1
|
Elbardisy B, Boraie N, Galal S. Tadalafil Nanoemulsion Mists for Treatment of Pediatric Pulmonary Hypertension via Nebulization. Pharmaceutics 2022; 14:pharmaceutics14122717. [PMID: 36559211 PMCID: PMC9784672 DOI: 10.3390/pharmaceutics14122717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral tadalafil (TD) proved promising in treating pediatric pulmonary arterial hypertension (PAH). However, to ensure higher efficacy and reduce the systemic side effects, targeted delivery to the lungs through nebulization was proposed as an alternative approach. This poorly soluble drug was previously dissolved in nanoemulsions (NEs). However, the formulations could not resist aqueous dilution, which precluded its dilution with saline for nebulization. Thus, the current study aimed to modify the previous systems into dilutable TD-NEs and assess their suitability for a pulmonary application. In this regard, screening of various excipients was conducted to optimize the former systems; different formulations were selected and characterized in terms of physicochemical properties, nebulization performance, stability following sterilization, and biocompatibility. Results showed that the optimal system comprised of Capmul-MCM-EP:Labrafac-lipophile (1:1) (w/w) as oil, Labrasol:Poloxamer-407 (2:1) (w/w) as surfactant mixture (Smix) and water. The optimum formulation P2TD resisted aqueous dilution, exhibited reasonable drug loading (2.45 mg/mL) and globule size (25.04 nm), acceptable pH and viscosity for pulmonary administration, and could be aerosolized using a jet nebulizer. Moreover, P2TD demonstrated stability following sterilization and a favorable safety profile confirmed by both in-vitro and in-vivo toxicity studies. These favorable findings make P2TD promising for the treatment of pediatric PAH.
Collapse
Affiliation(s)
- Bassant Elbardisy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
- Correspondence: or
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally Galal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
2
|
Lazo REL, Mengarda M, Almeida SL, Caldonazo A, Espinoza JT, Murakami FS. Advanced formulations and nanotechnology-based approaches for pulmonary delivery of sildenafil: A scoping review. J Control Release 2022; 350:308-323. [PMID: 35995298 DOI: 10.1016/j.jconrel.2022.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Oral sildenafil (SDF) is used to treat pulmonary arterial hypertension (PAH), and its bioavailability is approximately 40%. Several formulations of nano and microparticles (for pulmonary delivery) are being developed because it is possible to improve characteristics such as release time, bioavailability, dose, frequency, and even directly target the drug to the lungs. This review summarizes the latest SDF drug delivery systems for PAH and explains challenges related to the development, the preclinical, and the clinical studies. A scoping review was conducted by searching electronic databases including PubMed, Scopus, and Web of Science to identify studies published between 2001 and 2021. From 300 articles found, 31 met the inclusion criteria. This review identified colloidal formulations such as polymeric, lipid, and metal-organic framework nanoparticles. Strategies were determined to reach the deep airways such as polymeric microparticles, large porous microparticles, nanocomposites, and nano in microparticles. Finally, aspects related to toxicological, pharmacokinetics, and gaps in information for potential use in humans were discussed. SDF formulations are significant candidates for the treatment of PAH by inhalation. In summation, future preclinical studies are still required in large animals, as there is no particular formulation yet submitted to clinical studies.
Collapse
Affiliation(s)
- Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Susana Leão Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Joel Toribio Espinoza
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Ponta Grossa, Ponta Grossa, 84030-900 Paraná, Brazil
| | - Fábio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil.
| |
Collapse
|
3
|
Dhoble S, Patravale V, Weaver E, Lamprou DA, Patravale T. Comprehensive Review on Novel Targets and Emerging Therapeutic Modalities for Pulmonary Arterial Hypertension. Int J Pharm 2022; 621:121792. [PMID: 35513217 DOI: 10.1016/j.ijpharm.2022.121792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 01/17/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is the progressive increase in mean pulmonary arterial pressure (mPAP) (≥ 20 mmHg at rest). Current treatment strategies include the drugs targeting at nitric oxide pathway, endothelin receptors, prostaglandin receptors, thromboxane receptors and phosphodiesterase inhibitors, which provides the symptomatic relief. Despite of these treatments, the mortality amongst the PAH patients remains high due to non-reversal of the condition. This review primarily covers the introduction of PAH and the current treatments of the disease. This is followed by the newer disease targets expressed in the pathobiology of the disease like Rho Kinase Pathway, Vasoactive Intestinal Peptide Pathway, Receptor Tyrosine Kinases, Serotonin signalling pathway, Voltage-gated potassium (Kv) channel pathway. Newer formulation strategies for targeting at these specific receptors were covered and includes nano formulations like liposomes, Micelles, Polymeric Nanoparticles, Solid Lipid Nanoparticles (SLN), Bioresorbable stents, NONOates, Cell-Based Therapies, miRNA therapy for PAH. Novel targets were identified for their role in the pathogenesis of the PAH and needs to be targeted with new molecules or existing molecules effectively. Nanosystems have shown their potential as alternative carriers on the virtue of their better performance than traditional drug delivery systems.
Collapse
Affiliation(s)
- Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India.
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| | - Tanmay Patravale
- Department of General Surgery, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Belagavi 590 010, India
| |
Collapse
|
4
|
McNair BD, Schlatter JA, Cook RF, Yusifova M, Bruns DR. Inhibition of mTOR by rapamycin does not improve hypoxic pulmonary hypertension-induced right heart failure in old mice. Exp Gerontol 2021; 151:111395. [PMID: 33971279 DOI: 10.1016/j.exger.2021.111395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin attenuates heart failure (HF) and age-associated changes in left ventricular (LV) function. Rapamycin has also been suggested as a therapy for pulmonary hypertension (PH) and concomitant right heart failure (PH-RHF) based on reports of elevated mTOR signaling in young models with PH. However, rapamycin has yet to be tested in the setting of aging, PH, and right heart disease despite the fact that RV function predicts survival in both age-related HF as well as several pulmonary disease states including PH. Thus we tested the hypothesis that rapamycin treatment would attenuate hypoxic PH-RHF in old mice using a mouse model of hypobaric hypoxia (HH)-induced PH and right ventricular (RV) remodeling. Exposure to HH resulted in significant loss of body weight which was exacerbated by rapamycin. HH elevated lung and RV weight, RV wall thickness as well as RV systolic dysfunction as evidenced by RV stroke volume and cardiac output. While rapamycin rescued pulmonary artery acceleration time in males, it generally did not improve other indexes cardiopulmonary remodeling or function. As expected, HH induced expression of hypoxia-regulated genes in the RV and the lungs; however, this transcriptional activation was attenuated by rapamycin, representing a potential mechanism by which rapamycin is detrimental in the aged RV in the setting of chronic hypoxia. Together, we demonstrate that rapamycin is not a viable therapeutic in hypoxic PH in old mice, likely due to exacerbated loss of body weight in this setting. We suggest that future efforts should take into consideration the differences between the RV and LV and the interaction between mTOR and hypoxia in the setting of age-related disease.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America
| | - Jacob A Schlatter
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America
| | - Ross F Cook
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America
| | - Musharraf Yusifova
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America
| | - Danielle R Bruns
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
5
|
Deng Z, Kalin GT, Shi D, Kalinichenko VV. Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 64:292-307. [PMID: 33095997 PMCID: PMC7909340 DOI: 10.1165/rcmb.2020-0306tr] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory disorders are among the most important medical problems threatening human life. The conventional therapeutics for respiratory disorders are hindered by insufficient drug concentrations at pathological lesions, lack of cell-specific targeting, and various biobarriers in the conducting airways and alveoli. To address these critical issues, various nanoparticle delivery systems have been developed to serve as carriers of specific drugs, DNA expression vectors, and RNAs. The unique properties of nanoparticles, including controlled size and distribution, surface functional groups, high payload capacity, and drug release triggering capabilities, are tailored to specific requirements in drug/gene delivery to overcome major delivery barriers in pulmonary diseases. To avoid off-target effects and improve therapeutic efficacy, nanoparticles with high cell-targeting specificity are essential for successful nanoparticle therapies. Furthermore, low toxicity and high degradability of the nanoparticles are among the most important requirements in the nanoparticle designs. In this review, we provide the most up-to-date research and clinical outcomes in nanoparticle therapies for pulmonary diseases. We also address the current critical issues in key areas of pulmonary cell targeting, biosafety and compatibility, and molecular mechanisms for selective cellular uptake.
Collapse
Affiliation(s)
- Zicheng Deng
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Gregory T Kalin
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio; and
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Department of Pediatrics, College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
6
|
Lee HJ, Kwon YB, Kang JH, Oh DW, Park ES, Rhee YS, Kim JY, Shin DH, Kim DW, Park CW. Inhaled bosentan microparticles for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. J Control Release 2021; 329:468-481. [PMID: 32871206 DOI: 10.1016/j.jconrel.2020.08.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023]
Abstract
The conventional treatment of pulmonary arterial hypertension (PAH) with oral bosentan hydrate has limitations related to the lack of pulmonary selectivity. In this study, we verified the hypothesis of the feasibility of dry powder inhalation of bosentan as an alternative to oral bosentan hydrate for the treatment of PAH. Inhalable bosentan microparticles with the capability of delivery to the peripheral region of the lungs and enhanced bioavailability have been formulated for PAH. The bosentan microparticles were prepared by the co-spray-drying method with bosentan hydrate and mannitol at different weight ratios. The bosentan microparticles were then characterized for their physicochemical properties, in vitro dissolution behavior, and in vitro aerodynamic performance. The in vivo pharmacokinetics and pathological characteristics were evaluated in a monocrotaline-induced rat model of PAH after intratracheal powder administration of bosentan microparticles, in comparison to orally administered bosentan hydrate. The highest performance bosentan microparticles, named SDBM 1:1, had irregular and porous shape. These microparticles had not only the significantly highest aerosol performance (MMAD of 1.91 μm and FPF of 51.68%) in the formulations, but also significantly increased dissolution rate, compared with the raw bosentan hydrate. This treatment to the lungs was also safe, as evidenced by the cytotoxicity assay. Intratracheally administered SDBM 1:1 elicited a significantly higher Cmax and AUC0-t that were over 10 times higher, compared with those of the raw bosentan hydrate administered orally in the same dose. It also exhibited ameliorative effects on monocrotaline-induced pulmonary arterial remodeling, and right ventricular hypertrophy. The survival rate of the group administrated SDBM1:1 intratracheally was 0.92 at the end of study (Positive control and orally administrated groups were 0.58 and 0.38, respectively). In conclusion, SDBM 1:1 showed promising in vitro and in vivo results with the dry powder inhalation. The inhaled bosentan microparticles can be considered as a potential alternative to oral bosentan hydrate for the treatment of PAH.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yong-Bin Kwon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong-Won Oh
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yun-Seok Rhee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju-Young Kim
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Republic of Korea
| | - Dae-Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Republic of Korea.
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
| |
Collapse
|
7
|
The Effect of Particle Size and Surface Roughness of Spray-Dried Bosentan Microparticles on Aerodynamic Performance for Dry Powder Inhalation. Pharmaceutics 2020; 12:pharmaceutics12080765. [PMID: 32823545 PMCID: PMC7465523 DOI: 10.3390/pharmaceutics12080765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to prepare spray dried bosentan microparticles for dry powder inhaler and to characterize its physicochemical and aerodynamic properties. The microparticles were prepared from ethanol/water solutions containing bosentan using spray dryer. Three types of formulations (SD60, SD80, and SD100) depending on the various ethanol concentrations (60%, 80%, and 100%, respectively) were used. Bosentan microparticle formulations were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, differential scanning calorimetry, Fourier-transform infrared spectroscopy, dissolution test, and in vitro aerodynamic performance using Andersen cascade impactor™ (ACI) system. In addition, particle image velocimetry (PIV) system was used for directly confirming the actual movement of the aerosolized particles. Bosentan microparticles resulted in formulations with various shapes, surface morphology, and particle size distributions. SD100 was a smooth surface with spherical morphology, SD80 was a rough surfaced with spherical morphology and SD60 was a rough surfaced with corrugated morphology. SD100, SD80, and SD60 showed significantly high drug release up to 1 h compared with raw bosentan. The aerodynamic size of SD80 and SD60 was 1.27 µm and SD100 was 6.95 µm. The microparticles with smaller particle size and a rough surface aerosolized better (%FPF: 63.07 ± 2.39 and 68.27 ± 8.99 for SD60 and SD80, respectively) than larger particle size and smooth surface microparticle (%FPF: 22.64 ± 11.50 for SD100).
Collapse
|
8
|
Dhoble S, Patravale V. Development of anti-angiogenic erlotinib liposomal formulation for pulmonary hypertension: a QbD approach. Drug Deliv Transl Res 2020; 9:980-996. [PMID: 31001718 DOI: 10.1007/s13346-019-00641-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pulmonary arterial hypertension (PAH) is the increase in mean pulmonary arterial pressure (> 25 mmHg). The development of the non-reversible plexiform lesions on the arterial walls of the pulmonary arteries has evolved as the reason to increase the pressure. The current treatments are directed towards the vasodilation of the pulmonary arteries via the endothelin, prostacyclin, and NO pathways which provides symptomatic relief. Deeper understanding of the disease leads to the various pathophysiological targets that play an important role in the development of PAH. Out of these, the angiogenetic mechanism of the pulmonary arterial smooth muscle cells has been proved to play an important role in PAH. Targeted therapies by anti-proliferative drugs may lead to the efficient treatment strategies to the root cause of PAH. Erlotinib, a receptor tyrosine kinase inhibitor, which acts on the epidermal growth factor receptor (EGFR), has shown promising results in clinical trials of PAH. The objective of the work has been the development of liposomal formulation of anti-proliferative drug, erlotinib HCl, via Quality by Design (QbD) approach. The liposomal formulation was developed using thin-film hydration technique and characterised for various physicochemical parameters, like particle size, % entrapment efficiency, DSC, FTIR, pXRD, and TEM. In the drug release study, the formulation showed sustained release of erlotinib over 24 h in simulated lung fluid pH 7.4. This developed formulation was evaluated in zebrafish tail fin regeneration assay for its anti-angiogenetic activity. The liposomal formulation inhibited the tail fin regeneration for 14 days indicating anti-angiogenetic activity.
Collapse
Affiliation(s)
- Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400 019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400 019, India.
| |
Collapse
|
9
|
Johnson J, Lakshmanan G, M B, R M V, Kalimuthu K, Sekar D. Computational identification of MiRNA-7110 from pulmonary arterial hypertension (PAH) ESTs: a new microRNA that links diabetes and PAH. Hypertens Res 2019; 43:360-362. [PMID: 31792346 DOI: 10.1038/s41440-019-0369-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jayapriya Johnson
- Dental Research Cell (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Ganesh Lakshmanan
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Biruntha M
- Department of Animal Health and Management, Alagappa University, Tamil Nadu, 630003, India
| | - Vidhyavathi R M
- Department of Bioinformatics, Alagappa University, Tamil Nadu, 630003, India
| | - Kohila Kalimuthu
- Department of Obstetrics and Gynaecology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India
| | - Durairaj Sekar
- Dental Research Cell (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
10
|
Nakamura K, Akagi S, Ejiri K, Yoshida M, Miyoshi T, Toh N, Nakagawa K, Takaya Y, Matsubara H, Ito H. Current Treatment Strategies and Nanoparticle-Mediated Drug Delivery Systems for Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 20:ijms20235885. [PMID: 31771203 PMCID: PMC6928621 DOI: 10.3390/ijms20235885] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
There are three critical pathways for the pathogenesis and progression of pulmonary arterial hypertension (PAH): the prostacyclin (prostaglandin I2) (PGI2), nitric oxide (NO), and endothelin pathways. The current approved drugs targeting these three pathways, including prostacyclin (PGI2), phosphodiesterase type-5 (PDE5) inhibitors, and endothelin receptor antagonists (ERAs), have been shown to be effective, however, PAH remains a severe clinical condition and the long-term survival of patients with PAH is still suboptimal. The full therapeutic abilities of available drugs are reduced by medication, patient non-compliance, and side effects. Nanoparticles are expected to address these problems by providing a novel drug delivery approach for the treatment of PAH. Drug-loaded nanoparticles for local delivery can optimize the efficacy and minimize the adverse effects of drugs. Prostacyclin (PGI2) analogue, PDE5 inhibitors, ERA, pitavastatin, imatinib, rapamycin, fasudil, and oligonucleotides-loaded nanoparticles have been reported to be effective in animal PAH models and in vitro studies. However, the efficacy and safety of nanoparticle mediated-drug delivery systems for PAH treatment in humans are unknown and further clinical studies are required to clarify these points.
Collapse
Affiliation(s)
- Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
- Correspondence: ; Tel.: +81-86-235-7351; Fax: +81-86-235-7353
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Kentaro Ejiri
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Norihisa Toh
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Koji Nakagawa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Yoichi Takaya
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Hiromi Matsubara
- Division of Cardiology, National Hospital Organization Okayama Medical Center, Okayama 701-1192, Japan;
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| |
Collapse
|
11
|
He M, Cui T, Cai Q, Wang H, Kong H, Xie W. Iptakalim ameliorates hypoxia-impaired human endothelial colony-forming cells proliferation, migration, and angiogenesis via Akt/eNOS pathways. Pulm Circ 2019; 9:2045894019875417. [PMID: 31692706 DOI: 10.1177/2045894019875417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-associated pulmonary hypertension is characterized by pulmonary vascular remodeling. Pulmonary arterial endothelial cells dysfunction is considered as the initial event. As precursor of endothelial cells, endothelial colony-forming cells (ECFCs) play significant roles in maintenance of endothelium integrity and restoration of normal endothelial cell function. Accumulating data have indicated that hypoxia leads to a decrease in the number and function of ECFCs with defective capacity of endothelial regeneration. Previous studies have reported that the activation of ATP-sensitive potassium channels (KATP) shows therapeutic effects in pulmonary hypertension. However, there have been few reports focusing on the impact of KATP on ECFC function under hypoxic condition. Therefore, the aim of this study was to investigate whether the opening of KATP could regulate hypoxia-induced ECFC dysfunction. Using ECFCs derived from adult peripheral blood, we observed that Iptakalim (Ipt), a novel KATP opener (KCO), significantly promoted ECFC function including cellular viability, proliferation, migration, angiogenesis, and apoptosis compared with ECFCs exposed to hypoxia. Glibenclamide (Gli), a nonselective KATP blocker, could eliminate the effects. The protective role of Ipt is attributed to an increased production of nitric oxide (NO), as well as an enhanced activation of angiogenic transduction pathways, containing Akt and endothelial nitric oxide synthase. Our observations demonstrated that KATP activation could improve ECFC function in hypoxia via Akt/endothelial nitric oxide synthase pathways, which may constitute increase ECFC therapeutic potential for hypoxia-associated pulmonary hypertension treatment.
Collapse
Affiliation(s)
- Mengyu He
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Cui
- The Inspection Department of the first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Cai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Liu M, Liu Q, Pei Y, Gong M, Cui X, Pan J, Zhang Y, Liu Y, Liu Y, Yuan X, Zhou H, Chen Y, Sun J, Wang L, Zhang X, Wang R, Li S, Cheng J, Ding Y, Ma T, Yuan Y. Aqp-1
Gene Knockout Attenuates Hypoxic Pulmonary Hypertension of Mice. Arterioscler Thromb Vasc Biol 2019; 39:48-62. [PMID: 30580569 DOI: 10.1161/atvbaha.118.311714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective—
Hypoxic pulmonary hypertension (HPH) is characterized by proliferative vascular remodeling. Abnormal pulmonary artery smooth muscle cells proliferation and endothelial dysfunction are the primary cellular bases of vascular remodeling. AQP1 (aquaporin-1) is regulated by oxygen level and has been observed to play a role in the proliferation and migration of pulmonary artery smooth muscle cells. The role of AQP1 in HPH pathogenesis has not been directly determined to date. To determine the possible roles of AQP1 in the pathogenesis of HPH and explore its possible mechanisms.
Approach and Results—
Aqp1
knockout mice were used, and HPH model was established in this study. Primary pulmonary artery smooth muscle cells, primary mouse lung endothelial cells, and lung tissue sections from HPH model were used. Immunohistochemistry, immunofluorescence and Western blot, cell cycle, apoptosis, and migration analysis were performed in this study. AQP1 expression was upregulated by chronic hypoxia exposure, both in pulmonary artery endothelia and medial smooth muscle layer of mice.
Aqp1
deficiency attenuated the elevation of right ventricular systolic pressures and mitigated pulmonary vascular structure remodeling. AQP1 deletion reduced abnormal cell proliferation in pulmonary artery and accompanied with accumulation of HIF (hypoxia-inducible factor). In vitro,
Aqp1
deletion reduced hypoxia-induced proliferation, apoptosis resistance, and migration ability of primary cultured pulmonary artery smooth muscle cells and repressed HIF-1α protein stability. Furthermore,
Aqp1
deficiency protected lung endothelial cells from apoptosis in response to hypoxic injury.
Conclusions—
Our data showed that
Aqp1
deficiency could attenuate hypoxia-induced vascular remodeling in the development of HPH. AQP1 may be a potential target for pulmonary hypertension treatment.
Collapse
Affiliation(s)
- Mingcheng Liu
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Qiwang Liu
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yandong Pei
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Miaomiao Gong
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Xiaolin Cui
- College of Basic Medical Sciences, Dalian Medical University, China (X.C., S.L., T.M.)
| | - Jinjin Pan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yunlong Zhang
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Yang Liu
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Xiaocheng Yuan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Haoran Zhou
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Yiying Chen
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Jian Sun
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Lin Wang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Xiya Zhang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Rui Wang
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, China (X.C., S.L., T.M.)
| | - Jizhong Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX (J.C.)
| | - Yanchun Ding
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| | - Tonghui Ma
- Department of Cardiology, The First Affiliated Hospital, Dalian Medical University, China (Y.Z., Yang Liu, Ying Liu)
| | - Yuhui Yuan
- From the The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, China (M.L., Q.L., Y.P., M.G., J.P., X.Y., H.Z., Y.C., J.S., L.W., X.Z., R.W., Y.D., Y.Y.)
| |
Collapse
|
13
|
Maarman GJ. Natural Antioxidants as Potential Therapy, and a Promising Role for Melatonin Against Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:161-178. [PMID: 29047086 DOI: 10.1007/978-3-319-63245-2_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma and serum samples, and lung/heart tissue of pulmonary hypertension (PH) patients and animal models of PH display elevated oxidative stress. Moreover, the severity of PH and levels of oxidative stress increase concurrently, which suggests that oxidative stress could be utilized as a biomarker for PH progression. Accumulating evidence has well established that oxidative stress is also key role player in the development of PH. Preclinical studies have demonstrated that natural antioxidants improved PH condition, and, therefore, antioxidant therapy has been proposed as a potential therapeutic strategy against PH. These natural antioxidants include medicinal plant extracts and compounds such as resveratrol and melatonin. Recent studies suggest that melatonin provides health benefit against PH, by enhancing antioxidant capacity, increasing vasodilation, counteracting lung and cardiac fibrosis, and stunting right ventricular (RV) hypertrophy/failure. This chapter comprehensively reviews and discusses a variety of natural antioxidants and their efficacy in modulating experimental PH. This chapter also demonstrates that antioxidant therapy remains a therapeutic strategy for PH, and particularly identifies melatonin as a safe, cost-effective, and promising antioxidant therapy.
Collapse
Affiliation(s)
- Gerald J Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University, Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
14
|
Nie X, Tan J, Dai Y, Liu Y, Zou J, Sun J, Ye S, Shen C, Fan L, Chen J, Bian JS. CCL5 deficiency rescues pulmonary vascular dysfunction, and reverses pulmonary hypertension via caveolin-1-dependent BMPR2 activation. J Mol Cell Cardiol 2018; 116:41-56. [PMID: 29374556 DOI: 10.1016/j.yjmcc.2018.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Reduced bone morphogenetic protein receptor 2 (BMPR2) expression in patients with PAH impairs pulmonary arterial endothelial cells (PAECs) function. This can adversely affect PAEC survival and promote PASMCs proliferation. We hypothesized that interventions to normalize the expression of genes that are targets of the BMPR2 signaling could restore PAECs function and prevent or reverse PAH. Here we characterized for the first time, in human PAECs, chemokine (C-C motif) ligand 5 (CCL5/RANTES) deficiency restore BMP-mediated PAECs function. In the cell culture experiments, we found that CCL5 deficiency increased apoptosis and tube formation of PAECs, but suppressed proliferation and migration of PASMCs. Silencing CCL5 expression in PAH PAECs restored bone morphogenetic protein (BMP) signaling responses and promoted phosphorylation of SMADs and transcription of ID genes. Moreover, CCL5 deficiency inhibited angiogenesis by increasing pSMAD-dependent and-independent BMPR2 signaling. This was linked mechanistically to enhanced interaction of BMPR2 with caveolin-1 via CCL5 deficiency-mediated stabilization of endothelial surface caveolin-1. Consistent with these functions, deletion of CCL5 significantly attenuated development of Sugen5416/hypoxia-induced PAH by restoring BMPR2 signaling in mice. Taken together, our findings suggest that CCL5 deficiency could reverse obliterative changes in pulmonary arteries via caveolin-1-dependent amplification of BMPR2 signaling. Our results shed light on better understanding of the disease pathobiology and provide a possible novel target for the treatment of PAH.
Collapse
Affiliation(s)
- Xiaowei Nie
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Jianxin Tan
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Youai Dai
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, PR China
| | - Jian Zou
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jie Sun
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shugao Ye
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Chenyou Shen
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Li Fan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jingyu Chen
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Deng L, Baker AH, Bradshaw AC. MicroRNA Delivery Strategies to the Lung in a Model of Pulmonary Hypertension. Methods Mol Biol 2018; 1521:325-338. [PMID: 27910060 DOI: 10.1007/978-1-4939-6588-5_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation of pulmonary artery smooth muscle cells and endothelial cells associated with obliteration of small pulmonary arterioles and formation of plexiform lesions. To date, no curative treatments have been identified for pulmonary arterial hypertension. There are various therapeutic options, including conventional medical therapies and oral, subcutaneous, intravenous, and inhalation delivery. We have previously shown that miR-143/145 knockout can prevent the development of chronic hypoxia-induced pulmonary hypertension (PH) in mice. Here, we use chronic hypoxia-induced PH as a disease model to evaluate miR-143/145 inhibition after delivery of antimiRNAs via the subcutaneous or intranasal routes. We use qRT-PCR and immunofluorescence to confirm that both delivery strategies efficiently inhibit miR-143/145 in lung tissue from mice with chronic hypoxia-induced PH.
Collapse
Affiliation(s)
- Lin Deng
- Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.,Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 LittleFrance Crescent, Edinburgh, EH16 4TJ, UK
| | - Andrew H Baker
- Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.,Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 LittleFrance Crescent, Edinburgh, EH16 4TJ, UK
| | - Angela C Bradshaw
- Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
16
|
VISION LOSS IN A PATIENT WITH PRIMARY PULMONARY HYPERTENSION AND LONG-TERM USE OF SILDENAFIL. Retin Cases Brief Rep 2018; 11:325-328. [PMID: 27355186 DOI: 10.1097/icb.0000000000000355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe a case of bilateral, asymmetrical outer macular atrophy in a patient with pulmonary hypertension treated with long-term sildenafil (Revatio). METHODS Case report with fundus photography, spectral domain optical coherence tomography, fundus autofluorescence, and fluorescein angiography imaging. RESULTS A 32-year-old African American woman with a history of primary pulmonary hypertension and 5-year history of oral sildenafil (Revatio) use presented with decreasing central vision in her left eye. She reported a decline in central vision in the left eye that started 1 month after treatment initiation and progressed until discontinuation 5 years later. Visual acuity was 20/20 in the right eye and 20/100 in the left eye. Fundus photography revealed retinal pigment epithelial mottling and atrophy in the right eye and parafoveal retinal pigment epithelial mottling and atrophy in a ring-like configuration of the left eye. Optical coherence tomography demonstrated outer retinal irregularity in the right eye and disrupted outer retina involving the external limiting membrane, inner segment/outer segment junction, and the retinal pigment epithelium in the left eye; no choroidal thickening was observed. Fundus autofluorescence showed mild hypoautofluorescence in the foveal center with an irregular autofluorescence pattern in the parafovea of the left eye. Fluorescein angiography revealed capillary dropout with pinpoint hyperfluorescence and leakage in the far periphery bilaterally. A window defect was also observed in the foveal center of the left eye. CONCLUSION Sildenafil and other PDE5 inhibitors have been associated with several ocular side effects. However, this is the first report in the literature of outer macular atrophy in a patient with pulmonary hypertension and long-term use of oral sildenafil. All patients with long-term use of sildenafil should be educated on the risk of potential visual adverse effects.
Collapse
|
17
|
Muraki Y, Yamasaki M, Takeuchi H, Tohyama K, Sano N, Matsuo T. Fluorescent Imaging Analysis for Distribution of Fluorescent Dye Labeled- or Encapsulated-Liposome in Monocrotaline-Induced Pulmonary Hypertension Model Rat. Chem Pharm Bull (Tokyo) 2018; 66:270-276. [DOI: 10.1248/cpb.c17-00811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yo Muraki
- Takeda Pharmaceutical Company Limited
| | | | | | | | | | | |
Collapse
|
18
|
Burger CD, Ghandour M, Padmanabhan Menon D, Helmi H, Benza RL. Early intervention in the management of pulmonary arterial hypertension: clinical and economic outcomes. CLINICOECONOMICS AND OUTCOMES RESEARCH 2017; 9:731-739. [PMID: 29200882 PMCID: PMC5703162 DOI: 10.2147/ceor.s119117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) has a high morbidity rate and is fatal if left untreated. Increasing evidence supports early intervention, possibly with initial combination therapy. PAH-specific pharmaceuticals, however, are expensive and may have serious adverse effects, particularly when used in combination. The currently dynamic health care economy reinforces the need for a review of early intervention from both outcomes and economic perspectives. We aimed to review the clinical and economic impact of PAH therapy, particularly examining drug cost, hospitalization burden, and health care economics impact, and the effect of early intervention on clinical outcomes. We searched PubMed, Scopus, Ovid, and MEDLINE databases from 2005 to 2017 for studies comparing drug cost, clinical outcomes, and hospitalization burden associated with therapy for PAH. Emerging data indicate that early therapy is effective, but drug therapy is expensive, particularly with combination therapy. Efficacy studies also generally show benefit of combination therapy for patients in World Health Organization functional class II, with a consistent decrease in hospitalization. Pharmacoeconomic studies are limited but indicate that increased pharmacy costs are at least partially offset by decreased health care utilization, particularly inpatient care. Modeling also shows a cost benefit with combination therapy at 2 years. Nonetheless, more rigorously collected health care economic data should be incorporated into future drug efficacy trials to provide a clearer understanding of the impact and the associated cost benefit of early PAH therapy. Increasing evidence in support of early intervention and combination therapy for PAH is associated with rising medication costs that are largely offset by reduced hospitalization, on the basis of the currently available literature. Nonetheless, the studies performed to date have methodologic limitations that highlight the need for prospective studies using more robust economic modeling.
Collapse
Affiliation(s)
| | | | | | - Haytham Helmi
- Division of Transplant Medicine and Research Administration, Mayo Clinic, Jacksonville, FL, USA
| | - Raymond L Benza
- Advanced Heart Failure, Transplant, Mechanical Circulatory Support and Pulmonary Hypertension, Allegheny Health Network, Pittsburg, PA, USA
| |
Collapse
|
19
|
Krupa A, Majda D, Mozgawa W, Szlęk J, Jachowicz R. Physicochemical Properties of Bosentan and Selected PDE-5 Inhibitors in the Design of Drugs for Rare Diseases. AAPS PharmSciTech 2017; 18:1318-1331. [PMID: 27495162 DOI: 10.1208/s12249-016-0599-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The study provides the physicochemical characteristic of bosentan (BOS) in comparison to tadalafil (TA) and sildenafil citrate (SIL). Despite some reports dealing with thermal characteristic of SIL and TA, physicochemical properties of BOS have not been investigated so far. Recent clinical reports have indicated that the combination of bosentan and PDE-5 inhibitor can improve the effectiveness of pharmacotherapy of pulmonary arterial hypertension (PAH). However, in order to design personalized medicines for therapy of chronic rare diseases, detailed information on the thermal behaviour and solubility of each drug is indispensable. Thus, XRD, DSC and TGA-QMS analyses were applied to compare the properties of the drugs, their thermal stability as well as to identify the products of thermal degradation. The dehydration of BOS started at 70°C and was followed by the chemical degradation with the onset at 290°C. The highest thermal stability was stated for TA, which decomposed at ca. 320°C, whereas the lowest onset of the thermal decomposition process was stated for SIL, i.e. 190°C. The products of the drug decomposition were identified. FT-FIR was applied to study intra- and intermolecular interactions between the drug molecules. FT-MIR and Raman spectroscopy were used to examine the chemical structure of the drugs. Chemoinformatic tools were used to predict the polar surface area, pKa, or logP of the drugs. Their results were in line with solubility and dissolution studies.
Collapse
|
20
|
Nakamura K, Matsubara H, Akagi S, Sarashina T, Ejiri K, Kawakita N, Yoshida M, Miyoshi T, Watanabe A, Nishii N, Ito H. Nanoparticle-Mediated Drug Delivery System for Pulmonary Arterial Hypertension. J Clin Med 2017; 6:jcm6050048. [PMID: 28468233 PMCID: PMC5447939 DOI: 10.3390/jcm6050048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/22/2017] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles have been used as a novel drug delivery system. Drug-incorporated nanoparticles for local delivery might optimize the efficacy and minimize the side effects of drugs. The efficacy and safety of intratracheal administration of prostacyclin analog (beraprost) -incorporated nanoparticles and imatinib (a PDGF-receptor tyrosine kinase inhibitor) -incorporated nanoparticles in Sugen-hypoxia-normoxia or monocrotaline rat models of pulmonary arterial hypertension (PAH) and in human PAH-pulmonary arterial smooth muscle cells have been reported. The use of inhaled drug-incorporated nanoparticles might be a novel approach for the treatment of PAH.
Collapse
Affiliation(s)
- Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiromi Matsubara
- Division of Cardiology, National Hospital Organization Okayama Medical Center, Okayama 701-1192, Japan.
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Toshihiro Sarashina
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Kentaro Ejiri
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Norifumi Kawakita
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Atsuyuki Watanabe
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Nobuhiro Nishii
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
21
|
Vaidya B, Pangallo M, Ruffenach G, Cunningham CM, Perron JC, Kolluru S, Eghbali M, Gupta V. Advances in treatment of pulmonary arterial hypertension: patent review. Expert Opin Ther Pat 2017; 27:907-918. [DOI: 10.1080/13543776.2017.1313232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Matthew Pangallo
- School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christine Marie Cunningham
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeanette C. Perron
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | | | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| |
Collapse
|
22
|
Loomis Z, Eigenberger P, Redinius K, Lisk C, Karoor V, Nozik-Grayck E, Ferguson SK, Hassell K, Nuss R, Stenmark K, Buehler P, Irwin DC. Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 2017; 12:e0171219. [PMID: 28152051 PMCID: PMC5289566 DOI: 10.1371/journal.pone.0171219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 12/23/2022] Open
Abstract
It is now well established that both inherited and acquired forms of hemolytic disease can promote pulmonary vascular disease consequent of free hemoglobin (Hb) induced NO scavenging, elevations in reactive oxygen species and lipid peroxidation. It has recently been reported that oxidative stress can activate NFkB through a toll-like receptor 9 (TLR9) mediated pathway; further, TLR9 can be activated by either nuclear or mitochondrial DNA liberated by stress induced cellular trauma. We hypothesis that Hb induced lipid peroxidation and subsequent endothelial cell trauma is linked to TLR9 activation, resulting in IL-6 mediated pulmonary smooth muscle cell proliferation. We examined the effects of Hb on rat pulmonary artery endothelial and smooth muscle cells (rPAEC and rPASMC, respectively), and then utilized TLR9 and IL6 inhibitors, as well as the Hb and heme binding proteins (haptoglobin (Hp) and hemopexin (Hpx), respectively) to further elucidate the aforementioned mediators. Further, we explored the effects of Hb in vivo utilizing endothelial cell (EC) specific myeloid differentiation primary response gene-88 (MyD88) and TLR9 null mice. Our data show that oxidized Hb induces lipid peroxidation, cellular toxicity (5.5 ± 1.7 fold; p≤0.04), increased TLR9 activation (60%; p = 0.01), and up regulated IL6 expression (1.75±0.3 fold; p = 0.04) in rPAEC. Rat PASMC exhibited a more proliferative state (13 ± 1%; p = 0.01) when co-cultured with Hb activated rPAEC. These effects were attenuated with the sequestration of Hb or heme by Hp and Hpx as well as with TLR9 an IL-6 inhibition. Moreover, in both EC-MyD88 and TLR9 null mice Hb-infusion resulted in less lung IL-6 expression compared to WT cohorts. These results demonstrate that Hb-induced lipid peroxidation can initiate a modest TLR9 mediated inflammatory response, subsequently generating an activated SMC phenotype.
Collapse
Affiliation(s)
- Zoe Loomis
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Paul Eigenberger
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Katherine Redinius
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christina Lisk
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Eva Nozik-Grayck
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Scott K. Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathryn Hassell
- Division of Hematology and Colorado Sickle Cell Treatment and Research Center, University of Colorado-Denver School of Medicine, Aurora, Colorado, United States of America
| | - Rachelle Nuss
- Division of Hematology and Colorado Sickle Cell Treatment and Research Center, University of Colorado-Denver School of Medicine, Aurora, Colorado, United States of America
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Paul Buehler
- Division of Hematology, The Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland, United States of America
| | - David C. Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Statins Have No Additional Benefit for Pulmonary Hypertension: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2016; 11:e0168101. [PMID: 27992469 PMCID: PMC5167271 DOI: 10.1371/journal.pone.0168101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES We performed a meta-analysis to explore the effects of adding statins to standard treatment on adult patients of pulmonary hypertension (PH). METHODS A systematic search up to December, 2015 of Medline, EMBASE, Cochrane Database of Systematic reviews and Cochrane Central Register of Controlled Trials was performed to identify randomized controlled trials with PH patients treated with statins. RESULTS Five studies involving 425 patients were included into this meta-analysis. The results of our analysis showed that the statins can't significantly increase 6-minute walking distance (6MWD, mean difference [MD] = -0.33 [CI: -18.25 to 17.59]), decrease the BORG dyspnea score (MD = -0.72 [CI: -2.28 to 0.85]), the clinical worsening risk (11% in statins vs. 10.1% in controls, Risk ratio = 1.06 [CI: 0.61, 1.83]), or the systolic pulmonary arterial pressure (SPAP) (MD = -0.72 [CI: -2.28 to 0.85]). Subgroup analysis for PH due to COPD or non-COPD also showed no significance. CONCLUSIONS Statins have no additional beneficial effect on standard therapy for PH, but the results from subgroup of PH due to COPD seem intriguing and further study with larger sample size and longer follow-up is suggested.
Collapse
|
24
|
Lee HJ, Kang JH, Lee HG, Kim DW, Rhee YS, Kim JY, Park ES, Park CW. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:4017-4030. [PMID: 28008226 PMCID: PMC5167478 DOI: 10.2147/dddt.s120356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well fitted into the Higuchi and zero-order models, respectively.
Collapse
Affiliation(s)
- Hyo-Jung Lee
- College of Pharmacy, Chungbuk National University
| | - Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University
| | - Hong-Goo Lee
- College of Pharmacy, Chungbuk National University
| | - Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju
| | - Yun-Seok Rhee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju
| | - Ju-Young Kim
- College of Pharmacy, Woosuk University, Wanju-gun
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | | |
Collapse
|
25
|
Makled S, Nafee N, Boraie N. Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor. Int J Pharm 2016; 517:312-321. [PMID: 27979766 DOI: 10.1016/j.ijpharm.2016.12.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/10/2016] [Accepted: 12/10/2016] [Indexed: 12/20/2022]
Abstract
Phosphodiesterase type 5 (PDE-5) inhibitors - among which sildenafil citrate (SC) - play a primary role in the treatment of pulmonary hypertension (PH). Yet, SC can be only administered orally or parenterally with lot of risks. Targeted delivery of SC to the lungs via inhalation/nebulization is mandatory. In this study, solid lipid nanoparticles (SLNs) loaded with SC were prepared and characterized in terms of colloidal, morphological and thermal properties. The amount of drug loaded and its release behavior were estimated as a function of formulation variables. The potential of lipid nanocarriers to retain their properties following nebulization and autoclaving was investigated. In addition, toxicity aspects of plain and loaded SLNs on A549 cells were studied with respect to concentration. Spherical SLNs in the size range (100-250nm) were obtained. Particles ensured high encapsulation efficiency (88-100%) and sustained release of the payload over 24h. Cell-based viability experiments revealed a concentration-dependant toxicity for both plain and loaded SLNs recording an IC50 of 516 and 384μg/mL, respectively. Nebulization with jet nebulizer and sterilization via autoclaving affected neither the colloidal stability of SLNs nor the drug entrapment, proving their potential as pulmonary delivery system. Interaction of SLNs with mucin was a function of the emulsifier coating layer. Results yet seeking clinical evidence - might give promises of new therapy for PH of higher safety, better performance and higher patient compliance.
Collapse
Affiliation(s)
- Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| |
Collapse
|
26
|
Abstract
INTRODUCTION Treatment of systemic sclerosis (SSc) is challenging despite advances in medical therapeutics for other rheumatologic diseases. Significant disease modifying therapy is lacking for most patients with SSc, due to the heterogeneous multisystem nature of SSc and its complex pathophysiology. The emergence of organ based management strategies has provided guidance in patient care as well as research and drug development. Areas covered: Design and development of new compounds focused on the underlying fibrotic disease processes have been sparse. Therefore, organ based strategies with targeted approaches have been directed towards the most devastating and life threatening features of systemic sclerosis. These include pulmonary arterial hypertension, interstitial lung disease, peripheral vasculopathy and skin thickening. In this context, new treatment regimens using older drugs as well as discovery of novel compounds based on recent insights of the disease pathophysiology are discussed. Expert opinion: Systemic sclerosis is a heterogeneous rare disease that carries a high burden of morbidity and mortality. Organ based management strategies have improved the natural history of systemic sclerosis using targeted interventions or strategies, particularly vascular features. However, more research is required to better understand disease mechanisms, including an ultimate unifying pathway that explains the multisystem nature of systemic sclerosis.
Collapse
Affiliation(s)
- Jason J Lee
- a Schulich School of Medicine , Western University , London , Ontario , Canada
| | - Janet E Pope
- b Schulich School of Medicine , Western University, St. Joseph's Health Care , London , Ontario , Canada
| |
Collapse
|
27
|
Self-assembly strategy for the design of soft nanocontainers with controlled properties. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Hansen T, Galougahi KK, Celermajer D, Rasko N, Tang O, Bubb KJ, Figtree G. Oxidative and nitrosative signalling in pulmonary arterial hypertension — Implications for development of novel therapies. Pharmacol Ther 2016; 165:50-62. [DOI: 10.1016/j.pharmthera.2016.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Patel A, Woods A, Riffo-Vasquez Y, Babin-Morgan A, Jones MC, Jones S, Sunassee K, Clark S, T. M. de Rosales R, Page C, Spina D, Forbes B, Dailey LA. Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration. J Control Release 2016; 235:24-33. [DOI: 10.1016/j.jconrel.2016.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
|
30
|
Tao L, Bei Y, Zhang H, Xiao J, Li X. Exercise for the heart: signaling pathways. Oncotarget 2016; 6:20773-84. [PMID: 26318584 PMCID: PMC4673228 DOI: 10.18632/oncotarget.4770] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
Physical exercise, a potent functional intervention in protecting against cardiovascular diseases, is a hot topic in recent years. Exercise has been shown to reduce cardiac risk factors, protect against myocardial damage, and increase cardiac function. This improves quality of life and decreases mortality and morbidity in a variety of cardiovascular diseases, including myocardial infarction, cardiac ischemia/reperfusion injury, diabetic cardiomyopathy, cardiac aging, and pulmonary hypertension. The cellular adaptation to exercise can be associated with both endogenous and exogenous factors: (1) exercise induces cardiac growth via hypertrophy and renewal of cardiomyocytes, and (2) exercise induces endothelial progenitor cells to proliferate, migrate and differentiate into mature endothelial cells, giving rise to endothelial regeneration and angiogenesis. The cellular adaptations associated with exercise are due to the activation of several signaling pathways, in particular, the growth factor neuregulin1 (NRG1)-ErbB4-C/EBPβ and insulin-like growth factor (IGF)-1-PI3k-Akt signaling pathways. Of interest, microRNAs (miRNAs, miRs) such as miR-222 also play a major role in the beneficial effects of exercise. Thus, exploring the mechanisms mediating exercise-induced benefits will be instrumental for devising new effective therapies against cardiovascular diseases.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yihua Bei
- Regeneration and Ageing Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Junjie Xiao
- Regeneration and Ageing Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
31
|
Mendes-Ferreira P, Santos-Ribeiro D, Adão R, Maia-Rocha C, Mendes-Ferreira M, Sousa-Mendes C, Leite-Moreira AF, Brás-Silva C. Distinct right ventricle remodeling in response to pressure overload in the rat. Am J Physiol Heart Circ Physiol 2016; 311:H85-95. [PMID: 27199115 DOI: 10.1152/ajpheart.00089.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
Abstract
Pulmonary arterial hypertension (PAH), the most serious chronic disorder of the pulmonary circulation, is characterized by pulmonary vasoconstriction and remodeling, resulting in increased afterload on the right ventricle (RV). In fact, RV function is the main determinant of prognosis in PAH. The most frequently used experimental models of PAH include monocrotaline- and chronic hypoxia-induced PAH, which primarily affect the pulmonary circulation. Alternatively, pulmonary artery banding (PAB) can be performed to achieve RV overload without affecting the pulmonary vasculature, allowing researchers to determine the RV-specific effects of their drugs/interventions. In this work, using two different degrees of pulmonary artery constriction, we characterize, in full detail, PAB-induced adaptive and maladaptive remodeling of the RV at 3 wk after PAB surgery. Our results show that application of a mild constriction resulted in adaptive hypertrophy of the RV, with preserved systolic and diastolic function, while application of a severe constriction resulted in maladaptive hypertrophy, with chamber dilation and systolic and diastolic dysfunction up to the isolated cardiomyocyte level. By applying two different degrees of constriction, we describe, for the first time, a reliable and short-duration PAB model in which RV adaptation can be distinguished at 3 wk after surgery. We characterize, in full detail, structural and functional changes of the RV in its response to moderate and severe constriction, allowing researchers to better study RV physiology and transition to dysfunction and failure, as well as to determine the effects of new therapies.
Collapse
Affiliation(s)
- P Mendes-Ferreira
- Deparment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; and
| | - D Santos-Ribeiro
- Deparment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; and
| | - R Adão
- Deparment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; and
| | - C Maia-Rocha
- Deparment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; and
| | - M Mendes-Ferreira
- Deparment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; and
| | - C Sousa-Mendes
- Deparment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; and
| | - A F Leite-Moreira
- Deparment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; and
| | - C Brás-Silva
- Deparment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; and Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|