1
|
Saptiama I, Munir M, Qaira IS, Rindiyantono F, Nurmanjaya A, Prasetya KE, Subechi M, Marlina, Abidin, Suhariyono G, Ferry, Putri KSS, Wismogroho AS, Firdharini C. 99mTc radiolabeling of palm shell charcoal: A preliminary study for potential lung ventilation scintigraphy agent. Appl Radiat Isot 2025; 218:111689. [PMID: 39864134 DOI: 10.1016/j.apradiso.2025.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/23/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
To investigate the potential of activated carbon from palm kernel shell waste for 99mTc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based 99mTc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by 99mTc radiolabelling optimization. The optimal 99mTc radiolabeling conditions resulted in an adsorption capacity of 21.43 ng Re/g t-PSC (8.32 GBq 99mTc/g t-PSC). After high-energy milling treatment, fines particle fraction (FPF), and median mass aerodynamic diameter (MMAD) of the milled t-PSC were 28.34 ± 0.61%, and 8.31 ± 2.31 μm, respectively. The results imply that 99mTc-labeled t-PSC has a potential for lung ventilation scan agents with the optimization of milling process to reduce the aerodynamic size within the optimal lung delivery of less than 5 μm.
Collapse
Affiliation(s)
- I Saptiama
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), KST. BJ. Habibie, South Tangerang, 15314, Indonesia
| | - M Munir
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), KST. BJ. Habibie, South Tangerang, 15314, Indonesia.
| | - I S Qaira
- Polytechnic Institute of Nuclear Technology, Jl. Babarsari Kotak POB 6101/YKKB, Yogyakarta, 55281, Indonesia
| | - F Rindiyantono
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), KST. BJ. Habibie, South Tangerang, 15314, Indonesia
| | - A Nurmanjaya
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), KST. BJ. Habibie, South Tangerang, 15314, Indonesia
| | - K E Prasetya
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), KST. BJ. Habibie, South Tangerang, 15314, Indonesia
| | - M Subechi
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), KST. BJ. Habibie, South Tangerang, 15314, Indonesia
| | - Marlina
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), KST. BJ. Habibie, South Tangerang, 15314, Indonesia
| | - Abidin
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), KST. BJ. Habibie, South Tangerang, 15314, Indonesia
| | - G Suhariyono
- Research Center for Safety Metrology and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, 12440, Indonesia
| | - Ferry
- Laboratory of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia
| | - K S S Putri
- Laboratory of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia
| | - A S Wismogroho
- Research Center for Nanotechnology Systems, Research Organization for Nanotechnology and Materials, National Research and Innovation Agency, KST. BJ. Habibie, South Tangerang, 15314, Indonesia
| | - C Firdharini
- Department of Chemistry, Universitas Indonesia, Depok, 16424, Indonesia
| |
Collapse
|
2
|
Wu Y, Zhao S, Wang J, Chen Y, Li H, Li JP, Kan Y, Zhang T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int J Biol Macromol 2024; 282:137603. [PMID: 39542327 DOI: 10.1016/j.ijbiomac.2024.137603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hyaluronic acid (HA) is a linear high molecular weight polymer ubiquitously distributed in humans and animals. The D-glucuronic acid and N-acetyl-D-glucosamine repeating disaccharide backbone along with variable secondary and tertiary structures endows HA with unique rheological characteristics as well as diverse biological functions such as maintaining tissue homeostasis and mediating cell functions. Due to its excellent biocompatibility, biodegradability, viscoelasticity and moisturizing properties, natural HA and its chemically modified derivatives are widely used in medical, pharmaceutical, food and cosmetic industries. For broad application purposes, abundant HA-based biochemical products have been developed, including the methodologies for characterization of these products. This review provides an overview focusing on the methods used for determining HA structure as well as the strategies for constructing its derivatives. Apart from the analytical approaches for defining the physicochemical properties of HA (e.g., molecular weight, rheology and swelling capacity), quantitative methods for assessing the purity of HA-based materials are discussed. In addition, the biological functions and potential applications of HA and its derivatives are briefly embarked and perspectives in methodological development are discussed.
Collapse
Affiliation(s)
- Yiyang Wu
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Siran Zhao
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jiandong Wang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Yujuan Chen
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| |
Collapse
|
3
|
Tang Q, Huang Y, Müller M. Predicting protracted binding kinetics of polymers: Integral of first-passage times. Phys Rev E 2024; 110:044502. [PMID: 39562883 DOI: 10.1103/physreve.110.044502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024]
Abstract
Capturing protracted binding kinetics of polymers onto the surface of nanoobjects is crucial for the rational design of multifunctional nanostructures, such as patchy nanoparticles and nanodrug carriers. Recently, we developed a method-integral of first-passage times (IFS)-to successfully predict nonequilibrium, kinetically stable superstructures fabricated by two star polymers. However, whether the protracted binding kinetics predicted by IFS corresponds to the actual polymer adsorption has only been incompletely explored. In this paper, we clarify this issue by using IFS to study polymer adsorption with binding ends onto a planar wall as an example. At low free-energy barriers, the IFS-predicted polymer binding kinetics is consistent with those extracted from direct simulations. At high free-energy barriers, the protracted polymer adsorption predicted by IFS coincides with those measured in experiments. Our findings demonstrate the feasibility of IFS to study long-lived formation kinetics of polymer nanostructures by spanning timescales from picoseconds to macroscopic minutes, which establishes a foundation to use IFS in different applications.
Collapse
|
4
|
Narayana S, Gowda BHJ, Hani U, Shimu SS, Paul K, Das A, Ashique S, Ahmed MG, Tarighat MA, Abdi G. Inorganic nanoparticle-based treatment approaches for colorectal cancer: recent advancements and challenges. J Nanobiotechnology 2024; 22:427. [PMID: 39030546 PMCID: PMC11264527 DOI: 10.1186/s12951-024-02701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer, the third most prevalent cancer globally, contributes significantly to mortality rates, with over 1.9 million reported cases and nearly 935,000 fatalities annually. Surgical resection is a primary approach for localized colorectal tumors, with adjunct therapies like chemotherapy, radiotherapy, and targeted/immunotherapy considered depending on the tumor stage. However, despite preferences for targeted and immunotherapy post-surgery, chemotherapy remains commonly chosen due to its lower cost and high cancer-killing efficiency. Yet, chemotherapy faces issues such as tumor resistance and severe side effects. Nanotechnology has emerged in cancer therapy by alleviating the drawbacks of current treatment approaches. In the past few decades, inorganic nanoparticles have shown promise in combating colorectal cancer, offering advantages over conventional chemotherapy. Compared to organic nanoparticles, inorganic nanoparticles exhibit properties like photosensitivity, conductivity, magnetic allure, and thermal proficiency, allowing them to function as both drug carriers and therapeutic agents. Derived primarily from carbon, silica, metals, and metal oxides, they offer superior drug-loading capacity, heightened quantum yield, and participation in advanced photothermal and photodynamic therapies. This review provides a brief overview of the pathophysiology of colorectal cancer and the pivotal role of inorganic nanoparticles in photothermal therapy photodynamic therapy, and drug delivery. Additionally, it discusses numerous inorganic nanoparticles in colorectal cancer therapy based on recent literature.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India.
| | - Avinaba Das
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
- School of Pharmaceutical Sciences , Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
5
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
6
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Fu CP, Cai XY, Chen SL, Yu HW, Fang Y, Feng XC, Zhang LM, Li CY. Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery. Polymers (Basel) 2023; 15:polym15102317. [PMID: 37242892 DOI: 10.3390/polym15102317] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field.
Collapse
Affiliation(s)
- Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China
| | - Xing-Yu Cai
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Si-Lin Chen
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Hong-Wei Yu
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Ying Fang
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao-Chen Feng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chang-Yong Li
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
8
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
9
|
Asil SM, Guerrero ED, Bugarini G, Cayme J, De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F, Olmos R, Perches D, Roman J, Salcido-Padilla D, Sanchez E, Trejo C, Trevino P, Nurunnabi M, Narayan M. Theranostic applications of multifunctional carbon nanomaterials. VIEW 2023; 4:20220056. [PMID: 37426287 PMCID: PMC10328449 DOI: 10.1002/viw.20220056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Nanobiotechnology is one of the leading research areas in biomedical science, developing rapidly worldwide. Among various types of nanoparticles, carbon nanomaterials (CNMs) have attracted a great deal of attention from the scientific community, especially with respect to their prospective application in the field of disease diagnosis and therapy. The unique features of these nanomaterials, including favorable size, high surface area, and electrical, structural, optical, and chemical properties, have provided an excellent opportunity for their utilization in theranostic systems. Carbon nanotubes, carbon quantum dots, graphene, and fullerene are the most employed CNMs in biomedical fields. They have been considered safe and efficient for non-invasive diagnostic techniques such as fluorescence imaging, magnetic resonance imaging, and biosensors. Various functionalized CNMs exhibit a great capacity to improve cell targeting of anti-cancer drugs. Due to their thermal properties, they have been extensively used in cancer photothermal and photodynamic therapy assisted by laser irradiation and CNMs. CNMs also can cross the blood-brain barrier and have the potential to treat various brain disorders, for instance, neurodegenerative diseases, by removing amyloid fibrils. This review has summarized and emphasized on biomedical application of CNMs and their recent advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- Department of Environmental Science and Engineering, The University of Texas at El Paso, El Paso, Texas, USA
| | - Erick Damian Guerrero
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georgina Bugarini
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Joshua Cayme
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nydia De Avila
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jaime Garcia
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Adrian Hernandez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Julia Mecado
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yazeneth Madero
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Frida Moncayo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Rosario Olmos
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - David Perches
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jacob Roman
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Diana Salcido-Padilla
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Efrain Sanchez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Christopher Trejo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Paulina Trevino
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
10
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
11
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
12
|
Idris AO, Akanji SP, Orimolade BO, Olorundare FOG, Azizi S, Mamba B, Maaza M. Using Nanomaterials as Excellent Immobilisation Layer for Biosensor Design. BIOSENSORS 2023; 13:bios13020192. [PMID: 36831958 PMCID: PMC9953865 DOI: 10.3390/bios13020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/28/2023]
Abstract
The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials-graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots-and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and the chemistry behind their incorporation with other materials for biosensor design. The last section covers the prospects for the development and application of the highlighted nanomaterials.
Collapse
Affiliation(s)
- Azeez Olayiwola Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Seyi Philemon Akanji
- Petroleum Engineering, School of Engineering Department, Edith Cowan University, 270 Joondalup Drive, Perth, WA 6027, Australia
| | - Benjamin O. Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | | | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| |
Collapse
|
13
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
14
|
Brindhadevi K, Garalleh HAL, Alalawi A, Al-Sarayreh E, Pugazhendhi A. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Gupta T, Pawar B, Vasdev N, Pawar V, Tekade RK. Carbonaceous Nanomaterials for Phototherapy of Cancer. Technol Cancer Res Treat 2023; 22:15330338231186388. [PMID: 37461375 DOI: 10.1177/15330338231186388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Carbonaceous nanomaterials (CNMs) have drawn tremendous biomedical research interest because of their unique structural features. Recently, CNMs, namely carbon dots, fullerenes, graphene, etc, have been successful in establishing them as considerable nanotherapeutics for phototherapy applications due to their electrical, thermal, and surface properties. This review aims to crosstalk the current understanding of CNMs as multimodal compounds in photothermal and photodynamic therapies as an integrated approach to treating cancer. It also expounds on phototherapy's biomechanics and illustrates its relation to cancer biomodulation. Critical considerations related to the structural properties, fabrication approaches, surface functionalization strategies, and biosafety profiles of CNMs have been explained. This article provides an overview of the most recent developments in the study of CNMs used in phototherapy, emphasizing their usage as nanocarriers. To conquer the current challenges of CNMs, we can raise the standard of cancer therapy for patients. The review will be of interest to the researchers working in the area of photothermal and photodynamic therapies and aiming to explore CNMs and their conjugates in cancer therapy.
Collapse
Affiliation(s)
- Tanisha Gupta
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Nupur Vasdev
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Vinayak Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| |
Collapse
|
16
|
Burkert SC, He X, Shurin GV, Nefedova Y, Kagan VE, Shurin MR, Star A. Nitrogen-Doped Carbon Nanotube Cups for Cancer Therapy. ACS APPLIED NANO MATERIALS 2022; 5:13685-13696. [PMID: 36711215 PMCID: PMC9879341 DOI: 10.1021/acsanm.1c03245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon nanomaterials have attracted significant attention for a variety of biomedical applications including sensing and detection, photothermal therapy, and delivery of therapeutic cargo. The ease of chemical functionalization, tunable length scales and morphologies, and ability to undergo complete enzymatic degradation make carbon nanomaterials an ideal drug delivery system. Much work has been done to synthesize carbon nanomaterials ranging from carbon dots, graphene, and carbon nanotubes to carbon nanocapsules, specifically carbon nanohorns or nitrogen-doped carbon nanocups. Here, we analyze specific properties of nitrogen-doped carbon nanotube cups which have been designed and utilized as drug delivery systems with the focus on the loading of these nanocapsules with specific therapeutic cargo and the targeted delivery for cancer therapy. We also summarize our targeted synthesis of gold nanoparticles on the open edge of nitrogen-doped carbon nanotube cups to create loaded and sealed nanocarriers for the delivery of chemotherapeutic agents to myeloid regulatory cells responsible for the immunosuppressive properties of the tumor microenvironment and thus tumor immune escape.
Collapse
Affiliation(s)
- Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Yulia Nefedova
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Valerian E. Kagan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Corresponding author: Alexander Star —Department of Chemistry and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States;
| |
Collapse
|
17
|
Liu N, Mishra K, Stiel AC, Gujrati V, Ntziachristos V. The sound of drug delivery: Optoacoustic imaging in pharmacology. Adv Drug Deliv Rev 2022; 189:114506. [PMID: 35998826 DOI: 10.1016/j.addr.2022.114506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Optoacoustic (photoacoustic) imaging offers unique opportunities for visualizing biological function in vivo by achieving high-resolution images of optical contrast much deeper than any other optical technique. The method detects ultrasound waves that are generated inside tissue by thermo-elastic expansion, i.e., the conversion of light absorption by tissue structures to ultrasound when the tissue is illuminated by the light of varying intensity. Listening instead of looking to light offers the major advantage of image formation with a resolution that obeys ultrasonic diffraction and not photon diffusion laws. While the technique has been widely used to explore contrast from endogenous photo-absorbing molecules, such as hemoglobin or melanin, the use of exogenous agents can extend applications to a larger range of biological and possible clinical applications, such as image-guided surgery, disease monitoring, and the evaluation of drug delivery, biodistribution, and kinetics. This review summarizes recent developments in optoacoustic agents, and highlights new functions visualized and potent pharmacology applications enabled with the use of external contrast agents.
Collapse
Affiliation(s)
- Nian Liu
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vipul Gujrati
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich 80992, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
18
|
Mayol B, Dato V, Rodriguez M, Lucena E, Villalonga A, Díez P, Jimenez-Falcao S, Sancenón F, Sánchez A, Vilela D, Martínez-Ruiz P, Martínez-Máñez R, Villalonga R. An enzyme-controlled mesoporous nanomachine for triple-responsive delivery. J Mater Chem B 2022; 10:6983-6990. [PMID: 36004753 DOI: 10.1039/d2tb01069k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of a novel enzyme-controlled nanomachine with multiple release mechanisms for on-command delivery is described. This nanodevice was assembled by modifying mesoporous silica nanoparticles with 2-(benzo[d]thiazol-2-yl)phenyl 4-aminobenzoate moieties, and further capped with β-cyclodextrin-modified glucose oxidase neoglycoenzyme. The device released the encapsulated payload in the presence of H2O2 and acidic media. The use of glucose as an input chemical signal also triggered cargo release through the enzymatic production of gluconic acid and hydrogen peroxide, and the subsequent disruption of the gating mechanism at the mesoporous surface. The nanodevice was successfully employed for the enzyme-controlled release of doxorubicin in HeLa cancer cells.
Collapse
Affiliation(s)
- Beatriz Mayol
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Victor Dato
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Manuel Rodriguez
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Elena Lucena
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Uni-versitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Po-litècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Anabel Villalonga
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Paula Díez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Uni-versitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Po-litècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Sandra Jimenez-Falcao
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Uni-versitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Po-litècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Alfredo Sánchez
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Diana Vilela
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Paloma Martínez-Ruiz
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Uni-versitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Po-litècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Reynaldo Villalonga
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Serda M, Malarz K, Korzuch J, Szubka M, Zubko M, Musioł R. In Situ Cellular Localization of Nonfluorescent [60]Fullerene Nanomaterial in MCF-7 Breast Cancer Cells. ACS Biomater Sci Eng 2022; 8:3450-3462. [PMID: 35856645 PMCID: PMC9364322 DOI: 10.1021/acsbiomaterials.2c00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Cellular localization of carbon nanomaterials in cancer
cells is
essential information for better understanding their interaction with
biological targets and a crucial factor for further evaluating their
biological properties as nanovehicles or nanotherapeutics. Recently,
increasing efforts to develop promising fullerene nanotherapeutics
for cancer nanotechnology have been made. However, the main challenge
regarding studying their cellular effects is the lack of effective
methods for their visualization and determining their cellular fate
due to the limited fluorescence of buckyball scaffolds. Herein, we
developed a method for cellular localization of nonfluorescent and
water-soluble fullerene nanomaterials using the in vitro click chemistry approach. First, we synthesized a triple-bonded
fullerene probe (TBC60ser), which was further used as a
starting material for 1,3-dipolar cycloaddition using 3-azido-7-hydroxycoumarin
and sulfo-cyanine5 azide fluorophores to create fluorescent fullerene
triazoles. In this work, we characterized the structurally triple-bonded
[60]fullerene derivative and confirmed its high symmetry (Th) and the successful formation
of fullerene triazoles by spectroscopic techniques (i.e., ultraviolet–visible,
fluorescence, and Fourier transform infrared spectroscopies) and mass
spectrometry. The created fluorescent fullerene triazoles were successfully
localized in the MCF-7 breast cancer cell line using fluorescent microscopy.
Overall, our findings demonstrate that TBC60ser localizes
in the lysosomes of MCF-7 cells, with only a small affinity to mitochondria.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland
| | - Katarzyna Malarz
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland.,Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Julia Korzuch
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland
| | - Magdalena Szubka
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland.,Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Maciej Zubko
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.,Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland
| |
Collapse
|
20
|
Cation-pi interaction: A strategy for enhancing the performance of graphene-based drug delivery systems. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| |
Collapse
|
22
|
Mostafavi E, Iravani S, Varma RS, Khatami M, Rahbarizadeh F. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. MATERIALS ADVANCES 2022; 3:4765-4782. [PMID: 35812837 PMCID: PMC9207599 DOI: 10.1039/d2ma00341d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) with attractive physicochemical characteristics such as high surface area, mechanical strength, functionality, and electrical/thermal conductivity have been widely studied in different fields of science. However, the preparation of these nanostructures on a large scale is either expensive or sometimes ecologically unfriendly. In this context, plenty of studies have been conducted to discover innovative methods to fabricate CNTs in an eco-friendly and inexpensive manner. CNTs have been synthesized using various natural hydrocarbon precursors, including plant extracts (e.g., tea-tree extract), essential oils (e.g., eucalyptus and sunflower oil), biodiesel, milk, honey, and eggs, among others. Additionally, agricultural bio-wastes have been widely studied for synthesizing CNTs. Researchers should embrace the usage of natural and renewable precursors as well as greener methods to produce various types of CNTs in large quantities with the advantages of cost-effectiveness and environmentally benign features. In addition, multifunctionalized CNTs with improved biocompatibility and targeting features are promising candidates for cancer theranostic applications owing to their attractive optical, chemical, thermal, and electrical properties. This perspective discusses the recent developments in eco-friendly synthesis of CNTs using green chemistry-based techniques, natural renewable resources, and sustainable catalysts, with emphasis on important challenges and future perspectives and highlighting techniques for the functionalization or modification of CNTs. Significant and promising cancer theranostic applications as well as their biocompatibility and cytotoxicity issues are also discussed.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc Slechtitelu 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Non-communicable Diseases Research Center, Bam University of Medical Sciences Bam Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
23
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
24
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
25
|
He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater Today Bio 2022; 14:100231. [PMID: 35280329 PMCID: PMC8896867 DOI: 10.1016/j.mtbio.2022.100231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases (such as Corona Virus Disease 2019) and tumors pose a tremendous challenge to global public health. Early diagnosis of infectious diseases and tumors can lead to effective control and early intervention of the patient's condition. Over the past few decades, carbon nanomaterials (CNs) have attracted widespread attention in different scientific disciplines. In the field of biomedicine, carbon nanotubes, graphene, carbon quantum dots and fullerenes have the ability of improving the accuracy of the diagnosis by the improvement of the diagnostic approaches. Therefore, this review highlights their applications in the diagnosis of infectious diseases and tumors over the past five years. Recent advances in the field of biosensing, bioimaging, and nucleic acid amplification by such CNs are introduced and discussed, emphasizing the importance of their unique properties in infectious disease and tumor diagnosis and the challenges and opportunities that exist for future clinical applications. Although the application of CNs in the diagnosis of several diseases is still at a beginning stage, biosensors, bioimaging technologies and nucleic acid amplification technologies built on CNs represent a new generation of promising diagnostic tools that further support their potential application in infectious disease and tumor diagnosis.
Collapse
Affiliation(s)
| | | | - Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
26
|
Hashemi F, Mohajeri N, Radnia F, Zarghami N. Design an Efficient Fluorescent Nanoplatform Carrier for Hydrophobic Drugs Along with Green Carbon Dot: Possible Application in Cancer Cell Image-Guided Drug Therapy. Photodiagnosis Photodyn Ther 2022; 37:102738. [PMID: 35074467 DOI: 10.1016/j.pdpdt.2022.102738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
Nowadays, medical science and nanotechnology collaboration has taken novel approaches to advance cancer therapeutic efficacy employing multifunctional nanocarriers with drug delivery and imaging function. In this work, we designed a biocompatible and affordable fluorescence nanocarrier called chitosan (CS)-carbon dot (CD) hybrid nanogel for cell imaging. The green CDs were synthesized using tomato juice through a simple single-step hydrothermal method. Chitosan polymer was used as a carrier for co-delivery CDs and the anti-cancer drug with low solubility, silibinin (Sil), to design the Sil-chitosan carbon dots hybrid nanogels (CCHNs) system. After optimizing the physicochemical properties of nanostructure by DLS, FTIR, FESEM, TEM, and UV-visible techniques, the successful uptake of the fluorescent nanoparticle conjugates into MCF-7 breast cancer cells occurred. Then we embedded CDs in chitosan nanogel. The resultant CCHNs demonstrated optical properties similar to free-CDs, a desirable size distribution (55.22 nm) with a positive surface charge, a suitable loading capacity for Sil (35%), and drug release vulnerable to pH changes. The fluorescent nanocarrier could transfer Sil to MCF-7 cancer cells without remarkable toxicity. The results of the fluorescent microscope indicated that after 4 h, the solid fluorescent signal was received from cells containing CCHNs compared to free CDs and confirmed the ability of hybrid nanogels to high cellular uptake. This study demonstrates a multifunctional nanocarrier containing therapeutic compounds and fluorescent agents that provide cellular imaging to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Fatemeh Hashemi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Radnia
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
27
|
Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021; 19:423. [PMID: 34915901 PMCID: PMC8679967 DOI: 10.1186/s12951-021-01174-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the exciting breakthroughs in medical technology, cancer still accounts for one of the principle triggers of death and conventional therapeutic modalities often fail to attain an effective cure. Recently, nanobiotechnology has made huge advancement in cancer therapy with gigantic application potential because of their ability in achieving precise and controlled drug release, elevating drug solubility and reducing adverse effects. Carbon nanotubes (CNTs), one of the most promising carbon-related nanomaterials, have already achieved much success in biomedical field. Due to their excellent optical property, thermal and electronic conductivity, easy functionalization ability and high drug loading capacity, CNTs can be applied in a multifunctional way for cancer treatment and diagnosis. In this review, we will give an overview of the recent progress of CNT-based drug delivery systems in cancer theranostics, which emphasizes their targetability to intracellular components of tumor cells and extracellular elements in tumor microenvironment. Moreover, a detailed introduction on how CNTs penetrate inside the tumor cells to reach their sites of action and achieve the therapeutic effects, as well as their diagnostic applications will be highlighted. ![]()
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
28
|
Wang G, Ren H, Chen Q, Zhou M, Xie F, Yan M, Wang Q, Bi H. Eco‐friendly
PCL
@
CDs
biomaterials via phytic acid,
CDs
‐cocatalyzed polymerization for rifapentin delivery. J Appl Polym Sci 2021. [DOI: 10.1002/app.51984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoyu Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Huifang Ren
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiuyang Chen
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Mingchen Zhou
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Fei Xie
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Manqing Yan
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Hong Bi
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| |
Collapse
|
29
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
30
|
Campos G, Chialva C, Miras S, Lijavetzky D. New Technologies and Strategies for Grapevine Breeding Through Genetic Transformation. FRONTIERS IN PLANT SCIENCE 2021; 12:767522. [PMID: 34899790 PMCID: PMC8655788 DOI: 10.3389/fpls.2021.767522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 05/09/2023]
Abstract
Grapevine, as other woody perennials, has been considered a recalcitrant crop to produce transgenic plants. Since the production of transgenic and/or edited plants requires the ability to regenerate plants from transformed tissues, this step is often the biggest bottleneck in the process. The objective of this work is to review the state of the art technologies and strategies for the improvement of grapevine transformation and regeneration, focusing on three aspects: (i) problems associated with grapevine transformation; (ii) genes that promote grapevine regeneration; and (iii) vehicles for gene delivery. Concerning the first aspect, it is well documented that one of the main factors explaining the low success rate in obtaining transgenic plants is the regeneration process. After transgenic integration into receptor cells, tissue culture is required to regenerate transgenic seedlings from transformed cells. This process is time consuming and often requires the addition of environmentally damaging reagents (antibiotics and herbicides) to the culture medium to select transgenic plants. On the other hand, the expression of genes such as the so-called developmental regulators (DR), which induce specific development programs, can be used to avoid traditional tissue culture methods. The ectopic expression of specific combinations of DR in somatic cells has the potential to induce de novo meristems in diverse crops, including grapevine. Successful genome editing by de novo reprogramming of plant meristems in somatic tissues has been reported. Moreover, it has been shown that the expression of certain transcription factors can increase the regeneration efficiency in wheat, citrus, and rice. Finally, recent reports showed the use of nanoparticles, such as carbon dots (CDs), as an attractive alternative to Agrobacterium- and biolistic-mediated plant genetic transformation. In this way, the use of antibiotics in culture media is avoided, overcoming the loss of viability of plant tissues and accelerating the regeneration processes. It has been shown that CDs can act as a vehicle to transport plasmids to plant cells in transient transformation in several crops without negative impacts on photosynthesis or growth. Based on these advances, it is possible to combine these new available strategies and technologies to overcome the regeneration problems of species such as grapevine and other crops considered as recalcitrant.
Collapse
Affiliation(s)
| | | | | | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
| |
Collapse
|
31
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
32
|
Kandasamy G, Maity D. Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112199. [PMID: 34225852 DOI: 10.1016/j.msec.2021.112199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
33
|
Tjo K, Varamini P. Nanodiamonds and their potential applications in breast cancer therapy: a narrative review. Drug Deliv Transl Res 2021; 12:1017-1028. [PMID: 33970463 DOI: 10.1007/s13346-021-00996-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer remains the most commonly diagnosed cancer and the leading cause of cancer-related death among women worldwide. With the projected increase in breast cancer cases in recent years, optimising treatment becomes increasingly important. Current treatment modalities in breast cancer present major limitations, including chemoresistance, dose-limiting adverse effects and lack of selectivity in aggressive subtypes of breast cancers such as triple-negative breast cancer. Nanodiamonds have demonstrated promising outcomes in preclinical models from their unique surface characteristics allowing optimised delivery of various therapeutic agents, overcoming some of the significant hurdles in conventional treatment modalities. This review will present an update on preclinical findings of nanodiamond-based drug delivery systems for breast cancer therapy to date, challenges with the use of nanodiamonds along with considerations for future research.
Collapse
Affiliation(s)
- Kenny Tjo
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2016, Australia
| | - Pegah Varamini
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2016, Australia. .,Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
34
|
Karki N, Tiwari H, Tewari C, Rana A, Pandey N, Basak S, Sahoo NG. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J Mater Chem B 2021; 8:8116-8148. [PMID: 32966535 DOI: 10.1039/d0tb01149e] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Graphene oxide (GO) has attracted tremendous attention as a most promising nanomaterial among the carbon family since it emerged as a polynomial functional tool with rational applications in diverse fields such as biomedical engineering, electrocatalysis, biosensing, energy conversion, and storage devices. Despite having certain limitations due to its irreversible aggregation performance owing largely to the strong van der Waals interactions, efforts have been made to smartly engineer its surface chemistry for realistic multimodal applications. The use of such GO-based engineered devices has increased rapidly in the last few years, principally due to its excellent properties, such as huge surface area, honeycomb-like structure allowing vacant interstitial space to accommodate compounds, sp2 hybridized carbon, improved biocompatibility and cell surface penetration due to electronic interactions. Amongst multifaceted GO dynamics, in this review, attempts are made to discuss the advanced applications of GO or graphene-based materials (GBNs) in the biomedical field involving drug or therapeutic gene delivery, dual drug or drug-gene combination targeting, special delivery of drug cocktails to the brain, stimuli-responsive release of molecular payloads, and Janus-structured smart applications for polar-nonpolar combination drug loading followed by targeting together with smart bioimaging approaches. In addition, the advantages of duel-drug delivery systems are discussed in detail. We also discuss various electronic mechanisms, and detailed surface engineering to meet microcosmic criteria for its utilization, various novel implementations of engineered GO as mentioned above, together with discussions of its inevitable toxicity or disadvantages. We hope that the target audience, belonging to biomedical engineering, pharmaceutical or material science fields, may acquire relevant information from this review which may help them design future studies in this field.
Collapse
Affiliation(s)
- Neha Karki
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Himani Tiwari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Chetna Tewari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Anita Rana
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Neema Pandey
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| | - Souvik Basak
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal 713206, India
| | - Nanda Gopal Sahoo
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, D.S.B. Campus, Nainital, 263002, India.
| |
Collapse
|
35
|
Choi G, Rejinold NS, Piao H, Choy JH. Inorganic-inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci 2021; 12:5044-5063. [PMID: 34168768 PMCID: PMC8179608 DOI: 10.1039/d0sc06724e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced nanotechnology has been emerging rapidly in terms of novel hybrid nanomaterials that have found various applications in day-to-day life for the betterment of the public. Specifically, gold, iron, silica, hydroxy apatite, and layered double hydroxide based nanohybrids have shown tremendous progress in biomedical applications, including bio-imaging, therapeutic delivery and photothermal/dynamic therapy. Moreover, recent progress in up-conversion nanohybrid materials is also notable because they have excellent NIR imaging capability along with therapeutic benefits which would be useful for treating deep-rooted tumor tissues. Our present review highlights recent developments in inorganic-inorganic nanohybrids, and their applications in bio-imaging, drug delivery, and photo-therapy. In addition, their future scope is also discussed in detail.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- College of Science and Technology, Dankook University Cheonan 31116 Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- Department of Pre-medical Course, College of Medicine, Dankook University Cheonan 31116 Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| |
Collapse
|
36
|
Wang M, Li B, Du Y, Bu H, Tang Y, Huang Q. Fluorescence imaging-guided cancer photothermal therapy using polydopamine and graphene quantum dot-capped Prussian blue nanocubes. RSC Adv 2021; 11:8420-8429. [PMID: 35423381 PMCID: PMC8695181 DOI: 10.1039/d0ra10491d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, imaging-guided photothermal tumor ablation has attracted intense research interest as one of the most exciting strategies for cancer treatment. Herein, we prepared polydopamine and graphene quantum dot-capped Prussian blue nanocubes (PB@PDA@GQDs, PBPGs) with high photothermal conversion efficiency and excellent fluorescence performance for imaging-guided cancer treatment. Transmission electron microscopy (TEM), UV-vis absorption spectroscopy (UV-vis), fluorescence spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to characterize their morphology and structures. The photothermal conversion efficiency and therapeutic effect were evaluated in vitro and in vivo. Results revealed that this nanoagent had excellent biocompatibility and enhanced the photothermal effect compared to blue nanocubes (PBs) and polydopamine-capped Prussian blue nanocubes (PB@PDA, PBPs). Therefore, our study may open a new path for the production of PB-based nanocomposites as theranostic nanoagents for imaging-guided photothermal cancer treatment.
Collapse
Affiliation(s)
- Meng Wang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Province and School of Life Sciences, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Baolong Li
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| | - Yu Du
- Medical Technology School, Xuzhou Medical University Xuzhou Jiangsu 221000 China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Province and School of Life Sciences, Jiangsu Normal University Xuzhou Jiangsu 221116 China
- Department of Physiology, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Yanyan Tang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| | - Qingli Huang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| |
Collapse
|
37
|
Sajjadi M, Nasrollahzadeh M, Jaleh B, Soufi GJ, Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. J Drug Target 2021; 29:716-741. [PMID: 33566719 DOI: 10.1080/1061186x.2021.1886301] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon-based nanomaterials are becoming attractive materials due to their unique structural dimensions and promising mechanical, electrical, thermal, optical and chemical characteristics. Carbon nanotubes, graphene, graphene oxide, carbon and graphene quantum dots have numerous applications in diverse areas, including biosensing, drug/gene delivery, tissue engineering, imaging, regenerative medicine, diagnosis, and cancer therapy. Cancer remains one of the major health problems all over the world, and several therapeutic approaches are focussed on designing targeted anticancer drug delivery nanosystems by applying benign and less hazardous resources with high biocompatibility, ease of functionalization, remarkable targeted therapy issues, and low adverse effects. This review highlights the recent development on these carbon based-nanomaterials in the field of targeted cancer therapy and discusses their possible and promising diagnostic and therapeutic applications for the treatment of cancers.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Ghanbari N, Salehi Z, Khodadadi A, Shokrgozar M, Saboury A, Farzaneh F. Tryptophan-functionalized graphene quantum dots with enhanced curcumin loading capacity and pH-sensitive release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Tîlmaciu CM, Dinesh B, Pellerano M, Diot S, Guidetti M, Vollaire J, Bianco A, Ménard-Moyon C, Josserand V, Morris MC. Nanobiosensor Reports on CDK1 Kinase Activity in Tumor Xenografts in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007177. [PMID: 33502119 DOI: 10.1002/smll.202007177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Probing the dynamics and quantifying the activities of intracellular protein kinases that coordinate cell growth and division and constitute biomarkers and pharmacological targets in hyperproliferative and pathological disorders remain a challenging task. Here engineering and characterization of a nanobiosensor of the mitotic kinase CDK1, through multifunctionalization of carbon nanotubes with a CDK1-specific fluorescent peptide reporter, are described. This original reporter of CDK1 activity combines the sensitivity of a fluorescent biosensor with the unique physico-chemical and biological properties of nanotubes for multifunctionalization and efficient intracellular penetration. The functional versatility of this nanobiosensor enables implementation to quantify CDK1 activity in a sensitive and dose-dependent fashion in complex biological environments in vitro, to monitor endogenous kinase in living cells and directly within tumor xenografts in mice by fluorescence imaging, thanks to a ratiometric quantification strategy accounting for response relative to concentration in space and in time.
Collapse
Affiliation(s)
- Carmen Mihaela Tîlmaciu
- Institut des Biomolécules Max Mousseron-CNRS, UMR5247, Université de Montpellier, Montpellier, 34093, France
| | - Bhimareddy Dinesh
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron-CNRS, UMR5247, Université de Montpellier, Montpellier, 34093, France
| | - Sebastien Diot
- Institut des Biomolécules Max Mousseron-CNRS, UMR5247, Université de Montpellier, Montpellier, 34093, France
| | - Mélanie Guidetti
- Institut pour l'Avancée des Biosciences, INSERM U1209, CNRS UMR-5309, Université Grenoble Alpes, Grenoble, 38000, France
| | - Julien Vollaire
- Institut pour l'Avancée des Biosciences, INSERM U1209, CNRS UMR-5309, Université Grenoble Alpes, Grenoble, 38000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Véronique Josserand
- Institut pour l'Avancée des Biosciences, INSERM U1209, CNRS UMR-5309, Université Grenoble Alpes, Grenoble, 38000, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron-CNRS, UMR5247, Université de Montpellier, Montpellier, 34093, France
| |
Collapse
|
40
|
Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. ADVANCED THERAPEUTICS 2021; 4:2000203. [PMID: 33173809 PMCID: PMC7646027 DOI: 10.1002/adtp.202000203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Systemic delivery of therapeutics for treatment of lung diseases has several limitations including poor organ distribution of delivered payload with relatively low accumulation of active substances in the lungs and severe adverse side effects. In contrast, nanocarrier based therapeutics provide a broad range of opportunities due to their ability to encapsulate substances with different aqueous solubility, transport distinct types of cargo, target therapeutics specifically to the deceased organ, cell, or cellular organelle limiting adverse side effects and increasing the efficacy of therapy. Moreover, many nanotherapeutics can be delivered by inhalation locally to the lungs avoiding systemic circulation. In addition, nanoscale based delivery systems can be multifunctional, simultaneously carrying out several tasks including diagnostics, treatment and suppression of cellular resistance to the treatment. Nanoscale delivery systems improve the clinical efficacy of conventional therapeutics allowing new approaches for the treatment of respiratory diseases which are difficult to treat or possess intrinsic or acquired resistance to treatment. The present review summarizes recent advances in the development of nanocarrier based therapeutics for local and targeted delivery of drugs, nucleic acids and imaging agents for diagnostics and treatment of various diseases such as cancer, cystic fibrosis, and coronavirus.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Tamara Minko
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
41
|
Abstract
Different carbon nanostructures have been explored as functional materials for the development of effective nanomaterials in cancer treatment applications. This review mainly aims to discuss the features, either strength or weakness, of carbon nanohorn (CNH), carbon conical horn-shaped nanostructures of sp2 carbon atoms. The interest for these materials arises from their ability to couple the clinically relevant properties of carbon nanomaterials as drug carriers with the negligible toxicity described in vivo. Here, we offer a comprehensive overview of the recent advances in the use of CNH in cancer treatments, underlining the benefits of each functionalization route and approach, as well as the biological performances of either loaded and unloaded materials, while discussing the importance of delivery devices.
Collapse
|
42
|
Alshehri S, Imam SS, Rizwanullah M, Akhter S, Mahdi W, Kazi M, Ahmad J. Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharmaceutics 2020; 13:E24. [PMID: 33374391 PMCID: PMC7823416 DOI: 10.3390/pharmaceutics13010024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Early detection, right therapeutic intervention, and simultaneous effectiveness mapping are considered the critical factors in successful cancer therapy. Nevertheless, these factors experience the limitations of conventional cancer diagnostics and therapeutics delivery approaches. Along with providing the targeted therapeutics delivery, advances in nanomedicines have allowed the combination of therapy and diagnostics in a single system (called cancer theranostics). This paper discusses the progress in the pre-clinical and clinical development of therapeutics, diagnostics, and theranostics cancer nanomedicines. It has been well evident that compared to the overabundance of works that claimed success in pre-clinical studies, merely 15 and around 75 cancer nanomedicines are approved, and currently under clinical trials, respectively. Thus, we also brief the critical bottlenecks in the successful clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; or
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK;
| | - Wael Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
43
|
Review on Carbon Nanotube Varieties for Healthcare Application: Effect of Preparation Methods and Mechanism Insight. Processes (Basel) 2020. [DOI: 10.3390/pr8121654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many potential uses of carbon nanotubes (CNT) in various sectors have created an urge to assess their diverse range of properties pertaining to various applications like catalysis, biosensor, and antimicrobial activity. Increasing studies on the biosensor and antibacterial activity of CNT have prompted tremendous interest in the utilization of the carbon-based nanostructured material as an alternative to currently existing antibiotics. However, the study of bactericidal aspects of this nanomaterial is relatively new and hence the deeper understanding of the various physicochemical characteristics and antimicrobial nature of CNT is extremely wanted. This review covers the effect of framework substitution and explains the understanding of membrane disintegration and oxidative stresses upon nanomaterials for antimicrobial activity. The present article has also reviewed effect of preparation nanoparticle deposition and framework modification on carbon nanotube structure. The recent research on graphene-modified nanomaterials for biosensor applications related to healthcare/clinical applications have also been discussed. Major physicochemical contributing factors such as size, functionalization, high surface area, and aggregation features of CNT assisting in the bacterial killing have nicely been outlined. Hence, the present review explains the supporting information related with Single and multi-walled carbon nanotube and summarized the advantages of functionalized carbon nanotube/graphene-based nanostructured carbon-based materials towards protection and reduction of bacterial/viral infections in the healthcare sector.
Collapse
|
44
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
45
|
Gao Y, Gao D, Shen J, Wang Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Front Chem 2020; 8:598722. [PMID: 33330389 PMCID: PMC7732422 DOI: 10.3389/fchem.2020.598722] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Chemotherapy is an important anti-tumor treatment in clinic to date, however, the effectiveness of traditional chemotherapy is limited by its poor selectivity, high systemic toxicity, and multidrug resistance. In recent years, mesoporous silica nanoparticles (MSNs) have become exciting drug delivery systems (DDS) due to their unique advantages, such as easy large-scale production, adjustable uniform pore size, large surface area and pore volumes. While mesoporous silica-based DDS can improve chemotherapy to a certain extent, when used in combination with other cancer therapies MSN based chemotherapy exhibits a synergistic effect, greatly improving therapeutic outcomes. In this review, we discuss the applications of MSN DDS for a diverse range of chemotherapeutic combination anti-tumor therapies, including phototherapy, gene therapy, immunotherapy and other less common modalities. Furthermore, we focus on the characteristics of each nanomaterial and the synergistic advantages of the combination therapies. Lastly, we examine the challenges and future prospects of MSN based chemotherapeutic combination therapies.
Collapse
Affiliation(s)
- Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Cao Y, Wu C, Liu Y, Hu L, Shang W, Gao Z, Xia N. Folate functionalized pH-sensitive photothermal therapy traceable hollow mesoporous silica nanoparticles as a targeted drug carrier to improve the antitumor effect of doxorubicin in the hepatoma cell line SMMC-7721. Drug Deliv 2020; 27:258-268. [PMID: 32009475 PMCID: PMC7034047 DOI: 10.1080/10717544.2020.1718801] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this paper, we prepared doxorubicin-loaded folic acid-functionalized pH-sensitive
photothermal therapy (PTT) traceable hollow mesoporous silica nanoparticles (DOX-HPCF) as
a drug carrier for liver cancer treatment. According to TEM characterization, hollow
mesoporous silica nanoparticles (HMSN) are monodispersed spherical particles with hollow
structure. In vitro drug release experiments showed that HPCF exhibited
pH-sensitive release. Cell uptake experiments showed that HPCF was successfully absorbed
by SMMC-7721 cells. In addition, DOX-HPCF significantly inhibited the proliferation of
SMMC-7721 cells, and the near-infrared (NIR) light group showed a more obvious inhibitory
effect. In vivo anti-tumor experiments showed that DOX-HPCF-assisted PTT
inhibited tumor growth significantly. Therefore, HPCF is a promising photothermotherapy
carrier for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yue Cao
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Hu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wenjing Shang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhanshan Gao
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Nan Xia
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
47
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
48
|
Tang Q, Rossner C, Vana P, Müller M. Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations. Biomacromolecules 2020; 21:5008-5020. [PMID: 33076657 DOI: 10.1021/acs.biomac.0c01184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of forming multifunctional nanostructures, such as nanotheranostic superstructures, is often highly protracted, involving macroscopic time scales and resulting in nanostructures that correspond to kinetically stable states rather than thermodynamic equilibrium. Predicting such kinetically stable nanostructures becomes a great challenge due to the widely different, relevant time scales that are implicated in the formation kinetics of nano-objects. We develop a methodology, integral of first-passage times from constrained simulations (IFS), to predict kinetically stable, planet-satellite nanotheranostic superstructures. The simulation results are consistent with our experimental observations. The developed methodology enables the exploration of time scales from molecular vibrations of 10-3 ns toward macroscopic scales, 1010 ns, which permits the rational design and prediction of kinetically stable nanotheranostic superstructures for applications in nanomedicine.
Collapse
Affiliation(s)
- Qiyun Tang
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Christian Rossner
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany.,Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Physikalische Chemie und Physik der Polymere, Hohe Straße 6, 01069 Dresden, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. NANOTECHNOLOGY 2020; 31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An increasing amount of evidence has demonstrated the diverse functionalities of nanomaterials in oncotherapies such as drug delivery, imaging, and killing cancer cells. This review aims to offer an authoritative guide for the development of nanomaterial-based oncotherapies and shed light on emerging yet understudied hallmarks of cancer where nanoparticles can help improve cancer control. With this aim, three nanomaterials, i.e. those based on gold, graphene, and liposome, were selected to represent and encompass metal inorganic, nonmetal inorganic, and organic nanomaterials, and four oncotherapies, i.e. phototherapies, immunotherapies, cancer stem cell therapies, and metabolic therapies, were characterized based on the differential hallmarks of cancer that they target. We also view physical plasma as a cocktail of reactive species and carrier of nanomaterials and focus on its roles in targeting the hallmarks of cancer provided with its unique traits and ability to selectively induce epigenetic and genetic modulations in cancer cells that halt tumor initiation and progression. This review provides a clear understanding of how the physico-chemical features of particles at the nanoscale contribute alone or create synergistic effects with current treatment modalities in combating each of the hallmarks of cancer that ultimately leads to desired therapeutic outcomes and shapes the toolbox for cancer control.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
50
|
Codelivery of HIF-1α siRNA and Dinaciclib by Carboxylated Graphene Oxide-Trimethyl Chitosan-Hyaluronate Nanoparticles Significantly Suppresses Cancer Cell Progression. Pharm Res 2020; 37:196. [PMID: 32944844 DOI: 10.1007/s11095-020-02892-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Hypoxia-inducible factor (HIF) is one of the critical components of the tumor microenvironment that is involved in tumor development. HIF-1α functionally and physically interacts with CDK1, 2, and 5 and stimulates the cell cycle progression and Cyclin-Dependent Kinase (CDK) expression. Therefore, hypoxic tumor microenvironment and CDK overexpression lead to increased cell cycle progression and tumor expansion. Therefore, we decided to suppress cancer cell expansion by blocking HIF-1α and CDK molecules. METHODS In the present study, we used the carboxylated graphene oxide (CGO) conjugated with trimethyl chitosan (TMC) and hyaluronate (HA) nanoparticles (NPs) loaded with HIF-1α-siRNA and Dinaciclib, the CDK inhibitor, for silencing HIF-1α and blockade of CDKs in CD44-expressing cancer cells and evaluated the impact of combination therapy on proliferation, metastasis, apoptosis, and tumor growth. RESULTS The results indicated that the manufactured NPs had conceivable physicochemical properties, high cellular uptake, and low toxicity. Moreover, combination therapy of cancer cells using CGO-TMC-HA NPs loaded with HIF-1α siRNA and Dinaciclib (SCH 727965) significantly suppressed the CDKs/HIF-1α and consequently, decreased the proliferation, migration, angiogenesis, and colony formation in tumor cells. CONCLUSIONS These results indicate the ability of CGO-TMC-HA NPs for dual drug/gene delivery in cancer treatment. Furthermore, the simultaneous inhibition of CDKs/HIF-1α can be considered as a novel anti-cancer treatment strategy; however, further research is needed to confirm this treatment in vivo. Graphical Abstract The suppression of HIF-1α and CDKs inhibits cancer growth. HIF-1α is overexpressed by the cells present in the tumor microenvironment. The hypoxic environment elevates mitochondrial ROS production and increases p38 MAP kinase, JAK/STAT, ERK, JNK, and Akt/PI3K signaling, resulting in cyclin accumulation and aberrant cell cycle progression. Furthermore, the overexpression of HIF-1α/CDK results in increased expression of genes such as BCL2, Bcl-xl, Ki-67, TGFβ, VEGF, FGF, MMP2, MMP9, and, HIF-1α and consequently raise the survival, proliferation, angiogenesis, metastasis, and invasion of tumor cells. In conclusion, HIF-1α-siRNA/Dinaciclib-loaded CGO-TMC-HA NPs can inhibit the tumor expansion by blockage of CDKs and HIF-1α (JAK: Janus kinase, STAT: Signal transducer and activator of transcription, MAPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, JNK: c-Jun N-terminal kinase, PI3K: phosphatidylinositol 3-kinase).
Collapse
|