1
|
Kögel D, Temme A, Aigner A. Recent advances in development and delivery of non-viral nucleic acid therapeutics for brain tumor therapy. Pharmacol Ther 2025; 266:108762. [PMID: 39603349 DOI: 10.1016/j.pharmthera.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
High grade gliomas (HGG) are a group of CNS tumors refractory to currently existing therapies, which routinely leads to early recurrence and a dismal prognosis. Recent advancements in nucleic acid-based therapy using a wide variety of different molecular targets and non-viral nanocarrier systems suggest that this approach holds significant potential to meet the urgent demand for improved therapeutic options for the treatment of these tumors. This review provides a comprehensive and up-to-date overview on the current landscape and progress of preclinical and clinical developments in this rapidly evolving and exciting field of research, including optimized nanocarrier delivery systems, promising therapeutic targets and tailor-made therapeutic strategies for individualized HGG patient treatment.
Collapse
Affiliation(s)
- Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany; German Cancer Research Center DKFZ, Heidelberg, Germany.
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Site Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Noske S, Karimov M, Krüger M, Lilli B, Ewe A, Aigner A. Spray-drying of PEI-/PPI-based nanoparticles for DNA or siRNA delivery. Eur J Pharm Biopharm 2024; 199:114297. [PMID: 38641228 DOI: 10.1016/j.ejpb.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a ∼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.
Collapse
Affiliation(s)
- Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Martin Krüger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Bettina Lilli
- Institute of Chemical Technology, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Härtelstraße 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
3
|
Walther M, Jenke R, Aigner A, Ewe A. Efficient polymeric nanoparticles for RNAi in macrophage reveal complex effects on polarization markers upon knockdown of STAT3/STAT6. Eur J Pharm Biopharm 2024; 197:114232. [PMID: 38395176 DOI: 10.1016/j.ejpb.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Tumor associated macrophages (TAMs) are the most abundant immune cell type in the tissue microenvironment, affecting tumor progression, metastasis and therapeutic response. Different macrophage activation ("polarization") states can be distinguished: resting (M0; non-activated), pro-inflammatory/anti-tumorigenic (M1) and anti-inflammatory/pro-tumorigenic (M2). When exploring macrophages as targets in novel cancer immunotherapy approaches, TAM repolarization from the M2 into the M1 phenotype is an intriguing strategy to block their pro-tumoral and enhance their anti-tumoral properties. In the context of RNAi-based gene knockdown of M2 promoting genes, major bottlenecks include cellular siRNA delivery and correct intracellular processing. This is particularly true in case of macrophages as a cell type well-known to be notoriously hard-to-transfect. Among polymeric nanocarriers, the cationic polymer polyethylenimine (PEI) is widely explored for delivering nucleic acids. Further advanced nanocarriers are tyrosine-modified polymers based on PEI or polypropylenimine dendrimers (PPI) for highly efficient siRNA delivery in vitro and in vivo. In this paper, we explored a panel of PEI- or PPI-based nanoparticle systems for siRNA-mediated gene knockdown efficacy in macrophages and subsequent TAM repolarization. The tyrosine-modified linear 10 kDa PEI (LP10Y) or branched 5 kDa PEI (P5Y) as well as a tyrosine-modified PPI (PPI-Y) were found most efficient for gene knockdown in macrophage cell lines or primary macrophages, independent of their polarization. Knockdown of STAT6 or STAT3 led to repolarization of M2 macrophages, as indicated by alterations in various M2 and M1 marker levels. This highly specific approach also demonstrated non-redundant functions of STAT3 and STAT6. Importantly, macrophage re-polarization from M2 to M1 upon PPI-Y/siRNA-mediated STAT6 knockdown increased tumor cell phagocytosis in a co-culture model. In conclusion, we identify certain tyrosine-modified PEI- or PPI-based nanoparticles as particularly efficient for macrophage transfection, and the specific, siRNA-mediated STAT6 knockdown as a promising approach for macrophage repolarization and enhancement of their tumor cell suppressive role.
Collapse
Affiliation(s)
- Maximilian Walther
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Robert Jenke
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
| |
Collapse
|
4
|
Shuai Q, Xie W, Chen S, Su H, Yan Y. Novel aromatic moieties-modified poly(glycidyl amine)s with potent siRNA delivery and cancer treatment effect. J Mater Chem B 2024; 12:3115-3128. [PMID: 38451094 DOI: 10.1039/d3tb02876c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The development of safe and effective delivery systems is critical for the clinical applications of siRNA-based therapeutics. Polymer-based vectors have garnered significant attention owing to their structural flexibility and functional tunability. Polyethyleneimine (PEI) has been extensively studied for nucleic acid delivery; nevertheless, its high cytotoxicity has posed challenges for clinical applications. In this study, we have reported poly(glycidyl amine) (PGAm), a linear PEI analogue, demonstrating remarkable siRNA delivery efficacy and improved biocompatibility. By introducing three aromatic moieties (tyrosine, p-hydroxybenzenepropanoic acid, and phenylalanine) at varying ratios to further modify PGAms, we successfully constructed a library comprising 36 PGAm-based carriers. In vitro evaluations revealed that PGAm-based carriers exhibited significantly enhanced biocompatibility and reduced non-specific protein absorption in comparison to PEI25k. Among them, 10 modified PGAms achieved a knockdown of target gene expressions exceeding 80%, and 26 modified PGAms maintained over 70% cell viability when utilized for the in vitro delivery of siRNA to HeLa cells. Explorations into the structure-activity relationship of PGAm-based polyplex nanoparticles (NPs) indicated that the siRNA delivery efficacy of NPs depended on factors such as the molecular weight of PGAm precursors, the type of modifying moieties, and the modification ratio. Furthermore, it was demonstrated that two top-performing NPs, namely 2T100/siLuc and 2A50/siLuc, exhibited potent silencing of target genes in tumors following i.v. injection into mice bearing HeLa-Luc xenografts. The in vivo efficacy of the selected NPs was further validated by a remarkable anti-cancer effect when employed for the delivery of siRNA targeting polo-like kinase 1 (siPLK1) to mice with PC-3 xenograft tumors. The intravenous administration of NPs resulted in a substantial inhibition of tumor growth without significant toxicity. These findings demonstrate the feasibility of employing PGAm in siRNA delivery and provide valuable insights for the development of efficient siRNA carriers based on PGAm.
Collapse
Affiliation(s)
- Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wanxuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Siyuan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Huahui Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Li J, Lin Y, Liu B, Zhou X, Chen W, Shen G. Alkylated Sulfonium Modification of Low Molecular Weight Polyethylenimine to Form Lipopolymers as Gene Vectors. ACS OMEGA 2024; 9:2339-2349. [PMID: 38250374 PMCID: PMC10795143 DOI: 10.1021/acsomega.3c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Hydrophobic modification of low molecular weight polyethylenimine (PEI) is an efficient method to form ideal gene-transfer carriers. Sulfonium-a combination of three different functional groups, was conjugated onto PEI 1.8k at a conjugation ratio of 1:0.1 to form a series of sulfonium PEI (SPs). These SPs were hydrophobically modified and characterized by Fourier transform infrared and HNMR. DNA-condensing abilities of SPs were tested with gel retardation experiment, and their cytotoxicity was evaluated via the MTT assay. The particle size and zeta potential of SP/DNA nanoparticles were measured and evaluated for cellular uptake and transfection ability on HepG2 cell line. The results showed that the sulfonium moiety was attached to PEI 1.8k with a high yield at a conjugation ratio of 1:0.1. SPs containing longer alkyl chains condensed DNA completely at an SP/DNA weight ratio of 2:1. The formed nanoparticle size was in the range of 168-265 nm, and the zeta potential was +16-45 mV. The IC50 values of SPs were 6.5-43.2 μg/mL. The cytotoxicity of SPs increased as the hydrophobic chain got longer. SP/DNA showed much stronger cellular uptakes than PEI 25k; however, pure SPs presented almost no gene transfection on cells. Heparin release experiment showed that SP's strong binding of DNA resulted in low release of DNA and thus hindered the gene transfection process. By mixing SP with PEI 1.8k, the mixture presented adjustable DNA binding and releasing. The mixture formed by 67% SP and 33% PEI 1.8k showed strong gene transfection. In conclusion, sulfonium is an effective linkage to carry hydrophobic groups to adjust cell compatibilities and gene transfection capabilities of PEI.
Collapse
Affiliation(s)
- Jing Li
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang
Provincial Key Laboratory of Environmental Microbiology and Recycling
of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Key
Laboratory of Low-carbon Green Agriculture in Northeastern China,
Ministry of Agriculture and Rural Affairs P. R. China, College of
Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing 163319, China
| | - Yue Lin
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Bingling Liu
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xiaodong Zhou
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Wenyang Chen
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Guinan Shen
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang
Provincial Key Laboratory of Environmental Microbiology and Recycling
of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Key
Laboratory of Low-carbon Green Agriculture in Northeastern China,
Ministry of Agriculture and Rural Affairs P. R. China, College of
Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
6
|
Boxhammer E, Paar V, Wernly B, Kiss A, Mirna M, Aigner A, Acar E, Watzinger S, Podesser BK, Zauner R, Wally V, Ablinger M, Hackl M, Hoppe UC, Lichtenauer M. MicroRNA-30d-5p-A Potential New Therapeutic Target for Prevention of Ischemic Cardiomyopathy after Myocardial Infarction. Cells 2023; 12:2369. [PMID: 37830583 PMCID: PMC10571870 DOI: 10.3390/cells12192369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
(1) Background and Objective: MicroRNAs (miRs) are biomarkers for assessing the extent of cardiac remodeling after myocardial infarction (MI) and important predictors of clinical outcome in heart failure. Overexpression of miR-30d-5p appears to have a cardioprotective effect. The aim of the present study was to demonstrate whether miR-30d-5p could be used as a potential therapeutic target to improve post-MI adverse remodeling. (2) Methods and Results: MiR profiling was performed by next-generation sequencing to assess different expression patterns in ischemic vs. healthy myocardium in a rat model of MI. MiR-30d-5p was significantly downregulated (p < 0.001) in ischemic myocardium and was selected as a promising target. A mimic of miR-30d-5p was administered in the treatment group, whereas the control group received non-functional, scrambled siRNA. To measure the effect of miR-30d-5p on infarct area size of the left ventricle, the rats were randomized and treated with miR-30d-5p or scrambled siRNA. Histological planimetry was performed 72 h and 6 weeks after induction of MI. Infarct area was significantly reduced at 72 h and at 6 weeks by using miR-30d-5p (72 h: 22.89 ± 7.66% vs. 35.96 ± 9.27%, p = 0.0136; 6 weeks: 6.93 ± 4.58% vs. 12.48 ± 7.09%, p = 0.0172). To gain insight into infarct healing, scratch assays were used to obtain information on cell migration in human umbilical vein endothelial cells (HUVECs). Gap closure was significantly faster in the mimic-treated cells 20 h post-scratching (12.4% more than the scrambled control after 20 h; p = 0.013). To analyze the anti-apoptotic quality of miR-30d-5p, the ratio between phosphorylated p53 and total p53 was evaluated in human cardiomyocytes using ELISA. Under the influence of the miR-30d-5p mimic, cardiomyocytes demonstrated a decreased pp53/total p53 ratio (0.66 ± 0.08 vs. 0.81 ± 0.17), showing a distinct tendency (p = 0.055) to decrease the apoptosis rate compared to the control group. (3) Conclusion: Using a mimic of miR-30d-5p underlines the cardioprotective effect of miR-30d-5p in MI and could reduce the risk for development of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Elke Boxhammer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Vera Paar
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Moritz Mirna
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Achim Aigner
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany;
| | - Eylem Acar
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Simon Watzinger
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Bruno K. Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Roland Zauner
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Verena Wally
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Ablinger
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | | | - Uta C. Hoppe
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Michael Lichtenauer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| |
Collapse
|
7
|
Tariq M, Khokhar R, Javed A, Usman M, Anjum SMM, Rasheed H, Bukhari NI, Yan C, Nawaz HA. Novel Hydrophilic Oligomer-Crosslinked Gelatin-Based Hydrogels for Biomedical Applications. Gels 2023; 9:564. [PMID: 37504443 PMCID: PMC10379017 DOI: 10.3390/gels9070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Gelatin-based hydrogels have shown good injectability and biocompatibility and have been broadly used for drug delivery and tissue regeneration. However, their low mechanical strengths and fast degradation rates must be modified for long-term implantation applications. With an aim to develop mechanically stable hydrogels, reactive anhydride-based oligomers were developed and used to fabricate gelatin-based crosslinked hydrogels in this study. A cascade of hydrophilic oligomers containing reactive anhydride groups was synthesized by free radical polymerization. These oligomers varied in degree of reactivity, comonomer composition, and showed low molecular weights (Mn < 5 kDa). The reactive oligomers were utilized to fabricate hydrogels that differed in their mechanical strengths and degradation profiles. These formulations exhibited good cytocompatibility with human adipose tissue-derived stem cells (hADCs). In conclusion, the reactive MA-containing oligomers were successfully synthesized and utilized for the development of oligomer-crosslinked hydrogels. Such oligomer-crosslinked gelatin-based hydrogels hold promise as drug or cell carriers in various biomedical applications.
Collapse
Affiliation(s)
- Mamoona Tariq
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai 200240, China
| | - Rabia Khokhar
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Arslan Javed
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Muhammad Usman
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Syed Muhammad Muneeb Anjum
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Huma Rasheed
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Nadeem Irfan Bukhari
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai 200240, China
| | - Hafiz Awais Nawaz
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| |
Collapse
|
8
|
Lehot V, Neuberg P, Ripoll M, Daubeuf F, Erb S, Dovgan I, Ursuegui S, Cianférani S, Kichler A, Chaubet G, Wagner A. Targeted Anticancer Agent with Original Mode of Action Prepared by Supramolecular Assembly of Antibody Oligonucleotide Conjugates and Cationic Nanoparticles. Pharmaceutics 2023; 15:1643. [PMID: 37376091 DOI: 10.3390/pharmaceutics15061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg, ESBS, CNRS-Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Antoine Kichler
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
9
|
Kubczak M, Grodzicka M, Michlewska S, Karimov M, Ewe A, Aigner A, Bryszewska M, Ionov M. The effect of novel tyrosine-modified polyethyleneimines on human albumin structure - Thermodynamic and spectroscopic study. Colloids Surf B Biointerfaces 2023; 227:113359. [PMID: 37209597 DOI: 10.1016/j.colsurfb.2023.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The interaction of proteins with nanoparticle components are crucial for the evaluation of nanoparticle function, toxicity and biodistribution. Polyethyleneimines (PEIs) with defined tyrosine modifications are a class of novel polymers designed for improved siRNA delivery. Their interactions with biomacromolecules are still poorly described. This paper analyzes the interaction of different tyrosine-modified PEIs with human serum albumin as the most abundant serum protein. The ability of tyrosine modified, linear or branched PEIs to bind human serum albumin (HSA) was analyzed and further characterized. The interaction with hydrophobic parts of protein were studied using 1- nilinonaphthalene-8-sulfonic acid (ANS) and changes in the HSA secondary structure were evaluated using circular dichroism (CD). Complex formation and sizes were studied by transmission electron microscopy (TEM) and dynamic light scattering methods (DLS). We demonstrate that tyrosine modified PEIs are able to bind human serum albumin. Based on thermodynamic studies, van der Waals interaction, H-bonding and hydrophobic interactions are determined as main molecular forces involved in complex formation. Analysis of secondary structures revealed that the polymers decreased α-helix content, while increasing levels of randomly folded structures. Complex formation was confirmed by TEM and DLS. These findings are crucial for understanding polymer-protein interactions and the properties of nanoparticles.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland.
| | - Marika Grodzicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; BioMedChem Doctoral School of the UL and Lodz Institutes of the Polish Academy of Science, Banacha 12/16, 90-237 Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland, Banacha 12/16, 90-237 Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
10
|
Chen XJ, Huang MY, Wangkahart E, Cai J, Huang Y, Jian JC, Wang B. Immune response and protective efficacy of mannosylated polyethylenimine (PEI) as an antigen delivery vector, administered with a Streptococcus agalactiae DNA vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108684. [PMID: 36921882 DOI: 10.1016/j.fsi.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
This study examined the effectiveness of a DNA vaccine for S. agalactiae that was delivered by mannose-based polyethyleneimine (Man-PEI). The results showed that Man-PEI/pcDNA-Sip stimulated a higher serum antibody titer compared to control or other vaccine groups (p < 0.05). Additionally, it induced higher expression of immune-related genes, and increased activities of superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Furthermore, the Man-PEI/pcDNA-Sip group showed an improved relative percent survival (RPS) of 85.71%. These results demonstrate the potential value of Man-PEI as a vaccine delivery vehicle, and suggest that it can be effective in boosting the immune protective rate induced by pcDNA-Sip vaccines.
Collapse
Affiliation(s)
- Xin-Jin Chen
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Man-Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Jia Cai
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Ji-Chang Jian
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China.
| |
Collapse
|
11
|
Karimov M, Scherer M, Franke H, Ewe A, Aigner A. Analysis of polymeric nanoparticle properties for siRNA/DNA delivery in a tumor xenograft tissue slice air-liquid interface model. Biotechnol J 2022; 18:e2200415. [PMID: 36541426 DOI: 10.1002/biot.202200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Classical two-dimensional (2D) cell culture as a drug or nanoparticle test system only poorly recapitulates in vivo conditions. Animal studies are costly, ethically controversial, and preclude large-scale testing. METHODS AND RESULTS We established a three-dimensional (3D) tissue slice air-liquid interface (ALI) culture model for nanoparticle testing. We developed an optimized procedure for the reproducible generation of large sets of tissue slices from tumor xenografts that retain their tissue architecture. When used for the analysis of nanoparticles based on chemically modified polyethylenimines (PEIs) to deliver siRNA or DNA, differences in transfection efficacy and cytotoxicity between nanoparticles were observed more clearly than in 2D cell culture. While nanoparticle efficacies between cell culture and the tissue slice model overall correlated, the tissue slice model also identified particularly suitable candidates whose efficacy was underestimated in 2D cell culture and had already been shown in previous in vivo studies. CONCLUSION The ex vivo 3D tissue slice ALI culture model is a powerful system that allows the effective evaluation of biological nanoparticle efficacy and biocompatibility in an intact tissue environment. It is comparably inexpensive, time-saving, and follows the 3R principle, while allowing the identification of critical nanoparticle properties and optimal candidates for in vivo applications.
Collapse
Affiliation(s)
- Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Marlene Scherer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Heike Franke
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
12
|
Kubczak M, Michlewska S, Karimov M, Ewe A, Aigner A, Bryszewska M, Ionov M. Comparison of tyrosine-modified low molecular weight branched and linear polyethylenimines for siRNA delivery. Nanotoxicology 2022; 16:867-882. [PMID: 36697400 DOI: 10.1080/17435390.2022.2159891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polyethylenimines (PEIs) have been previously introduced for siRNA delivery. In particular, in the case of higher molecular weight PEIs, this is associated with toxicity, while low molecular weight PEIs are often insufficient for siRNA complexation. The tyrosine-modification of PEIs has been shown to enhance PEI efficacy and biocompatibility. This paper evaluates a set of tyrosine-modified low molecular weight linear or branched polyethylenimines as efficient carriers of siRNA. Complexation efficacies and biophysical complex properties were analyzed by zeta potential, dynamic light scattering and circular dichroism measurements as well as gel electrophoresis. Biological knockdown was studied in 2 D cell culture and 3 D ex vivo tissue slice air-liquid interface culture. The results demonstrate that siRNAs were able to form stable complexes with all tested polymers. Complexation was able to protect siRNA from degradation by RNase and to mediate target gene knockdown, as determined on the mRNA level and in PC3-Luc3/EGFP and HCT116-Luc3/EGFP expressing reporter cells on the protein level, using flow cytometry and confocal microscopy. The direct comparison of the studied polymers revealed differences in biological efficacies. Moreover, the tyrosine-modified PEIs showed high biocompatibility, as determined by LDH release and mitochondria integrity (J-aggregate assay) as well as caspase 3/7 (apoptosis) and H2O2 levels (ROS). In 3 D tissue slices, complexes based on LP10Y proved to be most efficient, by combining tissue penetration with efficient gene expression knockdown.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.,Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Leipzig
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Leipzig
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Leipzig
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Kubczak M, Michlewska S, Karimov M, Ewe A, Noske S, Aigner A, Bryszewska M, Ionov M. Unmodified and tyrosine-modified polyethylenimines as potential carriers for siRNA: Biophysical characterization and toxicity. Int J Pharm 2022; 614:121468. [PMID: 35031413 DOI: 10.1016/j.ijpharm.2022.121468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Polyethylenimines (PEIs) are being explored as efficient non-viral nanocarriers for nucleic acid delivery in vitro and in vivo. To address limitations regarding PEI efficacy and biocompatibility, modifications of the chemical structure of linear and branched PEIs have been introduced, including grafting with tyrosine. The aim has been to compare linear and branched polyethylenimines of a wider range of different molecular mass with their tyrosine-modified derivatives. To do so, physico-chemical and biological properties of the polymers were investigated. Even in the absence of a negatively charged nucleic acid counterpart, PEIs form particle structures with defined size and surface potential. Tyrosine modification of PEI led to significantly reduced toxicity, while simultaneously increasing interaction with cellular membranes. All the effects were also dependent on the PEI molecular weight and structure (i.e., linear vs. branched). Especially in the case of linear PEIs, the improved membrane interaction also translated into slightly enhanced hemolysis, whereas their genotoxic potential was essentially abolished. Due to the improvement of properties critical for nano-vector efficacy and biocompatibility, our data demonstrate that tyrosine-modified PEIs are very promising and safe nanocarriers for the delivery of small RNAs, like siRNAs and miRNAs.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
14
|
Noske S, Karimov M, Hansen M, Zatula N, Ewe A, Aigner A. Non-viral siRNA transfection of primary mesenchymal stromal cells (MSCs): Assessment of tyrosine-modified PEI and PPI efficacy and biocompatibility. Int J Pharm 2022; 612:121359. [PMID: 34896217 DOI: 10.1016/j.ijpharm.2021.121359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/24/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells derived from different sources and able to differentiate into distinct cell lineages. For their possible biomedical application, the "tuning" of MSCs also involves the specific knockdown of defined target genes. A major limitation, however, is the notoriously low transfection efficacy especially of primary MSCs. In this paper, we systemically analyze a large set of tyrosine-modified linear or branched low molecular weight polyethylenimines (PEIs) of different sizes, as well as the tyrosine-modified polypropylenimine dendrimer PPI-G4, for their capacity of non-viral siRNA transfection into umbilical cord-derived MSCs from two different donors. Knockdown efficacies are determined on the molecular level and confirmed in functional assays. Beyond the determination of cell viabilities, acute cytotoxicity, induction of apoptosis/necrosis and mitochondrial membrane alterations are also studied. On the molecular level, caspase activation, ROS induction and genotoxic effects are analyzed. Major differences are observed between the various tyrosine-modified PEIs, with some candidates showing high knockdown efficacy and biocompatibility. PPI-G4-Y dendrimers, however, are identified as most efficient for siRNA transfection into MSCs. PPI-G4-Y/siRNA nanoparticles lead to particularly high gene knockdown, without cytotoxic and genotoxic effects on the cellular and molecular level, and are thus particularly well-suited for the tuning of MSCs.
Collapse
Affiliation(s)
- Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | | | | | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
| |
Collapse
|
15
|
Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M. Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 2021; 179:114038. [PMID: 34742826 DOI: 10.1016/j.addr.2021.114038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
An overview of the application of natural and synthetic, non-viral vectors for oligonucleotide delivery into the lung is presented in this review, with a special focus on lung cancer. Due to the specificity of the respiratory tract, its structure and natural barriers, the administration of drugs (especially those based on nucleic acids) is a particular challenge. Among widely tested non-viral drug and oligonucleotides carriers, synthetic polymers seem to be most promising. Unique properties of these nanoparticles allow for essentially unlimited possibilities regarding their design and modification. This gives hope that optimal nanoparticles with ideal nucleic acid carrier properties for lung cancer therapy will eventually emanate.
Collapse
|
16
|
Targeted delivery of miR-218 via decorated hyperbranched polyamidoamine for liver cancer regression. Int J Pharm 2021; 610:121256. [PMID: 34732362 DOI: 10.1016/j.ijpharm.2021.121256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of most common causes of cancer death worldwide. MicroRNA (miRNA) replacement gene therapy is a novel approach for HCC management. MiR-218 is a promising tumor suppressor miRNA that is down-regulated in HCC. Here, our aim was the targeted delivery of miR-218 expressing DNA plasmid (pmiR-218) to suppress HCC in vitro and in vivo. Hyperbranched polyamidoamine was synthesized via simple and economically one-pot reaction followed by decoration with lactobionic acid (LA-PAMAM) to selectively deliver and restore miR-218 expression in HCC. In vitro cytotoxicity investigations revealed the high biocompatibility of LA-PAMAM. Furthermore, decoration of hyperbranched polymer with LA moieties enabled LA-PAMAM to deliver pmiR-218 more efficiently to HepG2 cells compared to both PMAMA and naked pmiR-218. Such efficient delivery of miR-218 resulted in suppression of HepG2 proliferation and down-regulation of its oncogenic HOXA1 target. In vivo, LA-PAMAM/pmiR-218 treatment of HCC induced by DEN and CCl4 in mice leads to an obvious decrease in the number and size of HCC nodules. In addition, LA-PAMAM/pmiR-218 significantly improved the liver histological features, as well as down-regulated the HOXA1 in liver tissue. In conclusion, this study showed the potential of LA-PAMAM carrier for the targeted delivery of tumor suppressor miR-218 as a therapeutic candidate for HCC.
Collapse
|
17
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
18
|
Karimov M, Schulz M, Kahl T, Noske S, Kubczak M, Gockel I, Thieme R, Büch T, Reinert A, Ionov M, Bryszewska M, Franke H, Krügel U, Ewe A, Aigner A. Tyrosine-modified linear PEIs for highly efficacious and biocompatible siRNA delivery in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102403. [PMID: 33932594 DOI: 10.1016/j.nano.2021.102403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic gene silencing by RNA interference relies on the safe and efficient in vivo delivery of small interfering RNAs (siRNAs). Polyethylenimines are among the most studied cationic polymers for gene delivery. For several reasons including superior tolerability, small linear PEIs would be preferable over branched PEIs, but they show poor siRNA complexation. Their chemical modification for siRNA formulation has not been extensively explored so far. We generated a set of small linear PEIs bearing tyrosine modifications (LPxY), leading to substantially enhanced siRNA delivery and knockdown efficacy in vitro in various cell lines, including hard-to-transfect cells. The tyrosine-modified linear 10 kDa PEI (LP10Y) is particularly powerful, associated with favorable physicochemical properties and very high biocompatibility. Systemically administered LP10Y/siRNA complexes reveal antitumor effects in mouse xenograft and patient-derived xenograft (PDX) models, and their direct application into the brain achieves therapeutic inhibition of orthotopic glioma xenografts. LP10Y is particularly interesting for therapeutic siRNA delivery.
Collapse
Affiliation(s)
- Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Marion Schulz
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Tim Kahl
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Malgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Büch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Anja Reinert
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Heike Franke
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
| |
Collapse
|
19
|
Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021; 42:227-258. [PMID: 33891325 DOI: 10.1002/med.21809] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Firdos A Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Albalawi
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Student of the volunteer/training program at IRMC
| | - Faheem H Pottoo
- College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
20
|
Norouzi P, Motasadizadeh H, Atyabi F, Dinarvand R, Gholami M, Farokhi M, Shokrgozar MA, Mottaghitalab F. Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin siRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. ACS Biomater Sci Eng 2021; 7:1074-1087. [PMID: 33539074 DOI: 10.1021/acsbiomaterials.0c01511] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, polyethylenimine (PEI) modified silk fibroin nanoparticles (SFNPs) were prepared for codelivery of doxorubicin (DOX) and survivin siRNA. The prepared NPs were characterized in terms of stability and structural, functional, and physicochemical properties. Moreover, the ability of the conjugate to escape from the endosome and cellular uptake were assessed. Afterward, the in vivo therapeutic efficacy was analyzed in the mice model. The siRNA loaded PEI-SFNPs showed acceptable size, zeta potential, and stability in serum. It also effectively induced apoptosis in the 4T1 mouse mammary tumor cell line. Cellular uptake and endosomal escape analyses confirmed that PEI-SFNPs containing siRNA could escape from the endosome and accumulate in the cytoplasm of 4T1 cells. Real time-PCR indicated the significant decrease in the expression of survivin mRNA in the 4T1 cell line 48 h postincubation with siRNA loaded PEI-SFNPs. In vivo biodistribution of PEI-SFNPs confirmed higher accumulation of SFNPs in the tumor site compared with other organs. The codelivery systems remarkably reduced the growth rate of breast tumor in the mice model without any obvious weight lost. Histopathological and tunnel staining exhibited more apoptotic tumor cells in the group containing both DOX and survivin siRNA. Tumorigenic breast tissue resected from the animals after treatment with siRNA also exhibited significant suppression of survivin gene. In conclusion, the prepared drug delivery system had an acceptable potential in tumor removal, apoptosis induction in cancer cells, and therapeutic efficacy. Thus, it would be a good candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Mahdi Gholami
- Pharmaceutical Science Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| |
Collapse
|
21
|
The combined disulfide cross-linking and tyrosine-modification of very low molecular weight linear PEI synergistically enhances transfection efficacies and improves biocompatibility. Eur J Pharm Biopharm 2021; 161:56-65. [PMID: 33582186 DOI: 10.1016/j.ejpb.2021.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/12/2023]
Abstract
Efficient and non-toxic DNA delivery is still a major limiting factor for non-viral gene therapy. Among the large diversity of non-viral vectors, the cationic polymer polyethylenimine (PEI) plays a prominent role in nucleic acid delivery. Since higher molecular weight of PEI is beneficial for transfection efficacy, but also leads to higher cytotoxicity, the biodegradable cross-linking of low-molecular PEIs, e.g. through disulfide-groups, has been introduced. Another promising strategy is the chemical modification of PEI, for example with amino acids like tyrosine. In the case of small RNA molecules, this PEI grafting has been found to enhance transfection efficacies and improve biocompatibility. In this paper, we report on the combination of these two strategies for improving DNA delivery: the (i) cross-linking of very small 2 kDa PEI ("P2") molecules through biodegradable disulfide-groups ("SS"), in combination with (ii) tyrosine-modification ("Y"). We demonstrate a surprisingly substantial, synergistic enhancement of transfection efficacies of these SSP2Y/DNA complexes over their non- or mono-modified polymer counterparts, accompanied by high biocompatibility as well as favorable physicochemical and biological properties. Beyond various cell lines, high biological activity of the SSP2Y-based complexes is also seen in an ex vivo tissue slice model, more closely mimicking in vivo conditions. The particularly high transfection efficacy SSP2Y/DNA complexes in 2D and 3D models, based on their optimized complex stability and DNA release, as well as their high biocompatibility thus provides the basis for their further exploration for therapeutic application.
Collapse
|
22
|
Kunz M, Brandl M, Bhattacharya A, Nobereit-Siegel L, Ewe A, Weirauch U, Hering D, Reinert A, Kalwa H, Guzman J, Weigelt K, Wach S, Taubert H, Aigner A. Nanoparticle-complexed antimiRs for inhibiting tumor growth and metastasis in prostate carcinoma and melanoma. J Nanobiotechnology 2020; 18:173. [PMID: 33228711 PMCID: PMC7685669 DOI: 10.1186/s12951-020-00728-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background MiRNAs act as negative regulators of gene expression through target mRNA degradation or inhibition of its translation. In cancer, several miRNAs are upregulated and play crucial roles in tumorigenesis, making the inhibition of these oncomiRs an interesting therapeutic approach. This can be achieved by directly complementary single-stranded anti-miRNA oligonucleotides (antimiRs). A major bottleneck in antimiR therapy, however, is their efficient delivery. The nanoparticle formation with polyethylenimine (PEI) may be particularly promising, based on the PEI’s ability to electrostatically interact with oligonucleotides. This leads to their protection and supports delivery. In the present study, we explore for the first time PEI for antimiR formulation and delivery. We use the branched low molecular weight PEI F25-LMW for the complexation of different antimiRs, and analyse tumor- and metastasis-inhibitory effects of PEI/antimiR complexes in different tumor models. Results In prostate carcinoma, transfection of antimiRs against miR-375 and miR-141 leads to tumor cell inhibition in 2D- and 3D-models. More importantly, an in vivo tumor therapy study in prostate carcinoma xenografts reveals anti-tumor effects of the PEI/antimiR complexes. In advanced melanoma and metastasis, we identify by a microRNA screen miR-150 as a particularly relevant oncomiR candidate, and validate this result in vitro and in vivo. Again, the systemic application of PEI/antimiR complexes inhibiting this miRNA, or the previously described antimiR-638, leads to profound tumor growth inhibition. These effects are associated with the upregulation of direct miRNA target genes. In a melanoma metastasis mouse model, anti-metastatic effects of PEI/antimiR treatment are observed as well. Conclusions We thus describe PEI-based complexes as efficient platform for antimiR therapy, as determined in two different tumor entities using in vivo models of tumor growth or metastasis. Our study also highlights the therapeutic relevance of miR-375, miR-141, miR-150 and miR-638 as target miRNAs for antimiR-mediated inhibition.![]()
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Madeleine Brandl
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Animesh Bhattacharya
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-University Medical Center, Virchow Campus, Berlin, Germany
| | - Lars Nobereit-Siegel
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany.,Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Ulrike Weirauch
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
| | - Doreen Hering
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Reinert
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Juan Guzman
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Weigelt
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
23
|
Noske S, Karimov M, Aigner A, Ewe A. Tyrosine-Modification of Polypropylenimine (PPI) and Polyethylenimine (PEI) Strongly Improves Efficacy of siRNA-Mediated Gene Knockdown. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1809. [PMID: 32927826 PMCID: PMC7557430 DOI: 10.3390/nano10091809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
The delivery of small interfering RNAs (siRNA) is an efficient method for gene silencing through the induction of RNA interference (RNAi). It critically relies, however, on efficient vehicles for siRNA formulation, for transfection in vitro as well as for their potential use in vivo. While polyethylenimines (PEIs) are among the most studied cationic polymers for nucleic acid delivery including small RNA molecules, polypropylenimines (PPIs) have been explored to a lesser extent. Previous studies have shown the benefit of the modification of small PEIs by tyrosine grafting which are featured in this paper. Additionally, we have now extended this approach towards PPIs, presenting tyrosine-modified PPIs (named PPI-Y) for the first time. In this study, we describe the marked improvement of PPI upon its tyrosine modification, leading to enhanced siRNA complexation, complex stability, siRNA delivery, knockdown efficacy and biocompatibility. Results of PPI-Y/siRNA complexes are also compared with data based on tyrosine-modified linear or branched PEIs (LPxY or PxY). Taken together, this establishes tyrosine-modified PPIs or PEIs as particularly promising polymeric systems for siRNA formulation and delivery.
Collapse
Affiliation(s)
| | | | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; (S.N.); (M.K.)
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; (S.N.); (M.K.)
| |
Collapse
|
24
|
Shah H, Tariq I, Engelhardt K, Bakowsky U, Pinnapireddy SR. Development and Characterization of Ultrasound Activated Lipopolyplexes for Enhanced Transfection by Low Frequency Ultrasound in In Vitro Tumor Model. Macromol Biosci 2020; 20:e2000173. [DOI: 10.1002/mabi.202000173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hirva Shah
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
- Punjab University College of Pharmacy University of the Punjab Lahore 54000 Pakistan
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics University of Marburg Robert Koch Straße 4 Marburg 35037 Germany
- CSL Behring GmbH Emil‐von‐Behring‐Str. 76 Marburg 35041 Germany
| |
Collapse
|
25
|
Ramongolalaina C. Dual-luciferase assay and siRNA silencing for nodD1 to study the competitiveness of Bradyrhizobium diazoefficiens USDA110 in soybean nodulation. Microbiol Res 2020; 237:126488. [PMID: 32408049 DOI: 10.1016/j.micres.2020.126488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 11/13/2022]
Abstract
The symbiosis of soybean with Bradyrhizobium diazoefficiens USDA110, which always competes with other rhizobia in the field, is of great agronomic and environmental importance. Herein, a dual-luciferase reporter assay was utilized to monitor the dynamics of two dominant bradyrhizobia infecting roots of soybean. More explicitly, luciferase-tagged B. diazoefficiens USDA110 (USDA110-FLuc) and Bradyrhizobium elkanii USDA 94 (USDA94-RLuc) were designed, co-inoculated into soybean seeds, and observed for their colonization in root nodules by bioluminescence imaging. The results showed that USDA110-FLuc initiated infection earlier than USDA94-RLuc, but its occupancy in the nodules decreased as the plant grew. A nodulation test showed that nodD1 mutant USDA110 strains, including CRISPR engineered mutants, were less competitive than wild type. I constructed siRNAs to knockdown nodD1 at different target sites and transformed them into the bacteria. Surprisingly, although siRNAs - with 3' end target sites - were able to repress up to 65% of nodD1 expression, the profiling of total RNAs with a bioanalyzer revealed that 23S/16S-rRNA ratios of siRNA-transformed and wild type USDA110 strains were similar, but lower than that of nodD1 mutant. In short, the current work - while reporting the competitiveness of B. diazoefficiens USDA110 in early occupancy of soybean nodules and the gene nodD1 as a key determinant of this infection - gives an insight on siRNA silencing in microbes, and demonstrates a highly efficient imaging approach that could entail many new avenues for many biological research fields.
Collapse
Affiliation(s)
- Clarissien Ramongolalaina
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
26
|
Müller S, Wedler A, Breuer J, Glaß M, Bley N, Lederer M, Haase J, Misiak C, Fuchs T, Ottmann A, Schmachtel T, Shalamova L, Ewe A, Aigner A, Rossbach O, Hüttelmaier S. Synthetic circular miR-21 RNA decoys enhance tumor suppressor expression and impair tumor growth in mice. NAR Cancer 2020; 2:zcaa014. [PMID: 34316687 PMCID: PMC8210135 DOI: 10.1093/narcan/zcaa014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 01/07/2023] Open
Abstract
Naturally occurring circular RNAs efficiently impair miRNA functions. Synthetic circular RNAs may thus serve as potent agents for miRNA inhibition. Their therapeutic effect critically relies on (i) the identification of optimal miRNA targets, (ii) the optimization of decoy structures and (iii) the development of efficient formulations for their use as drugs. In this study, we extensively explored the functional relevance of miR-21-5p in cancer cells. Analyses of cancer transcriptomes reveal that miR-21-5p is the by far most abundant miRNA in human cancers. Deletion of the MIR21 locus in cancer-derived cells identifies several direct and indirect miR-21-5p targets, including major tumor suppressors with prognostic value across cancers. To impair miR-21-5p activities, we evaluate synthetic, circular RNA decoys containing four repetitive binding elements. In cancer cells, these decoys efficiently elevate tumor suppressor expression and impair tumor cell vitality. For their in vivo delivery, we for the first time evaluate the formulation of decoys in polyethylenimine (PEI)-based nanoparticles. We demonstrate that PEI/decoy nanoparticles lead to a significant inhibition of tumor growth in a lung adenocarcinoma xenograft mouse model via the upregulation of tumor suppressor expression. These findings introduce nanoparticle-delivered circular miRNA decoys as a powerful potential therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Simon Müller
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Alice Wedler
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Janina Breuer
- Institute of Biochemistry, Faculty of Biology and Chemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Jacob Haase
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Claudia Misiak
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Tommy Fuchs
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Alina Ottmann
- Institute of Biochemistry, Faculty of Biology and Chemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Tessa Schmachtel
- Institute of Biochemistry, Faculty of Biology and Chemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Lyudmila Shalamova
- Institute of Biochemistry, Faculty of Biology and Chemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Alexander Ewe
- Department of Clinical Pharmacology, Rudolf Boehm Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany
| | - Achim Aigner
- Department of Clinical Pharmacology, Rudolf Boehm Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
27
|
Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020; 21:2966-2982. [DOI: 10.1021/acs.biomac.0c00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
28
|
Hou L, Song Z, Xu Z, Wu Y, Shi W. Folate-Mediated Targeted Delivery of siPLK1 by Leucine-Bearing Polyethylenimine. Int J Nanomedicine 2020; 15:1397-1408. [PMID: 32184594 PMCID: PMC7060029 DOI: 10.2147/ijn.s227289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND siRNA-mediated polo-like kinase 1 (PLK1) silencing has been proposed as a promising therapeutic method for multiple cancers. However, the clinic application of this method is still hindered by the low specific delivery of siPLK1 to desired tumor lesions. Herein, folate (FA)-modified and leucine-bearing polyethylenimine was successfully synthesized and showed excellent targeted silencing to folate receptor overexpressed cells. MATERIALS AND METHODS The condensation of siPLK1 by FA-N-Ac-L-Leu-PEI (NPF) was detected by the gel retardation assay. The targeted and silencing efficiency was evaluated by flow cytometry and confocal laser scanning microscope. The PLK1 expressions at gene or protein levels were detected by quantitative real-time PCR and Western blotting assay. Further impacts of the PLK1 silencing on cell viability, cell cycle, migration, and invasion were studied by MTT, colony formation, wound healing and transwell assays. RESULTS The NPF and siPLK1 could efficiently assemble to stable nanoparticles at a weight ratio of 3.0 and showed excellent condensation and protection effect. Owing to the FA-mediated targeted delivery, the uptake and silencing efficiency of NPF/siPLK1 to SGC-7901 cells was higher than that without FA modification. Moreover, NPF-mediated PLK1 silencing showed significant antitumor activity in vitro. The anti-proliferation effect of PLK1 silencing was induced via the mitochondrial-dependent apoptosis pathway with the cell cycle arrest of 45% at G2 phase and the apoptotic ratio of 28.3%. CONCLUSION FA-N-Ac-L-Leu-PEI (NPF) could generate targeted delivery siPLK1 to FA receptor overexpressed cells and dramatically downregulate the expression of PLK1 expression.
Collapse
Affiliation(s)
- Lu Hou
- College of Life Science, Jilin University, Changchun, Jilin130012, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun130012, People’s Republic of China
| | - Zheyu Song
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun130033, People’s Republic of China
| | - Zhonghang Xu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun130033, People’s Republic of China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University, Changchun130033, People’s Republic of China
| | - Wei Shi
- College of Life Science, Jilin University, Changchun, Jilin130012, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun130012, People’s Republic of China
| |
Collapse
|
29
|
Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes for enhanced siRNA delivery in vitro and in vivo. J Control Release 2019; 319:63-76. [PMID: 31866504 DOI: 10.1016/j.jconrel.2019.12.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (ECVs) are secreted cell-derived membrane particles involved in intercellular signaling and cell-cell communication. By transporting various bio-macromolecules, ECVs and in particular exosomes are relevant in various (patho-) physiological processes. ECVs are also released by cancer cells and can confer pro-tumorigenic effects. Their target cell tropism, effects on proliferation rates, natural stability in blood and immunotolerance makes ECVs particularly interesting as delivery vehicles. Polyethylenimines (PEIs) are linear or branched polymers which are capable of forming non-covalent complexes with small RNA molecules including siRNAs or antimiRs, for their delivery in vitro and in vivo. This study explores for the first time the combination of PEI-based nanoparticles with naturally occurring ECVs from different cell lines, for the delivery of small RNAs. ECV-modified PEI/siRNA complexes are analyzed by electron microscopy vs. ECV or complex alone. On the functional side, we demonstrate increased knockdown efficacy and storage stability of PEI/siRNA complexes upon their modification with ECVs. This is paralleled by enhanced tumor cell-inhibition by ECV-modified PEI/siRNA complexes targeting Survivin. Pre-treatment with various inhibitors of cellular internalization reveals alterations in cellular uptake mechanisms and biological activities of PEI/siRNA complexes upon their ECV modification. Extending our studies towards PEI-complexed antimiRs against miR-155 or miR-1246, dose-dependent cellular and molecular effects are enhanced in ECV-modified complexes, based on the de-repression of direct miRNA target genes. Differences between ECVs from different cell lines are observed regarding their capacity of enhancing PEI/siRNA efficacies, independent of the target cell line for transfection. Finally, an in vivo therapy study in mice bearing s.c. PC3 prostate carcinoma xenografts reveals marked inhibition of tumor growth upon treatment with ECVPC3-modified PEI/siSurvivin complexes, based on profound target gene knockdown. We conclude that ECV-modification enhances the activity of PEI-based complexes, by altering pivotal physicochemical and biological nanoparticle properties.
Collapse
|
30
|
Ewe A, Noske S, Karimov M, Aigner A. Polymeric Nanoparticles Based on Tyrosine-Modified, Low Molecular Weight Polyethylenimines for siRNA Delivery. Pharmaceutics 2019; 11:pharmaceutics11110600. [PMID: 31726756 PMCID: PMC6920781 DOI: 10.3390/pharmaceutics11110600] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/02/2023] Open
Abstract
A major hurdle for exploring RNA interference (RNAi) in a therapeutic setting is still the issue of in vivo delivery of small RNA molecules (siRNAs). The chemical modification of polyethylenimines (PEIs) offers a particularly attractive avenue towards the development of more efficient non-viral delivery systems. Here, we explore tyrosine-modified polyethylenimines with low or very low molecular weight (P2Y, P5Y, P10Y) for siRNA delivery. In comparison to their respective parent PEI, they reveal considerably increased knockdown efficacies and very low cytotoxicity upon tyrosine modification, as determined in different reporter and wildtype cell lines. The delivery of siRNAs targeting the anti-apoptotic oncogene survivin or the serine/threonine-protein kinase PLK1 (polo-like kinase 1; PLK-1) oncogene reveals strong inhibitory effects in vitro. In a therapeutic in vivo setting, profound anti-tumor effects in a prostate carcinoma xenograft mouse model are observed upon systemic application of complexes for survivin or PLK1 knockdown, in the absence of in vivo toxicity. We thus demonstrate the tyrosine-modification of (very) low molecular weight PEIs for generating efficient nanocarriers for siRNA delivery in vitro and in vivo, present data on their physicochemical and biological properties, and show their efficacy as siRNA therapeutic in vivo, in the absence of adverse effects.
Collapse
Affiliation(s)
- Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany; (A.E.); (S.N.); (M.K.)
| | - Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany; (A.E.); (S.N.); (M.K.)
- Faculty of Chemistry, Technical University Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany; (A.E.); (S.N.); (M.K.)
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany; (A.E.); (S.N.); (M.K.)
- Correspondence: ; Tel.: +49-(0)341-9724661
| |
Collapse
|
31
|
Liang X, Tang X, Yang J, Zhang J, Han H, Li Q. A genipin-crosslinked protein-polymer hybrid system for the intracellular delivery of ribonuclease A. Int J Nanomedicine 2019; 14:7389-7398. [PMID: 31571857 PMCID: PMC6749988 DOI: 10.2147/ijn.s210486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/27/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Therapeutic proteins have been widely used in the treatment of various diseases, and effective carriers are highly required for achieving protein delivery to obtain favorable treatment potency. MATERIALS AND METHODS A protein-polymer hybrid system was constructed through the genipin-mediated crosslinking of polyethyleneimine with a weight-average molecular weight of 25,000 g/mol (PEI25K) and ribonuclease A (RNase A), namely RGP. RESULTS The RGP nanoparticles were observed to be easily internationalized in HeLa cells owing to the introduction of positively charged PEI25K, thereby triggering the antiproliferative effects by cleaving RNA molecules in the tumor cells. Moreover, red fluorescence could be obviously visualized in the tumor cells after RGP delivery, which was attributed to the intrinsic characteristics of genipin. CONCLUSION The protein-polymer hybrid system prepared via the genipin-mediated crosslinking has exhibited potential to be used as a theranostic platform for both in vivo imaging and delivering diverse therapeutic proteins.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| |
Collapse
|
32
|
Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019; 20:3613-3626. [DOI: 10.1021/acs.biomac.9b00999] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Li H, Yang X, Gao F, Qian C, Li C, Oupicky D, Sun M. Bioreduction-ruptured nanogel for switch on/off release of Bcl2 siRNA in breast tumor therapy. J Control Release 2018; 292:78-90. [DOI: 10.1016/j.jconrel.2018.02.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/01/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
|
34
|
Leishmania treatment and prevention: Natural and synthesized drugs. Eur J Med Chem 2018; 160:229-244. [DOI: 10.1016/j.ejmech.2018.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
|
35
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
36
|
Cha S, Lee SH, Kang SH, Hasan MN, Kim YJ, Cho S, Lee YK. Antibody-mediated oral delivery of therapeutic DNA for type 2 diabetes mellitus. Biomater Res 2018; 22:19. [PMID: 30065848 PMCID: PMC6062860 DOI: 10.1186/s40824-018-0129-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/27/2018] [Indexed: 12/02/2022] Open
Abstract
Background Diabetes mellitus (DM) is a chronic progressive metabolic disease that involves uncontrolled elevation of blood glucose levels. Among various therapeutic approaches, GLP-1 prevents type 2 diabetes mellitus (T2DM) patients from experiencing hyperglycemic episodes. However, the short half-life (< 5 min) and rapid clearance of GLP-1 often limits its therapeutic use. Here, we developed an oral GLP-1 gene delivery system to achieve an extended antidiabetic effect. Methods Human IgG1 (hIgG1)-Fc-Arg/pDNA complexes were prepared by an electrostatic complexation of the expression plasmid with various ratios of the positively modified Fc fragments of an antibody (hIgG1-Fc-Arg) having a targeting ability to FcRn receptor. The shape and size of the complexes were examined by atomic force and field emission electron microscope. The stability of the complexes was tested in simulated gastrointestinal pH and physiological serum condition. Cellular uptake, transport, and toxicity of the complexes were tested in the Caco-2 cells. Biodistribution and antidiabetic effect of the complexes were observed in either Balb/c mice or Lepdb/db mice. Results A 50/1 ratio of the hIgG1-Fc-Arg/pDNA produced a complex structure having approximately 40 ~ 60 nm size and also demonstrated protection of pDNA in the complex from the physiological pH and serum conditions. Cellular uptake and transport of the complex were demonstrated in Caco-2 cells having FcRn receptor expression and forming the monolayer-polarized structure. The cellular toxicity of both delivery vehicle and the complex revealed their minimal toxicity comparable with nontoxicity of a commercial transfection reagent. Biodistribution of the complex showed the detectable distribution of the complex in the most parts of gastrointestinal tract due to ubiquitous expression of the FcRn receptors. An in vivo type 2 diabetes treatment study of oral administration of hIgG1-Fc-9Arg/pGLP-1 complexes showed absorption and expression in GI tract of either Balb/c mice or Lepdb/db mice. Conclusion In this study, we developed an oral GLP-1 gene delivery system on the platform of cationic hIgG1-Fc-9Arg. Prolonged t1/2, less immunoactivity, and better bioactivities of hIgG-Fc-9Arg/pGLP-1 complexes appeared to be a promising approach to achieve potent treatment of type 2 diabetes treatment. Electronic supplementary material The online version of this article (10.1186/s40824-018-0129-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seungbin Cha
- 1Department of Biomedical Chemistry, Konkuk University, Chungju, 27478 Republic of Korea
| | | | | | - Mohammad Nazmul Hasan
- 3Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469 Republic of Korea
| | - Young Jun Kim
- 1Department of Biomedical Chemistry, Konkuk University, Chungju, 27478 Republic of Korea
| | - Sungpil Cho
- 44D Biomaterials Center, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Yong-Kyu Lee
- KB-Biomed, Chungju, 27469 Republic of Korea.,3Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469 Republic of Korea.,44D Biomaterials Center, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| |
Collapse
|
37
|
Steinborn B, Truebenbach I, Morys S, Lächelt U, Wagner E, Zhang W. Epidermal growth factor receptor targeted methotrexate and small interfering RNA co-delivery. J Gene Med 2018; 20:e3041. [PMID: 29949222 DOI: 10.1002/jgm.3041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Developing new drug delivery carriers addressing chemoresistance is still full of challenges and opportunities. As the rapid development of small interfering RNA (siRNA) provides promising therapeutic perspectives, nanocarriers for drug and siRNA co-delivery present new alternatives for cancer therapy. METHODS A co-delivery nanosystem for methotrexate (MTX) or gamma-glutamylated derivatives (gE2 -MTX and gE5 -MTX) and antitumoral EG5 siRNA has been developed utilizing the sequence defined cationic lipo-oligomers 454, 1021 and 1027. Based on a lipo-oligomer-MTX-siRNA core, an epidermal growth factor receptor (EGFR) targeted delivery system was established via post modification with the GE11 targeting peptide. RESULTS Almost 100% MTX derivative incorporation was achieved in gE2 -MTX or gE5 -MTX siRNA/454 polyplexes, whereas the particle sizes (100-150 nm) and siRNA binding abilities were well maintained. Our co-delivery system greatly increased the MTX sensitivity of MTX resistant KB cells. Enhanced cellular internalization of GE11 siRNA/454 polyplexes incorporating either gE2 -MTX or gE5 -MTX was observed and attributed to GE11-mediated targeting of EGFR overexpressing KB cells. GE11 modified gE2 -MTX or gE5 -MTX EG5 siRNA polyplexes illustrated the highest anti-tumoral activities compared to free MTX or nontargeted polyplexes. The His-containing gE2 -MTX or gE5 -MTX siRNA/1027 polyplexes showed increased tumor cell killing compared to the His-free analogous 1021 polyplexes. CONCLUSIONS A new strategy for co-delivering negatively charged MTX and cytotoxic siRNA has been developed by utilizing sequence defined cationic lipo-oligomers. Mediated by the combined effect of antifolate MTX, antimitotic EG5 siRNA and EGFR targeting by GE11, superior tumor cell killing was obtained with GE11 gE2 -MTX or gE5 -MTX EG5 siRNA/454 polyplexes.
Collapse
Affiliation(s)
- Benjamin Steinborn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ines Truebenbach
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wei Zhang
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
38
|
Li J, Liang H, Liu J, Wang Z. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm 2018; 546:215-225. [PMID: 29787895 DOI: 10.1016/j.ijpharm.2018.05.045] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022]
Abstract
Poly (amidoamine) (PAMAM) dendrimers are well-defined, highly branched macromolecules with numerous active amine groups on the surface. Because of their unique properties, PAMAM dendrimers have steadily grown in popularity in drug delivery, gene therapy, medical imaging and diagnostic application. This review focuses on the recent developments on the application in PAMAM dendrimers as effective carriers for drug and gene (pDNA, siRNA) delivery in cancer therapy, including: a) PAMAM for anticancer drug delivery; b) PAMAM and gene therapy; c) PAMAM used in overcoming tumor multidrug resistance; d) PAMAM used for hybrid nanoparticles; and e) PAMAM linked or loaded in other nanoparticles.
Collapse
Affiliation(s)
- Jun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Huamin Liang
- Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, Anhui, China
| | - Jing Liu
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Ziyuan Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
39
|
Neuberg P, Hamaidi I, Danilin S, Ripoll M, Lindner V, Nothisen M, Wagner A, Kichler A, Massfelder T, Remy JS. Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery. NANOSCALE 2018; 10:1587-1590. [PMID: 29322141 DOI: 10.1039/c7nr09202d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polydiacetylenic nanofibers (PDA-Nfs) obtained by photopolymerization of surfactant 1 were optimized for intracellular delivery of small interfering RNAs (siRNAs). PDA-Nfs/siRNA complexes efficiently silenced the oncogene Lim-1 in the renal cancer cells 786-O in vitro. Intraperitoneal injection of PDA-Nfs/siLim1 downregulated Lim-1 in subcutaneous tumor xenografts obtained with 786-O cells in nude mice. Thus, PDA-Nfs represent an innovative system for in vivo delivery of siRNAs.
Collapse
Affiliation(s)
- P Neuberg
- V-SAT Laboratory, Vectors: Synthesis and Therapeutic Applications, Labex Medalis, CAMB UMR7199 CNRS-Université de Strasbourg, Faculty of Pharmacy, Illkirch, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Efficient gene delivery by oligochitosan conjugated serum albumin: Facile synthesis, polyplex stability, and transfection. Carbohydr Polym 2017; 183:37-49. [PMID: 29352891 DOI: 10.1016/j.carbpol.2017.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Chitosan and its derivatives have shown to be potential gene carriers with biocompatiblility and safety. However, their practical delivery is far from being ideal because of the low transfection efficiency. The present work describes the potential of a natural protein, bovine serum albumin (BSA), conjugated with a natural oligosaccharide, oligochitosan (OC), as a considerable promising approach for a safe and efficient non-viral gene delivery vector. The FTIR spectra proved the effective conjugation of BSA with OC through covalent bond. The condensation ability of plasmid DNA (pDNA) with a BSA-OC biopolymer was analyzed by gel retardation assay, competition binding assay, and dynamic light scattering used to measure the nanoparticle size. In addition, the BSA-OC biopolymer showed the protection of pDNA from enzymatic degradation by DNase I and showed good stability when exposed to 50% fetal bovine serum. The transfection efficiency was evaluated in the presence of 10% serum-supplemented media or serum-free media on three kinds of mammalian cells. Our results showed that the BSA-OC biopolymer is a good non-viral vehicle for gene delivery. We investigated the parameters such as the pDNA payload, temperature, incubating duration, and biopolymer/pDNA ratio on the transfection efficiency. This hybrid vehicle had the ability to transfect 90% of cells and to maintain 80% of cell viability. The aforementioned results suggest that the facile synthesis of the BSA-OC biopolymer could overcome the cytotoxicity problem and transfection barriers during in vitro gene delivery.
Collapse
|
41
|
Ewe A, Höbel S, Heine C, Merz L, Kallendrusch S, Bechmann I, Merz F, Franke H, Aigner A. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Deliv Transl Res 2017; 7:206-216. [PMID: 27334279 DOI: 10.1007/s13346-016-0306-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The non-viral delivery of small RNA molecules like siRNAs still poses a major bottleneck for their successful application in vivo. This is particularly true with regard to crossing physiological barriers upon systemic administration. We have previously established polyethylenimine (PEI)-based complexes for therapeutic RNA formulation. These nanoplexes mediate full RNA protection against nucleolytic degradation, delivery to target tissues as well as cellular uptake, intracellular release and therapeutic efficacy in preclinical in vivo models. We herein present data on different polyplex modifications for the defined improvement of physicochemical and biological nanoparticle properties and for targeted delivery. (i) By non-covalent modifications of PEI polyplexes with phospholipid liposomes, ternary complexes ("lipopolyplexes") are obtained that combine the favorable features of PEI and lipid systems. Decreased cytotoxicity and highly efficient delivery of siRNA is achieved. Some lipopolyplexes also allow prolonged storage, thus providing formulations with higher stability. (ii) Novel tyrosine modifications of low molecular weight PEI offer further improvement of stability, biocompatibility, and knockdown efficacy of resulting nanoparticles. (iii) For ligand-mediated uptake, the shielding of surface charges is a critical requirement. This is achieved by PEI grafting with polyethylene glycol (PEG), prior to covalent coupling of anti-HER1 antibodies (Erbitux®) as ligand for targeted delivery and uptake. Beyond tumor cell culture, analyses are extended towards tumor slice cultures from tumor xenograft tissues which reflect more realistically the in vivo situation. The determination of siRNA-mediated knockdown of endogenous target genes, i.e., the oncogenic survival factor survivin and the oncogenic receptor tyrosine kinase HER2, reveals nanoparticle penetration and biological efficacy also under intact tissue and stroma conditions.
Collapse
Affiliation(s)
- Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Haertelstrasse 16 - 18, D-04107, Leipzig, Germany
| | - Sabrina Höbel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Haertelstrasse 16 - 18, D-04107, Leipzig, Germany
| | - Claudia Heine
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Lea Merz
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Felicitas Merz
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany.,Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Heike Franke
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Haertelstrasse 16 - 18, D-04107, Leipzig, Germany.
| |
Collapse
|
42
|
Lee DJ, Kessel E, Lehto T, Liu X, Yoshinaga N, Padari K, Chen YC, Kempter S, Uchida S, Rädler JO, Pooga M, Sheu MT, Kataoka K, Wagner E. Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Stability for In Vivo Gene Silencing in Leukemia. Bioconjug Chem 2017; 28:2393-2409. [PMID: 28772071 DOI: 10.1021/acs.bioconjchem.7b00383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protection of small interfering RNA (siRNA) against degradation and targeted delivery across the plasma and endosomal membranes to the final site of RNA interference (RNAi) are major aims for the development of siRNA therapeutics. Targeting for folate receptor (FR)-expressing tumors, we optimized siRNA polyplexes by coformulating a folate-PEG-oligoaminoamide (for surface shielding and targeting) with one of three lipo-oligoaminoamides (optionally tyrosine-modified, for optimizing stability and size) to generate ∼100 nm targeted lipopolyplexes (TLPs), which self-stabilize by cysteine disulfide cross-links. To better understand parameters for improved tumor-directed gene silencing, we analyzed intracellular distribution and siRNA release kinetics. FR-mediated endocytosis and endosomal escape of TLPs was confirmed by immuno-TEM. We monitored colocalization of TLPs with endosomes and lysosomes, and onset of siRNA release by time-lapse confocal microscopy; analyzed intracellular stability by FRET using double-labeled siRNA; and correlated results with knockdown of eGFPLuc protein and EG5 mRNA expression. The most potent formulation, TLP1, containing lipopolyplex-stabilizing tyrosine trimers, was found to unpack siRNA in sustained manner with up to 5-fold higher intracellular siRNA stability after 4 h compared to other TLPs. Unexpectedly, data indicated that intracellular siRNA stability instead of an early endosomal exit dominate as a deciding factor for silencing efficiency of TLPs. After i.v. administration in a subcutaneous leukemia mouse model, TLP1 exhibited ligand-dependent tumoral siRNA retention, resulting in 65% EG5 gene silencing at mRNA level without detectable adverse effects. In sum, tyrosine-modified TLP1 conveys superior protection of siRNA for an effective tumor-targeted delivery and RNAi in vivo.
Collapse
Affiliation(s)
- Dian-Jang Lee
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| | - Eva Kessel
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| | - Taavi Lehto
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany
| | - Xueying Liu
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan
| | - Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Kärt Padari
- Institute of Molecular and Cell Biology and Institute of Technology, University of Tartu , 23 Riia Str., 51010 Tartu, Estonia
| | - Ying-Chen Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University , No. 250, Wuxin St., 11031 Taipei, Taiwan
| | - Susanne Kempter
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Joachim O Rädler
- Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany.,Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Margus Pooga
- Institute of Molecular and Cell Biology and Institute of Technology, University of Tartu , 23 Riia Str., 51010 Tartu, Estonia
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University , No. 250, Wuxin St., 11031 Taipei, Taiwan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Institute of Industry Promotion-Kawasaki , 3-25-14 Tonomachi, Kawasaki-ku, 210-0821 Kawasaki, Japan.,Policy Alternatives Research Institute, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience, Ludwig-Maximilians-Universität München , Butenandtstr. 5-13, 81377 Munich, Germany.,Nanosystems Initiative Munich (NIM) , Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|
43
|
Yu QY, Zhan YR, Zhang J, Luan CR, Wang B, Yu XQ. Aromatic Modification of Low Molecular Weight PEI for Enhanced Gene Delivery. Polymers (Basel) 2017; 9:polym9080362. [PMID: 30971039 PMCID: PMC6418655 DOI: 10.3390/polym9080362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022] Open
Abstract
Low molecular weight polyethylenimine (1800 Da, also referred to as oligoethylenimines, OEI) was modified with amino acids, including two aromatic amino acids (tryptophan, phenylalanine) and an aliphatic amino acid (leucine). The substitution degree of amino acids could be controlled by adjusting the feeding mole ratio of the reactants. Fluorescence spectroscopy and circular dichroism experiments demonstrated that the indole ring of tryptophan may intercalate into the DNA base pairs and contribute to efficient DNA condensation. In vitro gene expression results revealed that the modified OEIs (OEI-AAs) may provide higher transfection efficiency even than high molecular weight polyethylenimine (25 kDa, PEI), especially the aromatic tryptophan substituted OEI. Moreover, OEI-AAs exhibited excellent serum tolerance, and up to 137 times higher transfection efficiency than PEI 25 kDa that was obtained in the presence of serum. The cytotoxicity of OEI-AAs is much lower than PEI 25 kDa. This study may afford a new method for the development of low molecular weight oligomeric non-viral gene vectors with both high efficiency and biocompatibility.
Collapse
Affiliation(s)
- Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Rong Zhan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chao-Ran Luan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
44
|
Sustained delivery of siRNA poly- and lipopolyplexes from porous macromer-crosslinked gelatin gels. Int J Pharm 2017; 526:178-187. [DOI: 10.1016/j.ijpharm.2017.04.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/15/2023]
|
45
|
Photoluminescent and biodegradable polycitrate-polyethylene glycol-polyethyleneimine polymers as highly biocompatible and efficient vectors for bioimaging-guided siRNA and miRNA delivery. Acta Biomater 2017; 54:69-80. [PMID: 28219808 DOI: 10.1016/j.actbio.2017.02.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 11/23/2022]
Abstract
Development of biodegradable and biocompatible non-viral vectors with intrinsical multifunctional properties such as bioimaging ability for highly efficient nucleic acids delivery still remains a challenge. Here, a biodegradable poly (1,8-octanedio-citric acid)-co-polyethylene glycol grafted with polyethyleneimine (PEI) (POCG-PEI) polymers with the photoluminescent capacity were synthesized for nucleic acids delivery (siRNA and miRNA). POCG-PEI polymers can efficiently bind various nucleic acids, protect them against enzymatic degradation and release the genes in the presence of polyanionic heparin. POCG-PEI also showed a significantly low cytotoxicity, enhanced cellular uptake and high transfection efficiency of nucleic acids, as compared to commercial transfection agents, lipofectamine 2000 (Lipo) and polyethylenimine (PEI 25K). POCG-PEI polymers demonstrate an excellent photostability, which allows for imaging the cells and real-time tracking the nucleic acids delivery. The photoluminescent property, low cytotoxicity, biodegradation, good gene binding and protection ability and high genes delivery efficiency make POCG-PEI highly competitive as a non-virus vector for genes delivery and real-time bioimaging applications. Our results may be also an important step for designing biodegradable biomaterials with multifunctional properties towards bioimaging-guided genes therapeutic applications. STATEMENT OF SIGNIFICANCE Here, a biodegradable poly (1,8-octanedio-citric acid)-co-polyethylene glycol grafted with polyethyleneimine (PEI) (POCG-PEI) polymers with controlled photoluminescent capacity were synthesized for nucleic acids delivery (siRNA and miRNA). POCG-PEI polymers can efficiently bind various nucleic acids, protect them against enzymatic degradation and release the genes in the presence of polyanionic heparin. POCG-PEI also showed a significantly low cytotoxicity, enhanced cellular uptake and high transfection efficiency of nucleic acids, as compared to commercial transfection agents, lipofectamine 2000 (Lipo) and polyethylenimine (PEI 25K). POCG-PEI polymers demonstrate an excellent photostability, which allows for imaging the cells and real-time tracking the nucleic acids delivery. Our results may be also an important step for designing biodegradable biomaterials with multifunctional properties towards bioimaging-guided genes therapeutic applications.
Collapse
|
46
|
Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discov Today 2017; 22:1318-1335. [PMID: 28428056 DOI: 10.1016/j.drudis.2017.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Sustained gene delivery is of particular importance today because it circumvents the need for repeated therapeutic administration and provides spatial and temporal control of the release profile. Better understanding of the genetic basis of diseases and advances in gene therapy have propelled significant research on biocompatible gene carriers for therapeutic purposes. Varied biodegradable polymer-based architectures have been used to create new compositions with unique properties suitable for sustained gene delivery. This review presents the most recent advances in various polymeric systems: hydrogels, microspheres, nanospheres and scaffolds, having complex architectures to encapsulate and deliver functional genes. Through the recombination of different existing polymer systems, the multicomplex systems can be further endowed with new properties for better-targeted biomedical applications.
Collapse
|
47
|
Degradable Polyethylenimine-Based Gene Carriers for Cancer Therapy. Top Curr Chem (Cham) 2017; 375:34. [DOI: 10.1007/s41061-017-0124-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
48
|
Yang J, Hao X, Li Q, Akpanyung M, Nejjari A, Neve AL, Ren X, Guo J, Feng Y, Shi C, Zhang W. CAGW Peptide- and PEG-Modified Gene Carrier for Selective Gene Delivery and Promotion of Angiogenesis in HUVECs in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4485-4497. [PMID: 28117580 DOI: 10.1021/acsami.6b14769] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene therapy is a promising strategy for angiogenesis, but developing gene carriers with low cytotoxicity and high gene delivery efficiency in vivo is a key issue. In the present study, we synthesized the CAGW peptide- and poly(ethylene glycol) (PEG)-modified amphiphilic copolymers. CAGW peptide serves as a targeting ligand for endothelial cells (ECs). Different amounts of CAGW peptide were effectively conjugated to the amphiphilic copolymer via heterofunctional poly(ethylene glycol). These CAG- and PEG-modified copolymers could form nanoparticles (NPs) by self-assembly method and were used as gene carriers for the pEGFP-ZNF580 (pZNF580) plasmid. CAGW and PEG modification coordinately improved the hemocompatibility and cytocompatibility of NPs. The results of cellular uptake showed significantly enhanced internalization efficiency of pZNF580 after CAGW modification. Gene expression at mRNA and protein levels demonstrated that EC-targeted NPs possessed high gene delivery efficiency, especially the NPs with higher content of CAGW peptide (1.16 wt %). Furthermore, in vitro and in vivo vascularization assays also showed outstanding vascularization ability of human umbilical vein endothelial cells treated by the NP/pZNF580 complexes. This study demonstrates that the CAGW peptide-modified NP is a promising candidate for gene therapy in angiogenesis.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Mary Akpanyung
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Abdelilah Nejjari
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Agnaldo Luis Neve
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
- Tianjin University-Helmholtz-Zentrum Geesthacht , Joint Laboratory for Biomaterials and Regenerative Medicine, Yaguan Road 135, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Weijin Road 92, Tianjin 300072, China
| | - Changcan Shi
- Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou, Zhejiang 325011, China
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS , Wenzhou, Zhejiang 325011, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force , Tianjin 300162, China
| |
Collapse
|
49
|
Kunz-Schughart LA, Dubrovska A, Peitzsch C, Ewe A, Aigner A, Schellenburg S, Muders MH, Hampel S, Cirillo G, Iemma F, Tietze R, Alexiou C, Stephan H, Zarschler K, Vittorio O, Kavallaris M, Parak WJ, Mädler L, Pokhrel S. Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials 2016; 120:155-184. [PMID: 28063356 DOI: 10.1016/j.biomaterials.2016.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022]
Abstract
Cancer is one of the leading non-communicable diseases with highest mortality rates worldwide. About half of all cancer patients receive radiation treatment in the course of their disease. However, treatment outcome and curative potential of radiotherapy is often impeded by genetically and/or environmentally driven mechanisms of tumor radioresistance and normal tissue radiotoxicity. While nanomedicine-based tools for imaging, dosimetry and treatment are potential keys to the improvement of therapeutic efficacy and reducing side effects, radiotherapy is an established technique to eradicate the tumor cells. In order to progress the introduction of nanoparticles in radiooncology, due to the highly interdisciplinary nature, expertise in chemistry, radiobiology and translational research is needed. In this report recent insights and promising policies to design nanotechnology-based therapeutics for tumor radiosensitization will be discussed. An attempt is made to cover the entire field from preclinical development to clinical studies. Hence, this report illustrates (1) the radio- and tumor-biological rationales for combining nanostructures with radiotherapy, (2) tumor-site targeting strategies and mechanisms of cellular uptake, (3) biological response hypotheses for new nanomaterials of interest, and (4) challenges to translate the research findings into clinical trials.
Collapse
Affiliation(s)
- Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital, Carl Gustav Carus, TU Dresden, Germany
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rainer Tietze
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- ENT-Department, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01314 Dresden, Germany
| | - Orazio Vittorio
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, Sydney, UNSW, Australia
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany; CIC Biomagune, 20009 San Sebastian, Spain
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
50
|
Pandey AP, Sawant KK. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:904-918. [DOI: 10.1016/j.msec.2016.07.066] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 12/21/2022]
|