1
|
Meng K, Tu X, Sun F, Hou L, Shao Z, Wang J. Carbohydrate polymer-based nanoparticles in curcumin delivery for cancer therapy: A review. Int J Biol Macromol 2025:140441. [PMID: 39884595 DOI: 10.1016/j.ijbiomac.2025.140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The use of natural products for cancer treatment has a lengthy history. The safety and multifunctionality of naturally occurring substances have rendered them appropriate for cancer treatment. Curcumin influences multiple molecular pathways and is advantageous for treating both hematological and solid tumors. Nonetheless, the effectiveness of curcumin in vivo and in clinical studies has faced scrutiny due to its inadequate pharmacokinetic profile. Consequently, nanoparticles have been created for the administration of curcumin in cancer treatment. The nanoparticles can enhance the distribution of curcumin in tissues and increase its therapeutic effectiveness. Furthermore, nanoparticles expand the uptake of curcumin in cancer cells, leading to heightened cytotoxicity. Carbohydrate nanoparticles provide a promising solution for delivering curcumin in cancer treatment by tackling its low solubility, limited bioavailability, and quick degradation. These biodegradable and biocompatible carriers, originating from polymers such as chitosan, hyaluronic acid, and alginate, safeguard curcumin, improving its stability and allowing for controlled release. Targeting ligands for functionalization guarantee selective distribution to tumor cells, enhancing therapeutic effectiveness and reducing off-target impacts. Their capacity to encapsulate curcumin with other agents allows for synergistic therapies, enhancing anticancer results even more. The adjustable characteristics of carbohydrate nanoparticles, along with their minimal toxicity, create a revolutionary platform.
Collapse
Affiliation(s)
- Kexin Meng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang 310014, China
| | - Xinzhuo Tu
- Department of Pathology, Air Force Medical Center, PLA, Beijing, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Lingmi Hou
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhouxiang Shao
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jinxiang Wang
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
2
|
Gielecińska A, Kciuk M, Kontek R. The Impact of Calcium Overload on Cellular Processes: Exploring Calcicoptosis and Its Therapeutic Potential in Cancer. Int J Mol Sci 2024; 25:13727. [PMID: 39769488 PMCID: PMC11679949 DOI: 10.3390/ijms252413727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The key role of calcium in various physiological and pathological processes includes its involvement in various forms of regulated cell death (RCD). The concept of 'calcicoptosis' has been introduced as a calcium-induced phenomenon associated with oxidative stress and cellular damage. However, its definition remains controversial within the research community, with some considering it a general form of calcium overload stress, while others view it as a tumor-specific calcium-induced cell death. This review examines 'calcicoptosis' in the context of established RCD mechanisms such as apoptosis, necroptosis, ferroptosis, and others. It further analyzes the intricate relationship between calcium dysregulation and oxidative stress, emphasizing that while calcium overload often triggers cell death, it may not represent an entirely new type of RCD but rather an extension of known pathways. The purpose of this paper is to discuss the implications of this perspective for cancer therapy focusing on calcium-based nanoparticles. By investigating the connections between calcium dynamics and cell death pathways, this review contributes to the advancement of our understanding of calcicoptosis and its possible therapeutic uses.
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Matejki Street 21/23, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
| |
Collapse
|
3
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Liu J, Xie Y, Ma J, Chu H. New Ca 2+ based anticancer nanomaterials trigger multiple cell death targeting Ca 2+ homeostasis for cancer therapy. Chem Biol Interact 2024; 393:110948. [PMID: 38479714 DOI: 10.1016/j.cbi.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Calcium ion (Ca2+) is a necessary element for human and Ca2+ homeostasis plays important roles in various cellular process and functions. Recent reaches have targeted on inducing Ca2+ overload (both intracellular and transcellular) for tumor therapy. With the development of nanotechnology, nanoplatform-mediated Ca2+ overload has been safe theranostic model for cancer therapy, and defined a special calcium overload-induced tumor cell death as "calcicoptosis". However, the underlying mechanism of calcicoptosis in cancer cells remains further identification. In this review, we summarized multiple cell death types due to Ca2+ overload that induced by novel anticancer nanomaterials in tumor cells, including apoptosis, autophagy, pyroptosis, and ferroptosis. We reviewed the roles of these anticancer nanomaterials on Ca2+ homeostasis, including transcellular Ca2+ influx and efflux, and intracellular Ca2+ change in the cytosolic and organelles, and connection of Ca2+ overload with other metal ions. This review provides the knowledge of these nano-anticancer materials-triggered calcicoptosis accompanied with multiple cell death by regulating Ca2+ homeostasis, which could not only enhance their efficiency and specificity, but also enlighten to design new cancer therapeutic strategies and biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing Hospital, Yixing, Jiangsu, 214200, China
| | - Jun Ma
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Hezhen Chu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
5
|
Talaat SM, Elnaggar YSR, Gowayed MA, El-Ganainy SO, Allam M, Abdallah OY. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: in vitro appraisal and in vivo antitumoral studies. Drug Deliv Transl Res 2024; 14:433-454. [PMID: 37644299 PMCID: PMC10761494 DOI: 10.1007/s13346-023-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Fisetin (FIS) is a multifunctional bioactive flavanol that has been recently exploited as anticancer drug against various cancers including breast cancer. However, its poor aqueous solubility has constrained its clinical application. In the current work, fisetin is complexed for the first time with soy phosphatidylcholine in the presence of cholesterol to form a novel biocompatible phytosomal system entitled "cholephytosomes." To improve fisetin antitumor activity against breast cancer, stearylamine bearing cationic cholephytosomes (mPHY) were prepared and furtherly modified with hyaluronic acid (HPHY) to allow their orientation to cancer cells through their surface exposed phosphatidylserine and CD-44 receptors, respectively. In vitro characterization studies revealed promising physicochemical properties of both modified vesicles (mPHY and HPHY) including excellent FIS complexation efficiency (˷100%), improved octanol/water solubility along with a sustained drug release over 24 h. In vitro cell line studies against MDA-MB-231 cell line showed about 10- and 3.5-fold inhibition in IC50 of modified vesicles compared with free drug and conventional drug-phospholipid complex, respectively. Preclinical studies revealed that both modified cholephytosomes (mPHY and HPHY) had comparable cytotoxicity that is significantly surpassing free drug cytotoxicity. TGF-β1and its non-canonical related signaling pathway; ERK1/2, NF-κB, and MMP-9 were involved in halting tumorigenesis. Thus, tailoring novel phytosomal nanosystems for FIS could open opportunity for its clinical utility against cancer.
Collapse
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
- Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Han W, Shen Z, Zou J, Ye Q, Ge C, Zhao Y, Wang T, Chen Y. Therapeutic Approaches of Dual-targeted Nanomedicines for Tumor Multidrug Resistance. Curr Drug Deliv 2024; 21:155-167. [PMID: 37143266 DOI: 10.2174/1567201820666230504145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Currently, the main cause of cancer chemotherapy failure is multi-drug resistance (MDR), which involves a variety of complex mechanisms. Compared with traditional small-molecule chemotherapy, targeted nanomedicines offer promising alternative strategies as an emerging form of therapy, especially active targeted nanomedicines. However, although single-targeted nanomedicines have made some progress in tumor therapy, the complexity of tumor microenvironment and tumor heterogeneity limits their efficacy. Dual-targeted nanomedicines can simultaneously target two tumor-specific factors that cause tumor MDR, which have the potential in overcoming tumor MDR superior to single-targeted nanomedicines by further enhancing cell uptake and cytotoxicity in new forms, as well as the effectiveness of tumor-targeted delivery. This review discusses tumor MDR mechanisms and the latest achievements applied to dual-targeted nanomedicines in tumor MDR.
Collapse
Affiliation(s)
- Weili Han
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Zhenglin Shen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Jie Zou
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Qiufang Ye
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Cheng Ge
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Yuqin Zhao
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Ting Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Yafang Chen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| |
Collapse
|
7
|
Ji L, Cui P, Zhou S, Qiu L, Huang H, Wang C, Wang J. Advances of Amifostine in Radiation Protection: Administration and Delivery. Mol Pharm 2023; 20:5383-5395. [PMID: 37747899 DOI: 10.1021/acs.molpharmaceut.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Amifostine (AMF, also known as WR-2721) is the only approved broad-spectrum small-molecule radiation protection agent that can combat hematopoietic damage caused by ionizing radiation and is used as an antitumor adjuvant and cell protector in cancer chemotherapy and radiotherapy. Amifostine is usually injected intravenously before chemotherapy or radiotherapy and has been used in the treatment of head and neck cancer. However, the inconvenient intravenous administration and its toxic side effects such as hypotension have severely limited its further application in clinic. In order to reduce the toxic and side effects, scientists are trying to develop a variety of drug administration methods and are devoted to developing a wide application of amifostine in radiation protection. This paper reviews the research progress of amifostine for radiation protection in recent years, discusses its mechanism of action, clinical application, and other aspects, with focus on summarizing the most widely studied amifostine injection administration and drug delivery systems, and explored the correlation between various administrations and drug efficacies.
Collapse
Affiliation(s)
- Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Hai Huang
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
8
|
Talaat SM, Elnaggar YSR, El-Ganainy SO, Gowayed MA, Allam M, Abdallah OY. Self-assembled fisetin-phospholipid complex: Fisetin-integrated phytosomes for effective delivery to breast cancer. Eur J Pharm Biopharm 2023; 189:174-188. [PMID: 37343893 DOI: 10.1016/j.ejpb.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Nowadays, fisetin (FIS) is extensively studied as potent anticancer surrogate with a multitarget actions against various types of cancers including breast cancer. However, its poor aqueous solubility handicapped its clinical utility. The current work endeavored, for the first time, to develop FIS phytosomes (FIS-PHY) for improving its physicochemical properties and subsequently its anticancer activity. Optimization of FIS- phytosomes involved different preparation techniques (Thin film hydration and ethanol injection) and different FIS: phospholipid molar ratios (1:1, 1:2, and 1:3). Complex formation was confirmed by complexation efficiency, infrared spectroscopy (IR), solubility studies and transmission electron microscope. The optimized FIS-PHY of 1:1 M ratio (PHY1) exhibited a nanometric particle size of 233.01 ± 9.46 nm with homogenous distribution (PDI = 0.27), negative zeta potential of - 29.41 mV, 100% complexation efficiency and controlled drug release over 24 h. In-vitro cytotoxicity study showed 2.5-fold decrease in IC50 of PHY1 compared with free FIS. Also, pharmacodynamic studies confirmed the promoted cytotoxicity of PHY1 against breast cancer through modulating TGF-β1/MMP-9 molecular pathways of tumorigenesis. Overall, overcoming FIS drawbacks were successfully achieved through development of innovative biocompatible phytosomal system.
Collapse
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
9
|
Li B, Shao H, Gao L, Li H, Sheng H, Zhu L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: a review. Drug Deliv 2022; 29:2130-2161. [PMID: 35815678 PMCID: PMC9275501 DOI: 10.1080/10717544.2022.2094498] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs have been used for a long time in the treatment of cancer, but serious side effects are caused by the inability of the drug to be solely delivered to the tumor when treating cancer with chemotherapy. Natural products have attracted more and more attention due to the antitumor effect in multiple ways, abundant resources and less side effects. Therefore, the combination of natural active ingredients and chemotherapy drugs may be an effective antitumor strategy, which can inhibit the growth of tumor and multidrug resistance, reduce side effects of chemotherapy drugs. Nano-drug co-delivery system (NDCDS) can play an important role in the combination of natural active ingredients and chemotherapy drugs. This review provides a comprehensive summary of the research status and application prospect of nano-delivery strategies for the combination of natural active ingredients and chemotherapy drugs, aiming to provide a basis for the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Talaat SM, Elnaggar YSR, El-Ganainy SO, Gowayed MA, Abdel-Bary A, Abdallah OY. Novel bio-inspired lipid nanoparticles for improving the anti-tumoral efficacy of fisetin against breast cancer. Int J Pharm 2022; 628:122184. [PMID: 36252641 DOI: 10.1016/j.ijpharm.2022.122184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amany Abdel-Bary
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
11
|
Halder J, Pradhan D, Biswasroy P, Rai VK, Kar B, Ghosh G, Rath G. Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. J Drug Target 2022; 30:1055-1075. [PMID: 35786242 DOI: 10.1080/1061186x.2022.2095389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Breast cancer (BC) is the deadliest malignant disorder globally, with a significant mortality rate. The development of tolerance throughout cancer treatment and non-specific targeting limits the drug's response. Currently, nano therapy provides an interdisciplinary area for imaging, diagnosis, and targeted drug delivery for BC. Several overexpressed biomarkers, proteins, and receptors are identified in BC, which can be potentially targeted by using nanomaterial for drug/gene/immune/photo-responsive therapy and bio-imaging. In recent applications, magnetic iron oxide nanoparticles (IONs) have shown tremendous attention to the researcher because they combine selective drug delivery and imaging functionalities. IONs can be efficaciously functionalised for potential application in BC therapy and diagnosis. In this review, we explored the current application of IONs in chemotherapeutics delivery, gene delivery, immunotherapy, photo-responsive therapy, and bio-imaging for BC based on their molecular mechanism. In addition, we also highlighted the effect of IONs' size, shape, dimension, and functionalization on BC targeting and imaging. To better comprehend the functionalization potential of IONs, this paper provides an outline of BC cellular development. IONs for BC theranostic are also reviewed based on their clinical significance and future aspects.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
12
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
13
|
Sriram V, Lee JY. Calcium phosphate-polymeric nanoparticle system for co-delivery of microRNA-21 inhibitor and doxorubicin. Colloids Surf B Biointerfaces 2021; 208:112061. [PMID: 34492599 DOI: 10.1016/j.colsurfb.2021.112061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
Targeted combination therapy has shown promise to achieve maximum therapeutic efficacy by overcoming drug resistance. MicroRNA-21 (miR-21) is frequently overexpressed in various cancer types including breast and non-small cell lung cancer and its functions can be inhibited by miR inhibitor (miR-21i). A combination of miR-21i and a chemo drug, doxorubicin (Dox), can provide synergistic effects. Here, we developed a calcium phosphate (CaP)-coated nanoparticle (NP) formulation to co-deliver miR-21i along with Dox. This NP design can be used to deliver the two agents with different physiochemical properties. The NP formulation was optimized for particle size, polydispersity, Dox loading, and miR-21i loading. The NP formulation was confirmed to downregulate miR-21 levels and upregulate tumor suppressor gene levels. The cytotoxic efficacy of the combined miR-21i and Dox-containing NPs was found to be higher than that of Dox. Therefore, the CaP-coated hybrid lipid-polymeric NPs hold potential for the delivery of miR-21i and Dox.
Collapse
Affiliation(s)
- Vishnu Sriram
- Chemical Engineering Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States
| | - Joo-Youp Lee
- Chemical Engineering Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States.
| |
Collapse
|
14
|
Palzer J, Mues B, Goerg R, Aberle M, Rensen SS, Olde Damink SWM, Vaes RDW, Cramer T, Schmitz-Rode T, Neumann UP, Slabu I, Roeth AA. Magnetic Fluid Hyperthermia as Treatment Option for Pancreatic Cancer Cells and Pancreatic Cancer Organoids. Int J Nanomedicine 2021; 16:2965-2981. [PMID: 33935496 PMCID: PMC8079353 DOI: 10.2147/ijn.s288379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a cancer with a meager prognosis due to its chemotherapy resistance. A new treatment method may be magnetic fluid hyperthermia (MFH). Magnetoliposomes (ML), consisting of superparamagnetic iron oxide nanoparticles (SPION) stabilized with a phospholipid-bilayer, are exposed to an alternating magnetic field (AMF) to generate heat. To optimize this therapy, we investigated the effects of MFH on human PDAC cell lines and 3D organoid cultures. MATERIAL AND METHODS ML cytotoxicity was tested on Mia PaCa-2 and PANC-1 cells and on PDAC 3D organoid cultures, generated from resected tissue of patients. The MFH was achieved by AMF application with an amplitude of 40-47 kA/m and a frequency of 270 kHz. The MFH effect on the cell viability of the cell lines and the organoid cultures was investigated at two different time points. Clonogenic assays evaluated the impairment of colony formation. Altering ML set-ups addressed differences arising from intra- vs extracellular ML locations. RESULTS Mia PaCa-2 and PANC-1 cells showed no cytotoxic effects at ML concentrations up to 300 µg(Fe)/mL and 225 µg(Fe)/mL, respectively. ML at a concentration of 225 µg(Fe)/mL were also non-toxic for PDAC organoid cultures. MFH treatment using exclusively extracellular ML presented the highest impact on cell viability. Clonogenic assays demonstrated remarkable impairment as long-term outcome in MFH-treated PDAC cell lines. Additionally, we successfully treated PDAC organoids with extracellular ML-derived MFH, resulting in notably reduced cell viabilities 2h and 24 h post treatment. Still, PDAC organoids seem to partly recover from MFH after 24 h as opposed to conventional 2D-cultures. CONCLUSION Treatment with MFH strongly diminished pancreatic cancer cell viability in vitro, making it a promising treatment strategy. As organoids resemble the more advanced in vivo conditions better than conventional 2D cell lines, our organoid model holds great potential for further investigations.
Collapse
Affiliation(s)
- Julian Palzer
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Benedikt Mues
- Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Richard Goerg
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Merel Aberle
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Sander S Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Steven W M Olde Damink
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Rianne D W Vaes
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Thorsten Cramer
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulf P Neumann
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Anjali A Roeth
- Department of General, Visceral and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
15
|
Li Q, Fu D, Zhang J, Li T, Wang H, Hou W, Niu B, Guo R, Liu Y. Poly(aspartic acid)-based pH-responsive targeting co-delivery nanoparticles. J Biomater Appl 2021; 36:579-591. [PMID: 33509034 DOI: 10.1177/0885328220988071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Encapsulation of therapeutic molecules into nanocarrier is an extensively explored strategy to treat cancer more effectively. In this study, pH-responsive targeting dual-agent delivery nanoparticles were prepared, into which hydrophilic doxorubicin hydrochloride (DOX) and hydrophobic curcumin (CUR) were entrapped. Tyrosine (Tyr) was grafted onto poly(aspartic acid) (PASP) to produce PASP-Tyr, the following reaction between hyaluronic acid (HA) and ethylenediamine (EDA) modified PASP-Tyr formed the nanocarrier HA-EDA-PASP-Tyr (HEPT), and the loading capacity was up to 50.9 ± 4.3% for CUR and 26.0 ± 1.9% for DOX. The spherical HEPT with the mean particle size of 142.9 ± 11.4 nm expanded and deformed into petaloid pattern with an increased size of about 2 µm when triggered by the acidic microenvironment. In vitro anticancer activity evaluation revealed that the co-loaded (DOX+CUR)@HEPT nanoparticles presented higher cytotoxicity against HCT-116 cells compared with that of the free combination of (DOX+CUR). Confocal laser scanning microscopy observation indicated that HEPT carrier promoted cellular uptake of drugs by means of active targeting capacity of HA ligand. With high loading capacity and tailored carrier structure, the nanoparticles formulations may offer a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Qiang Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Dongsheng Fu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jie Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Tianyang Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Huifang Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Wenjuan Hou
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ruijie Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yiming Liu
- Large Apparatus Analysis and Test Centre, Shanxi Academy of Analytical Science, Taiyuan, China
| |
Collapse
|
16
|
Li Q, Fu D, Zhang J, Yan H, Wang H, Niu B, Guo R, Liu Y. Dual stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of multiple drugs in cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111586. [PMID: 33529927 DOI: 10.1016/j.colsurfb.2021.111586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
In this study, a new type of polypeptide, crosslinked methoxy poly(ethylene glycol)-g-poly(aspartic acid)-g-tyrosine (CPPT), was synthesized via a green and simple one-pot polymerization method. With the disulfide-crosslinked interlayer and the CaP shell, the pH and redox dual-sensitive polypeptide-based organic-inorganic hybrid nanoparticles encapsulated curcumin (Cur) into the hydrophobic core of micelles and loaded doxorubicin hydrochloride (DOX) on the hydrophilic segment of micelles as well as CaP shell. The spherical Cur- and DOX-loaded nanoparticles (CPPT@CaP-CD) showed a hydrodynamics size of about 157.9 ± 3.9 nm. The premature leakage of drugs from the nanoparticles at physiological pH was efficiently restrained because of the enhanced structure integrity, whereas at acidic and hypoxia microenvironment the release of both drugs was promoted due to the rapid dissolution of the CaP shell and the break of the disulfide crosslinked network, facilitating the stimuli-responsive controllable drugs release. In vitro anticancer activity evaluation revealed that the co-loaded nanoparticles presented higher cytotoxicity against A549 cells compared with that of the free combination of Cur + DOX. Confocal laser scanning microscopy observation indicated that more DOX and Cur were released into the nucleus triggered by the up-regulated intracellular glutathione (GSH) concentration and decreased pH, displaying enhanced cell uptake. The self-assembling polypeptide-based dual-sensitive drug co-delivery system could be a promising platform for efficient chemotherapy.
Collapse
Affiliation(s)
- Qiang Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dongsheng Fu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ruijie Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yiming Liu
- Shanxi Academy of Analytical Science, Taiyuan, 030006, China.
| |
Collapse
|
17
|
Zhao J, Zhang X, Fang L, Gao C, Xu C, Gou S. Iridium(III) Complex-Derived Polymeric Micelles with Low Dark Toxicity and Strong NIR Excitation for Phototherapy and Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000363. [PMID: 32174002 DOI: 10.1002/smll.202000363] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Iridium(III) complexes are potent candidates for photodynamic therapy. However, their clinical usage is impeded by their poor water solubility, high dark toxicity, and negligible absorption in near-infrared region (NIR region). Here, it is proposed to solve these challenges by developing an iridium(III) complexe-based polymeric micelle system. This system is self-assembled using an iridium(III) complex-containing amphiphilic block polymer. The upconversion nanoparticles are included in the polymeric micelles to permit NIR excitation. Compared with the nonformulated iridium(III) complexes, under NIR stimulation, this polymeric micelle system exhibits higher 1 O2 generation efficiency, negligible dark toxicity, excellent tumor-targeting ability, and synergistic phototherapy-chemotherapy effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xinzhong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
18
|
The Application of Nanotechnology in the Codelivery of Active Constituents of Plants and Chemotherapeutics for Overcoming Physiological Barriers during Antitumor Treatment. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9083068. [PMID: 31915707 PMCID: PMC6930735 DOI: 10.1155/2019/9083068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Antitumor therapy using a combination of drugs has shown increased clinical efficacy. Active constituents derived from plants can offer several advantages, such as high efficiacy, low toxicity, extensive effects, and multiple targets. At present, the combination of plants' active constituents and chemotherapeutic drugs has attracted increased attention. Nanodrug delivery systems (NDDSs) have been widely used in tumor-targeted therapy because of their efficacy of delivering antitumor drugs. The in vivo process of tumor-targeted NDDSs has several steps. They include blood circulation, tumor accumulation and penetration, target cell internalization and uptake, and drug release and drug response. In each step, NDDSs encounter multiple barriers that prevent their effective delivery to target sites. Studies have been performed to find alternative strategies to overcome these barriers. We reviewed the recent progress of codelivery of active constituents of plants and chemotherapeutics using NDDSs. Progress into transversing the physiological barriers for more effective in vivo antitumor delivery will be discussed in this review.
Collapse
|
19
|
Mahmoudi Saber M. Strategies for surface modification of gelatin-based nanoparticles. Colloids Surf B Biointerfaces 2019; 183:110407. [DOI: 10.1016/j.colsurfb.2019.110407] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
|
20
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
21
|
Singh VK, Seed TM. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf 2019; 18:1077-1090. [PMID: 31526195 DOI: 10.1080/14740338.2019.1666104] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: A radiation countermeasure that can be used prior to radiation exposure to protect the population from the harmful effects of radiation exposure remains a major unmet medical need and is recognized as an important area for research. Despite substantial advances in the research and development for finding nontoxic, safe, and effective prophylactic countermeasures for the acute radiation syndrome (ARS), no such agent has been approved by the United States Food and Drug Administration (FDA). Area covered: Despite the progress made to improve the effectiveness of amifostine as a radioprotector for ARS, none of the strategies have resolved the issue of its toxicity/side effects. Thus, the FDA has approved amifostine for limited clinical indications, but not for non-clinical uses. This article reviews recent strategies and progress that have been made to move forward this potentially useful countermeasure for ARS. Expert opinion: Although the recent investigations have been promising for fielding safe and effective radiation countermeasures, additional work is needed to improve and advance drug design and delivery strategies to get FDA approval for broadened, non-clinical use of amifostine during a radiological/nuclear scenario.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
22
|
Ding L, Gu W, Zhang Y, Yue S, Sun H, Cornelissen JJLM, Zhong Z. HER2-Specific Reduction-Sensitive Immunopolymersomes with High Loading of Epirubicin for Targeted Treatment of Ovarian Tumor. Biomacromolecules 2019; 20:3855-3863. [DOI: 10.1021/acs.biomac.9b00947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Ding
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Wenxing Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Jeroen J. L. M. Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
23
|
Peng J, Chen J, Xie F, Bao W, Xu H, Wang H, Xu Y, Du Z. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials 2019; 222:119420. [PMID: 31445322 DOI: 10.1016/j.biomaterials.2019.119420] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
We have constructed Herceptin-conjugated, paclitaxel (PTX) loaded, PCL-PEG worm-like nanocrystal micelles (PTX@PCL-PEG-Herceptin) for the combinatorial therapy of HER2-positive breast cancer that exploit the specific targeting of Herceptin to HER2-positive breast cancer cells. Firstly, amphiphilic PCL2000-MPEG2000 and PCL5000-PEG2000-CHO were selected as the optimized matrix to wrap PTX that self-assembled into worm-like micelles with internal nanocrystal structures (PTX@PCL-PEG). Then the aldehydes of PCL5000-PEG2000-CHO exposed on the outside surface of PTX@PCL-PEG were utilized to react with the primary amines of Herceptin and formed stable, carbon-nitrogen single linkers (-C-N-) between the antibodies and nanoparticles. This study shows PTX@PCL-PEG-Herceptin remained relatively stable in the circulation and in the tumor microenvironment, and rapidly targeted and entered into the HER2-overexpressing tumor cells while sparing normal tissues from the toxic effects. PTX@PCL-PEG-Herceptin shrank the tumors and prolonged survival time in a SKBR-3-tumor-xenograft, nude mice model more effectively than TAXOL®, PTX@PCL-PEG, Herceptin+TAXOL® and Herceptin+PTX@PCL-PEG. Mechanistic studies showed that PTX@PCL-PEG-Herceptin entered into the HER2-positive tumor cells through the caveolin-mediated pathway. The conjugated Herceptin greatly enhanced the binding ability of the nanoparticle to the targeted SKBR-3 cells. This novel strategy provides a rational and simple antibody-conjugated-nanoparticle platform for the clinical application of combinatorial anticancer treatment.
Collapse
Affiliation(s)
- Jiahui Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Juan Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Fang Xie
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Wei Bao
- Department of Gynecologic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Hongyan Xu
- Shanghai GL Peptide LTD, 519 Ziyue Road, Shanghai, 200241, PR China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 201620, PR China.
| | - Yuhong Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Zixiu Du
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
24
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Slabu I, Roeth AA, Engelmann UM, Wiekhorst F, Buhl EM, Neumann UP, Schmitz-Rode T. Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro. NANOTECHNOLOGY 2019; 30:184004. [PMID: 30699387 DOI: 10.1088/1361-6528/ab033e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The internalization kinetics resulting from magnetic nanoparticle interactions with tumor cells play an important role in nanoparticle-based cancer treatment efficiency. Here, the uptake kinetics of magnetoliposomes (ML) into human pancreatic tumor cells (MiaPaCa-2 and BxPC-3) are quantified using magnetic particle spectrometry. A comparison to the uptake kinetics for healthy L929 cells is given. The experimental results are used for the development of an uptake kinetics model describing the three relevant internalization processes: ML adsorption to the cell membrane, endo- and exocytosis. By fitting of experimental data, the rate constant of each internalization process is determined enabling the prediction of internalized ML at any incubation time. After seven hours incubation time, MiaPaCa-2 internalized three times more ML than BxPC-3 and L929 cells even though their ML adsorption rate constants were nearly the same. As the interaction of the ML with the cell membrane is non-specific, the uptake kinetics mirror the individual cell response to ML internalization. With a new mathematical term to cover the exocytosis contribution to the overall internalization process, the extended uptake kinetics model offers new possibilities to analyze the specific internalization mechanism for other nanoparticle and cell types.
Collapse
Affiliation(s)
- Ioana Slabu
- Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital, Aachen, Germany. Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Karavasili C, Andreadis DA, Katsamenis OL, Panteris E, Anastasiadou P, Kakazanis Z, Zoumpourlis V, Markopoulou CK, Koutsopoulos S, Vizirianakis IS, Fatouros DG. Synergistic Antitumor Potency of a Self-Assembling Peptide Hydrogel for the Local Co-delivery of Doxorubicin and Curcumin in the Treatment of Head and Neck Cancer. Mol Pharm 2019; 16:2326-2341. [DOI: 10.1021/acs.molpharmaceut.8b01221] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K
| | | | | | | | | | | | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
27
|
Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.054] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Amphiphilic core-shell nanoparticles: Synthesis, biophysical properties, and applications. Colloids Surf B Biointerfaces 2018; 172:68-81. [DOI: 10.1016/j.colsurfb.2018.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 08/12/2018] [Indexed: 11/18/2022]
|
29
|
Engelmann UM, Roeth AA, Eberbeck D, Buhl EM, Neumann UP, Schmitz-Rode T, Slabu I. Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells. Sci Rep 2018; 8:13210. [PMID: 30181576 PMCID: PMC6123461 DOI: 10.1038/s41598-018-31553-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95% was achieved by depositing an intracellular total thermal energy with about 50% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65% after MNP were internalized inside cells.
Collapse
Affiliation(s)
- Ulrich M Engelmann
- Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, D-52074, Aachen, Germany
| | - Anjali A Roeth
- Department of General, Visceral and Transplant Surgery, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Dietmar Eberbeck
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, D-10587, Berlin, Germany
| | - Eva M Buhl
- Institute of Pathology, Electron Microscopic Facility, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Ulf P Neumann
- Department of General, Visceral and Transplant Surgery, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, D-52074, Aachen, Germany
| | - Ioana Slabu
- Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, D-52074, Aachen, Germany.
| |
Collapse
|
30
|
Shao S, Zhu Y, Meng T, Liu Y, Hong Y, Yuan M, Yuan H, Hu F. Targeting High Expressed α 5β 1 Integrin in Liver Metastatic Lesions To Resist Metastasis of Colorectal Cancer by RPM Peptide-Modified Chitosan-Stearic Micelles. Mol Pharm 2018. [PMID: 29533631 DOI: 10.1021/acs.molpharmaceut.8b00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Liver metastasis is a leading death cause in colorectal cancer. The pathological differences between orthotopic tumors and metastatic lesions increased the therapeutic difficulty of metastasis. Herein, the α5β1 integrin receptor expression on metastatic cells was first measured, the result showed that metastatic cells expressed the α5β1 integrin higher than that of the original cells from orthotopic tumors. Afterward, RPM peptide-modified chitosan-stearic (RPM-CSOSA) was designed based on α5β1 integrin expression. The cytotoxicity and resistance to migration and the invasion ability of the targeting drug delivery system loading doxorubicin (DOX) and curcumin (CUR) were evaluated in vitro. The metastatic inhibition of the targeting drug delivery system was also investigated in HT29 liver metastatic models. The modified RPM peptide could increase the cellular internalization of CSOSA micelles in metastatic tumor cells and endothelial cells mediated by α5β1 integrin. The synergistic effects of RPM-CSOSA/DOX and RPM-CSOSA/CUR could obviously inhibit migratory and invasive abilities of HT29 cells and endothelial cells. Moreover, the RPM-CSOSA/DOX&RPM-CSOSA/CUR could obviously decrease the number of metastatic sites by 86.96%, while CSOSA/DOX&CSOSA/CUR decreased liver metastasis by 66.58% compared with that in the saline group. In conclusion, the RPM peptide-modified drug delivery system may provide insights into targeting the metastatic cells overexpressing the α5β1 integrin, and it has the potential to inhibit liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Shihong Shao
- Institute of Marine Biology, Ocean College , Zhejiang University , Zheda Road , Zhoushan , Zhejiang 316021 , People's Republic of China
| | - Yun Zhu
- Institute of Marine Biology, Ocean College , Zhejiang University , Zheda Road , Zhoushan , Zhejiang 316021 , People's Republic of China
| | - Tingting Meng
- Institute of Pharmaceutics, College of Pharmacy , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , People's Republic of China
| | - Yupeng Liu
- Institute of Pharmaceutics, College of Pharmacy , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , People's Republic of China
| | - Yun Hong
- The First Affiliated Hospital, College of Medicine , Zhejiang University , 79 Qingchun Road , Hangzhou 310058 , China
| | - Ming Yuan
- Institute of Marine Biology, Ocean College , Zhejiang University , Zheda Road , Zhoushan , Zhejiang 316021 , People's Republic of China
| | - Hong Yuan
- Institute of Pharmaceutics, College of Pharmacy , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , People's Republic of China
| | - Fuqiang Hu
- Institute of Marine Biology, Ocean College , Zhejiang University , Zheda Road , Zhoushan , Zhejiang 316021 , People's Republic of China
| |
Collapse
|
31
|
Yang M, Yu L, Guo R, Dong A, Lin C, Zhang J. A Modular Coassembly Approach to All-In-One Multifunctional Nanoplatform for Synergistic Codelivery of Doxorubicin and Curcumin. NANOMATERIALS 2018; 8:nano8030167. [PMID: 29543780 PMCID: PMC5869658 DOI: 10.3390/nano8030167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
Synergistic combination therapy by integrating chemotherapeutics and chemosensitizers into nanoparticles has demonstrated great potential to reduce side effects, overcome multidrug resistance (MDR), and thus improve therapeutic efficacy. However, with regard to the nanocarriers for multidrug codelivery, it remains a strong challenge to maintain design simplicity, while incorporating the desirable multifunctionalities, such as coloaded high payloads, targeted delivery, hemodynamic stability, and also to ensure low drug leakage before reaching the tumor site, but simultaneously the corelease of drugs in the same cancer cell. Herein, we developed a facile modular coassembly approach to construct an all-in-one multifunctional multidrug delivery system for the synergistic codelivery of doxorubicin (DOX, chemotherapeutic agent) and curcumin (CUR, MDR modulator). The acid-cleavable PEGylated polymeric prodrug (DOX-h-PCEC), tumor cell-specific targeting peptide (CRGDK-PEG-PCL), and natural chemosensitizer (CUR) were ratiometrically assembled into in one single nanocarrier (CUR/DOX-h-PCEC@CRGDK NPs). The resulting CUR/DOX-h-PCEC@CRGDK NPs exhibited several desirable characteristics, such as efficient and ratiometric drug loading, high hemodynamic stability and low drug leakage, tumor intracellular acid-triggered cleavage, and subsequent intracellular simultaneous drug corelease, which are expected to maximize a synergistic effect of chemotherapy and chemosensitization. Collectively, the multifunctional nanocarrier is feasible for the creation of a robust nanoplatform for targeted multidrug codelivery and efficient MDR modulation.
Collapse
Affiliation(s)
- Muyang Yang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, China.
| | - Lixia Yu
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Ruiwei Guo
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Cunguo Lin
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, China.
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
32
|
Novel Core-Interlayer-Shell DOX/ZnPc Co-loaded MSNs@ pH-Sensitive CaP@PEGylated Liposome for Enhanced Synergetic Chemo-Photodynamic Therapy. Pharm Res 2018; 35:57. [PMID: 29423532 DOI: 10.1007/s11095-017-2295-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/25/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE This work was intended to develop novel doxorubicin (DOX)/zinc (II) phthalocyanine (ZnPc) co-loaded mesoporous silica (MSNs)@ calcium phosphate (CaP)@PEGylated liposome nanoparticles (NPs) that could efficiently achieve collaborative anticancer therapy by the combination of photodynamic therapy (PDT) and chemotherapy. The interlayer of CaP could be utilized to achieve pH-triggered controllable drug release, promote the cellular uptake, and induce cell apoptosis to further enhance the anticancer effects. METHODS MSNs were first synthesized as core particles in which the pores were diffusion-filled with DOX, then the cores were coated by CaP followed by the liposome encapsulation with ZnPc to form the final DOX/ZnPc co-loaded MSNs@CaP@PEGylated liposome. RESULTS A core-interlayer-shell MSNs@CaP@PEGylated liposomes was developed as a multifunctional theranostic nanoplatform. In vitro experiment indicated that CaP could not only achieve pH-triggered controllable drug release, promote the cellular uptake of the NPs, but also generate high osmotic pressure in the endo/lysosomes to induce cell apoptosis. Besides, the chemotherapy using DOX and PDT effect was achieved by the photosensitizer ZnPc. Furthermore, the MSNs@CaP@PEGylated liposomes showed outstanding tumor-targeting ability by enhanced permeability and retention (EPR) effect. CONCLUSIONS The novel prepared MSNs@CaP@PEGylated liposomes could serve as a promising multifunctional theranostic nanoplatform in anticancer treatment by synergic chemo-PDT and superior tumor-targeting ability.
Collapse
|
33
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
34
|
Li Y, Yu A, Li L, Zhai G. The development of stimuli-responsive polymeric micelles for effective delivery of chemotherapeutic agents. J Drug Target 2018; 26:753-765. [PMID: 29256633 DOI: 10.1080/1061186x.2017.1419477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stimuli-responsive polymeric micelles, a novel category of polymeric micelles with response to endogenous or exogenous environments, show variable physicochemical properties as the variation of endogenous or exogenous circumstances. Because of differences between tumour tissues and normal tissues in physicochemical properties and sensitivity to variation of endogenous or exogenous environments, the application of chemotherapeutic agents loaded stimuli-responsive polymeric micelles are regarded as promising strategies for tumour treatment. In this article, the recent developments of chemotherapeutic agents loaded stimuli-responsive polymeric micelles, for example the preparation of novel stimuli-responsive polymeric micelles and the research progresses of action mechanisms of chemotherapeutic agents loaded micelles, were reviewed and discussed in detail. The advantages of stimuli-responsive chemotherapeutic agents loaded polymeric micelles in practical tumour treatment were also illustrated with the assistance of examples of stimuli-responsive polymeric micelles for antitumor agents delivery.
Collapse
Affiliation(s)
- Yimu Li
- a Department of Pharmaceutics, College of Pharmacy , Shandong University , Jinan , PR China
| | - Aihua Yu
- a Department of Pharmaceutics, College of Pharmacy , Shandong University , Jinan , PR China
| | - Lingbing Li
- a Department of Pharmaceutics, College of Pharmacy , Shandong University , Jinan , PR China
| | - Guangxi Zhai
- a Department of Pharmaceutics, College of Pharmacy , Shandong University , Jinan , PR China
| |
Collapse
|
35
|
Zhuang C, Shi C, Tao F, Cui Y. Honeycomb structural composite polymer network of gelatin and functional cellulose ester for controlled release of omeprazole. Int J Biol Macromol 2017; 105:1644-1653. [DOI: 10.1016/j.ijbiomac.2017.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 01/21/2023]
|
36
|
Kankala RK, Liu CG, Chen AZ, Wang SB, Xu PY, Mende LK, Liu CL, Lee CH, Hu YF. Overcoming Multidrug Resistance through the Synergistic Effects of Hierarchical pH-Sensitive, ROS-Generating Nanoreactors. ACS Biomater Sci Eng 2017; 3:2431-2442. [PMID: 33445301 DOI: 10.1021/acsbiomaterials.7b00569] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ranjith Kumar Kankala
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Chen-Guang Liu
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Ai-Zheng Chen
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Pei-Yao Xu
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Lokesh Kumar Mende
- Department
of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chen-Lun Liu
- Department
of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chia-Hung Lee
- Department
of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan
| | - Yu-Fang Hu
- Pharmaceutical
Drug Delivery Division, TTY Biopharm Company Limited, Taipei 11469, Taiwan
| |
Collapse
|
37
|
Popescu RC, Andronescu E, Vasile BȘ, Truşcă R, Boldeiu A, Mogoantă L, Mogoșanu GD, Temelie M, Radu M, Grumezescu AM, Savu D. Fabrication and Cytotoxicity of Gemcitabine-Functionalized Magnetite Nanoparticles. Molecules 2017; 22:molecules22071080. [PMID: 28657606 PMCID: PMC6152359 DOI: 10.3390/molecules22071080] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/10/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology has been successfully used for the fabrication of targeted anti-cancer drug carriers. This study aimed to obtain Fe₃O₄ nanoparticles functionalized with Gemcitabine to improve the cytotoxic effects of the chemotherapeutic substance on cancer cells. The (un) functionalized magnetite nanoparticles were synthesized using a modified co-precipitation method. The nanoconjugate characterization was performed by XRD, SEM, SAED and HRTEM; the functionalizing of magnetite with anti-tumor substances has been highlighted through TGA. The interaction with biologic media has been studied by means of stability and agglomeration tendency (using DLS and Zeta Potential); also, the release kinetics of the drug in culture media was evaluated. Cytotoxicity of free-Gemcitabine and the obtained nanoconjugate were evaluated on human BT 474 breast ductal carcinoma, HepG2 hepatocellular carcinoma and MG 63 osteosarcoma cells by MTS. In parallel, cellular morphology of these cells were examined through fluorescence microscopy and SEM. The localization of the nanoparticles related to the cells was studied using SEM, EDX and TEM. Hemolysis assay showed no damage of erythrocytes. Additionally, an in vivo biodistribution study was made for tracking where Fe₃O₄@Gemcitabine traveled in the body of mice. Our results showed that the transport of the drug improves the cytotoxic effects in comparison with the one produced by free Gemcitabine for the BT474 and HepG2 cells. The in vivo biodistribution test proved nanoparticle accumulation in the vital organs, with the exception of spleen, where black-brown deposits have been found. These results indicate that our Gemcitabine-functionalized nanoparticles are a promising targeted system for applications in cancer therapy.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Life and Environmental Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, Măgurele 077125, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, Bucharest 011061, Romania.
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, Bucharest 011061, Romania.
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, Bucharest 011061, Romania.
| | - Roxana Truşcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, Bucharest 011061, Romania.
| | - Adina Boldeiu
- Laboratory of Nanobiotechnology, National Institute for Research and Development in Microtechnologies, 12A Erou Iancu Nicolae Street, Bucharest 077190, Romania.
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, Craiova 200349, Romania.
| | - George Dan Mogoșanu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, Craiova 200349, Romania.
| | - Mihaela Temelie
- Department of Life and Environmental Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, Măgurele 077125, Romania.
| | - Mihai Radu
- Department of Life and Environmental Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, Măgurele 077125, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, Bucharest 011061, Romania.
| | - Diana Savu
- Department of Life and Environmental Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, Măgurele 077125, Romania.
| |
Collapse
|
38
|
Cui T, Zhang S, Sun H. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep 2017; 37:1253-1260. [PMID: 28075466 DOI: 10.3892/or.2017.5345] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/05/2016] [Indexed: 11/06/2022] Open
Abstract
The natural product curcumin and the chemotherapeutic agent doxorubicin have been used in the treatment of many cancers, including breast cancer. However, fast clearance and unspecific distribution in the body after intravenous injection are still challenges to be overcome by an ideal nano-sized drug delivery system in cancer treatment. In this study we design transferrin (Tf) decorated nanoparticles (NPs) to co-deliver CUR and DOX for breast cancer treatment. A pH-sensitive prodrug, transferrin-poly(ethylene glycol)-curcumin (Tf-PEG-CUR), was synthesized and used for the self‑assembling of NPs (Tf-PEG-CUR NPs). DOX is incorporated into the Tf-PEG-CUR NPs to obtain Tf-PEG-CUR/DOX NPs. In vitro cytotoxicity studies and in vivo antitumor activity were carried out using MCF-7 cells and mice bearing MCF-7 cells, respectively. Tf-PEG-CUR/DOX NPs has a particle size of 89 nm and a zeta potential of -15.6 mV. This system displayed remarkably higher efficiency than other systems both in vitro and in vivo. DOX and CUR were successfully loaded into nanocarriers. The in vitro cell viability assays revealed the combination of Tf-PEG-CUR and DOX NPs exhibited higher cytotoxicity in vitro in MCF-7 cells compared with Tf-PEG-CUR NPs alone. Using the breast cancer xenograft mouse model, we demonstrate that this co-encapsulation approach resulted in an efficient tumor-targeted drug delivery, decreased cytotoxic effects and exhibited stronger antitumor effect.
Collapse
Affiliation(s)
- Tongxing Cui
- Department of Galactophore Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Sihao Zhang
- Department of Galactophore Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hong Sun
- Second Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
39
|
Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging. J Control Release 2016; 243:303-322. [DOI: 10.1016/j.jconrel.2016.10.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022]
|
40
|
Li Y, Zhang H, Zhai GX. Intelligent polymeric micelles: development and application as drug delivery for docetaxel. J Drug Target 2016; 25:285-295. [PMID: 27701892 DOI: 10.1080/1061186x.2016.1245309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent years, docetaxel (DTX)-loaded intelligent polymeric micelles have been regarded as a promising vehicle for DTX for the reason that compared with conventional DTX-loaded micelles, DTX-loaded intelligent micelles not only preserve the basic functions of micelles such as DTX solubilization, enhanced accumulation in tumor tissue, and improved bioavailability and biocompatibility of DTX, but also possess other new properties, for instance, tumor-specific DTX delivery and series of responses to endogenous or exogenous stimulations. In this paper, basic theories and action mechanism of intelligent polymeric micelles are discussed in detail, especially the related theories of DTX-loaded stimuli-responsive micelles. The relevant examples of stimuli-responsive DTX-loaded micelles are also provided in this paper to sufficiently illustrate the advantages of relevant technology for the clinical application of anticancer drug, especially for the medical application of DTX.
Collapse
Affiliation(s)
- Yimu Li
- a Department of Pharmaceutics , College of Pharmacy, Shandong University , Jinan , China
| | - Hui Zhang
- a Department of Pharmaceutics , College of Pharmacy, Shandong University , Jinan , China
| | - Guang-Xi Zhai
- a Department of Pharmaceutics , College of Pharmacy, Shandong University , Jinan , China
| |
Collapse
|
41
|
Zhao X, Deng H, Feng H, Zhang J, Dong A, Deng L. Using Nucleobase Pairing as Supermolecule Linker to Assemble the Bionic Copolymer Nanoparticles with Small Size. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuefei Zhao
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Hongzhang Deng
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Hailiang Feng
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Jianhua Zhang
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Anjie Dong
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and Technology School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering; (Ministry of Education); Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin; Tianjin 300072 China
| |
Collapse
|
42
|
Yu D, Li W, Zhang Y, Zhang B. Anti-tumor efficiency of paclitaxel and DNA when co-delivered by pH responsive ligand modified nanocarriers for breast cancer treatment. Biomed Pharmacother 2016; 83:1428-1435. [PMID: 27592131 DOI: 10.1016/j.biopha.2016.08.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
CONTEXT Combination of chemotherapy and nucleic acid therapy generally take advantage of drugs anti-tumor activity together with DNA capacity to transfect cancer cells, showing great promise in cancer treatment. However, effective co-delivery of drugs and DNA in a single carrier for cancer treatment remains a challenge. OBJECTIVE This study aimed to design a tumor targeted, pH sensitive nanocarriers for the co-delivery of gene and drug. MATERIALS AND METHODS Hyaluronic acid - acid sensitive linker - 1,2-distearoyl phosphatideylethanolamine copolymers (HA-as-DSPE) were synthesized. HA-as-DSPE modified, paclitaxel and pDNA loaded solid lipid nanoparticles (HA-PTX/pDNA SLN) was prepared. The physicochemical properties like morphology, size, and zeta potential as well as release properties were evaluated. The ability and therapeutic effects of the novel system for the co-delivery of PTX and pDNA were demonstrated in vitro and in vivo. RESULTS In vitro experiments and in vivo animal studies both confirmed that the HA-PTX/pDNA SLN system could promote the inhibition of tumor, at the same time deliver and transfect gene into the cancer cells. DISCUSSION AND CONCLUSION Highest efficiency achieved by HA-PTX/pDNA SLN might result from the HA ligands that targeted the receptors on the cancer cells, the enhanced cellular uptake by the SLN formulations and also the pH sensitive bound of the carriers let the drug release more in the tumor cells. It could be concluded that HA-PTX/pDNA SLN could be used as a promising delivery system for drug and gene combination therapy.
Collapse
Affiliation(s)
- DongMei Yu
- Department of Public Health, Shandong Jining No. 1 People's Hospital, Jining, 272011, Shandong, PR China
| | - Wei Li
- Department of Science Research, Shandong Jining No. 1 People's Hospital, Jining, 272011, Shandong, PR China
| | - Yueying Zhang
- Department of Experimental Pathology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, PR China
| | - Bin Zhang
- Department of Oncology, Shandong Jining No. 1 People's Hospital, Jining, 272011, Shandong, PR China.
| |
Collapse
|
43
|
Wang L, Meng D, Hao Y, Hu Y, Niu M, Zheng C, Yanyan Y, Li D, Zhang P, Chang J, Zhang Z, Zhang Y. A gold nanostar based multi-functional tumor-targeting nanoplatform for tumor theranostic applications. J Mater Chem B 2016; 4:5895-5906. [DOI: 10.1039/c6tb01304j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold nanostar based multi-functional tumor-targeting nanoplatform (DOX/GNSTs–PEG/PEI–FA) for tumor theranostic applications.
Collapse
|