1
|
van Agtmaal JL, van Hoogstraten SWG, Arts JJC. Prosthetic Joint Infection Research Models in NZW Rabbits: Opportunities for Standardization-A Systematic Review. J Funct Biomater 2024; 15:307. [PMID: 39452605 PMCID: PMC11508679 DOI: 10.3390/jfb15100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Prosthetic joint infection (PJI) is a major complication following total arthroplasty. Rising antimicrobial resistance (AMR) to antibiotics will further increase therapeutic insufficiency. New antibacterial technologies are being developed to prevent PJI. In vivo models are still needed to bridge the translational gap to clinical implementation. Though rabbit models have been used most frequently, there is no consensus about methodology and measured outcomes. The PubMed, Scopus, and EMBASE databases were searched for literature on PJI in rabbit models. Data extraction included bias control, experimental design, and outcome measures of the NZW rabbit models in the articles. A total of 60 articles were included in this systematic literature review. The articles were divided into six groups based on the PJI intervention: no intervention used (21%), revision surgery (14%), prevention with only antibiotics (21%), prevention with surface modifications (7%), prevention with coatings (23%), and others (14%). Despite the current availability of guidelines and recommendations regarding experimental design, bias control, and outcome measures, many articles neglect to report on these matters. Ultimately, this analysis aims to assist researchers in determining suitable clinically relevant methodologies and outcome measures for in vivo PJI models using NZW rabbits to test new antimicrobial technologies.
Collapse
Affiliation(s)
- Julia L. van Agtmaal
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
| | - Sanne W. G. van Hoogstraten
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
| | - Jacobus J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre, 6229 Maastricht, The Netherlands; (J.L.v.A.); (S.W.G.v.H.)
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, 5612 Eindhoven, The Netherlands
| |
Collapse
|
2
|
Kazek-Kęsik A, de Carrillo DG, Maciak W, Taratuta A, Walas Z, Matak D, Simka W. Biocompatibility analysis of titanium bone wedges coated by antibacterial ceramic-polymer layer. Sci Rep 2024; 14:23085. [PMID: 39367113 PMCID: PMC11452723 DOI: 10.1038/s41598-024-72931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
This paper presents the surface treatment results of titanium, veterinary bone wedges. The functional coating is composed of a porous oxide layer (formed by a plasma electrolytic oxidation process) and a polymer poly(sebacic anhydride) (PSBA) layer loaded with amoxicillin (formed by dip coatings). The coatings were porous and composed of Ca (4.16%-6.54%) and P (7.64%-9.89% determined by scanning electron microscopy with EDX) in the upper part of the implant. The titanium bone wedges were hydrophilic (54° water contact angle) and rough (surface area (Sa):1.16 μm) The surface tension determined using diiodomethane was 68.6 ± 2.0° for the anodized implant and was similar for hybrid coatings: 60.7 ± 2.2°. 12.87 ± 0.91 µg/mL of amoxicillin was released from the implants during the first 30 min after immersion in the phosphate-buffered saline (PBS) solution. This concentration was enough to inhibit the Staphylococcus aureus ATCC 25923, and Staphylococcus epidermidis ATCC12228 growth. The obtained inhibition zones were between 27.3 ± 2.1 mm-30.7 ± 0.6 mm when implant extract after 1 h or 4 h immersion in PBS was collected. Various implant biocompatibility analyses were performed under in vivo conditions, including pyrogen test (3 rabbits), intracutaneous reactivity (3 rabbits, 5 places by side), acute systemic toxicity (20 house mice), and local lymph node assay (LLNA) (20 house mice). The extracts from implants were collected in polar and non-polar solutions, and the tests were conducted according to ISO 10993 standards. The results from the in vivo tests showed, that the implant's extracts are not toxic (mass body change below 5%), not sensitizing (SI < 1.6), and do not show the pyrogen effect (changes in the temperature 0.15ºC). The biocompatibility tests were performed in a certificated laboratory with a good laboratory practice certificate after all the necessary permissions.
Collapse
Affiliation(s)
- Alicja Kazek-Kęsik
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100, Gliwice, Poland.
- Biotechnology Centre, Silesian University of Technology, Krzywoustego Str. 8, 44-100, Gliwice, Poland.
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055, Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Weronika Maciak
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100, Gliwice, Poland
| | - Anna Taratuta
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 Street, Zabrze, Poland
| | - Zuzanna Walas
- European Biomedical Institute, Nałkowskiej Street 5, 05-410, Józefów, Poland
| | - Damian Matak
- European Biomedical Institute, Nałkowskiej Street 5, 05-410, Józefów, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100, Gliwice, Poland
| |
Collapse
|
3
|
Saliy O, Popova M, Tarasenko H, Getalo O. Development strategy of novel drug formulations for the delivery of doxycycline in the treatment of wounds of various etiologies. Eur J Pharm Sci 2024; 195:106636. [PMID: 38185273 DOI: 10.1016/j.ejps.2023.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Doxycycline hyclate (DOXH) is a broad-spectrum antibiotic derived synthetically from tetracycline. Despite its use in clinical practice for more than 40 years, DOXH remains an effective antibiotic with retained activity. The potential advantages of DOXH for wound healing therapy include its mechanisms of action, such as anti-inflammatory effects, antioxidant properties, modulation of cellular processes, stimulation of collagen synthesis, and antimicrobial activity. As current standards of care aim to improve wound healing by promoting rapid closure, a relevant direction is the development of novel DOXH formulations for parenteral delivery that enhance both skin regeneration and control of infectious conditions. Oral delivery is the most common and commercially available route for administering DOXH therapeutic agents. However, parenteral delivery of DOXH, where the antibiotic substance is not in a solid state (as in powdered or compressed solid form) but rather dissolved in any carrier, presents challenges regarding DOX solubility and the stability of DOXH solutions, which are major factors complicating the development of new formulations for parenteral administration. This review discusses the achievements in research strategies and the development of new pharmaceutical formulations for the delivery of doxycycline in the treatment of wounds of various etiologies.
Collapse
Affiliation(s)
- Olena Saliy
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine
| | - Mariia Popova
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine.
| | - Hanna Tarasenko
- Department of Industrial Pharmacy, Kyiv National University of Technologies and Design, Mala Shyianovska (Nemyrovycha-Danchenka) Street, 2, Kyiv 01011, Ukraine
| | - Olga Getalo
- Department of Industrial, Clinical pharmacy and Clinical pharmacology, Shupyk National Healthcare University of Ukraine, Dorohozhytska Street 9, Kyiv 04112 Ukraine
| |
Collapse
|
4
|
Kaspiris A, Vasiliadis E, Pantazaka E, Lianou I, Melissaridou D, Savvidis M, Panagopoulos F, Tsalimas G, Vavourakis M, Kolovos I, Savvidou OD, Pneumaticos SG. Current Progress and Future Perspectives in Contact and Releasing-Type Antimicrobial Coatings of Orthopaedic Implants: A Systematic Review Analysis Emanated from In Vitro and In Vivo Models. Infect Dis Rep 2024; 16:298-316. [PMID: 38667751 PMCID: PMC11050497 DOI: 10.3390/idr16020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Despite the expanding use of orthopedic devices and the application of strict pre- and postoperative protocols, the elimination of postoperative implant-related infections remains a challenge. Objectives: To identify and assess the in vitro and in vivo properties of antimicrobial-, silver- and iodine-based implants, as well as to present novel approaches to surface modifications of orthopedic implants. Methods: A systematic computer-based review on the development of these implants, on PubMed and Web of Science databases, was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Overall, 31 in vitro and 40 in vivo entries were evaluated. Regarding the in vitro studies, antimicrobial-based coatings were assessed in 12 entries, silver-based coatings in 10, iodine-based in 1, and novel-applied coating technologies in 8 entries. Regarding the in vivo studies, antimicrobial coatings were evaluated in 23 entries, silver-coated implants in 12, and iodine-coated in 1 entry, respectively. The application of novel coatings was studied in the rest of the cases (4). Antimicrobial efficacy was examined using different bacterial strains, and osseointegration ability and biocompatibility were examined in eukaryotic cells and different animal models, including rats, rabbits, and sheep. Conclusions: Assessment of both in vivo and in vitro studies revealed a wide antimicrobial spectrum of the coated implants, related to reduced bacterial growth, inhibition of biofilm formation, and unaffected or enhanced osseointegration, emphasizing the importance of the application of surface modification techniques as an alternative for the treatment of orthopedic implant infections in the clinical settings.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Elias Vasiliadis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Ioanna Lianou
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Matthaios Savvidis
- Second Orthopedic Department, 424 General Military Hospital, 56429 Thessaloniki, Greece;
| | - Fotios Panagopoulos
- Department of Orthopedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Georgios Tsalimas
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Michail Vavourakis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Ioannis Kolovos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Spiros G. Pneumaticos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.V.); (G.T.); (M.V.); (I.K.); (S.G.P.)
| |
Collapse
|
5
|
Sharma P, Baghel A. Outcome of intramedullary nail coated with antibiotic-impregnated cement in chronic osteomyelitis. Ann Afr Med 2023; 22:434-439. [PMID: 38358142 PMCID: PMC10775937 DOI: 10.4103/aam.aam_185_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Chronic osteomyelitis (Chr OM) may result as a sequel of acute hematogenous infection or following open fractures or orthopedic surgeries. Among various osteoarticular infections, Chr OM is one of the most challenging in terms of treatment. In the present study, we evaluate the outcome of antibiotic cement-coated nails in the treatment of chronic pyogenic osteomyelitis and also discuss the future innovations in field of antibiotic-compatible biomaterials for coating the implants. Materials and Methods Twelve cases of Chr OM (5 hematogenous and 7 exogenous following trauma or surgery) were operated by intramedullary nail coated with antibiotic-impregnated bone cement from September 2018 to January 2021. All the cases had bacteriological confirmation of infection by deep curettage and its subsequent culture sensitivity. K nail was used in 10 cases and elastic stable intramedullary nails were used in 2 cases. Results Out of 12 cases, 8 were male and 4 were female. The average duration of follow-up was 13 months. Infection was controlled in all the cases (two cases required repeat antibiotic-coated nailing), and there was no incidence of relapse in any case. The control of infection was assessed by clinical assessment and laboratory parameters. Conclusion Antibiotic cement-coated nails are an effective method in local control of infection in Chr OM without any systemic side effect.
Collapse
Affiliation(s)
- Pulak Sharma
- Department of Orthopaedics, Apex Trauma Center, SGPGI, Lucknow, Uttar Pradesh, India
| | - Anurag Baghel
- Department of Orthopaedics, Apex Trauma Center, SGPGI, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Emanuel N, Kozloski GA, Nedvetzki S, Rosenfeld S. Potent antibacterial activity in surgical wounds with local administration of D-PLEX 100. Eur J Pharm Sci 2023; 188:106504. [PMID: 37353092 DOI: 10.1016/j.ejps.2023.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/28/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Despite significant advances in infection control guidelines and practices, surgical site infections remain a substantial cause of morbidity, prolonged hospitalization, and mortality. The most effective component of SSI reduction strategies is the preoperative administration of intravenous antibiotics; however, systemic antibiotics drug exposure diminishes rapidly and may result in insufficient prophylactic activity against susceptible and resistant SSI pathogens at the wound. D-PLEX100 (D-PLEX) is an antibiotic-releasing drug (doxycycline) that is supplied as a sterile powder for paste reconstitution with sterile saline. D-PLEX paste is administered locally into the incision site along the entire length of soft tissue and sternal bone wound surfaces prior to skin closure. A single D-PLEX administration is intended for 30 days of constant antimicrobial prophylaxis in the prevention of incisional SSIs. We evaluated D-PLEX minimal bactericidal concentration (MBC) against a panel of bacteria that is prevalent in the abdominal wall and sternal surgical procedures including doxycycline susceptible and resistant strains. D-PLEX in vivo efficacy was assessed in incisional infection rabbit models (abdominal wall and sternal) challenged with a similar bacterial panel. The D-PLEX drug exposure profile was determined by in vitro release assay, and in vivo by quantitative pharmacokinetic parameters of local and systemic doxycycline concentrations released from D-PLEX after local administration in incisional rabbit models. Analyses of pathogens and variations in antibiotic resistance from wound isolates were determined from patients who participated in a previously reported prospective randomized trial that assessed the SSI rate in D-PLEX plus standard of care (SOC) versus SOC alone in colorectal resection surgery. The D-PLEX MBC values demonstrated >3- Log10 reduction in all the organisms tested relative to untreated controls, including doxycycline-resistant bacteria (i.e., Methicillin-resistant Staphylococcus aureus (MRSA), K. pneumoniae, and P. aeruginosa). In vivo, D-PLEX significantly reduced the bacterial loads in all the bacteria tested in both animal models (p=0.0001) with a marked impact observed in E. Coli (>6.5 Log10 reduction). D-PLEX exhibited a zero-order release kinetics profile in vitro for 30 days (R2 = 0.971) and the matched in vivo release profile indicated a constant local release of protein-unbound doxycycline for 30 days at 3-5 mcg/mL with significantly lower (>3 orders of magnitudes) systemic levels. In colorectal surgery patients, where significant SSI reduction was observed, analysis of the positive cultures in the overall population indicated similar pathogen diversity and antibiotic resistance rates in both treatment arms. However, almost all the patients with positive culture in the SOC arm were adjudicated as SSI (94%) compared to only 28% in the D-PLEX arm. The SSI-adjudicated D-PLEX patients also exhibited lower resistance rates to the SOC antibiotics and to MDRs compared to patients in the SOC arm. Thus, D-PLEX provides safe and effective prophylaxis activity against the most prevalent SSI pathogens including doxycycline-susceptible and resistant bacteria. Our findings suggest that D-PLEX is a promising addition to SSI prophylactic bundles and may address the gaps in current SSI prophylaxis. D-PLEX is now evaluated in Phase 3 clinical trial.
Collapse
|
7
|
Johansen MI, Rahbek SJ, Jensen-Fangel S, Minero GAS, Jensen LK, Larsen OH, Erikstrup LT, Seefeldt AM, Østergaard L, Meyer RL, Jørgensen NP. Fibrinolytic and antibiotic treatment of prosthetic vascular graft infections in a novel rat model. PLoS One 2023; 18:e0287671. [PMID: 37463137 PMCID: PMC10353806 DOI: 10.1371/journal.pone.0287671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES We developed a rat model of prosthetic vascular graft infection to assess, whether the fibrinolytic tissue plasminogen activator (tPA) could increase the efficacy of antibiotic therapy. MATERIALS AND METHODS Rats were implanted a polyethylene graft in the common carotid artery, pre-inoculated with approx. 6 log10 colony forming units (CFU) of methicillin resistant Staphylococcus aureus. Ten days after surgery, rats were randomized to either: 0.9% NaCl (n = 8), vancomycin (n = 8), vancomycin + tPA (n = 8), vancomycin + rifampicin (n = 18) or vancomycin + rifampicin + tPA (n = 18). Treatment duration was seven days. Approximately 36 hours after the end of treatment, the rats were euthanized, and grafts and organs were harvested for CFU enumeration. RESULTS All animals in the control group had significantly higher CFU at the time of euthanization compared to bacterial load found on the grafts prior to inoculation (6.45 vs. 4.36 mean log10 CFU/mL, p = 0.0011), and both the procedure and infection were well tolerated. Vancomycin and rifampicin treatment were superior to monotherapy with vancomycin, as it lead to a marked decrease in median bacterial load on the grafts (3.50 vs. 6.56 log10 CFU/mL, p = 0.0016). The addition of tPA to vancomycin and rifampicin combination treatment did not show a further decrease in bacterial load (4.078 vs. 3.50 log10 CFU/mL, p = 0.26). The cure rate was 16% in the vancomycin + rifampicin group vs. 37.5% cure rate in the vancomycin + rifampicin + tPA group. Whilst interesting, this trend was not significant at our sample size (p = 0.24). CONCLUSION We developed the first functional model of an arterial prosthetic vascular graft infection in rats. Antibiotic combination therapy with vancomycin and rifampicin was superior to vancomycin monotherapy, and the addition of tPA did not significantly reduce bacterial load, nor significantly increase cure rate.
Collapse
Affiliation(s)
- Mikkel Illemann Johansen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Søren Jensen Rahbek
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Louise Kruse Jensen
- Faculty of Health and Medical Science, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Halfdan Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Rikke Louise Meyer
- Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
8
|
Farasati Far B, Naimi-Jamal MR, Sedaghat M, Hoseini A, Mohammadi N, Bodaghi M. Combinational System of Lipid-Based Nanocarriers and Biodegradable Polymers for Wound Healing: An Updated Review. J Funct Biomater 2023; 14:jfb14020115. [PMID: 36826914 PMCID: PMC9963106 DOI: 10.3390/jfb14020115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Skin wounds have imposed serious socioeconomic burdens on healthcare providers and patients. There are just more than 25,000 burn injury-related deaths reported each year. Conventional treatments do not often allow the re-establishment of the function of affected regions and structures, resulting in dehydration and wound infections. Many nanocarriers, such as lipid-based systems or biobased and biodegradable polymers and their associated platforms, are favorable in wound healing due to their ability to promote cell adhesion and migration, thus improving wound healing and reducing scarring. Hence, many researchers have focused on developing new wound dressings based on such compounds with desirable effects. However, when applied in wound healing, some problems occur, such as the high cost of public health, novel treatments emphasizing reduced healthcare costs, and increasing quality of treatment outcomes. The integrated hybrid systems of lipid-based nanocarriers (LNCs) and polymer-based systems can be promising as the solution for the above problems in the wound healing process. Furthermore, novel drug delivery systems showed more effective release of therapeutic agents, suitable mimicking of the physiological environment, and improvement in the function of the single system. This review highlights recent advances in lipid-based systems and the role of lipid-based carriers and biodegradable polymers in wound healing.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
- Correspondence: (M.R.N.-J.); (M.B.)
| | - Meysam Sedaghat
- Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Alireza Hoseini
- Department of Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Negar Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135733184, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (M.R.N.-J.); (M.B.)
| |
Collapse
|
9
|
Lynch JP, Zhanel GG. Escalation of antimicrobial resistance among MRSA part 1: focus on global spread. Expert Rev Anti Infect Ther 2023; 21:99-113. [PMID: 36470275 DOI: 10.1080/14787210.2023.2154653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Staphylococcus aureus produce numerous virulence factors that influence tissue invasion, cytotoxicity, membrane damage, and intracellular persistence allowing them to be very common human pathogens. S. aureus isolates exhibit considerable diversity though specific genotypes have been associated with antimicrobial resistance (AMR) and toxin gene profiles. MRSA is an important pathogen causing both community-acquired (CA) and healthcare-acquired (HCA) infections. Importantly, over the past several decades, both HCA-MRSA and CA-MRSA have spread all over the globe. Even more concerning is that CA-MRSA clones have disseminated into hospitals and HCA-MRSA have entered the community. Factors that enhance spread of MRSA include: poor antimicrobial stewardship and inadequate infection control. The emergence and spread of multidrug resistant (MDR) MRSA has limited therapeutic options. AREAS COVERED The authors discuss the escalation of MRSA, both HCA-MRSA and CA-MRSA across the globe. A literature search of MRSA was performed via PubMed (up to September 2022), using the key words: antimicrobial resistance; β-lactams; community-associated MRSA; epidemiology; infection; multidrug resistance; Staphylococcus aureus. EXPERT OPINION Over the past several decades, MRSA has spread all over the globe. We encourage the judicious use of antimicrobials in accordance with antimicrobial stewardship programs along with infection control measures to minimize the spread of MRSA.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at Ucla, Los Angeles, CA, USA
| | - George G Zhanel
- Professor-Department of Medical Microbiology and Infectious Diseases, Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023; 15:pharmaceutics15010223. [PMID: 36678852 PMCID: PMC9862589 DOI: 10.3390/pharmaceutics15010223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.
Collapse
|
11
|
Zmora O, Stark Y, Belotserkovsky O, Reichert M, Kozloski GA, Wasserberg N, Tulchinsky H, Segev L, Senagore AJ, Emanuel N. A prospective, randomized assessment of a novel, local antibiotic releasing platform for the prevention of superficial and deep surgical site infections. Tech Coloproctol 2023; 27:209-215. [PMID: 36050560 PMCID: PMC9898410 DOI: 10.1007/s10151-022-02693-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite significant advances in infection control guidelines and practices, surgical site infections (SSIs) remain a substantial cause of morbidity, prolonged hospitalization, and mortality among patients having both elective and emergent surgeries. D-PLEX100 is a novel, antibiotic-eluting polymer-lipid matrix that supplies a high, local concentration of doxycycline for the prevention of superficial and deep SSIs. The aim of our study was to evaluate the safety and efficacy of D-PLEX in addition to standard of care (SOC) in preventing superficial and deep surgical site infections for patients undergoing elective colorectal surgery. METHODS From October 10, 2018 to October 6, 2019, as part of a Phase 2 clinical trial, we randomly assigned 202 patients who had scheduled elective colorectal surgery to receive either standard of care SSI prophylaxis or D-PLEX100 in addition to standard of care. The primary objective was to assess the efficacy of D-PLEX100 in superficial and deep SSI reduction, as measured by the incidence of SSIs within 30 days, as adjudicated by both an individual assessor and a three-person endpoint adjudication committee, all of whom were blinded to study-group assignments. Safety was assessed by the stratification and incidence of treatment-emergent adverse events. RESULTS One hundred and seventy-nine patients were evaluated in the per protocol population, 88 in the intervention arm [51 males, 37 females, median age (64.0 range: 19-92) years] and 91 in the control arm [57 males, 34 females, median age 64.5 (range: 21-88) years]. The SSI rate within 30 day post-index surgery revealed a 64% relative risk reduction in SSI rate in the D-PLEX100 plus standard of care (SOC) group [n = 7/88 (8%)] vs SOC alone [n = 20/91 (22%)]; p = 0.0115. There was no significant difference in treatment-emergent adverse events. CONCLUSIONS D-PLEX100 application leads to a statistically significant reduction in superficial and deep surgical site infections in this colorectal clinical model without any associated increase in adverse events.
Collapse
Affiliation(s)
- O Zmora
- Shamir Medical Center, Be'er Ya'akov, Israel
| | - Y Stark
- PolyPid Ltd, Petach Tikvah, Israel
| | | | | | | | - N Wasserberg
- Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - H Tulchinsky
- Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - L Segev
- Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | | | | |
Collapse
|
12
|
Bohara S, Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res 2022; 26:26. [PMID: 35725501 PMCID: PMC9208209 DOI: 10.1186/s40824-022-00269-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
The use of orthopedic implants in surgical technology has fostered restoration of physiological functions. Along with successful treatment, orthopedic implants suffer from various complications and fail to offer functions correspondent to native physiology. The major problems include aseptic and septic loosening due to bone nonunion and implant site infection due to bacterial colonization. Crucial advances in material selection in the design and development of coating matrixes an opportunity for the prevention of implant failure. However, many coating materials are limited in in-vitro testing and few of them thrive in clinical tests. The rate of implant failure has surged with the increasing rates of revision surgery creating physical and sensitive discomfort as well as economic burdens. To overcome critical pathogenic activities several systematic coating techniques have been developed offering excellent results that combat infection and enhance bone integration. This review article includes some more common implant coating matrixes with excellent in vitro and in vivo results focusing on infection rates, causes, complications, coating materials, host immune responses and significant research gaps. This study provides a comprehensive overview of potential coating technology, with functional combination coatings which are focused on ultimate clinical practice with substantial improvement on in-vivo tests. This includes the development of rapidly growing hydrogel coating techniques with the potential to generate several accurate and precise coating procedures.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| | - Jackrit Suthakorn
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|
13
|
Induced Membrane Technique for the Treatment of Infected Forearm Nonunion: A Retrospective Study. J Hand Surg Am 2022; 47:583.e1-583.e9. [PMID: 34563414 DOI: 10.1016/j.jhsa.2021.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Infected forearm nonunion remains a challenge for the hand surgeon. Autologous bone grafting within an induced membrane following implantation of a cement spacer, also known as the Masquelet technique, is a procedure used for addressing segmental bone defects. This report summarized our experience using this technique to treat the infected forearm nonunion. METHODS We retrospectively reviewed a series of 32 patients treated for infected forearm nonunion by the 2-stage Masquelet technique between 2009 and 2018. There was an infected nonunion of the ulna in 28 patients and an infected nonunion of the radius in 4 patients. All patients had undergone an average of 2.7 procedures before presenting at our institution. Treatment involved a staged procedure in which an antibiotic-impregnated cement spacer was implanted into the bone defect following debridement without internal fixation. It was left in place for 4-6 weeks, during which time a membrane formed around the cement spacer. In the second stage, the induced membrane was incised, and the cement spacer was removed. The defect was then filled with cancellous autograft with the addition of internal fixation. Postoperative radiographs were taken for the evaluation of bone healing. The functional results of the affected forearm were evaluated for motion loss of elbow or wrist and rotation loss of forearm. RESULTS All nonunions healed without recurrent infection or loosening of internal fixation at the time of final follow-up. All the patients showed substantial functional improvement, with excellent results in 14 patients, satisfactory results in 13, and unsatisfactory results in 5. CONCLUSIONS The induced membrane technique is an effective solution for infected forearm nonunion. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic IV.
Collapse
|
14
|
Wei H, Song X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. BIOMATERIALS ADVANCES 2022; 135:212739. [PMID: 35929213 DOI: 10.1016/j.bioadv.2022.212739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria and biofilm-related infections (BRIs) has urgently called for new strategies to combat severe orthopaedic device-related infections (ODRIs). Antimicrobial coating has emerged as a promising strategy in halting the incidence of ODRIs and treating ODRIs in long term. With the advancement of material science and biotechnology, numerous antimicrobial coatings have been reported in literature, showing superior antimicrobial and osteogenic functions. This review has specifically discussed the currently developed antimicrobial coatings in the perspective of drug release from the coating system, focusing on their realization of controlled and on demand antimicrobial agents release, as well as multi-functionality. Acknowledging the multidisciplinary nature of antimicrobial coating, the conceptual design, the deposition method and the therapeutic effect of the antimicrobial coatings have been described in detail and discussed critically. Particularly, the challenges and opportunities on the way toward the clinical translation of antimicrobial coatings have been highlighted.
Collapse
Affiliation(s)
- Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
15
|
Addressing the Needs of the Rapidly Aging Society through the Development of Multifunctional Bioactive Coatings for Orthopedic Applications. Int J Mol Sci 2022; 23:ijms23052786. [PMID: 35269928 PMCID: PMC8911303 DOI: 10.3390/ijms23052786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The unprecedented aging of the world's population will boost the need for orthopedic implants and expose their current limitations to a greater extent due to the medical complexity of elderly patients and longer indwelling times of the implanted materials. Biocompatible metals with multifunctional bioactive coatings promise to provide the means for the controlled and tailorable release of different medications for patient-specific treatment while prolonging the material's lifespan and thus improving the surgical outcome. The objective of this work is to provide a review of several groups of biocompatible materials that might be utilized as constituents for the development of multifunctional bioactive coatings on metal materials with a focus on antimicrobial, pain-relieving, and anticoagulant properties. Moreover, the review presents a summary of medications used in clinical settings, the disadvantages of the commercially available products, and insight into the latest development strategies. For a more successful translation of such research into clinical practice, extensive knowledge of the chemical interactions between the components and a detailed understanding of the properties and mechanisms of biological matter are required. Moreover, the cost-efficiency of the surface treatment should be considered in the development process.
Collapse
|
16
|
Li Y, Chen R, Wang F, Cai X, Wang Y. Antimicrobial peptide GL13K immobilized onto SLA-treated titanium by silanization: antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA). RSC Adv 2022; 12:6918-6929. [PMID: 35424597 PMCID: PMC8981691 DOI: 10.1039/d1ra04974g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/22/2022] [Indexed: 02/03/2023] Open
Abstract
Infection is the main reason for implant failure, and the incidence of drug-resistant bacterial infection has increased in recent years. Further, methicillin-resistant Staphylococcus aureus (MRSA)-related implant infection has become a serious worldwide threat. New strategies, other than antibiotics, to tackle drug-resistance, are of high clinical significance. Antimicrobial peptides show clear superiority over conventional antibiotics in inhibiting drug-resistant bacteria. In the present study, we combined the antimicrobial peptide, GL13K, with sandblasting and acid-etching (SLA)-treated titanium using a silane coupling agent. Field emission scanning electron microscopy images showed the morphology of the coating. Attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results confirmed loading of GL13K, and the hydrophilicity of the SLA-GL13K coating was evaluated by water contact angle analysis. The releasing study of samples showed that the coating has a sustained releasing profile. SLA-GL13K coating exhibited strong contact- and release-killing abilities against MRSA, E. coli, and S. aureus. Meanwhile, Cell Counting Kit 8 analysis and examination of cell morphology demonstrated that the SLA-GL13K coating had good cytocompatibility at antibacterial concentrations. Overall, all these results suggest that SLA-GL13K coating can be successfully fabricated using silanization, and is a promising candidate for controlling MRSA-induced implant-related infection.
Collapse
Affiliation(s)
- Yusang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
| | - Ruiying Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Department of Implant Dentistry Shanghai China
| | - Fushi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Cariology and Endodontics Wuhan China
| | - Xinjie Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Prosthodontics Wuhan China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Prosthodontics Wuhan China
| |
Collapse
|
17
|
Costa B, Martínez-de-Tejada G, Gomes PAC, L. Martins MC, Costa F. Antimicrobial Peptides in the Battle against Orthopedic Implant-Related Infections: A Review. Pharmaceutics 2021; 13:1918. [PMID: 34834333 PMCID: PMC8625235 DOI: 10.3390/pharmaceutics13111918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
Prevention of orthopedic implant-related infections is a major medical challenge, particularly due to the involvement of biofilm-encased and multidrug-resistant bacteria. Current therapies, based on antibiotic administration, have proven to be insufficient, and infection prevalence may rise due to the dissemination of antibiotic resistance. Antimicrobial peptides (AMPs) have attracted attention as promising substitutes of conventional antibiotics, owing to their broad-spectrum of activity, high efficacy at very low concentrations, and, importantly, low propensity for inducing resistance. The aim of this review is to offer an updated perspective of the development of AMPs-based preventive strategies for orthopedic and dental implant-related infections. In this regard, two major research strategies are herein addressed, namely (i) AMP-releasing systems from titanium-modified surfaces and from bone cements or beads; and (ii) AMP immobilization strategies used to graft AMPs onto titanium or other model surfaces with potential translation as coatings. In overview, releasing strategies have evolved to guarantee higher loadings, prolonged and targeted delivery periods upon infection. In addition, avant-garde self-assembling strategies or polymer brushes allowed higher immobilized peptide surface densities, overcoming bioavailability issues. Future research efforts should focus on the regulatory demands for pre-clinical and clinical validation towards clinical translation.
Collapse
Affiliation(s)
- Bruna Costa
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (B.C.); (F.C.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP–Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Guillermo Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, Irunlarrea, 1, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Paula A. C. Gomes
- CIQ-UP e Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - M. Cristina L. Martins
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (B.C.); (F.C.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fabíola Costa
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (B.C.); (F.C.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Cheng X, Long D, Chen L, Jansen JA, Leeuwenburgh SC, Yang F. Electrophoretic deposition of silk fibroin coatings with pre-defined architecture to facilitate precise control over drug delivery. Bioact Mater 2021; 6:4243-4254. [PMID: 33997504 PMCID: PMC8102429 DOI: 10.1016/j.bioactmat.2021.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
The therapeutic precision and clinical applicability of drug-eluting coatings can be substantially improved by facilitating tunable drug delivery. However, the design of coatings which allows for precise control over drug release kinetics is still a major challenge. Here, a double-layered silk fibroin (SF) coating system was constructed by sequential electrophoretic deposition. A mixture of dissolved Bombyx mori SF (bmSF) molecules and pre-made bmSF nanospheres at different ratios was deposited as under-layer. Subsequently, this underlayer was covered by a top-layer comprising Antheraea pernyi SF (apSF) molecules (rich in arginylglycylaspartic acid, RGD) to improve the cellular response of the resulting double-layered coatings. Additionally, model drug doxycycline was either pre-mixed with dissolved bmSF molecules or pre-loaded into pre-made bmSF nanospheres at the same amount before their mixing and deposition. The thickness and nanosphere content of the under-layer architecture were proportional to the deposition time and nanosphere concentration in precursor mixtures, respectively. The surface topography, wettability, degradation rate and adhesion strength were comparable within the double-layered coating system. As expected, RGD-rich apSF top-layer improved cell adhesion, spreading and proliferation compared with bmSF top-layer. Furthermore, the amount and duration of drug release increased linearly with increasing nanosphere concentration at fixed deposition time, whereas drug release amount increased linearly with increasing deposition time. These results indicate that the dosage and kinetics of loaded drugs can be quantitatively tailored by altering nanosphere concentration and deposition time as main processing parameters. Overall, this study illustrates the strong potential of pre-defining coating architecture to facilitate control over drug delivery.
Collapse
Affiliation(s)
- Xian Cheng
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, PR China
| | - Dingpei Long
- Institute for Biomedical Sciences, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30302, USA
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| | - Fang Yang
- Department of Dentistry-Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX Nijmegen, the Netherlands
| |
Collapse
|
19
|
Kasza K, Gurnani P, Hardie KR, Cámara M, Alexander C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: A tissue-by-tissue account. Adv Drug Deliv Rev 2021; 178:113973. [PMID: 34530014 DOI: 10.1016/j.addr.2021.113973] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
To tackle the emerging antibiotic resistance crisis, novel antimicrobial approaches are urgently needed. Bacterial communities (biofilms) are a particular concern in this context. Biofilms are responsible for most human infections and are inherently less susceptible to antibiotic treatments. Biofilms have been linked with several challenging chronic diseases, including implant-associated osteomyelitis and chronic wounds. The specific local environments present in the infected tissues further contribute to the rise in antibiotic resistance by limiting the efficacy of systemic antibiotic therapies and reducing drug concentrations at the infection site, which can lead to reoccurring infections. To overcome the shortcomings of systemic drug delivery, encapsulation within polymeric carriers has been shown to enhance antimicrobial efficacy, permeation and retention at the infection site. In this Review, we present an overview of current strategies for antimicrobial encapsulation within polymeric carriers, comparing challenges and solutions on a tissue-by-tissue basis. We compare challenges and proposed drug delivery solutions from the perspective of the local environments for biofilms found in oral, wound, gastric, urinary tract, bone, pulmonary, vaginal, ocular and middle/inner ear tissues. We will also discuss future challenges and barriers to clinical translation for these therapeutics. The following Review demonstrates there is a significant imbalance between the research focus being placed on different tissue types, with some targets (oral and wound biofims) being extensively more studied than others (vaginal and otitis media biofilms and endocarditis). Furthermore, the importance of the local tissue environment when selecting target therapies is demonstrated, with some materials being optimal choices for certain sites of bacterial infection, while having limited applicability in others.
Collapse
|
20
|
Esteban J, Vallet-Regí M, Aguilera-Correa JJ. Antibiotics- and Heavy Metals-Based Titanium Alloy Surface Modifications for Local Prosthetic Joint Infections. Antibiotics (Basel) 2021; 10:1270. [PMID: 34680850 PMCID: PMC8532710 DOI: 10.3390/antibiotics10101270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Prosthetic joint infection (PJI) is the second most common cause of arthroplasty failure. Though infrequent, it is one of the most devastating complications since it is associated with great personal cost for the patient and a high economic burden for health systems. Due to the high number of patients that will eventually receive a prosthesis, PJI incidence is increasing exponentially. As these infections are provoked by microorganisms, mainly bacteria, and as such can develop a biofilm, which is in turn resistant to both antibiotics and the immune system, prevention is the ideal approach. However, conventional preventative strategies seem to have reached their limit. Novel prevention strategies fall within two broad categories: (1) antibiotic- and (2) heavy metal-based surface modifications of titanium alloy prostheses. This review examines research on the most relevant titanium alloy surface modifications that use antibiotics to locally prevent primary PJI.
Collapse
Affiliation(s)
- Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - John J Aguilera-Correa
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
21
|
Souza JGS, Bertolini MM, Costa RC, Nagay BE, Dongari-Bagtzoglou A, Barão VAR. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience 2021; 24:102008. [PMID: 33490916 PMCID: PMC7811145 DOI: 10.1016/j.isci.2020.102008] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Implant devices have = proven a successful treatment modality in reconstructive surgeries. However, increasing rates of peri-implant diseases demand further examination of their pathogenesis. Polymicrobial biofilm formation on titanium surfaces has been considered the main risk factor for inflammatory processes on tissues surrounding implant devices, which often lead to implant failure. To overcome microbial accumulation on titanium surfaces biofilm targeting strategies have been developed to modify the surface and incorporate antimicrobial coatings. Because antibiotics are widely used to treat polymicrobial infections, these agents have recently started to be incorporated on titanium surface. This review discusses the biofilm formation on titanium dental implants and key factors to be considered in therapeutic and preventative strategies. Moreover, a systematic review was conducted on coatings developed for titanium surfaces using different antibiotics. This review will also shed light on potential alternative strategies aiming to reduce microbial loads and control polymicrobial infection on implanted devices.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Dental Research Division, Guarulhos University, Guarulhos, SP 07023-070, Brazil
- Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, 39401-303, Brazil
| | - Martinna Mendonça Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
22
|
Metsemakers WJ, Zalavras C, Schwarz EM, Chen AF, Trampuz A, Moriarty TF. Antimicrobial Resistance, the COVID-19 Pandemic, and Lessons for the Orthopaedic Community. J Bone Joint Surg Am 2021; 103:4-9. [PMID: 33259429 DOI: 10.2106/jbjs.20.01214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is widely regarded as one of the most important global public health challenges of the twenty-first century. The overuse and the improper use of antibiotics in human medicine, food production, and the environment as a whole have unfortunately contributed to this issue. Many major international scientific, political, and social organizations have warned that the increase in AMR could cost the lives of millions of people if it is not addressed on a global scale. Although AMR is already a challenge in clinical practice today, it has taken on a new importance in the face of the coronavirus disease 2019 (COVID-19) pandemic. While improved handwashing techniques, social distancing, and other interventional measures may positively influence AMR, the widespread use of antibiotics to treat or prevent bacterial coinfections, especially in unconfirmed cases of COVID-19, may have unintended negative implications with respect to AMR. Although the exact number of bacterial coinfections and the rate at which patients with COVID-19 receive antibiotic therapy remain to be accurately determined, the pandemic has revived the discussion on antibiotic overuse and AMR. This article describes why the COVID-19 pandemic has increased our awareness of AMR and presents the immense global impact of AMR on society as a whole. Furthermore, an attempt is made to stress the importance of tackling AMR in the future and the role of the orthopaedic community in this worldwide effort.
Collapse
Affiliation(s)
- Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, University of Leuven, Leuven, Belgium
| | - Charalampos Zalavras
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Edward M Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York
| | - Antonia F Chen
- Department of Orthopaedics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | |
Collapse
|
23
|
Wu XX, Zhang Y, Hu T, Li WX, Li ZL, Hu HJ, Zhu SR, Chen WZ, Zhou CS, Jiang GB. Long-term antibacterial composite via alginate aerogel sustained release of antibiotics and Cu used for bone tissue bacteria infection. Int J Biol Macromol 2020; 167:1211-1220. [PMID: 33189756 DOI: 10.1016/j.ijbiomac.2020.11.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
Bone related-bacterial diseases including wound infections and osteomyelitis (OM) remain a serious problem accompanied with amputation in most severe cases. In this work, we report an exceptional effective antibacterial alginate aerogel, which consists of tigecycline (TGC) and octahedral Cu crystal as an organo-inorganic synergy platform for antibacterial and local infection therapy applications. The alginate aerogel could greatly prolong the release of copper ions and maintain effective antibacterial concentration over 18 days. The result of in-vitro experiments demonstrated that the alginate aerogel has an exceptional effective function on antibacterial activity. Cytotoxicity tests indicated that the alginate aerogel has low biological toxicity (average cell viability >75%). These remarkable results suggested that the alginate aerogel exhibits great potential for the treatment of OM, and has a prosperous future of application in bone tissue engineering.
Collapse
Affiliation(s)
- Xia-Xiao Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yu Zhang
- Department of Orthopaedics, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Xiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zeng-Lin Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shui-Rong Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Zhao Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Chu-Song Zhou
- Department of Orthopaedics, Zhu-Jiang Hospital of Southern Medical University (First Military Medical University), Guangzhou 510282, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Qayoom I, Teotia AK, Panjla A, Verma S, Kumar A. Local and Sustained Delivery of Rifampicin from a Bioactive Ceramic Carrier Treats Bone Infection in Rat Tibia. ACS Infect Dis 2020; 6:2938-2949. [PMID: 32966037 DOI: 10.1021/acsinfecdis.0c00369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Next-generation treatment strategies to treat osteomyelitis with complete eradication of pathogen at the bone nidus and prevention of emergence of drug resistance is a real challenge in orthopedics. Conventional treatment strategies including long-term adherence of patients to systemic antibiotic delivery, local delivery using nondegradable vehicles, and surgical debridement are not completely effective in achieving successful results. In this study, a broad-spectrum antibiotic, rifampicin (RFP), was incorporated into a biphasic nanohydroxyapatite (nHAP)/calcium sulfate ceramic carrier (NC) system. In vivo release and distribution of rifampicin was evaluated for a period of one month by implanting NC and NC + RFP in a subcutaneous pouch in a rat model. We detected the RFP in bone and implanted NC scaffolds even after day 28 and the concentration was still higher than the minimal inhibitory concentration of RFP when it was implanted with NC in an abdominal subcutaneous pouch. Moreover, we also observed the accumulation of RFP in bone and NC when administered orally, showing strong binding between RFP and nHAP. Additionally, we generated an osteomyelitis bone infection model in the rat tibia using Staphylococcus aureus as an infective agent to evaluate the antibacterial and osteogenic efficiency of RFP containing NC as a delivery system. S. aureus mediated implant infection is a major problem in orthopedics. The results suggested that NC loaded with RFP could eradicate the pathogen completely in the bone nidus. Further, defect healing and bone formation were also evaluated by micro-CT and histological analysis demonstrating proper trabecular-type bone formation at the debridement site and complete healing of the defect when NC + RFP was implanted. Our findings provide an insight into the use of an nHAP based ceramic matrix as a carrier of rifampicin to eradicate the bone infection and simultaneously promote bone healing at the bone nidus.
Collapse
Affiliation(s)
- Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Apurva Panjla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
25
|
Mohtashami Z, Javar HA, Tehrani MR, Esfahani MR, Roohipour R, Aghajanpour L, Amoli FA, Vakilinezhad MA, Dorkoosh FA. Fabrication, Optimization, and In Vitro and In Vivo Characterization of Intra-vitreal Implant of Budesonide Generally Made of PHBV. AAPS PharmSciTech 2020; 21:314. [PMID: 33165678 DOI: 10.1208/s12249-020-01828-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Drug delivery to vitreous in comparison with drug delivery to the other parts of the eye is complicated and challenging due to the existence of various anatomical and physiological barriers. Developing injectable intra-vitreal implant could be beneficial in this regard. Herein, poly(hydroxybutyrate-co-valerate) (PHBV) implants were fabricated and optimized using response surface method for budesonide (BZ) delivery. The acquired implants were characterized in regard to the stability of the ingredients during fabrication process, drug loading amount, and drug release pattern (in PBS-HA-A and in vitreous medium). According to this research and statistical analysis performed, first HV% (hydroxyvalerate) then molecular weight and ratio of PEG as pore former affect respectively release rate and burst strength of BZ with different coefficients. Drug release profile in rabbit eye correlated well with that of in vitro (R2 = 0.9861, p ˂ 0.0001). No significant changes were seen in ERG waves, intraocular pressure, and histological studies during the in vivo part of the project. Using 8% HV, 20% PEG/PHBV, and higher molecular weight PEG (i.e., 6000), the optimum formulation was achieved. Toxicity and biocompatibility of the optimized formulation, which were evaluated in vivo, indicated the suitability of design implant for intra-vitreal BZ delivery. Grapical abstract.
Collapse
|
26
|
Tsikopoulos K, Sidiropoulos K, Kitridis D, Hassan A, Drago L, Mavrogenis A, McBride D. Is coating of titanium implants effective at preventing Staphylococcus aureus infections? A meta-analysis of animal model studies. INTERNATIONAL ORTHOPAEDICS 2020; 45:821-835. [PMID: 32761434 DOI: 10.1007/s00264-020-04660-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/11/2020] [Indexed: 12/25/2022]
Abstract
AIM OF THE STUDY To assess the effects of the available coating methods against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) biofilm development on titanium implants. METHODS We searched the MEDLINE, Embase, and CENTRAL databases until May 18, 2019, for studies that used animal models of infections to evaluate various titanium implant coating methods to prevent S. aureus infection. Twenty-seven studies were eligible for inclusion in qualitative synthesis. Of those, twenty-three were considered in pair-wise meta-analysis. In addition, subgroup analysis of implant protection strategies relative to uncoated controls was performed, and any adverse events stemming from the coating applications were reported. Quality assessment was performed using SYRCLE's risk of bias tool for animal studies. RESULTS Meta-analysis showed that active coating with antibiotics was favoured over uncoated controls (standardised mean differences [SMD] for MRSA and MSSA were - 2.71 [95% CI, - 4.24 to - 1.18], p = 0.0005, and - 2.5 [- 3.79 to - 1.22], p = 0.0001, respectively). Likewise, large effect sizes were demonstrated when a combination of active and conventional non-degradable passive coatings was compared with controls (SMDs for MRSA and MSSA were - 0.62 [95% CI, - 1.15 to - 0.08], p = 0.02, and - 1.93 [95% CI, - 2.87 to - 0.98], p < 0.001, respectively). DISCUSSION/CONCLUSION As a standalone prevention method, active titanium coating with antibiotics yielded promising results against both MSSA and MRSA. Combinations between active and non-degradable passive coatings, potentially allowing for sustained antimicrobial substance release, provided consistent hardware infection protection. Thus, we recommend that future research efforts focus on combined coating modalities against S. aureus biofilm infections in the presence of titanium implants. SYSTEMATIC REVIEW REGISTRATION CRD42019123462.
Collapse
Affiliation(s)
| | | | - Dimitrios Kitridis
- 1st Orthopaedic Department of Aristotle University, G. Papanikolaou General Hospital, Exohi, Thessaloniki, Greece
| | - Anas Hassan
- Orthopaedic Department, Lister Hospital, Stevenage, East and North Hertfordshire, UK
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology, Department of Biochemical Sciences for Health, University of Milan, Milan, Italy
| | - Andreas Mavrogenis
- Orthopaedic Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Donald McBride
- Orthopaedic Department, University Hospitals of North Midlands, Stoke-on-Trent, UK
| |
Collapse
|
27
|
Balaure PC, Grumezescu AM. Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part II: Active, Combined Active and Passive, and Smart Bacteria-Responsive Antibiofilm Nanocoatings. NANOMATERIALS 2020; 10:nano10081527. [PMID: 32759748 PMCID: PMC7466637 DOI: 10.3390/nano10081527] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 01/24/2023]
Abstract
The second part of our review describing new achievements in the field of biofilm prevention and control, begins with a discussion of the active antibiofilm nanocoatings. We present the antibiofilm strategies based on antimicrobial agents that kill pathogens, inhibit their growth, or disrupt the molecular mechanisms of biofilm-associated increase in resistance and tolerance. These agents of various chemical structures act through a plethora of mechanisms targeting vital bacterial metabolic pathways or cellular structures like cell walls and cell membranes or interfering with the processes that underlie different stages of the biofilm life cycle. We illustrate the latter action mechanisms through inhibitors of the quorum sensing signaling pathway, inhibitors of cyclic-di-GMP signaling system, inhibitors of (p)ppGpp regulated stringent response, and disruptors of the biofilm extracellular polymeric substances matrix (EPS). Both main types of active antibiofilm surfaces, namely non-leaching or contact killing systems, which rely on the covalent immobilization of the antimicrobial agent on the surface of the coatings and drug-releasing systems in which the antimicrobial agent is physically entrapped in the bulk of the coatings, are presented, highlighting the advantages of each coating type in terms of antibacterial efficacy, biocompatibility, selective toxicity, as well as drawbacks and limitations. Developments regarding combined strategies that join in a unique platform, both passive and active elements are not omitted. In such platforms with dual functionality, passive and active strategies can be applied either simultaneously or sequentially. We especially emphasize those systems that can be reversely and repeatedly switched between the non-fouling status and the bacterial killing status, thereby allowing several bacteria-killing/surface regeneration cycles to be performed without significant loss of the initial bactericidal activity. Eventually, smart antibiofilm coatings that release their antimicrobial payload on demand, being activated by various triggers such as changes in local pH, temperature, or enzymatic triggers, are presented. Special emphasis is given to the most recent trend in the field of anti-infective surfaces, specifically smart self-defensive surfaces for which activation and switch to the bactericidal status are triggered by the pathogens themselves.
Collapse
Affiliation(s)
- Paul Cătălin Balaure
- “Costin Nenitzescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1–7, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1–7, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-39-97
| |
Collapse
|
28
|
Ramot Y, Nedvetzki S, Rosenfeld S, Rousselle SD, Nyska A, Emanuel N. D-PLEX 100 in an Abdominal Surgery Incision Model in Miniature Swine: Safety Study. Toxicol Pathol 2020; 48:677-685. [PMID: 32525456 DOI: 10.1177/0192623320928902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Surgical site infections (SSIs) are a common surgical-related complication. To avoid these complications, a new biodegradable polymer-lipid encapsulation matrix that provides controlled release of doxycycline (doxycycline/polymer-lipid encapsulation matrix [D-PLEX]) has been developed. The aim of this comprehensive study was to evaluate the potential safety of D-PLEX100 in abdominal surgical site. D-PLEX100 was administered into incisions of abdominal surgical site in Yucatan miniature swine, which were followed for up to 6 months and compared to sham-control swine. The D-PLEX100 mass did not migrate from the incisional site, and there was no evidence for systemic toxicity or other safety concerns. Surgical incision sites, including the peritoneal surface, were fully healed at 6 months in all animals. Most of the D-PLEX100 mass was absorbed during the first 3 months, and by 6 months, D-PLEX100 was fully absorbed. Toxicokinetic evaluation revealed that doxycycline concentrations were evident at 30 minutes and persisted to 8 days (71 mg/kg) or at least 15 days (284 mg/kg) and were no longer present in plasma by day 29. This study supports the safety of D-PLEX100 and its favorable degradability profile. A clinical study is being performed to assess the safety and the efficacy of D-PLEX100 to prevent human abdominal SSIs.
Collapse
Affiliation(s)
- Yuval Ramot
- Hadassah Medical Center, Hebrew University of Jerusalem, the Faculty of Medicine, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Antibacterial and cytocompatible coatings based on poly(adipic anhydride) for a Ti alloy surface. Bioact Mater 2020; 5:709-720. [PMID: 32478204 PMCID: PMC7248586 DOI: 10.1016/j.bioactmat.2020.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
This paper describes a formation of hybrid coatings on a Ti–2Ta–3Zr–36Nb surface. This is accomplished by plasma electrolytic oxidation and a dip-coating technique with poly(adipic anhydride) ((C6H8O3)n) that is loaded with drugs: amoxicillin (C16H19N3O5S), cefazolin (C14H14N8O4S3) or vancomycin (C66H75Cl2N9O24 · xHCl). The characteristic microstructure of the polymer was evaluated using scanning electron microscopy and confocal microscopy. Depending on the surface treatment, the surface roughness varied (between 1.53 μm and 2.06 μm), and the wettability was change with the over of time. X-ray photoelectron spectroscopy analysis showed that the oxide layer did not affect the polymer layer or loaded drugs. However, the drugs lose their stability in a phosphate-buffered saline solution after 6.5 h of exposure, and its decrease was greater than 7% (HPLC analysis). The stability, drug release and concentration of the drug loaded into the material were precisely analyzed by high-performance liquid chromatography. The results correlated with the degradation of the polymer in which the addition of drugs caused the percent of degraded polymer to be between 35.5% and 49.4% after 1 h of material immersion, depending on the mass of the loaded drug and various biological responses that were obtained. However, all of the coatings were cytocompatible with MG-63 osteoblast-like cells. The drug concentrations released from the coatings were sufficient to inhibit adhesion of reference and clinical bacterial strains (S. aureus). The coatings with amoxicillin showed the best results in the bacterial inhibition zone, whereas coatings with cefazolin inhibited adhesion of the above bacteria on the surface. Hybrid layers containing fast degradable poly(adipic anhydride) (PADA) were performed. Drugs stability, concentration of released and loaded drugs were evaluated using HPLC. Adhesion of S. aureus clinical and reference strains confirmed the antibaterial properties. Performed hybrid layers were cytocompatible (MG-63 tests).
Collapse
|
30
|
Foster AL, Moriarty TF, Trampuz A, Jaiprakash A, Burch MA, Crawford R, Paterson DL, Metsemakers WJ, Schuetz M, Richards RG. Fracture-related infection: current methods for prevention and treatment. Expert Rev Anti Infect Ther 2020; 18:307-321. [DOI: 10.1080/14787210.2020.1729740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew L Foster
- AO Research Institute Davos, Davos, Switzerland
- Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Orthopaedic Surgery, Royal Brisbane and Women’s Hospital, Queensland, Australia
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Queensland, Australia
| | | | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, Berlin, Germany
| | - Anjali Jaiprakash
- Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | | | - Ross Crawford
- Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - David L Paterson
- University of Queensland Centre of Clinical Research (UQCCR), Brisbane, Australia
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Belgium
| | - Michael Schuetz
- Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Orthopaedic Surgery, Royal Brisbane and Women’s Hospital, Queensland, Australia
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Queensland, Australia
| | | |
Collapse
|
31
|
Li Y, Li L, Ma Y, Zhang K, Li G, Lu B, Lu C, Chen C, Wang L, Wang H, Cui X. 3D-Printed Titanium Cage with PVA-Vancomycin Coating Prevents Surgical Site Infections (SSIs). Macromol Biosci 2020; 20:e1900394. [PMID: 32065462 DOI: 10.1002/mabi.201900394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/20/2020] [Indexed: 01/14/2023]
Abstract
Many coating materials have been studied to prevent surgical site infections (SSIs). However, antibacterial coating on surfaces show weak adhesion using the traditional titanium (Ti) cage, resulting in low efficacy for preventing SSIs after spinal surgery. Herein, a 3D-printed Ti cage combined with a drug-releasing system is developed for in situ drug release and bacteria killing, leading to prevention of SSIs in vitro and in vivo. First, a 3D-printed Ti cage is designed and prepared by the Electron Beam Melting (EBM) method. Second, polyvinyl alcohol (PVA) containing hydrophilic vancomycin hydrochloride (VH) is scattered across the surface of 3D-printed porous Ti (Ti-VH@PVA) cages. Ti-VH@PVA cages show an efficient drug-releasing profile and excellent bactericidal effect for three common bacteria after more than seven days in vitro. In addition, Ti-VH@PVA cages exhibit reliable inhibition of inflammation associated with Staphylococcus aureus and effective bone regeneration capacity in a rabbit model of SSIs. The results indicate that Ti-VH@PVA cages have potential advantages for preventing SSIs after spinal surgery.
Collapse
Affiliation(s)
- Yuan Li
- Department of Orthopaedics, The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.,College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Litao Li
- Department of Orthopaedics, The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Yiguang Ma
- Department of Orthopaedics, The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guang Li
- Department of Orthopaedics, The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Bin Lu
- Department of Orthopaedics, The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Chenglin Lu
- Shandong Weigao Orthopedic Device Co., Ltd., No. 26 Xiangjiang Street, Tourist Resorts, Weihai, 264200, Shandong Province, China
| | - Cheng Chen
- Shandong Weigao Orthopedic Device Co., Ltd., No. 26 Xiangjiang Street, Tourist Resorts, Weihai, 264200, Shandong Province, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xu Cui
- Department of Orthopaedics, The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| |
Collapse
|
32
|
Dendritic Cells Internalize Staphylococcus aureus More Efficiently than Staphylococcus epidermidis, but Do Not Differ in Induction of Antigen-Specific T Cell Proliferation. Microorganisms 2019; 8:microorganisms8010019. [PMID: 31861881 PMCID: PMC7022728 DOI: 10.3390/microorganisms8010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are related species which can cause predominantly acute and subacute infections, respectively. Differences in human adaptive immune responses to these two species are not well understood. Dendritic cells (DCs) have an important role in the control and regulation of anti-staphylococcal T cell responses. Therefore, we aimed to compare the ability of S. aureus and S. epidermidis to influence the essential steps in human DC activation and subsequent antigen-specific CD4+ T cell proliferation, and to investigate the underlying mechanisms. Using multiple strains of both species, we observed that S. aureus was internalized more effectively than S. epidermidis by DCs but that both species were equally potent in activating these host cells, as evidenced by similar induction of DC maturation marker expression and antigen loading onto MHC-II molecules. The DCs stimulated by S. aureus strains not harboring superantigen (SAg) genes or by any of the S. epidermidis strains, induced low, likely physiological levels of T cell proliferation. Only DCs stimulated with S. aureus strains harboring SAg genes induced high levels of T cell proliferation. Taken together, S. aureus and S. epidermidis do not differently affect DC activation and ensuing antigen-specific T cell proliferation, unless a strain has the capacity to produce SAgs.
Collapse
|
33
|
Tschon M, Sartori M, Contartese D, Giavaresi G, Aldini NN, Fini M. Use of Antibiotic Loaded Biomaterials for the Management of Bone Prosthesis Infections: Rationale and Limits. Curr Med Chem 2019; 26:3150-3174. [PMID: 29189125 DOI: 10.2174/0929867325666171129220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 11/24/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Periprosthetic joint infection still represents a challenging issue for the orthopedic community. In the United States approximately a million joint arthroplasties are performed each year, with infection rates ranging from 1 to 2%: revisions has significant implications on health care costs and appropriate resource management. The use of locally applied antibiotics as a prophylaxis measure or as a component of the therapeutic approach in primary or revision surgery is finalized at eliminating any microorganism and strengthening the effectiveness of systemic therapy. OBJECTIVE The present review of clinical and preclinical in vivo studies tried to identify advantages and limitations of the materials used in the clinical orthopedic practice and discuss developed biomaterials, innovative therapeutic approaches or strategies to release antibiotics in the infected environment. METHODS A systematic search was carried out by two independent observers in two databases (www.pubmed.com and www.scopus.com) in order to identify pre-clinical and clinical reports in the last 10 years. RESULTS 71 papers were recognized eligible: 15 articles were clinical studies and 56 in vivo studies. CONCLUSION Polymethylmethacrylate was the pioneer biomaterial used to manage infections after total joint replacement. Despite its widespread use, several issues still remain debated: the methods to combine materials and antibiotics, the choice of antibiotics, releasing kinetics and antibiotics efficacy. In the last years, the interest was directed towards the selection of different antibiotics, loaded in association with more than only one class and biomaterials with special focus on delivery systems as implant surface coatings, hydrogels, ceramics, micro-carriers, microspheres or nanoparticles.
Collapse
Affiliation(s)
- M Tschon
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - M Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Istituto Ortopedico Rizzoli - RIT Department, via di Barbiano 1/10, 40136, Bologna, Italy
| | - D Contartese
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - G Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - N Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| |
Collapse
|
34
|
Qiao Z, Yuan Z, Zhang W, Wei D, Hu N. Preparation, in vitro release and antibacterial activity evaluation of rifampicin and moxifloxacin-loaded poly(D,L-lactide-co-glycolide) microspheres. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:790-798. [PMID: 30892092 DOI: 10.1080/21691401.2019.1581792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteomyelitis is difficult to treat because infective bone is poorly accessible for intravenously administering antibiotics and biofilm formation increases bacterial resistance. In this study, microspheres prepared using poly(lactide-co-glycolide) (PLGA) and embedded with moxifloxacin (MOX-PLGA microspheres) and rifampicin/moxifloxacin (RIF/MOX-PLGA microspheres) using the water-in-oil-in-water double emulsion solvent evaporation technique were used for local delivery. Shape of MOX-PLGA microspheres and RIF/MOX-PLGA microspheres were spherical, mean particle size of them were 20.52 μm and 16.62 μm, respectively. Encapsulation efficiency of the MOX-PLGA microspheres was 17.35% ± 2.42%. However, the encapsulation efficiency for MOX and RIF in RIF/MOX-PLGA microspheres was 33.25% ± 7.51% and 49.0% ± 11.25%, respectively. Moxifloxacin and rifampicin were released slowly from microspheres. Both microspheres can efficiently release antibiotics in vitro. Antibacterial and bacterial biofilm-inhibition properties of the released solution were investigated from RIF/MOX-PLGA, MOX-PLGA, and blank PLGA microspheres at varying time points in vitro. RIF/MOX-PLGA microspheres demonstrated the strongest antibacterial activity and bacterial biofilm-inhibition property than the other two microspheres (p < .05). This study suggests that the novel RIF/MOX-PLGA microspheres can be used as a promising carrier for osteomyelitis treatment.
Collapse
Affiliation(s)
- ZeWen Qiao
- a Department of Orthopedics, Xijing Hospital , Fourth Military Medical University , Xi'an , China.,b Department of Orthopedics , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Zhi Yuan
- a Department of Orthopedics, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | - Wenping Zhang
- c Department of Pharmacy, Institute of Clinical Pharmacology , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Daihao Wei
- d General Hospital of Ningxia Medical University , Yinchuan , China
| | - Ningmin Hu
- e Affiliated General Hospital , Ningxia Medical University , Yinchuan , China
| |
Collapse
|
35
|
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, Bello-Irizarry SN, Ninomiya M, Brodell JD, Lee CC, Hao SP, Oh I, Xie C, Awad HA, Daiss JL, Owen JR, Kates SL, Schwarz EM, Muthukrishnan G. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res 2019; 7:20. [PMID: 31646012 PMCID: PMC6804538 DOI: 10.1038/s41413-019-0061-z] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Ryan P. Trombetta
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ann Lindley Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Mark Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - James D. Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
36
|
Ramot Y, Nedvetzki S, Rosenfeld S, Emanuel N, Nyska A. Toxicity and Safety Study of D-PLEX 100 in a Sternal Surgical Defect in New Zealand White Rabbits. Toxicol Pathol 2019; 47:504-514. [PMID: 30975045 DOI: 10.1177/0192623319837887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacterial infections are a common complication after surgical procedures. Therefore, local delivery of antibiotics has been developed, including the use of biodegradable polymers. A newly developed product for prevention of surgical site infections is a polymer-lipid encapsulation matrix loaded with doxycycline, named D-PLEX100 (D-PLEX). We evaluated the toxicity and safety of D-PLEX using a sternal surgical defect model in rabbits. D-PLEX was tested with three different concentrations of doxycycline in comparison to sham-operated control after administration into the sternal surgical defect and on the ventral side of the sternum in New Zealand White (NZW) rabbits, following 15 months of exposure. No mortality or abnormal clinical findings were attributed to D-PLEX, and clinical pathology assays were normal. Histological examinations revealed no treatment-related adverse findings in any of the examined tissues, including the osseous and surrounding soft tissues. It has been shown that D-PLEX gradually degraded until complete disappearance after 9 months, and mainly during the first 3 months, in parallel to normal bone formation. In addition, the administration of D-PLEX did not affect sternal bone strength. This study adds to the growing data on preclinical safety studies utilizing biodegradable materials and provides information on the expected normal reaction to biodegradable materials in the sternum of NZW rabbits.
Collapse
Affiliation(s)
- Yuval Ramot
- 1 Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | | | | | | | - Abraham Nyska
- 3 Consultant in Toxicologic Pathology, and Tel Aviv University, Timrat, Israel
| |
Collapse
|
37
|
Bottagisio M, Coman C, Lovati AB. Animal models of orthopaedic infections. A review of rabbit models used to induce long bone bacterial infections. J Med Microbiol 2019; 68:506-537. [PMID: 30875284 DOI: 10.1099/jmm.0.000952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of infections is one of the main complications in orthopaedics, especially in the presence of implants for the osteosynthesis of compound fractures and joint prosthesis. Indeed, foreign materials and implants act as substrates for the adhesion and proliferation of bacterial strains able to produce biofilm, causing peri-implant osteomyelitis. The eradication of biofilm remains a great challenge for the host immune system, as well as for medical and surgical approaches, thus imposing the need for new prophylactic and/or therapeutic strategies in which animal models have an essential role. In vivo orthopaedic models have mainly been used to study the pathogenesis of infections, biofilm behaviour and the efficacy of antimicrobial strategies, to select diagnostic techniques and test the efficacy of novel materials or surface modifications to impede both the establishment of bone infections and the associated septic loosening of implants. Among several models of osteomyelitis and implant-related infections described in small rodents and large animals, the rabbit has been widely used as a reliable and reproducible model of orthopaedic infections. This review examines the relevance of rabbits for the development of clinically representative models by analysing the pros and cons of the different approaches published in the literature. This analysis will aid in increasing our knowledge concerning orthopaedic infections by using this species. This review will be a tool for researchers who need to approach pre-clinical studies in the field of bone infection and have to identify the most appropriate animal model to verify their scientific hypothesis.
Collapse
Affiliation(s)
- Marta Bottagisio
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Cristin Coman
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Arianna B Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
38
|
Barger J, Fragomen AT, Rozbruch SR. Antibiotic-Coated Interlocking Intramedullary Nail for the Treatment of Long-Bone Osteomyelitis. JBJS Rev 2019; 5:e5. [PMID: 28719401 DOI: 10.2106/jbjs.rvw.16.00095] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- James Barger
- Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, NY
| | | | | |
Collapse
|
39
|
Koppen BC, Mulder PPG, de Boer L, Riool M, Drijfhout JW, Zaat SAJ. Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. Int J Antimicrob Agents 2018; 53:143-151. [PMID: 30315918 DOI: 10.1016/j.ijantimicag.2018.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/07/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance and biofilm formation are the main reasons for failure in treatment of bacterial infections. This study aimed to identify synergistic combinations of conventional antibiotics and novel synthetic antimicrobial and antibiofilm peptides (SAAPs) inspired by the structures of the natural human cationic peptides LL-37 and thrombocidin-1 (TC-1). The LL-37-inspired lead peptide SAAP-148 was combined with antibiotics of different classes against Staphylococcus aureus, and showed synergy with teicoplanin. Synergy with teicoplanin was also observed with LL-37, the LL-37-inspired SAAP-276 and the TC-1-inspired TC84. Interestingly, no synergy was observed against Staphylococcus epidermidis. Furthermore, teicoplanin combined with SAAP-148 or SAAP-276 showed strong interaction against S. aureus biofilms. The dltABCD operon and the mprF gene in S. aureus conferred resistance to LL-37, but SAAP-148 proved to be indifferently potent against wild-type, ΔdltA and ΔmprF S. aureus strains. When used alone, relatively high concentrations of both LL-37 and teicoplanin (30-120 µM and 4-32 mg/L, respectively) were required to kill S. aureus. Resistance to LL-37 in S. aureus was overcome by combined use of teicoplanin and LL-37. Thus, teicoplanin potentiates peptide LL-37, enhancing the efficacy of the innate defence, and combining the novel peptides with teicoplanin offers potential for enhanced efficacy of treatment of S. aureus infections, including biofilms.
Collapse
Affiliation(s)
- Bruce C Koppen
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick P G Mulder
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Pan C, Zhou Z, Yu X. Coatings as the useful drug delivery system for the prevention of implant-related infections. J Orthop Surg Res 2018; 13:220. [PMID: 30176886 PMCID: PMC6122451 DOI: 10.1186/s13018-018-0930-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Implant-related infections (IRIs) which led to a large amount of medical expenditure were caused by bacteria and fungi that involve the implants in the operation or in ward. Traditional treatments of IRIs were comprised of repeated radical debridement, replacement of internal fixators, and intravenous antibiotics. It needed a long time and numbers of surgeries to cure, which meant a catastrophe to patients. So how to prevent it was more important than to cure it. As an excellent local release system, coating is a good idea by its local drug infusion and barrier effect on resisting biofilms which were the main cause of IRIs. So in this review, materials used for coatings and evidences of prevention were elaborated.
Collapse
Affiliation(s)
- Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital East Campus, Shanghai University of Medicine and Health Sciences, Shanghai, 201306 China
| |
Collapse
|
41
|
Andrea A, Molchanova N, Jenssen H. Antibiofilm Peptides and Peptidomimetics with Focus on Surface Immobilization. Biomolecules 2018; 8:E27. [PMID: 29772735 PMCID: PMC6022873 DOI: 10.3390/biom8020027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022] Open
Abstract
Bacterial biofilms pose a major threat to public health, as they are associated with at least two thirds of all infections. They are highly resilient and render conventional antibiotics inefficient. As a part of the innate immune system, antimicrobial peptides have drawn attention within the last decades, as some of them are able to eradicate biofilms at sub-minimum inhibitory concentration (MIC) levels. However, peptides possess a number of disadvantages, such as susceptibility to proteolytic degradation, pH and/or salinity-dependent activity and loss of activity due to binding to serum proteins. Hence, proteolytically stable peptidomimetics were designed to overcome these drawbacks. This paper summarizes the current peptide and peptidomimetic strategies for combating bacteria-associated biofilm infections, both in respect to soluble and surface-functionalized solutions.
Collapse
Affiliation(s)
- Athina Andrea
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Natalia Molchanova
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
42
|
Deaconu M, Nicu I, Tincu R, Brezoiu AM, Mitran RA, Vasile E, Matei C, Berger D. Tailored doxycycline delivery from MCM-41-type silica carriers. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0457-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Metsemakers WJ, Kuehl R, Moriarty TF, Richards RG, Verhofstad MHJ, Borens O, Kates S, Morgenstern M. Infection after fracture fixation: Current surgical and microbiological concepts. Injury 2018; 49:511-522. [PMID: 27639601 DOI: 10.1016/j.injury.2016.09.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/08/2016] [Indexed: 02/02/2023]
Abstract
One of the most challenging complications in trauma surgery is infection after fracture fixation (IAFF). IAFF may result in permanent functional loss or even amputation of the affected limb in patients who may otherwise be expected to achieve complete, uneventful healing. Over the past decades, the problem of implant related bone infections has garnered increasing attention both in the clinical as well as preclinical arenas; however this has primarily been focused upon prosthetic joint infection (PJI), rather than on IAFF. Although IAFF shares many similarities with PJI, there are numerous critical differences in many facets including prevention, diagnosis and treatment. Admittedly, extrapolating data from PJI research to IAFF has been of value to the trauma surgeon, but we should also be aware of the unique challenges posed by IAFF that may not be accounted for in the PJI literature. This review summarizes the clinical approaches towards the diagnosis and treatment of IAFF with an emphasis on the unique aspects of fracture care that distinguish IAFF from PJI. Finally, recent developments in anti-infective technologies that may be particularly suitable or applicable for trauma patients in the future will be briefly discussed.
Collapse
Affiliation(s)
- W J Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Belgium.
| | - R Kuehl
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Switzerland
| | | | | | - M H J Verhofstad
- Department of Trauma Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands, The Netherlands
| | - O Borens
- Orthopedic Septic Surgical Unit, Department of the Locomotor Apparatus and Department of Surgery and Anaesthesiology, Lausanne University Hospital, Lausanne, Switzerland
| | - S Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, USA
| | - M Morgenstern
- Department of Orthopaedic and Trauma Surgery, University Hospital of Basel, Switzerland
| |
Collapse
|
44
|
Hoekstra H, Smeets B, Metsemakers WJ, Spitz AC, Nijs S. Economics of open tibial fractures: the pivotal role of length-of-stay and infection. HEALTH ECONOMICS REVIEW 2017; 7:32. [PMID: 28948497 PMCID: PMC5612906 DOI: 10.1186/s13561-017-0168-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
In order to define strategies to curb the continuing increase in healthcare costs, we describe the cost breakdown of open tibial fractures. Twenty-seven clinical and process variables were recorded retrospectively, and five main hospital related cost categories were defined. Three multivariate linear models were fitted to the data. Total healthcare costs of open tibial fractures were almost twice as high compared to closed fractures and mainly existed of hospitalization costs. Length-of-stay (LOS) was found to be the most important variable driving the healthcare costs of open tibial fractures. Deep infection lead to a 6-fold increase of LOS and 5-fold increase in total healthcare costs of open tibial fractures. Therefore, appropriate international consensus guidelines are required to improve not only the patient outcome (infection prevention) but also reduce overall healthcare cost by focusing on reducing the LOS.
Collapse
Affiliation(s)
- Harm Hoekstra
- Department of Trauma Surgery, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Anne-Cécile Spitz
- Faculty of Medicine, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Stefaan Nijs
- Department of Trauma Surgery, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
45
|
Berebichez-Fridman R, Montero-Olvera P, Gómez-García R, Berebichez-Fastlicht E. An intramedullary nail coated with antibiotic and growth factor nanoparticles: An individualized state-of-the-art treatment for chronic osteomyelitis with bone defects. Med Hypotheses 2017; 105:63-68. [DOI: 10.1016/j.mehy.2017.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/15/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
|
46
|
CORR Insights ®: Phosphatidylcholine Coatings Deliver Local Antimicrobials and Reduce Infection in a Murine Model: A Preliminary Study. Clin Orthop Relat Res 2017; 475:1854-1856. [PMID: 28083754 PMCID: PMC5449326 DOI: 10.1007/s11999-017-5237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 01/31/2023]
|
47
|
Jørgensen NP, Hansen K, Andreasen CM, Pedersen M, Fuursted K, Meyer RL, Petersen E. Hyperbaric Oxygen Therapy is Ineffective as an Adjuvant to Daptomycin with Rifampicin Treatment in a Murine Model of Staphylococcus aureus in Implant-Associated Osteomyelitis. Microorganisms 2017; 5:microorganisms5020021. [PMID: 28441320 PMCID: PMC5488092 DOI: 10.3390/microorganisms5020021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
Implant-associated infections caused by bacterial biofilms are difficult to treat. Surgical intervention is often necessary to cure the patient, as the antibiotic recalcitrance of biofilms renders them untreatable with conventional antibiotics. Intermittent hyperbaric oxygen treatment (HBOT) has been proposed as an adjuvant to conventional antibiotic treatment and it has been speculated that combining HBOT with antibiotics could improve treatment outcomes for biofilm infections. In this study we addressed whether HBOT could improve treatment outcomes of daptomycin and rifampicin combination therapy. The effect of HBOT on the treatment outcomes of daptomycin and rifampicin against implant-associated osteomyelitis was quantified in a murine model. In total, 80 mice were randomized into two groups receiving antibiotics, either alone or in combination with daily intermittent HBOT (304 kPa for 60 min) following injection of antibiotics. Treatment was initiated 11 days after animals were infected with Staphylococcus aureus and treatment duration was 14 days. We found that HBOT did not improve the cure rate and did not reduce the bacterial load on the implant surface or in the surrounding tissue. Cure rates of daptomycin + rifampicin were 40% in infected tibias and 75% for implants while cure rates for HBOT-daptomycin + rifampicin were 50% and 85%, respectively, which were not significantly higher (Fisher’s exact test). While it is encouraging that the combination of daptomycin and rifampicin is very effective, our study demonstrates that this efficacy cannot be improved by adjuvant HBOT.
Collapse
Affiliation(s)
- Nis Pedersen Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark.
- Department of Clinical Microbiology, Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Kasper Hansen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark.
| | | | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Kurt Fuursted
- Microbiology and Infection Control, Statens Serum Institut, 2300 Copenhagen, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark.
- Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark.
| | - Eskild Petersen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark.
- Department of Clinical Microbiology, Aarhus University Hospital, 8200 Aarhus, Denmark.
| |
Collapse
|
48
|
Rumian Ł, Tiainen H, Cibor U, Krok-Borkowicz M, Brzychczy-Włoch M, Haugen HJ, Pamuła E. Ceramic scaffolds enriched with gentamicin loaded poly(lactide- co -glycolide) microparticles for prevention and treatment of bone tissue infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:856-64. [DOI: 10.1016/j.msec.2016.07.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 02/01/2023]
|
49
|
Li Y, Liu L, Wan P, Zhai Z, Mao Z, Ouyang Z, Yu D, Sun Q, Tan L, Ren L, Zhu Z, Hao Y, Qu X, Yang K, Dai K. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials 2016; 106:250-63. [DOI: 10.1016/j.biomaterials.2016.08.031] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/13/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
|
50
|
Tasse J, Croisier D, Badel-Berchoux S, Chavanet P, Bernardi T, Provot C, Laurent F. Preliminary results of a new antibiotic susceptibility test against biofilm installation in device-associated infections: the Antibiofilmogram®. Pathog Dis 2016; 74:ftw057. [PMID: 27316688 DOI: 10.1093/femspd/ftw057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
Biofilms are complex communities of microorganisms embedded in an extracellular matrix and adherent to a surface. The development was described as a four-stage process leading to the formation of a mature biofilm which was resistant to immune system and antibiotic actions. In bone and joint infections (BJIs), the formation of biofilms is a leading cause of treatment failure. Here we study the capacity of 11 antibiotics commonly used in the treatment of BJIs to inhibit the biofilm formation on 29 clinical Staphylococcus aureus isolates by a new test called Antibiofilmogram(®) The minimal inhibitory concentration (MIC) and biofilm MIC (bMIC) were determined in vitro and showed similar values for clindamycin, fusidic acid, linezolid and rifampin. Reversely, daptomycin, fosfomycin, gentamicin and ofloxacin showed a bMIC distribution different from MIC with bMIC above breakpoint. Finally, cloxacillin, teicoplanin and vancomycin revealed an intermediate bMIC distribution with a strain-dependent pattern. A murine in vivo model of catheter-associated S. aureus infection was made and showed a significant reduction, but not total prevention, of catheter colonization with cloxacillin at bMIC, and no or limited reduction with cloxacillin at MIC. Antibiofilmogram(®) could be of great interest after surgical operations on contaminated prostheses and after bacteremia in order to prevent the colonization of the device.
Collapse
Affiliation(s)
- Jason Tasse
- BioFilm Control, Saint-Beauzire 63360, France French National Reference Centre for Staphylococci, International Centre for Infectiology Research - Inserm U1111, Hospices Civils de Lyon, Lyon 69000, France
| | | | | | - Pascal Chavanet
- Vivexia Laboratory, Dijon, France Department of Infectious Disease, Dijon University Hospital, Dijon 21000, France
| | | | | | - Frédéric Laurent
- French National Reference Centre for Staphylococci, International Centre for Infectiology Research - Inserm U1111, Hospices Civils de Lyon, Lyon 69000, France
| |
Collapse
|