasana
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Vivek K Pawar
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Mani Sharma
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Rabi Sankar Bhatta
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Rituraj Konwar
- b Endocrinology Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Prashant Kesharwani
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| | - Manish K Chourasia
- a Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Lucknow , UP , India
| |
Collapse
|
37
|
Pandey G, Mittapelly N, Banala VT, Mishra PR. Multifunctional Glycoconjugate Assisted Nanocrystalline Drug Delivery for Tumor Targeting and Permeabilization of Lysosomal-Mitochondrial Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16964-16976. [PMID: 29726253 DOI: 10.1021/acsami.7b18699] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotechnology has emerged as the most successful strategy for targeting drug payloads to tumors with the potential to overcome the problems of low concentration at the target site, nonspecific distribution, and untoward toxicities. Here, we synthesized a novel polymeric conjugate comprising chondroitin sulfate A and polyethylene glycol using carbodiimide chemistry. We further employed this glycoconjugate possessing the propensity to provide stability, stealth effects, and tumor targeting via CD44 receptors, all in one, to develop a nanocrystalline system of docetaxel (DTX@CSA-NCs) with size < 200 nm, negative zeta potential, and 98% drug content. Taking advantage of the enhanced permeability and retention effect coupled with receptor mediated endocytosis, the DTX@CSA-NCs cross the peripheral tumor barrier and penetrate deeper into the cells of tumor mass. In MDA-MB-231 cells, this enhanced cellular uptake was observed to exhibit a higher degree of cytotoxicity and arrest in the G2 phase in a time dependent fashion. Acting via a mitochondrial-lysosomotropic pathway, DTX@CSA-NCs disrupted the membrane potential and integrity and outperformed the clinically used formulation. Upon intravenous administration, the DTX@CSA-NCs showed better pharmacokinetic profile and excellent 4T1 induced tumor inhibition with significantly less off target toxicity. Thus, this glycoconjugate stabilized nanocrystalline formulation has the potential to take nano-oncology a step forward.
Collapse
Affiliation(s)
- Gitu Pandey
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| | - Naresh Mittapelly
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| | - Venkatesh Teja Banala
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
| | - Prabhat Ranjan Mishra
- Pharmaceutics and Pharmacokinetics Division , CSIR-Central Drug Research Institute , Sector 10, Jankipuram Extension, Sitapur Road , Lucknow 226031 , Uttar Pradesh , India
- Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex CSIR Campus , CSIR Road , Taramani, Chennai - 600 113, India
| |
Collapse
|
38
|
Ahmad G, Gattacecca F, El Sadda R, Botchkina G, Ojima I, Egan J, Amiji M. Biodistribution and Pharmacokinetic Evaluations of a Novel Taxoid DHA-SBT-1214 in an Oil-in-Water Nanoemulsion Formulation in Naïve and Tumor-Bearing Mice. Pharm Res 2018; 35:91. [PMID: 29520477 PMCID: PMC6151135 DOI: 10.1007/s11095-018-2349-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE The main purpose of this study was to formulate an oil-in-water nanoemulsion of a next generation taxoid DHA-SBT-1214 and evaluate its biodistribution and pharmacokinetics. METHODS DHA-SBT-1214 was encapsulated in a fish oil containing nanoemulsion using a high pressure homogenization method. Following morphological characterization of the nanoemulsions, qualitative and quantitative biodistribution was evaluated in naïve and cancer stem cell-enriched PPT-2 human prostate tumor bearing mice. RESULTS DHA-SBT-1214 was successfully encapsulated up to 20 mg/ml in the nanoemulsion formulation and had an average oil droplet size of 200 nm. Using a DiR near infra-red dye encapsulated nanoemulsion, we have shown the delivery of nanoemulsion to mouse tumor region. By quantitative analysis, DHA-SBT-1214 encapsulated nanoemulsion demonstrated improved pharmacokinetic properties in plasma and different tissues as compared to its solution form. Furthermore, the nanoemulsions were stable and had slower in vitro drug release compared to its solution form. CONCLUSIONS The results from this study demonstrated effective encapsulation of the drug in a nanoemulsion and this nanoemulsion showed sustained plasma levels and enhanced tumor delivery relative to the solution form.
Collapse
Affiliation(s)
- Gulzar Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, 02115-5000, USA
| | - Florence Gattacecca
- Institut de Recherche en Cancérologie de Montpellier IRCM, INSERM U1194, ICM, Université de Montpellier, Montpellier, France
| | - Rana El Sadda
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Galina Botchkina
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, 11794-3400, USA
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, New York, 11794-8691, USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, 11794-3400, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - James Egan
- Targagenix, Inc., 25 Health Sciences Drive, Stony Brook, New York, 11790-3382, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, 02115-5000, USA.
| |
Collapse
|
39
|
Singh PK, Jaiswal AK, Pawar VK, Raval K, Kumar A, Bora HK, Dube A, Chourasia MK. Fabrication of 3-O-sn-Phosphatidyl-L-serine Anchored PLGA Nanoparticle Bearing Amphotericin B for Macrophage Targeting. Pharm Res 2018; 35:60. [DOI: 10.1007/s11095-017-2293-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022]
|
40
|
Research Updates on Different Vitamins Based Nanoemulsions and Characterization of Nanoemulsions. AN INTRODUCTION TO FOOD GRADE NANOEMULSIONS 2018. [DOI: 10.1007/978-981-10-6986-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohydr Polym 2018; 180:365-375. [DOI: 10.1016/j.carbpol.2017.10.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022]
|
42
|
Agrawal S, Dwivedi M, Ahmad H, Chadchan SB, Arya A, Sikandar R, Kaushik S, Mitra K, Jha RK, Dwivedi AK. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:327-337. [PMID: 29129754 DOI: 10.1016/j.nano.2017.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/30/2017] [Accepted: 10/27/2017] [Indexed: 01/19/2023]
Abstract
Lapatinib (LPT) is an orally administered drug for the treatment of metastatic breast cancer. For expanding its therapeutic horizon, we have prepared its nanocrystals (LPT-NCs) that were subsequently coated with hyaluronic acid (HA) to produce LPT-HA-NCs. The detailed in-vitro and in-vivo investigation of LPT-HA-NCs showed the superior anticancer activity due to active targeting to CD44 receptors than the counterparts LPT-NCs and free LPT. In the triple negative 4T1 cells induced breast tumor bearing female Balb/C mice; LPT-HA-NCs treatment caused significant retardation of tumor growth and overall increase in animal survival probability because of their higher tumor localization, increased residence time. Our findings clearly suggest that HA coated LPT-NCs formulation enhances the activity of LPT against triple negative breast cancer. It exhibited magnificent therapeutic outcome at low dose thus presenting a strategy to reduce dose administrations and minimize dose related toxicity.
Collapse
Affiliation(s)
- Satish Agrawal
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Chennai, TN, India
| | - Monika Dwivedi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Hafsa Ahmad
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | | | - Abhishek Arya
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Chennai, TN, India
| | - Roshan Sikandar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India; National Institute of Pharmaceutical Education & Research, Raebareli, UP, India
| | - Shweta Kaushik
- Academy of Scientific and Innovative Research (AcSIR), Chennai, TN, India; Division of Biochemisrty, CSIR-Drug Research Institute, Lucknow, UP, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Drug Research Institute, Lucknow, UP, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Anil Kumar Dwivedi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
43
|
Duan Z, Chen C, Qin J, Liu Q, Wang Q, Xu X, Wang J. Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv 2017; 24:752-764. [PMID: 28468542 PMCID: PMC8253140 DOI: 10.1080/10717544.2017.1321060] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/01/2023] Open
Abstract
To conquer the drug resistance of tumors and the poor solubility of paclitaxel (PTX), two PTX-cell-penetrating peptide conjugates (PTX-CPPs), PTX-TAT and PTX-LMWP, were synthesized and evaluated for the first time. Compared with free PTX, PTX-CPPs displayed significantly enhanced cellular uptake, elevated cell toxicity, increased cell apoptosis, and decreased mitochondrial membrane potential (Δψm) in both A549 and A549T cells. PTX-LMWP exhibited a stronger inhibitory effect than PTX-TAT in A549T cells. Analysis of cell-cycle distribution showed that PTX-LMWP influenced mitosis in drug-resistant A549T tumor cells via a different mechanism than PTX. PTX-CPPs were more efficient in inhibiting tumor growth in tumor-bearing mice than free PTX, which suggested their better in vivo antitumor efficacy. Hence, this study demonstrates that PTX-CPPs, particularly PTX-LMWP, have outstanding potential for inhibiting the growth of tumors and are a promising approach for treating lung cancer, especially drug-resistant lung cancer.
Collapse
Affiliation(s)
- Ziqing Duan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| | - Cuitian Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Traditional Chinese Medicine, Guangzhou, PR China, and
| | - Xinchun Xu
- Shanghai Xuhui Central Hospital, Shanghai, PR China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, PR China
| |
Collapse
|
44
|
Song Y, Tang C, Yin C. Enhanced antitumor efficacy of arginine modified amphiphilic nanoparticles co-delivering doxorubicin and iSur-pDNA via the multiple synergistic effect. Biomaterials 2017; 150:1-13. [PMID: 29028548 DOI: 10.1016/j.biomaterials.2017.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Arginine and α-tocopherol succinate (α-TOS) double grafted N-trimethyl chitosan chloride (TMC) nanoparticles (TAS NPs) were designed and developed for effective co-delivery of doxorubicin (DOX) and Survivin shRNA-expressing pDNA (iSur-pDNA). With DOX loading into the hydrophobic core and iSur-pDNA combining to the hydrophilic shell, TAS/DOX/pDNA NPs demonstrated favorable structural stability and sustained release properties in vitro. With the special non-clathrin-dependent endocytosis, TAS/DOX/pDNA NPs presented higher cellular uptake and mainly distributed in ER and Golgi rather than lysosomes following internalization. The in vitro nuclear localization, gene silencing efficiency, cell apoptosis, and growth inhibition of tumor cells were significantly promoted by arginine modification. In the tumor-bearing mice model, TAS/DOX/pDNA NPs possessed the maximum antitumor efficiency as compared with single delivery of DOX or iSur-pDNA. Particularly, blank TAS NPs were selectively be toxic to tumor cells as evidenced by their capabilities to inhibit proliferation and induce apoptosis of tumor cells. The promising tumor treatment of TAS/DOX/pDNA NPs via a multiple synergistic manner arising from DOX and pDNA as well as the vectors would provide a potential strategy for a dual-delivery system to improve their therapeutic efficacies.
Collapse
Affiliation(s)
- Yudong Song
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
45
|
Singh Y, Durga Rao Viswanadham KK, Kumar Jajoriya A, Meher JG, Raval K, Jaiswal S, Dewangan J, Bora HK, Rath SK, Lal J, Mishra DP, Chourasia MK. Click Biotinylation of PLGA Template for Biotin Receptor Oriented Delivery of Doxorubicin Hydrochloride in 4T1 Cell-Induced Breast Cancer. Mol Pharm 2017. [PMID: 28636400 DOI: 10.1021/acs.molpharmaceut.7b00310] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PLGA was functionalized with PEG and biotin using click chemistry to generate a biotin receptor targeted copolymer (biotinylated-PEG-PLGA) which in turn was used to fabricate ultrafine nanoparticles (BPNP) of doxorubicin hydrochloride (DOX) for effective delivery in 4T1 cell induced breast cancer. However, adequate entrapment of a hydrophilic bioactive like DOX in a hydrophobic polymer system made of PLGA is not usually possible. We therefore modified a conventional W/O/W emulsion method by utilizing NH4Cl in the external phase to constrain DOX in dissolved polymer phase by suppressing DOX's inherent aqueous solubility as per common ion effect. This resulted in over 8-fold enhancement in entrapment efficiency of DOX inside BPNP, which otherwise is highly susceptible to leakage due to its relatively high aqueous solubility. TEM and DLS established BPNP to be sized below 100 nm, storage stability studies showed that BPNP were stable for one month at 4 °C, and in vitro release suggested significant control in drug release. Extensive in vitro and in vivo studies were conducted to propound anticancer and antiproliferative activity of BPNP. Plasma and tissue distribution study supplemented by pertinent in vivo fluorescence imaging mapped the exact fate of DOX contained inside BPNP once it was administered intravenously. A comparative safety profile via acute toxicity studies in mice was also generated to out rightly establish usefulness of BPNP. Results suggest that BPNP substantially enhance anticancer activity of DOX while simultaneously mitigating its toxic potential due to altered spatial and temporal presentation of drug and consequently deserve further allometric iteration.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | | | - Arun Kumar Jajoriya
- Endocrinology Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Swati Jaiswal
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Jayant Dewangan
- Division of Toxicology, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - H K Bora
- Laboratory animals facility, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Jawahar Lal
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Durga Prasad Mishra
- Endocrinology Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute , Lucknow 226031, India
| |
Collapse
|
46
|
Pawar VK, Singh Y, Sharma K, Shrivastav A, Sharma A, Singh A, Meher JG, Singh P, Raval K, Bora HK, Datta D, Lal J, Chourasia MK. Doxorubicin Hydrochloride Loaded Zymosan-Polyethylenimine Biopolymeric Nanoparticles for Dual 'Chemoimmunotherapeutic' Intervention in Breast Cancer. Pharm Res 2017; 34:1857-1871. [PMID: 28608139 DOI: 10.1007/s11095-017-2195-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To utilize nanoparticles produced by condensation of zymosan (an immunotherapeutic polysaccharide) with pegylated polyethylenimine (PEG-PEI) for dual intervention in breast cancer by modulating tumor microenvironment and direct chemotherapy. METHOD Positively charged PEG-PEI and negatively charged sulphated zymosan were utilized for electrostatic complexation of chemoimmunotherapeutic nanoparticles (ChiNPs). ChiNPs were loaded with doxorubicin hydrochloride (DOX) for improved delivery at tumor site and were tested for in-vivo tolerability. Biodistribution studies were conducted to showcase their effective accumulation in tumor hypoxic regions where tumor associated macrophages (TAMs) are preferentially recruited. RESULTS ChiNPs modulated TAMs differentiation resulting in decrement of CD206 positive population. This immunotherapeutic action was furnished by enhanced expression of Th1 specific cytokines. ChiNPs also facilitated an anti-angiogenetic effect which further reduces the possibility of tumor progression and metastasis.
Collapse
Affiliation(s)
- Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Komal Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Arpita Shrivastav
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Abhisheak Sharma
- Academy of Scientific & Innovative Research,, New Delhi, 110025, India.,Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Pankaj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India.,Academy of Scientific & Innovative Research,, New Delhi, 110025, India
| | - Himangshu K Bora
- Laboratory Animals Facility, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, U.P, 226031, India. .,Academy of Scientific & Innovative Research,, New Delhi, 110025, India.
| |
Collapse
|
47
|
Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, Bhadauria S, Chourasia MK. Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release 2017; 254:92-106. [DOI: 10.1016/j.jconrel.2017.03.395] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
48
|
Pandey G, Mittapelly N, Valicherla GR, Shukla RP, Sharma S, Banala VT, Urandur S, Jajoriya AK, Mitra K, Mishra DP, Gayen JR, Mishra PR. P-gp modulatory acetyl-11-keto-β-boswellic acid based nanoemulsified carrier system for augmented oral chemotherapy of docetaxel. Colloids Surf B Biointerfaces 2017; 155:276-286. [PMID: 28437753 DOI: 10.1016/j.colsurfb.2017.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023]
Abstract
In spite of being a very potent and promising drug against many types of cancer, docetaxel suffers the disadvantage of low solubility and poor bioavailability rendering it unsuitable for oral administration. Also, the available marketed formulation for intravenous administration has its inherent drawbacks owing to the presence of polysorbate 80. Here, we exploited the anticancer and P-gp inhibitory potential of naturally occurring frankincense oil to fabricate a stable docetaxel loaded nanoemulsified carrier system for oral delivery. The nanoemulsion possessing desirable particle size (122±12nm), polydispersity (0.086±0.007) and zeta potential (-29.8±2.1mV) was stable against all type of physical stresses and simulated physiological conditions tested. The formulation showed higher uptake in Caco-2 cells and inhibited P-gp transporter significantly (P<0.05). In MDA-MB-231 cells, it showed less IC50, arrested cells in G2-M phase and exhibited higher degree of apoptosis than marketed formulation Taxotere®. The 182.58±4.16% increment in relative oral bioavailability led to higher in vivo anti-proliferative activity manifesting 19% more inhibition than Taxotere®. Conclusively, it is revealed that the developed nanoemulsion will be a propitious approach towards alternative docetaxel therapy.
Collapse
Affiliation(s)
- Gitu Pandey
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Naresh Mittapelly
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Ravi Prakash Shukla
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shweta Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Sandeep Urandur
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Arun Kumar Jajoriya
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Lucknow, India
| | - D P Mishra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - J R Gayen
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - P R Mishra
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
49
|
Nanosized complexation assemblies housed inside reverse micelles churn out monocytic delivery cores for bendamustine hydrochloride. Eur J Pharm Biopharm 2017; 113:198-210. [DOI: 10.1016/j.ejpb.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
|
50
|
Vitamin E-rich Nanoemulsion Enhances the Antitumor Efficacy of Low-Dose Paclitaxel by Driving Th1 Immune Response. Pharm Res 2017; 34:1244-1254. [PMID: 28326458 DOI: 10.1007/s11095-017-2141-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To overcome the drawbacks of high dose regimen and improve the outcomes of chemotherapy at a low dose, an immunotherapeutic nanoemulsion based combination of chemotherapeutic agent (paclitaxel) with immunomodulatory agent (vitamin E) was developed and evaluated for their antitumor effect against breast cancer. METHODS A total of five nanoemulsions loaded with various content of vitamin E were prepared and characterized. The immunoregulatory effects of vitamin E along with the overall antitumor efficacy of vitamin E-rich nanoemulsion with a low dose of paclitaxel were investigated through in vitro and in vivo experiments. RESULTS Vitamin E-rich nanoemulsion exhibited relatively narrow size distribution, high entrapment efficiency and controlled in vitro release profile. In RAW264.7 cells, vitamin E-rich nanoemulsion significantly enhanced the secretion of Th1 cytokines and down-regulated the secretion of Th2 cytokine. In a co-culture system, vitamin E-rich nanoemulsion induced a high apoptosis rate in MDA-MB-231 cells as compared with vitamin E-low nanoemulsion. Furthermore, vitamin E-rich nanoemulsion exhibited superior in vivo antitumor efficacy in comparison with Taxol and vitamin E-low nanoemulsion at a paclitaxel dose of 4 mg/kg. CONCLUSIONS Vitamin E-rich nanoemulsion has great potential for the treatment of breast cancers with a low dose of paclitaxel via driving Th1 immune response.
Collapse
|