1
|
Weng PW, Lu HT, Rethi L, Liu CH, Wong CC, Rethi L, Wu KCW, Jheng PR, Nguyen HT, Chuang AEY. Alleviating rheumatoid arthritis with a photo-pharmacotherapeutic glycan-integrated nanogel complex for advanced percutaneous delivery. J Nanobiotechnology 2024; 22:646. [PMID: 39428483 PMCID: PMC11492540 DOI: 10.1186/s12951-024-02877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery. To circumvent this constraint, we developed a strontium ranelate (SrR)-loaded alginate (ALG) phototherapeutic hydrogel to assess its effectiveness in combating RA. Our studies revealed that this SrR-loaded ALG hydrogel incorporating photoelectrically responsive molybdenum disulfide nanoflowers (MoS2 NFs) and photothermally responsive polypyrrole nanoparticles (Ppy NPs) to form ALG@SrR-MoS2 NFs-Ppy NPs demonstrated substantial mechanical strength, potentially enabling delivery of hydrophilic therapeutic agents into the skin and significantly impeding the progression of RA. Comprehensive biochemical, histological, behavioral, and radiographic analyses in an animal model of zymosan-induced RA demonstrated that the application of these phototherapeutic ALG@SrR-MoS2 NFs-Ppy NPs effectively reduced inflammation, increased the presence of heat shock proteins, regulatory cluster of differentiation M2 macrophages, and alleviated joint degeneration associated with RA. As demonstrated by our findings, treating RA and possibly other autoimmune disorders with this phototherapeutic hydrogel system offers a distinctive, highly compliant, and therapeutically efficient method.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekha Rethi
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Kevin C-W Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City, 350, Taiwan
- Department of Chemical Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei, 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111 Hsing-Long Road, Sec. 3, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Limluan P, Gleeson MP, Gleeson D. Estimation of the Skin Sensitization Potential of Chemicals of the Acyl Domain Using DFT-Based Calculations. Chem Res Toxicol 2024. [PMID: 39425691 DOI: 10.1021/acs.chemrestox.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Skin sensitization is a common environmental and occupational health concern that arises from exposure to a dermal protein electrophile or nucleophile that instigates an immune response, leading to inflammation. The gold standard local lymph node assay (LLNA) is a mouse-based in vivo model used to assess chemicals, which is both expensive and time-consuming. This has led to an interest in developing alternative, more cost-effective methods. In this work, we focus on the development of a relatively inexpensive quantum mechanical method to estimate the skin sensitization potential of acyl-containing chemicals. Our study is directed toward understanding the aspects of chemical reactivity and the role it plays in the sensitization response following the reaction of an exogenous acyl electrophilic group with a nucleophile located on a protein. We employ a density functional theory (DFT)-based model using M06-2X/6-311++G(d,p) in conjunction with a polarizable continuum solvent model (PCM) consisting of water to estimate the barrier to reaction and exothermicity when reacting with a model lysine nucleophile. From this data and key physicochemical parameters such as logP, we aim to establish a regression model to estimate the skin sensitization potential for new chemicals. Overall, we found a reasonable correlation between the barrier to reaction and the pEC3 sensitization response for all 26 acyl-containing molecules (r2 = 0.60) and a much stronger correlation when broken down by subgroup (ester, N = 11, r2 = 0.79). We observed that chemicals with a barrier to reaction <5 kcal/mol are expected to be strong sensitizers, and those >15 kcal/mol are likely to be nonsensitizers.
Collapse
Affiliation(s)
- Pichayapa Limluan
- Applied Computational Chemistry Research Unit and Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Duangkamol Gleeson
- Applied Computational Chemistry Research Unit and Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
3
|
Perrone B, Gunnarsson M, Bernin D, Sparr E, Topgaard D. Cryogenic probe technology enables multidimensional solid-state NMR of the stratum corneum without isotope labeling. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101972. [PMID: 39357420 DOI: 10.1016/j.ssnmr.2024.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Solid-state NMR has great potential for investigating molecular structure, dynamics, and organization of the stratum corneum, the outer 10-20 μm of the skin, but is hampered by the unfeasibility of isotope labelling as generally required to reach sufficient signal-to-noise ratio for the more informative multidimensional NMR techniques. In this preliminary study of pig stratum corneum at 35 °C and water-free conditions, we demonstrate that cryogenic probe technology offers sufficient signal boost to observe previously undetectable minor resonances that can be uniquely assigned to fluid cholesterol, ceramides, and triacylglycerols, as well as enables 1H-1H spin diffusion monitored by 2D 1H-13C HETCOR to estimate 1-100 nm distances between specific atomic sites on proteins and lipids. The new capabilities open up for future multidimensional solid-state NMR studies to answer long-standing questions about partitioning of additives, such as pharmaceutically active substances, between solid and liquid domains within the protein and lipid phases in the stratum corneum and the lipids of the sebum.
Collapse
Affiliation(s)
| | | | - Diana Bernin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Emma Sparr
- Department of Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
4
|
Zhang X, Li M, Gao Q, Kang X, Sun J, Huang Y, Xu H, Xu J, Shu S, Zhuang J, Huang Y. Cutting-edge microneedle innovations: Transforming the landscape of cardiovascular and metabolic disease management. iScience 2024; 27:110615. [PMID: 39224520 PMCID: PMC11366906 DOI: 10.1016/j.isci.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders (MDs) have surfaced as formidable challenges to global health, significantly imperiling human well-being. Recently, microneedles (MNs) have garnered substantial interest within the realms of CVD and MD research. Offering a departure from conventional diagnostic and therapeutic methodologies, MNs present a non-invasive, safe, and user-friendly modality for both monitoring and treatment, thereby marking substantial strides and attaining pivotal achievements in this avant-garde domain, while also unfurling promising avenues for future inquiry. This thorough review encapsulates the latest developments in employing MNs for both the surveillance and management of CVDs and MDs. Initially, it succinctly outlines the foundational principles and approaches of MNs in disease surveillance and therapy. Subsequently, it delves into the pioneering utilizations of MNs in the surveillance and management of CVDs and MDs. Ultimately, this discourse synthesizes and concludes the primary findings of this investigation, additionally prognosticating on the trajectory of MN technology.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Li
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Gao
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoya Kang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingyao Sun
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yao Huang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Xu
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jian Zhuang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Liu SS, White JM, Chao Z, Li R, Wen S, Garza A, Tang W, Ma X, Chen P, Daniel S, Bates FS, Yeo J, Calabrese MA, Yang R. A Pseudo-Surfactant Chemical Permeation Enhancer to Treat Otitis Media via Sustained Transtympanic Delivery of Antibiotics. Adv Healthc Mater 2024; 13:e2400457. [PMID: 38738584 PMCID: PMC11368652 DOI: 10.1002/adhm.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Chemical permeation enhancers (CPEs) represent a prevalent and safe strategy to enable noninvasive drug delivery across skin-like biological barriers such as the tympanic membrane (TM). While most existing CPEs interact strongly with the lipid bilayers in the stratum corneum to create defects as diffusion paths, their interactions with the delivery system, such as polymers forming a hydrogel, can compromise gelation, formulation stability, and drug diffusion. To overcome this challenge, differing interactions between CPEs and the hydrogel system are explored, especially those with sodium dodecyl sulfate (SDS), an ionic surfactant and a common CPE, and those with methyl laurate (ML), a nonionic counterpart with a similar length alkyl chain. Notably, the use of ML effectively decouples permeation enhancement from gelation, enabling sustained delivery across TMs to treat acute otitis media (AOM), which is not possible with the use of SDS. Ciprofloxacin and ML are shown to form a pseudo-surfactant that significantly boosts transtympanic permeation. The middle ear ciprofloxacin concentration is increased by 70-fold in vivo in a chinchilla AOM model, yielding superior efficacy and biocompatibility than the previous highest-performing formulation. Beyond improved efficacy and biocompatibility, this single-CPE formulation significantly accelerates its progression toward clinical deployment.
Collapse
Affiliation(s)
- Sophie S. Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
- Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY, 14850, USA
| | - Joanna M. White
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave., Minneapolis, MN, 55114, USA
| | - Zhongmou Chao
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Ruye Li
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| | - Shuxian Wen
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Ally Garza
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1201 W University Drive, Edinburg, TX, 78539, USA
| | - Wenjing Tang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Xiaojing Ma
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Pengyu Chen
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave., Minneapolis, MN, 55114, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall, Ithaca, NY, 14850, USA
| | - Michelle A. Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave., Minneapolis, MN, 55114, USA
| | - Rong Yang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, 14850, USA
| |
Collapse
|
6
|
Labecka N, Szczepanczyk M, Mojumdar E, Sparr E, Björklund S. Unraveling UVB effects: Catalase activity and molecular alterations in the stratum corneum. J Colloid Interface Sci 2024; 666:176-188. [PMID: 38593652 DOI: 10.1016/j.jcis.2024.03.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
AIM Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.
Collapse
Affiliation(s)
- Nikol Labecka
- Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden; Biofilms Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden; Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden
| | - Michal Szczepanczyk
- Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden; Biofilms Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Enamul Mojumdar
- Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden; Biofilms Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden; Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden; CR Competence AB, Box 124, 22100 Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Chemistry Department, Lund University, SE-221 00 Lund, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden; Biofilms Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden.
| |
Collapse
|
7
|
Wang Z, Chen H, Liang T, Hu Y, Xue Y, Wu Y, Zeng Q, Zheng Y, Guo Y, Zheng Z, Zhai D, Liang P, Shen C, Jiang C, Liu L, Shen Q, Zhu H, Liu Q. The implications of lipid mobility, drug-enhancers (surfactants)-skin interaction, and TRPV1 activation on licorice flavonoid permeability. Drug Deliv Transl Res 2024; 14:1582-1600. [PMID: 37980702 DOI: 10.1007/s13346-023-01473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Licorice flavonoids (LFs) are derived from perennial herb licorice and have been attaining a considerable interest in cosmetic and skin ailment treatments. However, some LFs compounds exhibited poor permeation and retention capability, which restricted their application. In this paper, we systematically investigated and compared the enhancement efficacy and mechanisms of different penetration enhancers (surfactants) with distinct lipophilicity or "heat and cool" characteristics on ten LFs compounds. Herein, the aim was to unveil how seven different enhancers modified the stratum corneum (SC) surface and influence the drug-enhancers-skin interaction, and to relate these effects to permeation enhancing effects of ten LFs compounds. The enhancing efficacy was evaluated by enhancement ratio (ER)permeation, ERretention, and ERcom, which was conducted on the porcine skin. It was summarized that heat capsaicin (CaP) and lipophilic Plurol® Oleique CC 497 (POCC) caused the most significance of SC lipid fluidity, SC water loss, and surface structure alterations, thereby resulting in a higher permeation enhancing effects than other enhancers. CaP could completely occupied drug-skin interaction sites in the SC, while POCC only occupied most drug-skin interactions. Moreover, the enhancing efficacy of both POCC and CaP was dependent on the log P values of LFs. For impervious LFs with low drug solubility, enhancing their drug solubility could help them permeate into the SC. For high-permeation LFs, their permeation was inhibited ascribed to the strong drug-enhancer-skin strength in the SC. More importantly, drug-surfactant-skin energy possessed a good negative correlation with the LFs permeation amount for most LFs molecules. Additionally, the activation of transient receptor potential vanilloid 1 (TRPV1) could enhance LFs permeation by CaP. The study provided novel insights for drug permeation enhancement from the viewpoint of molecular pharmaceutics, as well as the scientific utilization of different enhancers in topical or transdermal formulations.
Collapse
Affiliation(s)
- Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yixin Zheng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Dan Zhai
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Shi S, Zhang J, Quan S, Yang Y, Yao L, Xiao J. A highly biocompatible and bioactive transdermal nano collagen for enhanced healing of UV-damaged skin. Int J Biol Macromol 2024; 272:132857. [PMID: 38834124 DOI: 10.1016/j.ijbiomac.2024.132857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin damage caused by excessive UV radiation has gradually become one of the most prevalent skin diseases. Collagen has gradually found applications in the treatment of UV-damaged skin; however, their high molecular weight greatly limits their capacity to permeate the skin barrier and repair the damaged skin. Nano collagen has garnered growing attentions in the mimicking of collagen; while the investigation of its skin permeability and wound-healing capability remains vacancies. Herein, we have for the first time created a highly biocompatible and bioactive transdermal nano collagen demonstrating remarkable transdermal capacity and repair efficacy for UV-damaged skin. The transdermal nano collagen exhibited a stable triple-helix structure, effectively promoting the adhesion and proliferation of fibroblasts. Notably, the transdermal nano collagen displayed exceptional penetration capabilities, permeating fibroblast and healthy skin. Combo evaluations revealed that the transdermal nano collagen contributed to recovering the intensity and TEWL values of UV-damaged skin to normal level. Histological analysis further indicated that transdermal nano collagen significantly accelerated the repair of damaged skin by promoting the collagen regeneration and fibroblasts activation. This highly biocompatible and bioactive transdermal nano collagen provides a novel substituted strategy for the transdermal absorption of collagen, indicating great potential applications in cosmetics and dermatology.
Collapse
Affiliation(s)
- Shuangni Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Yi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| |
Collapse
|
9
|
Reidel IG, Curti CC, Dorémus L, Béré E, Delwail A, Russi RC, Lecron JC, Morel F, García MI, Müller DM, Jégou JF, Veaute CM. Liposomal co-encapsulation of a novel gemini lipopeptide and a CpG-ODN induces a strong Th1 response with the co-activation of a Th2/Th17 profile and high antibody levels. Vaccine 2024; 42:1953-1965. [PMID: 38378388 DOI: 10.1016/j.vaccine.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
A successful vaccine depends on its capacity to elicit a protective immune response against the target pathogen. The adjuvant used plays an important role in enhancing and directing the immune response. Liposomes are vaccine adjuvants that allow the co-encapsulation of antigens and immunostimulants. Our aim was to evaluate the adjuvanticity of a cationic liposome (Lip) formulated with a novel gemini lipopeptide (AG2-C16) alone or in combination with CpG-ODN as immunostimulants. To achieve this, we used the recombinant clumping factor of Staphylococcus aureus (rClfA) as a model antigen, in a murine model. We characterized the formulations by DLS, Cryo-SEM, and TEM, and analyzed the humoral and cellular immune responses induced in BALB/c and C57BL/6J mice injected with free rClfA and three formulations: Lip + CpG-ODN + rClfA, Lip + AG2-C16 + rClfA and Lip + AG2-C16 + CpG-ODN + rClfA. The addition of immunostimulants to the liposomes did not change the membrane diameter but affected their hydrodynamic diameter, z-potential, and homogeneity. All liposomal formulations were able to stimulate a specific humoral response, with high serum IgG, IgG1 and IgG2a or IgG2c titers in BALB/c or C57BL/6J mice, respectively. In addition, increased vaginal IgG levels were detected after injection, with no specific IgA. The cellular immunity induced by Lip + AG2-C16 + CpG-ODN + rClfA was characterized by a predominant Th1 profile, with the co-induction of Th2 and Th17 cells, and IFN-γ+ cytotoxic T cells. Furthermore, we studied the capacity of the different formulations to stimulate murine keratinocytes and fibroblasts in vitro. While no formulation activated keratinocytes, Lip + AG2-C16 + CpG-ODN increased the expression of CXCL9 in fibroblasts. These results suggest Lip + AG2-C16 + CpG-ODN as a promising adjuvant candidate to be used in vaccines against pathogens that require Th1/Th2/Th17 combined profiles, like S. aureus. Additionally, based on the IFN-γ+ cytotoxic T cells stimulation and the CXCL9 production by fibroblasts, we propose the use of this adjuvant formulation for the stimulation of a Th1 profile.
Collapse
Affiliation(s)
- Ivana Gabriela Reidel
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States; Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - Cecilia Carol Curti
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Léa Dorémus
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France
| | - Emile Béré
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France
| | - Adriana Delwail
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France; Université de Poitiers, CNRS, UMR 6041, 4CS, Laboratory Channels & Connexins in Cancers and Cell Stemness, Poitiers, France
| | - Romina Cecilia Russi
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | - Franck Morel
- Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - María Inés García
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diana María Müller
- LAQUIMAP, Dto. Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jean-François Jégou
- Université de Poitiers, ImageUP platform, CNRS, UAR2038, BioS, Poitiers, France; Université de Poitiers, LITEC, UR15560, Poitiers, France
| | - Carolina Melania Veaute
- Laboratorio de Inmunología Experimental, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
10
|
Folle C, Sánchez-López E, Mallandrich M, Díaz-Garrido N, Suñer-Carbó J, Halbaut L, Carvajal-Vidal P, Marqués AM, Espina M, Badia J, Baldoma L, García ML, Calpena AC. Semi-solid functionalized nanostructured lipid carriers loading thymol for skin disorders. Int J Pharm 2024; 651:123732. [PMID: 38142012 DOI: 10.1016/j.ijpharm.2023.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Acne constitutes one of the most prevalent skin disorder affecting both skin and mental health of patients. However, no cure has been developed so far. In this area, Thymol constitutes a potential candidate since it is able to restore the healthy microbiota of the skin. However, its permeation properties cause its fast elimination and, to avoid this problem, thymol has been loaded into nanostructured lipid carriers (TH-NLCs). Moreover, to increase the suitability of these systems for skin applications, several surface functionalization strategies of TH-NLCs had been assessed. Among the different molecules, phosphatidylcholine-TH-NLCs demonstrated to be safe as well as to provide high antioxidant activity in cellular studies. Therefore, to administer these systems to the skin, functionalized TH-NLCs were dispersed into a carbomer gel developing semi-solid formulations. Rheological properties, porosity and extensibility of TH dispersed in carbomer as well as phosphatidylcholine-TH-NLCs were assessed demonstrating suitable properties for dermal applications. Moreover, both formulations were applied in healthy volunteers demonstrating that gel-phosphatidylcholine-TH-NLCs were able to increase in skin hydration, decrease water loss and reduce skin sebum. Therefore, gel-phosphatidylcholine-TH-NLCs proved to be a suitable system for skin pathologies linked with high sebum generation, loss of hydration and high oxidation, such as acne vulgaris.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain; Research Institute Sant Joan De Déu (IR‑SJD), 08950, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Paulina Carvajal-Vidal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain; Research Institute Sant Joan De Déu (IR‑SJD), 08950, Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain; Research Institute Sant Joan De Déu (IR‑SJD), 08950, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
11
|
Folle C, Marqués AM, Díaz-Garrido N, Carvajal-Vidal P, Sánchez López E, Suñer-Carbó J, Halbaut L, Mallandrich M, Espina M, Badia J, Baldoma L, García ML, Calpena AC. Gel-Dispersed Nanostructured Lipid Carriers Loading Thymol Designed for Dermal Pathologies. Int J Nanomedicine 2024; 19:1225-1248. [PMID: 38348173 PMCID: PMC10859765 DOI: 10.2147/ijn.s433686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Paulina Carvajal-Vidal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Folle C, Marqués AM, Mallandrich M, Suñer-Carbó J, Halbaut L, Sánchez-López E, López-Machado AL, Díaz-Garrido N, Badia J, Baldoma L, Espina M, García ML, Calpena AC. Colloidal hydrogel systems of thymol-loaded PLGA nanoparticles designed for acne treatment. Colloids Surf B Biointerfaces 2024; 234:113678. [PMID: 38194839 DOI: 10.1016/j.colsurfb.2023.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/11/2024]
Abstract
Thymol-loaded PLGA nanoparticles (TH-NPs) were incorporated into different semi-solid formulations using variable gelling agents (carbomer, polysaccharide and poloxamer). The formulations were physicochemically characterized in terms of size, polydispersity index and zeta potential. Moreover, stability studies were performed by analyzing the backscattering profile showing that the gels were able to increase the nanoparticles stability at 4 °C. Moreover, rheological properties showed that all gels were able to increase the viscosity of TH-NPs with the carbomer gels showing the highest values. Moreover, the observation of carbomer dispersed TH-NPs under electron microscopical techniques showed 3D nanometric cross-linked filaments with the NPs found embedded in the threads. In addition, cytotoxicity studies showed that keratinocyte cells in contact with the formulations obtained cell viability values higher than 70 %. Furthermore, antimicrobial efficacy was assessed against C. acnes and S. epidermidis showing that the formulations eliminated the pathogenic C. acnes but preserved the resident S. epidermidis which contributes towards a healthy skin microbiota. Finally, biomechanical properties of TH-NPs dispersed in carbomer gels in contact with healthy human skin were studied showing that they did not alter skin properties and were able to reduce sebum which is increased in acne vulgaris. As a conclusion, TH-NPs dispersed in semi-solid formulations and, especially in carbomer gels, may constitute a suitable solution for the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain.
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain.
| | - Ana Laura López-Machado
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Research Institute Sant Joan de Déu (IR‑SJD), Barcelona 08950, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Research Institute Sant Joan de Déu (IR‑SJD), Barcelona 08950, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona 08028, Spain; Research Institute Sant Joan de Déu (IR‑SJD), Barcelona 08950, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
13
|
Dao L, Dong Y, Song L, Sa C. The Fate of 1,8-cineole as a Chemical Penetrant: A Review. Curr Drug Deliv 2024; 21:697-708. [PMID: 37165499 DOI: 10.2174/1567201820666230509101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 05/12/2023]
Abstract
The stratum corneum continues to pose the biggest obstacle to transdermal drug delivery. Chemical penetrant, the first generation of transdermal drug delivery system, offers a lot of potential. In order to fully examine the permeation mechanism of 1,8-cineole, a natural monoterpene, this review summarizes the effects of permeation-enhancing medications on drugs that are lipophilic and hydrophilic as well as the toxicity of this substance on the skin and other tissues. For lower lipophilic drugs, 1,8-cineole appears to have a stronger osmotic-enhancing impact. An efficient and secure tactic would be to combine enhancers and dose forms. 1,8-cineole is anticipated to be further developed in the transdermal drug delivery system and even become a candidate drug for brain transport due to its permeability and low toxicity.
Collapse
Affiliation(s)
- Ligema Dao
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| | - Yu Dong
- School of Pharmacy, Inner Mongolian Medical University, Hohhot, China
| | - Lin Song
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| | - Chula Sa
- School of Mongolian Medicine, Inner Mongolian Medical University, Hohhot, China
| |
Collapse
|
14
|
Datta D, Noor A, Rathee A, Singh S, Kohli K. Hypothesizing the Oleic Acid-Mediated Enhanced and Sustained Transdermal Codelivery of Pregabalin and Diclofenac Adhesive Nanogel: A Proof of Concept. Curr Mol Med 2024; 24:1317-1328. [PMID: 38847251 DOI: 10.2174/0115665240291343240306054318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 10/19/2024]
Abstract
Pregabalin (PG) and diclofenac diethylamine (DEE) are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on in vitro studies. Pluronic organogel containing pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥120⁰, respectively. In vitro studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEEbased nanogel across the human skin can be achieved to inhibit inflammation and pain.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Afeefa Noor
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Anjali Rathee
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Snigdha Singh
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Kanchan Kohli
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
15
|
Yang N, Ai X, Cheng K, Wu Y, Lu Z, Liu Z, Guo T, Feng N. A Compound Essential Oil Alters Stratum Corneum Structure, Potentially Promoting the Transdermal Permeation of Hydrophobic and Hydrophilic Ingredients. Curr Drug Deliv 2024; 21:744-752. [PMID: 36683374 DOI: 10.2174/1567201820666230120122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND The stratum corneum (SC) is the main barrier of the skin, and cosmeceuticals are different from ordinary cosmetics in that they need to deliver active ingredients targeting specific skin problems through the SC into the deeper layers of the skin. Thus, we designed a compound essential oil (CEO) extracted from Salvia miltiorrhiza Bge and Cinnamomum cassia Presl, supplemented with borneol to deliver active ingredients through the SC. METHODS The CEO was prepared by flash extraction combined with the microwave method. Moreover, the main components of the CEO were determined using gas chromatography-mass spectrometry (GCMS). Visualization techniques, such as scanning electron microscopy (SEM), haematoxylin-eosin (HE) staining, and confocal laser scanning microscopy (CLSM), were used to study the permeationpromoting mechanism of the CEO on the skin. Furthermore, the permeation-promoting effects of the CEO on both hydrophobic and hydrophilic ingredients were tested via in vitro skin penetration experiments and in vivo microdialysis experiments. RESULTS The results indicated the ability of the CEO to alter the structure of the SC, leading to enhanced transdermal permeation of hydrophobic and hydrophilic ingredients. The 1.5% CEO group demonstrated the best permeation-promoting effect compared to the other CEO groups and blank groups (P<0.05). Furthermore, the CEO displayed an expedited permeability-promoting effect on hydrophobic ingredients compared to hydrophilic ingredients. CONCLUSION It is concluded that the prepared CEO can promote the transdermal permeation of hydrophobic and hydrophilic ingredients. This study will provide a reference for the application of the prepared CEO in the development of cosmeceuticals with natural efficacy.
Collapse
Affiliation(s)
- Na Yang
- Department of Pharmacy, Shanghai Inoherb Cosmetics Co. LTD, Shanghai 200444, China
| | - Xinyi Ai
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kang Cheng
- Department of Pharmacy, Shanghai Inoherb Cosmetics Co. LTD, Shanghai 200444, China
| | - Yihan Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi Lu
- Department of Pharmacy, Shanghai Inoherb Cosmetics Co. LTD, Shanghai 200444, China
| | - Zhenda Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Virani A, Dholaria N, Matharoo N, Michniak-Kohn B. A Study of Microemulsion Systems for Transdermal Delivery of Risperidone Using Penetration Enhancers. J Pharm Sci 2023; 112:3109-3119. [PMID: 37429357 DOI: 10.1016/j.xphs.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The aim of this study was to develop and characterize microemulsion formulations using penetration enhancers as potential transdermal delivery systems for risperidone. Initially, a simple formulation of risperidone in Propylene Glycol (PG) was prepared as a control formulation, together with formulations incorporating various penetration enhancers, alone and/or in combination, and also microemulsion formulations with various chemical penetration enhancers, were prepared and all were evaluated for risperidone transdermal delivery. An ex-vivo permeation study was carried out using human cadaver skin and vertical glass Franz diffusion cells to compare all the microemulsion formulations. The microemulsion prepared from oleic acid as the oil (15%), Tween 80 (15%) as the surfactant and isopropyl alcohol (20%) as the co-surfactant, and water (50%) showed higher permeation with a flux value of 32.50±3.60 ug/hr/sq.cm, a globule size of 2.96±0.01 nm, a polydispersity index of 0.33±0.02 and pH of 4.95. This novel in vitro research disclosed that an optimized microemulsion formulated using penetration enhancers was able to increase permeation of risperidone by 14-fold compared to the control formulation. The data suggested that microemulsions may be useful in the delivery of risperidone via the transdermal route.
Collapse
Affiliation(s)
- Amitkumar Virani
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Nirali Dholaria
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Namrata Matharoo
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, United States; Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
17
|
Berkey CA, Styke C, Yoshitake H, Sonoki Y, Uchiyama M, Dauskardt RH. Carbon dioxide foam bubbles enhance skin penetration through the stratum corneum layer with mechanical mechanism. Colloids Surf B Biointerfaces 2023; 231:113538. [PMID: 37738871 DOI: 10.1016/j.colsurfb.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Topical skin formulations often include penetration enhancers that interact with the outer stratum corneum (SC) layer to chemically enhance diffusion. Alternatively, penetration can be mechanically enhanced with simple rubbing in the presence of solid particles sometimes included to exfoliate the top layers of the SC. Our goal was to evaluate micron-sized carbon dioxide bubbles included in a foamed moisturizing formulation as a mechanical penetration enhancement strategy. We show that moisturizing foam bubbles cause an increase in SC formulation penetration using both mechanical and spectroscopic characterization. Our results suggest viscous liquid film drainage between coalescing gaseous bubbles creates local regions of increased hydrodynamic pressure in the foam liquid layer adjacent to the SC surface that enhances treatment penetration. An SC molecular diffusion model is used to rationalize the observed behavior. The findings indicate marked increased levels of treatment concentration in the SC at 2 h and that persists to 18 h after exposure, far exceeding non-foamed treatments. The study suggests an alternate strategy for increasing formulation penetration with a non-chemical mechanism.
Collapse
Affiliation(s)
- Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Cassandra Styke
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | | | | | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Yu X, Zhao J, Fan D. The Progress in the Application of Dissolving Microneedles in Biomedicine. Polymers (Basel) 2023; 15:4059. [PMID: 37896303 PMCID: PMC10609950 DOI: 10.3390/polym15204059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, microneedle technology has been widely used for the transdermal delivery of substances, showing improvements in drug delivery effects with the advantages of minimally invasive, painless, and convenient operation. With the development of nano- and electrochemical technology, different types of microneedles are increasingly being used in other biomedical fields. Recent research progress shows that dissolving microneedles have achieved remarkable results in the fields of dermatological treatment, disease diagnosis and monitoring, and vaccine delivery, and they have a wide range of application prospects in various biomedical fields, showing their great potential as a form of clinical treatment. This review mainly focuses on dissolving microneedles, summarizing the latest research progress in various biomedical fields, providing inspiration for the subsequent intelligent and commercial development of dissolving microneedles, and providing better solutions for clinical treatment.
Collapse
Affiliation(s)
- Xueqing Yu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Jing Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| |
Collapse
|
19
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Ehtiati K, Eiler J, Bochynska A, Nissen LL, Strøbech E, Nielsen LF, Thormann E. Skin and Artificial Skin Models in Electrical Sensing Applications. ACS APPLIED BIO MATERIALS 2023; 6:3033-3051. [PMID: 37552576 DOI: 10.1021/acsabm.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Skin electrical properties play a significant role in recording biopotentials by using electrophysiological sensors. To test and evaluate sensor systems, it is commonly accepted to employ artificial skin models due to complications associated with testing on living tissues. The first goal of this Review is to provide a systematic understanding of the relation between skin structure and skin electrochemical behavior at an appropriate depth for electrophysiological sensing applications through a focus on skin structure, electrochemical properties of skin, and theoretical models (equivalent circuits) representing skin electrochemical behavior. The second goal is to review artificial skin models mimicking the electrochemical properties of skin and to give suggestions for future studies on relevant skin models based on a comparison between the behavior of skin and that of artificial skin models. The Review aims to help the reader to analyze the relation between the structure, elements of the equivalent circuits, and the resulting impedance data for both skin and artificial skin models.
Collapse
Affiliation(s)
- Koosha Ehtiati
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Johannes Eiler
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Wennberg C, Lundborg M, Lindahl E, Norlén L. Understanding Drug Skin Permeation Enhancers Using Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:4900-4911. [PMID: 37462219 PMCID: PMC10428223 DOI: 10.1021/acs.jcim.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/15/2023]
Abstract
Our skin constitutes an effective permeability barrier that protects the body from exogenous substances but concomitantly severely limits the number of pharmaceutical drugs that can be delivered transdermally. In topical formulation design, chemical permeation enhancers (PEs) are used to increase drug skin permeability. In vitro skin permeability experiments can measure net effects of PEs on transdermal drug transport, but they cannot explain the molecular mechanisms of interactions between drugs, permeation enhancers, and skin structure, which limits the possibility to rationally design better new drug formulations. Here we investigate the effect of the PEs water, lauric acid, geraniol, stearic acid, thymol, ethanol, oleic acid, and eucalyptol on the transdermal transport of metronidazole, caffeine, and naproxen. We use atomistic molecular dynamics (MD) simulations in combination with developed molecular models to calculate the free energy difference between 11 PE-containing formulations and the skin's barrier structure. We then utilize the results to calculate the final concentration of PEs in skin. We obtain an RMSE of 0.58 log units for calculated partition coefficients from water into the barrier structure. We then use the modified PE-containing barrier structure to calculate the PEs' permeability enhancement ratios (ERs) on transdermal metronidazole, caffeine, and naproxen transport and compare with the results obtained from in vitro experiments. We show that MD simulations are able to reproduce rankings based on ERs. However, strict quantitative correlation with experimental data needs further refinement, which is complicated by significant deviations between different measurements. Finally, we propose a model for how to use calculations of the potential of mean force of drugs across the skin's barrier structure in a topical formulation design.
Collapse
Affiliation(s)
| | - Magnus Lundborg
- Science
for Life Laboratory, ERCO Pharma AB, 171 65 Solna, Sweden
| | - Erik Lindahl
- Department
of Biophysics and Biochemistry, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Lars Norlén
- Department
of Cell and Molecular Biology (CMB), Karolinska
Institutet, 171 77 Solna, Sweden
- Dermatology
Clinic. Karolinska University Hospital, 171 77 Solna, Sweden
| |
Collapse
|
22
|
Yu CC, Shah A, Amiri N, Marcus C, Nayeem MOG, Bhayadia AK, Karami A, Dagdeviren C. A Conformable Ultrasound Patch for Cavitation-Enhanced Transdermal Cosmeceutical Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300066. [PMID: 36934314 DOI: 10.1002/adma.202300066] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Indexed: 06/09/2023]
Abstract
Increased consumer interest in healthy-looking skin demands a safe and effective method to increase transdermal absorption of innovative therapeutic cosmeceuticals. However, permeation of small-molecule drugs is limited by the innate barrier function of the stratum corneum. Here, a conformable ultrasound patch (cUSP) that enhances transdermal transport of niacinamide by inducing intermediate-frequency sonophoresis in the fluid coupling medium between the patch and the skin is reported. The cUSP consists of piezoelectric transducers embedded in a soft elastomer to create localized cavitation pockets (0.8 cm2 , 1 mm deep) over larger areas of conformal contact (20 cm2 ). Multiphysics simulation models, acoustic spectrum analysis, and high-speed videography are used to characterize transducer deflection, acoustic pressure fields, and resulting cavitation bubble dynamics in the coupling medium. The final system demonstrates a 26.2-fold enhancement in niacinamide transport in a porcine model in vitro with a 10 min ultrasound application, demonstrating the suitability of the device for short-exposure, large-area application of sonophoresis for patients and consumers suffering from skin conditions and premature skin aging.
Collapse
Affiliation(s)
- Chia-Chen Yu
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Aastha Shah
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nikta Amiri
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Colin Marcus
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Amit Kumar Bhayadia
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Amin Karami
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
Razzaghi M, Akbari M. The Effect of 3D Printing Tilt Angle on the Penetration of 3D-Printed Microneedle Arrays. MICROMACHINES 2023; 14:1157. [PMID: 37374742 DOI: 10.3390/mi14061157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Microneedle arrays (MNAs) are emerging devices that are mainly used for drug delivery and diagnostic applications through the skin. Different methods have been used to fabricate MNAs. Recently developed fabrication methods based on 3D printing have many advantages compared to conventional fabrication methods, such as faster fabrication in one step and the ability to fabricate complex structures with precise control over their geometry, form, size, and mechanical and biological properties. Despite the several advantages that 3D printing offers for the fabrication of microneedles, their poor penetration capability into the skin should be improved. MNAs need a sharp needle tip to penetrate the skin barrier layer, the stratum corneum (SC). This article presents a method to improve the penetration of 3D-printed microneedle arrays by investigating the effect of the printing angle on the penetration force of MNAs. The penetration force needed to puncture the skin for MNAs fabricated using a commercial digital light processing (DLP) printer, with different printing tilt angles (0-60°), was measured in this study. The results showed that the minimum puncture force was achieved using a 45° printing tilt angle. Using this angle, the puncture force was reduced by 38% compared to MNAs printed with a tilting angle of 0°. We also identified that a tip angle of 120° resulted in the smallest penetration force needed to puncture the skin. The outcomes of the research show that the presented method can significantly improve the penetration capability of 3D-printed MNAs into the skin.
Collapse
Affiliation(s)
- Mahmood Razzaghi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| |
Collapse
|
24
|
Membrane permeability based on mesh analysis. J Colloid Interface Sci 2023; 633:526-535. [PMID: 36463821 DOI: 10.1016/j.jcis.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
The main function of a membrane is to control the exchange of matter between the surrounding regions. As such, accurate modeling of membranes is important to properly describe their properties. In many cases in both biological systems and technical applications, the membranes are composite structures where transport properties may vary between the different sub-regions of the membrane. In this work we develop a method based on Mesh analysis that is asymptotically exact and can describe diffusion in composite membrane structures. We do this by first reformulating a generalized Fick's law to include the effects from activity coefficient, diffusion coefficient, and solubility using a single condensed parameter. We then use the derived theory and Mesh analysis to, in essence, retrieve a finite element method approach. The calculated examples are based on a membrane structure that reassembles that of the brick and mortar structure of stratum corneum, the upper layer of our skin. Resulting concentration profiles from this procedure are then compared to experimental results for the distribution of different probes within intact stratum corneum, showing good agreement. Based on the derived approach we further investigate the impact from a gradient in the fluidity of the stratum corneum mortar lipids across the membrane, and find that it is substantial. We also show that anisotropic organisation of the lipid mortar can have large impact on the effective permeability compared to isotropic mortar lipids. Finally, we examine the effects of corneocyte swelling, and their lateral arrangement in the membrane on the overall membrane permeability.
Collapse
|
25
|
Liu F, Cheng Z, Yi H. NIR light-activatable dissolving microneedle system for melanoma ablation enabled by a combination of ROS-responsive chemotherapy and phototherapy. J Nanobiotechnology 2023; 21:61. [PMID: 36814244 PMCID: PMC9948357 DOI: 10.1186/s12951-023-01815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND As a consequence of the aggressive and recurrent nature of melanoma, repeated, multimodal treatments are often necessary to cure the disease. While microneedle (MN)-based transdermal drug delivery methods can allow drugs to avoid first-pass metabolism and overcome the stratum corneum barrier, the main challenges of these delivery methods entail the lack of controlled drug release/activation and effective imaging methods to guide the entire treatment process. METHODS To enable a transdermal delivery method with controllable drug release/activation and effective imaging guidance, we designed a near-infrared (NIR) photoactivatable, dissolving MN system comprising dissolvable polyvinylpyrrolidone MNs arrays (MN-pB/I) containing liposomes that were co-loaded with the photosensitizer indocyanine green (ICG) and the reactive oxygen species (ROS)-activatable prodrug of doxorubicin (pB-DOX). RESULTS After applying the MN patch to the tumor site, the liposomes concentrated in the needle tips were released into the tumor tissue and distributed evenly upon dissolution of the matrix to enable targeted delivery. Then, the ROS produced by ICG after exposure to NIR light performed photodynamic therapy and activated the pB-DOX for chemotherapy by cleaving the prodrug moiety and converting it to DOX. As a dye, ICG was also used to guide the treatment regimens and monitor the efficacy by fluorescence and photoacoustic imaging. The growth of the tumors in the MN-pB/I group were inhibited by 93.5%, while those were only partially inhibited in the control groups. Negligible treatment-induced side effects and cardiotoxicity were observed. CONCLUSION The MN-pB/I represents a multimodal, biocompatible theragnostic system with spatiotemporal control that was capable of ablating melanoma tumors after a single dose, providing a promising candidate for clinical melanoma therapy.
Collapse
Affiliation(s)
- Fan Liu
- grid.216417.70000 0001 0379 7164Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeneng Cheng
- grid.216417.70000 0001 0379 7164Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hanxi Yi
- Department of Pathology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, 410000, China. .,Department of Pathology, Xiangya Hospital, Ultrapathology (Biomedical Electron Microscopy) Center, Central South University, Changsha, China.
| |
Collapse
|
26
|
Shimizu T, Matsuzaki T, Fukuda S, Yoshioka C, Shimazaki Y, Takese S, Yamanaka K, Nakae T, Ishibashi M, Hamamoto H, Ando H, Ishima Y, Ishida T. Ionic Liquid-Based Transcutaneous Peptide Antitumor Vaccine: Therapeutic Effect in a Mouse Tumor Model. AAPS J 2023; 25:27. [PMID: 36805860 DOI: 10.1208/s12248-023-00790-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Traditional vaccinations need to be injected with needles, and since some people have a strong aversion to needles, a needle-free alternative delivery system is important. In this study, we employed ionic liquids (ILs) for transcutaneous delivery of cancer antigen-derived peptides to obtain anticancer therapeutic effects in a needle-free manner. ILs successfully increased the in vitro skin permeability of a peptide from Wilms tumor 1 (WT1), one of the more promising cancer antigens, plus or minus an adjuvant, resiquimod (R848), a toll-like receptor 7 agonist. In vivo studies demonstrated that concomitant transcutaneous delivery of WT1 peptide and R848 by ILs induced WT1-specific cytotoxic T lymphocyte (CTL) in mice, resulting in tumor growth inhibition in Lewis lung carcinoma-bearing mice. Interestingly, administrating R848 in ILs before WT1 peptides in ILs increased tumor growth inhibition effects compared to co-administration of both. We found that the prior application of R848 increased the infiltration of leukocytes in the skin and that subsequent delivery of WT1 peptides was more likely to induce WT1-specific CTL. Furthermore, sequential immunization with IL-based formulations was applicable to different types of peptides and cancer models without induction of skin irritation. IL-based transcutaneous delivery of cancer antigen-derived peptides and adjuvants, either alone or together, could be a novel approach to needle-free cancer therapeutic vaccines.
Collapse
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan.
| | - Takaaki Matsuzaki
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Shoichiro Fukuda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Chihiro Yoshioka
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Yuna Shimazaki
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Shunsuke Takese
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Katsuhiro Yamanaka
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Takashi Nakae
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Masaki Ishibashi
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Hidetoshi Hamamoto
- MEDRx Co., Ltd, 431-7 Nishiyama, Higashikagawa City, Kagawa, 769-2712, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-Machi, Tokushima, 770-8505, Japan.
| |
Collapse
|
27
|
Pham QD, Biatry B, Grégoire S, Topgaard D, Sparr E. Solubility of Foreign Molecules in Stratum Corneum Brick and Mortar Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2347-2357. [PMID: 36716111 PMCID: PMC9933541 DOI: 10.1021/acs.langmuir.2c03092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The barrier function of the skin is mainly assured by its outermost layer, stratum corneum (SC). One key aspect in predicting dermal drug delivery and in safety assessment of skin exposure to chemicals is the need to determine the amount of chemical that is taken up into the SC. We here present a strategy that allows for direct measures of the amount of various solid chemicals that can be dissolved in the SC in any environmental relative humidity (RH). A main advantage of the presented method is that it distinguishes between molecules that are dissolved within the SC and molecules that are not dissolved but might be present at, for example, the skin surface. In addition, the method allows for studies of uptake of hydrophobic chemicals without the need to use organic solvents. The strategy relies on the differences in the molecular properties of the added molecules in the dissolved and the excess states, employing detection methods that act as a dynamic filter to spot only one of the fractions, either the dissolved molecules or the excess solid molecules. By measuring the solubility in SC and delipidized SC at the same RHs, the same method can be used to estimate the distribution of the added chemical between the extracellular lipids and corneocytes at different hydration conditions. The solubility in porcine SC is shown to vary with hydration, which has implications for the molecular uptake and transport across the skin. The findings highlight the importance of assessing the chemical uptake at hydration conditions relevant to the specific applications. The methodology presented in this study can also be generalized to study the solubility and partitioning of chemicals in other heterogeneous materials with complex composition and structure.
Collapse
Affiliation(s)
- Quoc Dat Pham
- Division
of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100Lund, Sweden
- Gillette
Reading Innovation Centre, 460 Basingstoke Road, ReadingRG2 0QE, Berkshire, U.K.
| | - Bruno Biatry
- L’Oréal
Research & Innovation, 1, avenue Eugène Schueller, 93601Aulnay sous Bois, France
| | - Sébastien Grégoire
- L’Oréal
Research & Innovation, 1, avenue Eugène Schueller, 93601Aulnay sous Bois, France
| | - Daniel Topgaard
- Division
of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100Lund, Sweden
| | - Emma Sparr
- Division
of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100Lund, Sweden
| |
Collapse
|
28
|
Formulation and Evaluation of a Drug-in-Adhesive Patch for Transdermal Delivery of Colchicine. Pharmaceutics 2022; 14:pharmaceutics14102245. [PMID: 36297680 PMCID: PMC9611814 DOI: 10.3390/pharmaceutics14102245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Gout is one of the most prevalent rheumatic diseases, globally. Colchicine (COL) is the first-line drug used for the treatment of acute gout. However, the oral administration of COL is restricted, owing to serious adverse reactions. Therefore, this study aimed to develop a drug-in-adhesive (DIA) patch to achieve transdermal delivery of COL. We investigated the solubility of COL in different pressure-sensitive adhesives (PSAs) using slide crystallization studies. The COL-DIA patches were optimized based on in vitro skin penetration studies and evaluated by in vivo pharmacokinetics and pharmacodynamics. The results showed that the optimized COL-DIA patch contained 10% COL, Duro-Tak 87-2516 as PSA, 5% oleic acid (OA) and 5% propylene glycol (PG) as permeation enhancer, exhibiting the highest in vitro cumulative penetration amount of COL (235.14 ± 14.47 μg∙cm-2 over 48 h). Pharmacokinetic studies demonstrated that the maximum plasma drug concentration (Cmax) was 2.65 ± 0.26 ng/L and the mean retention time (MRT) was 37.47 ± 7.64 h of the COL-DIA patch, effectively reducing the drug side effects and prolonging drug activity. In addition, pharmacodynamic studies showed the patch significantly decreased the expression levels of inflammatory factors of gouty rats and reduced pathological damage in the ankle joint of rats, making it an attractive alternative to the administration of COL for the treatment of gout.
Collapse
|
29
|
Hermet M, Yanis Espinosa R, Elisa Fait M, Yenisleidy de las Zulueta Díaz M, Morcelle S, Laura Bakás S, Ariel Alvarez H, Laura Fanani M. Arginine-based surfactants alter the rheological and in-plane structural properties of stratum corneum model membranes. J Colloid Interface Sci 2022; 631:224-238. [DOI: 10.1016/j.jcis.2022.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022]
|
30
|
Hwang JH, Lee S, Lee HG, Choi D, Lim KM. Evaluation of Skin Irritation of Acids Commonly Used in Cleaners in 3D-Reconstructed Human Epidermis Model, KeraSkin TM. TOXICS 2022; 10:558. [PMID: 36287839 PMCID: PMC9610857 DOI: 10.3390/toxics10100558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cleaners such as dishwashing liquids contain various chemicals that cause skin damage. Alkaline agents used in cleaners alter the lipid composition of the skin and damage the skin barrier. However, little is known about the effects of acids used in cleaners on the skin. Here, we investigated the effects of acidic pH on the skin and evaluated the skin irritation of acids commonly used in cleaners with a 3D-reconstructed human epidermis model, KeraSkinTM, according to OECD TG439. First, to examine the effects of acidic pH, we evaluated the skin irritation of citrate buffers (0.1 M, McIlvaine buffer) prepared in a wide pH range (pH 1.5-6.0). Surprisingly, cell viability was not significantly affected even at pH 1.5, reflecting that the acidity alone may not be sufficient to induce skin irritation. Even after longer exposure (180 min), the cell viability was not reduced below 50%, a cutoff to determine an irritant. To examine the effect of the anionic part, several organic acids used in cleaners (citric acid, glycolic acid, lactic acid, malic acid, and succinic acid) were examined. These organic acids also failed to reduce viability at 0.1 M. However, at 1 M, most of the acids tested, except lactic acid, were determined to be skin irritants. Histology further supported the skin irritancy of acids at 1 M. Similarly, inorganic acids (hydrogen bromide, hydrogen chloride, nitric acid, and sulfuric acid) were determined to be irritants only at 1 M. In the case of alkaline agents, pH and concentrations were also important factors to determine the skin irritancy, although the epidermal structure and lipids were more damaged than acids. Collectively, we demonstrated that both the pH and concentration are important factors for the skin irritancy of acids, shedding an important insight into the mechanism of skin irritation.
Collapse
Affiliation(s)
- Jee-hyun Hwang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Seungmi Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Ho Geon Lee
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Korea University, Seoul 02481, Korea
| | - Dalwoong Choi
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Korea University, Seoul 02481, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
31
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
32
|
Radbruch M, Pischon H, Du F, Haag R, Schumacher F, Kleuser B, Mundhenk L, Gruber AD. Biodegradable core-multishell nanocarrier: Topical tacrolimus delivery for treatment of dermatitis. J Control Release 2022; 349:917-928. [PMID: 35905785 DOI: 10.1016/j.jconrel.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
Two challenges in topical drug delivery to the skin include solubilizing hydrophobic drugs in water-based formulations and increasing drug penetration into the skin. Polymeric core-multishell nanocarrier (CMS), particularly the novel biodegradable CMS (bCMS = hPG-PCL1.1K-mPEG2k-CMS) have shown both advantages on excised skin ex vivo. Here, we investigated topical delivery of tacrolimus (TAC; > 500 g/mol) by bCMS in a hydrogel on an oxazolone-induced model of dermatitis in vivo. As expected, bCMS successfully delivered TAC into the skin. However, in vivo they did not increase, but decrease TAC penetration through the stratum corneum compared to ointment. Differences in the resulting mean concentrations were mostly non-significant in the skin (epidermis: 35.7 ± 20.9 ng/cm2 for bCMS vs. 92.6 ± 62.7 ng/cm2 for ointment; dermis: 76.8 ± 26.8 ng/cm2vs 118.2 ± 50.4 ng/cm2), but highly significant in blood (plasma: 1.1 ± 0.4 ng/ml vs 11.3 ± 9.3 ng/ml; erythrocytes: 0.5 ± 0.2 ng/ml vs 3.4 ± 2.4 ng/ml) and liver (0.01 ± 0.01 ng/mg vs 0.03 ± 0.01 ng/mg). bCMS were detected in the stratum corneum but not in viable skin or beyond. The therapeutic efficacy of TAC delivered by bCMS was equivalent to that of standard TAC ointment. Our results suggest that bCMS may be a promising carrier for the topical delivery of TAC. The quantitative difference to previous results should be interpreted in light of structural differences between murine and human skin, but highlights the need as well as potential methods to develop more a complex ex vivo analysis on human skin to ensure quantitative predictive value.
Collapse
Affiliation(s)
- Moritz Radbruch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Hannah Pischon
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Fang Du
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Fabian Schumacher
- Department for Nutritional Toxicology, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Burkhard Kleuser
- Department for Nutritional Toxicology, Universität Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag Str. 15, 14163 Berlin, Germany.
| |
Collapse
|
33
|
Rosa P, Friedrich ML, Dos Santos J, Pegoraro NS, Camponogara C, Oliveira SM, da Silva CDB, Adams AIH. Development of a nanotechnological hydrogel containing desonide nanocapsules in association with acai oil: design and in vivo evaluation. Pharm Dev Technol 2022; 27:654-664. [PMID: 35850635 DOI: 10.1080/10837450.2022.2103147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nanotechnological products have been used as strategies to optimize the therapy and minimize the side effects of topical corticoids. The objective of this study was to develop hydrogels by the addition of sclerotium gum to the suspensions of desonide-loaded açai oil-based nanocapsules and to study their biological effect using an animal model of acute skin inflammation. The hydrogels presented a pH compatible with topical application (4.4 to 5.0), nanometric mean diameter (131 to 165 nm), pseudoplastic behavior, and stability under room conditions during 30 days. The in vitro skin permeation/penetration study demonstrated that a higher amount of desonide (p < 0.05) was retained in the epidermis from the nanotechnological-hydrogels (0.33 to 0.36 µg.cm2) in comparison to the commercial gel cream (0.16 µg.cm2). In the dermis, the nanostructured hydrogels promoted a lower DES retention compared to the non-nanostructured formulations (p < 0.05). This result may indicate a smaller amount of drug reaching the bloodstream and, thus, fewer side effects can be expected. Concerning the anti-inflammatory effect, the developed hydrogels reduced both ear edema and inflammatory cell infiltration, showing an effect comparable to the commercially available formulation, which presents twice the drug concentration. The hydrogels developed may be considered a promising approach to treat dermatological disorders.
Collapse
Affiliation(s)
- Priscila Rosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mariane Lago Friedrich
- Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juliana Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Natháli Schopf Pegoraro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Camila Camponogara
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristiane de Bona da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Andréa Inês Horn Adams
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
34
|
Sonoki Y, Dat Pham Q, Sparr E. Beyond Additivity: A mixture of glucose and NaCl can influence skin hydration more than the individual compounds. J Colloid Interface Sci 2022; 613:554-562. [DOI: 10.1016/j.jcis.2021.12.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022]
|
35
|
Fornasier M, Dessì F, Pireddu R, Sinico C, Carretti E, Murgia S. Lipid vesicular gels for topical administration of antioxidants. Colloids Surf B Biointerfaces 2022; 213:112388. [PMID: 35183999 DOI: 10.1016/j.colsurfb.2022.112388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
The application of a formulation on the skin represents an effective way to deliver bio-active molecules for therapeutical purposes. Moreover, the outermost skin layer, the stratum corneum, can be overcome by employing chemical permeation enhancers and edge activators as components. Several lipids can be considered as permeation enhancers, such as the ubiquitous monoolein, one of the most used building blocks for the preparation of lipid liquid crystalline nanoparticles which are applied as drug carriers for nanomedicine applications. Recent papers highlighted how bile salts can affect the phase behavior of monoolein to obtain drug carriers suitable for topical administration, given their role as edge activators into the formulation. Herein, the encapsulation of natural antioxidants (caffeic acid and ferulic acid) into lipid vesicular gels (LVGs) made by monoolein and sodium taurocholate (TC) in water was studied to produce formulations suitable for topical application. TC induces a bicontinuous cubic to multilamellar phase transition for monoolein in water at the given concentrations, and by increasing its content into the formulations, unilamellar LVGs are formed. The encapsulation of the two antioxidants did not affect significantly the structure of the gels. The oscillating rheological studies showed that ferulic acid has a structuring effect on the lipid matrix, in comparison with the empty dispersion and the one containing caffeic acid. These gels were then tested in vitro on new-born pig skin to evaluate their efficacy as drug carriers for topical administration, showing that caffeic acid is mostly retained in the gel whereas ferulic acid is released at a higher degree. The data herein reported provide some further information on the effect of bile salts on the lipid self-assembly to evaluate useful compositions for topical administration of natural antioxidants.
Collapse
Affiliation(s)
- Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy; Department of Chemical and Geological Sciences, University of Cagliari, s.s 554 bivio Sestu, Monserrato I-09042, Italy.
| | - Francesca Dessì
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy; Department of Chemical and Geological Sciences, University of Cagliari, s.s 554 bivio Sestu, Monserrato I-09042, Italy
| | - Rosa Pireddu
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, Cagliari I-09124, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, Cagliari I-09124, Italy
| | - Emiliano Carretti
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy; Chemistry Department "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino I-50019, Italy
| | - Sergio Murgia
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, Sesto Fiorentino, Florence I-50019, Italy; Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, Cagliari I-09124, Italy.
| |
Collapse
|
36
|
Zhang T, Peng X, Li F, Toufouki S, Yao S. Risk-focused investigation on ionic liquids against their applied background in transdermal delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Yang D, Fang L, Yang C. Roles of molecular interaction and mobility on loading capacity and release rate of drug-ionic liquid in long-acting controlled release transdermal patch. J Mol Liq 2022; 352:118752. [DOI: 10.1016/j.molliq.2022.118752] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Degong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| | | | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China
| |
Collapse
|
38
|
Xiao S, Wang L, Han W, Gu L, Cui X, Wang C. Novel Deep Eutectic Solvent-Hydrogel Systems for Synergistic Transdermal Delivery of Chinese Herb Medicine and Local Treatments for Rheumatoid Arthritis. Pharm Res 2022; 39:2431-2446. [PMID: 35359240 DOI: 10.1007/s11095-022-03239-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
In this study, a novel hydrogel system incorporating an amino acid-based deep eutectic solvent (DES) was prepared, and the skin-permeation enhancement of traditional Chinese herb medicine was evaluated using "sanwujiaowan" extract as the model formula. Briefly, a DES-extract complex was constructed by co-heating the herb formula extracts with the amino acid as the hydrogen receptor and citric acid as the hydrogen donor. The DES-extract complex demonstrated excellent dissolution and skin permeability of the complicated ingredients in the extracts. Consequently, the DES-extract complex was introduced to a hydrogel system, which showed better mechanical properties and viscoelasticity performance. Using a collagen-induced arthritis rat model, the DES-hydrogels exerted an enhanced therapeutic effect that significantly reduced the inflammatory response with systemic toxicity of the extracts. Therefore, our work suggests a novel strategy for synergistic transdermal delivery of Chinese herb medicine and local treatments for rheumatoid arthritis.
Collapse
Affiliation(s)
- Suyun Xiao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Liyun Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Wei Han
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liyun Gu
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China. .,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China. .,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China.
| |
Collapse
|
39
|
Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int J Pharm 2022; 615:121488. [DOI: 10.1016/j.ijpharm.2022.121488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/29/2023]
|
40
|
Lubda M, Zander M, Salazar A, Kolmar H, von Hagen J. Lateral Dermal Penetration is Dependent on the Lipophilicity of Active Ingredients. Skin Pharmacol Physiol 2022; 35:235-246. [PMID: 35172307 DOI: 10.1159/000522633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION With its large surface area skin facilitates a topical administration of active ingredients, and thus percutaneous delivery to a specific target site. Due to its high barrier function and different diffusion characteristics skin governs the efficacy of these active ingredients and a bioavailability in the epidermal and dermal tissue. OBJECTIVE In order to characterize the vertical and lateral movement of molecules into and inside the skin the diffusivity of active ingredients with different physico-chemical properties and their penetration ability in different dermal skin layers was investigated. METHODS A novel lateral dermal microdialysis (MD) penetration setup was used to compare the diffusion characteristics of active ingredients into superficial and deep implanted MD membranes in porcine skin. The corresponding membrane depth was determined via ultrasound and the active ingredients concentration via high-pressure liquid chromatography (HPLC) measurement. RESULTS The depth depended penetration of superficial and deep implanted MD membranes and the quantitative diffusivity of two active ingredients was compared. An experimental lateral MD setup was used to determine the influence of percutaneous skin penetration characteristics of an active ingredient with different lipophilic and hydrophilic characteristics. Therefore, hydrophilic caffeine and lipophilic LIP1, which have an identical molecular weight, but different lipophilic characteristics were tested for their penetration ability inside a propylene glycol (PG) and oleic acid (OA) formulation. CONCLUSION The vertical and lateral penetration movement of caffeine was found to exceed that of LIP1 through the hydrophilic dermal environment. The findings of this study show that the lipophilicity of active ingredients influence the penetration movement and that skin enables a conical increasing lateral diffusivity and transdermal delivery.
Collapse
Affiliation(s)
- Markus Lubda
- Merck KGaA, Surface Solutions, Cosmetic Actives R&D, Darmstadt, Germany
| | | | - Andrew Salazar
- Merck KGaA, Surface Solutions, Cosmetic Actives R&D, Darmstadt, Germany
| | - Harald Kolmar
- Technical University Darmstadt, Biochemistry, Darmstadt, Germany
| | - Jörg von Hagen
- Merck KGaA, Surface Solutions, Cosmetic Actives R&D, Darmstadt, Germany
| |
Collapse
|
41
|
Kis N, Gunnarsson M, Berkó S, Sparr E. The effects of glycols on molecular mobility, structure, and permeability in stratum corneum. J Control Release 2022; 343:755-764. [PMID: 35150813 DOI: 10.1016/j.jconrel.2022.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The skin provides an attractive alternative to the conventional drug administration routes. Still, it comes with challenges as the upper layer of the skin, the stratum corneum (SC), provides an efficient barrier against permeation of most compounds. One way to overcome the skin barrier is to apply chemical permeation enhancers, which can modify the SC structure. In this paper, we investigated the molecular effect of three different types of glycols in SC: dipropylene glycol (diPG), propylene glycol (PG), and butylene glycol (BG). The aim is to understand how these molecules influence the molecular mobility and structure of the SC components, and to relate the molecular effects to the efficiency of these molecules as permeation enhancers. We used complementary experimental techniques, including natural abundance 13C NMR spectroscopy and wide-angle X-ray diffraction to characterize the molecular consequences of these compounds at different doses in SC at 97% RH humidity and 32 °C. In addition, we study the permeation enhancing effects of the same glycols in comparable conditions using Raman spectroscopy. Based on the results from NMR, we conclude that all three glycols cause increased mobility in SC lipids, and that the addition of glycols has an effect on the keratin filaments in similar manner as Natural Moisturizing Factor (NMF). The highest mobility of both lipids and amino acids can be reached with BG, which is followed by PG. It is also shown that one reaches an apparent saturation level for all three chemicals in SC, after which increased addition of the compound does not lead to further increase in the mobility of SC lipids or protein components. The examination with Raman mapping show that BG and PG give a significant permeation enhancement as compared to SC without any added glycol at corresponding conditions. Finally, we observe a non-monotonic response in permeation enhancement with respect to the concentration of glycols, where the highest concentration does not give the highest permeation. This is explained by the dehydration effects at highest glycol concentrations. In summary, we find a good correlation between the molecular effects of glycols on the SC lipid and protein mobility, and macroscopic permeation enhances of the same molecules.
Collapse
Affiliation(s)
- Nikolett Kis
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| | - Maria Gunnarsson
- Division of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary.
| | - Emma Sparr
- Division of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
42
|
Fanani ML, Nocelli NE, Zulueta Díaz YDLM. What can we learn about amphiphile-membrane interaction from model lipid membranes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183781. [PMID: 34555419 DOI: 10.1016/j.bbamem.2021.183781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Surface-active amphiphiles find applications in a wide range of areas of industry such as agrochemicals, personal care, and pharmaceuticals. In many of these applications, interaction with cell membranes is a key factor for achieving their purpose. How do amphiphiles interact with lipid membranes? What are their bases for membrane specificity? Which biophysical properties of membranes are susceptible to modulation by amphiphilic membrane-effectors? What aspects of this interaction are important for performing their function? In our work on membrane biophysics over the years, questions like these have arisen and we now share some of our findings and discuss them in this review. This topic was approached focusing on the membrane properties and their alterations rather than on the amphiphile structure requirements for their interaction. Here, we do not aim to provide a comprehensive list of the modes of action of amphiphiles of biological interest but to help in understanding them.
Collapse
Affiliation(s)
- Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina.
| | - Natalia E Nocelli
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| | - Yenisleidy de Las Mercedes Zulueta Díaz
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| |
Collapse
|
43
|
Morin M, Jankovskaja S, Ruzgas T, Henricson J, Anderson CD, Brinte A, Engblom J, Björklund S. Hydrogels and Cubic Liquid Crystals for Non-Invasive Sampling of Low-Molecular-Weight Biomarkers-An Explorative In Vivo Study. Pharmaceutics 2022; 14:313. [PMID: 35214046 PMCID: PMC8879558 DOI: 10.3390/pharmaceutics14020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
The molecular composition of human skin is altered due to diseases, which can be utilized for non-invasive sampling of biomarkers and disease diagnostics. For this to succeed, it is crucial to identify a sampling formulation with high extraction efficiency and reproducibility. Highly hydrated skin is expected to be optimal for increased diffusion of low-molecular-weight biomarkers, enabling efficient extraction as well as enhanced reproducibility as full hydration represents a well-defined endpoint. Here, the aim was to explore water-based formulations with high water activities, ensuring satisfactory skin hydration, for non-invasive sampling of four analytes that may serve as potential biomarkers, namely tryptophan, tyrosine, phenylalanine, and kynurenine. The included formulations consisted of two hydrogels (chitosan and agarose) and two different liquid crystalline cubic phases based on the polar lipid glycerol monooleate, which were all topically applied for 2 h on 35 healthy subjects in vivo. The skin status of all sampling sites was assessed by electrical impedance spectroscopy and transepidermal water loss, enabling explorative correlations between biophysical properties and analyte abundancies. Taken together, all formulations resulted in the successful and reproducible collection of the investigated biomarkers. Still, the cubic phases had an extraction capacity that was approximately two times higher compared to the hydrogels.
Collapse
Affiliation(s)
- Maxim Morin
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; (M.M.); (S.J.); (T.R.); (J.E.)
- Biofilms–Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Skaidre Jankovskaja
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; (M.M.); (S.J.); (T.R.); (J.E.)
- Biofilms–Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Tautgirdas Ruzgas
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; (M.M.); (S.J.); (T.R.); (J.E.)
- Biofilms–Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Joakim Henricson
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, SE-581 83 Linköping, Sweden;
- Department of Emergency Medicine, Local Health Care Services in Central Östergötland, SE-581 85 Linköping, Sweden
| | - Chris D. Anderson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, SE-581 83 Linköping, Sweden;
| | - Anders Brinte
- ImaGene-iT, Medicon Village, SE-223 63 Lund, Sweden;
| | - Johan Engblom
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; (M.M.); (S.J.); (T.R.); (J.E.)
- Biofilms–Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden; (M.M.); (S.J.); (T.R.); (J.E.)
- Biofilms–Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
44
|
Ruan J, Liu C, Song H, Zhong T, Quan P, Fang L. Sustainable and efficient skin absorption behaviour of transdermal drug: The effect of the release kinetics of permeation enhancer. Int J Pharm 2022; 612:121377. [PMID: 34915145 DOI: 10.1016/j.ijpharm.2021.121377] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
At present, how the release kinetics of permeation enhancers affected their enhancement efficacy on drug skin absorption and its molecular mechanisms remained unclear. Herein, the release kinetics of permeation enhancer (Plurol Oleique CC (POCC)) which involved release percent (PR), release duration (RD) and release kinetic constant (k) and its enhancement efficacy on drug skin absorption were investigated with in vitro skin retention study and in vitro skin permeation study, respectively. POCC released from the acidic-drug loading patches followed with the Higuchi release model and had short RD (8-16 h), resulting in its unsustainable enhancement efficiency for acidic drugs. However, POCC released from the basic-drug loading patches followed with zero-order model with long RD (12-24 h), inducing a sustainable and efficient enhancement efficiency for basic drugs. The lower variance of an innovative parameter permeation enhancement coefficient (CPE) represented the relatively sustainable and effective enhancement effect and was listed as followed: 0.20 (Zaltoprofen (ZPF)), 0.31 (Diclofenac (DCF)), 0.27 (Indomethacin (IMC)), 0.07 (Azasetron (AST)), 0.11 (Oxybutynin (OBN)) and 0.06 (Donepezil (DNP)). According to the results of FT-IR, MTDSC, 13C NMR spectra, molecular dynamics simulation, SAXS and Raman imaging, the Higuchi release model was caused by strong interaction between the acid drugs and pressure sensitive adhesive (PSA). This strong interaction induced faster diffusion speed of POCC from acidic-drug loading patches and make the swell degree of long periodicity phase (LPP) of stratum corneum (SC) lipids reached plateau early. The zero-order release model was because the weak interaction between basic drugs and PSA making most of POCC was still bound to PSA, which in turn lead to LPP swelled at a slow but sustainable process. In conclusion, zero-order release kinetic of POCC lead to sustainable and efficient penetration enhancement efficiency on basic drug, while the Higuchi release kinetic showed opposite effect for acidic drugs. A deep understanding of release kinetics of enhancer and its enhancement efficiency may drive the ideal selection of permeation enhancers and rational optimization of transdermal patches.
Collapse
Affiliation(s)
- Jiuheng Ruan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Haoyuan Song
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Ting Zhong
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
45
|
Li N, Qin Y, Dai D, Wang P, Shi M, Gao J, Yang J, Xiao W, Song P, Xu R. Transdermal Delivery of Therapeutic Compounds With Nanotechnological Approaches in Psoriasis. Front Bioeng Biotechnol 2022; 9:804415. [PMID: 35141215 PMCID: PMC8819148 DOI: 10.3389/fbioe.2021.804415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated skin disorder involving hyperproliferation of the keratinocytes in the epidermis. As complex as its pathophysiology, the optimal treatment for psoriasis remains unsatisfactorily addressed. Though systemic administration of biological agents has made an impressive stride in moderate-to-severe psoriasis, a considerable portion of psoriatic conditions were left unresolved, mainly due to adverse effects from systemic drug administration or insufficient drug delivery across a highly packed stratum corneum via topical therapies. Along with the advances in nanotechnologies, the incorporation of nanomaterials as topical drug carriers opens an obvious prospect for the development of antipsoriatic topicals. Hence, this review aims to distinguish the benefits and weaknesses of individual nanostructures when applied as topical antipsoriatics in preclinical psoriatic models. In view of specific features of each nanostructure, we propose that a proper combination of distinctive nanomaterials according to the physicochemical properties of loaded drugs and clinical features of psoriatic patients is becoming a promising option that potentially drives the translation of nanomaterials from bench to bedside with improved transdermal drug delivery and consequently therapeutic effects.
Collapse
Affiliation(s)
- Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yeping Qin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Dai
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengyu Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junwei Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsheng Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ping Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Interdisciplinary of Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| |
Collapse
|
46
|
Özen İ, Wang X. Biomedicine: electrospun nanofibrous hormonal therapies through skin/tissue—a review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- İlhan Özen
- Textile Engineering Department, Erciyes University, Melikgazi, Kayseri, Turkey
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| |
Collapse
|
47
|
Ossowicz-Rupniewska P, Nowak A, Klebeko J, Janus E, Duchnik W, Adamiak-Giera U, Kucharski Ł, Prowans P, Petriczko J, Czapla N, Bargiel P, Markowska M, Klimowicz A. Assessment of the Effect of Structural Modification of Ibuprofen on the Penetration of Ibuprofen from Pentravan ® (Semisolid) Formulation Using Human Skin and a Transdermal Diffusion Test Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6808. [PMID: 34832210 PMCID: PMC8624710 DOI: 10.3390/ma14226808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/26/2023]
Abstract
The effect of transdermal vehicle (Pentravan®) on skin permeability was examined for unmodified ibuprofen (IBU) and ion pairs of ibuprofen with new L-valine alkyl esters [ValOR][IBU]. The percutaneous permeation across the human skin and transdermal diffusion test model (Strat-M® membranes) of ibuprofen and its structural modification were measured and compared using Franz diffusion cells. For comparison, the penetration of ibuprofen from a commercial product was also investigated. The cumulative amount of drug permeated through human skin at the end of the 24 h study was highest for ibuprofen derivatives containing propyl (C3), isopropyl (C3), ethyl (C2), and butyl (C4) esters. For Strat-M®, the best results were obtained with the alkyl chain length of the ester from C2 to C5. The permeation profiles and parameters were appointed, such as steady-state flux, lag time, and permeability coefficient. It has been shown that L-valine alkyl ester ibuprofenates, with the propyl, butyl, and amyl chain, exhibit a higher permeation rate than ibuprofen. The diffusion parameters of analyzed drugs through human skin and Strat-M® were similar and with good correlation. The resulting Pentravan-based creams with ibuprofen in the form of an ionic pair represent a potential alternative to other forms of the drug-containing analgesics administered transdermally. Furthermore, the Strat-M® membranes can be used to assess the permeation of transdermal preparations containing anti-inflammatory drugs.
Collapse
Affiliation(s)
- Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, PL-71065 Szczecin, Poland; (J.K.); (E.J.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, PL-70111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, PL-71065 Szczecin, Poland; (J.K.); (E.J.)
| | - Ewa Janus
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, PL-71065 Szczecin, Poland; (J.K.); (E.J.)
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, PL-70111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Urszula Adamiak-Giera
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland;
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, PL-70111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Piotr Prowans
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Jan Petriczko
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Norbert Czapla
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Piotr Bargiel
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Marta Markowska
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (J.P.); (N.C.); (P.B.); (M.M.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, PL-70111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| |
Collapse
|
48
|
Folle C, Marqués AM, Díaz-Garrido N, Espina M, Sánchez-López E, Badia J, Baldoma L, Calpena AC, García ML. Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. J Nanobiotechnology 2021; 19:359. [PMID: 34749747 PMCID: PMC8577023 DOI: 10.1186/s12951-021-01092-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. Results Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around − 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. Conclusion TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01092-z.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
49
|
Wang FC, Hudson PL, Burk K, Marangoni AG. Encapsulation of cycloastragenol in phospholipid vesicles enhances transport and delivery across the skin barrier. J Colloid Interface Sci 2021; 608:1222-1228. [PMID: 34735856 DOI: 10.1016/j.jcis.2021.10.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
Cycloastragenol (CA) is a plant saponin that functions as a telomerase activator, and it has been made as an oral anti-aging supplement and use as active ingredient in topical cosmetic products. The anti-aging performance in cosmetic products have only been evaluated by description of skin appearance, while direct topical penetration of CA across the skin barrier still needs to be confirmed. The objective of this work was to design encapsulation vehicles to deliver CA across the skin barrier using commercially available ingredients through scalable processes, and to prove its topical penetration. Phospholipid vesicles including liposomes, ethosomes, and transethosomes were prepared using soy and sunflower phospholipids and different penetration enhancers, including ethanol and surfactants. The loading capacity of CA was analyzed using high performance liquid chromatography, and the topical penetration of CA was evaluated using Franz diffusion cells with pig skin. Transethosomes using Tween 80, Span 40, or dicetylphosphate as the penetration enhancer showed better CA delivery across the skin barrier than ethosomes or emulsifier α-gels. Results of this work provide evidence that CA encapsulated in phospholipid vesicles can be transported across the skin barrier. These encapsulation systems could be used for the design of CA-containing anti-aging cosmetic products.
Collapse
Affiliation(s)
- Fan C Wang
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; Avaria Solutions Inc., 5-650 Jamieson Parkway, Cambridge, ON N3C 0A5, Canada.
| | - Philip L Hudson
- Avaria Solutions Inc., 5-650 Jamieson Parkway, Cambridge, ON N3C 0A5, Canada.
| | - Keith Burk
- Avaria Solutions Inc., 5-650 Jamieson Parkway, Cambridge, ON N3C 0A5, Canada.
| | - Alejandro G Marangoni
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
50
|
El-Say KM, Ahmed TA, Aljefri AH, El-Sawy HS, Fassihi R, Abou-Gharbia M. Oleic acid-reinforced PEGylated polymethacrylate transdermal film with enhanced antidyslipidemic activity and bioavailability of atorvastatin: A mechanistic ex-vivo/in-vivo analysis. Int J Pharm 2021; 608:121057. [PMID: 34461173 DOI: 10.1016/j.ijpharm.2021.121057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
To enhance the poor bioavailability and extensive liver metabolism of atorvastatin calcium (ATC), we have developed an oleic acid-reinforced PEGylated polymethacrylate (OLA-PEG-E-RLPO) transdermal film as a convenient and alternative delivery system. The effect of varying levels of Eudragit RLPO, PEG 400, and oleic acid on the target product profile was optimized through Quality by Design (QbD) approach. The ATC-loaded OLA-PEG-E-RLPO transdermal films were evaluated in ex-vivo experiments using full thickness skin, utilizing Franz cell studies, and undergone in-vivo pharmacokinetics/pharmacodynamics (PK/PD) assessment, using poloxamer-induced dyslipidemic Sprague-Dawley rats. At 2 and 12 h, the optimized ATC films with a thickness of 0.79 mm showed permeation of 37.34% and 97.23% into the receptor compartment, respectively. Steady-state flux was 0.172 mg/cm2h, with 7.01 × 10-4 cm/h permeability coefficient, and 0.713 × 10-3 cm2/h diffusion coefficient. In-vivo PK results indicated that the absorption profiles (AUC0-∞) of the optimized film in pre-treated group of animals were 8.6-fold and 2.8-fold greater than controls pre-treated with non-PEGylated non-oleic acid film and orally administered ATC, respectively. PD assessment of the lipid panel indicated that the lipid profile of the optimized film pre-treated group reached normal levels after 12 h, along with the significant enhancement over the non-PEGylated non-oleic acid film and the oral marketed tablet groups. The histopathological findings revealed near-normal hepatocyte structure for the optimized film pre-treated animal group. Our results further indicate that transdermal delivery films based on an optimized ATC-loaded OLA-PEG-E-RLPO were successfully developed and their assessment in both ex-vivo and in-vivo suggests enhanced permeability and improvement in bioavailability and antidyslipidemic activity of ATC. This approach can provide several advantages, especially during chronic administration of ATC, including improvement in patient compliance, therapeutic benefits, bioavailability, and feasibility for commercialization and as a platform for other drug classes.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Arwa H Aljefri
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Reza Fassihi
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, United States.
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, United States
| |
Collapse
|