1
|
Chaudhary N, Kasiewicz LN, Newby AN, Arral ML, Yerneni SS, Melamed JR, LoPresti ST, Fein KC, Strelkova Petersen DM, Kumar S, Purwar R, Whitehead KA. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat Biomed Eng 2024:10.1038/s41551-024-01256-w. [PMID: 39363106 DOI: 10.1038/s41551-024-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicle for RNA therapeutics, partly because of established lipid structure-activity relationships focused on formulation potency. Yet such knowledge has not extended to LNP immunogenicity. Here we show that the innate and adaptive immune responses elicited by LNPs are linked to their ionizable lipid chemistry. Specifically, we show that the amine headgroups in ionizable lipids drive LNP immunogenicity by binding to Toll-like receptor 4 and CD1d and by promoting lipid-raft formation. Immunogenic LNPs favour a type-1 T-helper-cell-biased immune response marked by increases in the immunoglobulins IgG2c and IgG1 and in the pro-inflammatory cytokines tumour necrosis factor, interferon γ and the interleukins IL-6 and IL-2. Notably, the inflammatory signals originating from these receptors inhibit the production of anti-poly(ethylene glycol) IgM antibodies, preventing the often-observed loss of efficacy in the LNP-mediated delivery of siRNA and mRNA. Moreover, we identified computational methods for the prediction of the structure-dependent innate and adaptive responses of LNPs. Our findings may help accelerate the discovery of well-tolerated ionizable lipids suitable for repeated dosing.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lisa N Kasiewicz
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexandra N Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mariah L Arral
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Jilian R Melamed
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Samuel T LoPresti
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Sushant Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Short L, Holt RA, Cullis PR, Evgin L. Direct in vivo CAR T cell engineering. Trends Pharmacol Sci 2024; 45:406-418. [PMID: 38614815 DOI: 10.1016/j.tips.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
T cells modified to express intelligently designed chimeric antigen receptors (CARs) are exceptionally powerful therapeutic agents for relapsed and refractory blood cancers and have the potential to revolutionize therapy for many other diseases. To circumvent the complexity and cost associated with broad-scale implementation of ex vivo manufactured adoptive cell therapy products, alternative strategies to generate CAR T cells in vivo by direct infusion of nanoparticle-formulated nucleic acids or engineered viral vectors under development have received a great deal of attention in the past few years. Here, we outline the ex vivo manufacturing process as a motivating framework for direct in vivo strategies and discuss emerging data from preclinical models to highlight the potency of the in vivo approach, the applicability for new disease indications, and the remaining challenges associated with clinical readiness, including delivery specificity, long term efficacy, and safety.
Collapse
Affiliation(s)
- Lauralie Short
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Robert A Holt
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Laura Evgin
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Singleton KL, Joffe A, Leitner WW. Review: Current trends, challenges, and success stories in adjuvant research. Front Immunol 2023; 14:1105655. [PMID: 36742311 PMCID: PMC9892189 DOI: 10.3389/fimmu.2023.1105655] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Vaccine adjuvant research is being fueled and driven by progress in the field of innate immunity that has significantly advanced in the past two decades with the discovery of countless innate immune receptors and innate immune pathways. Receptors for pathogen-associated molecules (PAMPs) or host-derived, danger-associated molecules (DAMPs), as well as molecules in the signaling pathways used by such receptors, are a rich source of potential targets for agonists that enable the tuning of innate immune responses in an unprecedented manner. Targeted modulation of immune responses is achieved not only through the choice of immunostimulator - or select combinations of adjuvants - but also through formulation and systematic modifications of the chemical structure of immunostimulatory molecules. The use of medium and high-throughput screening methods for finding immunostimulators has further accelerated the identification of promising novel adjuvants. However, despite the progress that has been made in finding new adjuvants through systematic screening campaigns, the process is far from perfect. A major bottleneck that significantly slows the process of turning confirmed or putative innate immune receptor agonists into vaccine adjuvants continues to be the lack of defined in vitro correlates of in vivo adjuvanticity. This brief review discusses recent developments, exciting trends, and notable successes in the adjuvant research field, albeit acknowledging challenges and areas for improvement.
Collapse
|
4
|
Wang Q, Song Z, Yang J, He Q, Mao Q, Bai Y, Liu J, An C, Yan X, Cui B, Song L, Liu D, Xu M, Liang Z. Transcriptomic analysis of the innate immune signatures of a SARS-CoV-2 protein subunit vaccine ZF2001 and an mRNA vaccine RRV. Emerg Microbes Infect 2022; 11:1145-1153. [PMID: 35343384 PMCID: PMC9037177 DOI: 10.1080/22221751.2022.2059404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Analysis of large-scale gene expression post vaccination can provide an overview of immune responses. We used transcriptional approaches to comprehensively analyze the innate immune response signatures elicited by protein subunit (PS) vaccine ZF2001 and an mRNA vaccine named RRV. A fine-grained time-dependent dissection of large-scale gene expression post immunization revealed that ZF001 induced MHC class II-related genes, including cd74 and H2-Aa, more expeditiously than the RRV. Notably, the RRV induced MHC class I-related genes such as Tap1/2, B2m, and H2-D1/K1. At day 21 post immunization, the titres of binding and neutralization antibody (NAb) induced by both vaccines were comparable, which were accordant with the expression level of genes essential to BCR/TCR signalling transduction and B/T cells activation at day 7. However, compared to ZF2001, the early responses of RRV were more robust, including the activation of pattern recognition receptors (PRRs), expression of genes involved in RNA degradation, and transcription inhibition, which are directly related to anti-viral signals. This pattern also coincided with the induction of cytokines by the RRV. Generally, the transcriptomic patterns of two very different vaccines mapped here provide a framework for establishing correlates between the induction of genes and protection, which can be tailored for evoking specific and potent immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Qian Wang
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
| | - Ziyang Song
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
- Shanghai Institute of Biological Products Co., Ltd., China National Biotec Group, Shanghai, People's Republic of China
| | - Jinghuan Yang
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
- Beijing Institute of Biological Products Co., Ltd., China National Biotec Group, Beijing, People's Republic of China
| | - Qian He
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
| | - Qunying Mao
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
| | - Yu Bai
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
| | - Jianyang Liu
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
| | - Chaoqiang An
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
- Minhai Biotechnology Co., Ltd., Beijing, People’s Republic of China
| | - Xujia Yan
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
- Changchun Institute of Biological Products Co., Ltd., China National Biotec Group, Changchun, People's Republic of China
| | - Bopei Cui
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
- Wuhan Institute of Biological Products Co., Ltd., China National Biotec Group, Wuhan, People's Republic of China
| | - Lifang Song
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
| | - Dong Liu
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
- Changchun Institute of Biological Products Co., Ltd., China National Biotec Group, Changchun, People's Republic of China
| | - Miao Xu
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
| | - Zhenglun Liang
- Hepatitis virus and enterovirus vaccines Division, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, People's Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, People's Republic of China
| |
Collapse
|
5
|
Pizzuto M, Pelegrin P, Ruysschaert JM. Lipid-protein interactions regulating the canonical and the non-canonical NLRP3 inflammasome. Prog Lipid Res 2022; 87:101182. [PMID: 35901922 DOI: 10.1016/j.plipres.2022.101182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Biology, University of Murcia, Spain.
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
6
|
Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022; 188:114416. [PMID: 35787388 PMCID: PMC9250827 DOI: 10.1016/j.addr.2022.114416] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022]
Abstract
Lipid nanoparticles (LNPs) play an important role in mRNA vaccines against COVID-19. In addition, many preclinical and clinical studies, including the siRNA-LNP product, Onpattro®, highlight that LNPs unlock the potential of nucleic acid-based therapies and vaccines. To understand what is key to the success of LNPs, we need to understand the role of the building blocks that constitute them. In this Review, we discuss what each lipid component adds to the LNP delivery platform in terms of size, structure, stability, apparent pKa, nucleic acid encapsulation efficiency, cellular uptake, and endosomal escape. To explore this, we present findings from the liposome field as well as from landmark and recent articles in the LNP literature. We also discuss challenges and strategies related to in vitro/in vivo studies of LNPs based on fluorescence readouts, immunogenicity/reactogenicity, and LNP delivery beyond the liver. How these fundamental challenges are pursued, including what lipid components are added and combined, will likely determine the scope of LNP-based gene therapies and vaccines for treating various diseases.
Collapse
Affiliation(s)
- Camilla Hald Albertsen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Jayesh A Kulkarni
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall, 4th Floor, Vancouver BC V6T 1Z3, Canada
| | - Dominik Witzigmann
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall, 4th Floor, Vancouver BC V6T 1Z3, Canada
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Jens B Simonsen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark.
| |
Collapse
|
7
|
Cationic Nanoparticle-Based Cancer Vaccines. Pharmaceutics 2021; 13:pharmaceutics13050596. [PMID: 33919378 PMCID: PMC8143365 DOI: 10.3390/pharmaceutics13050596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic nanoparticles have been shown to be surprisingly effective as cancer vaccine vehicles in preclinical and clinical studies. Cationic nanoparticles deliver tumor-associated antigens to dendritic cells and induce immune activation, resulting in strong antigen-specific cellular immune responses, as shown for a wide variety of vaccine candidates. In this review, we discuss the relation between the cationic nature of nanoparticles and the efficacy of cancer immunotherapy. Multiple types of lipid- and polymer-based cationic nanoparticulate cancer vaccines with various antigen types (e.g., mRNA, DNA, peptides and proteins) and adjuvants are described. Furthermore, we focus on the types of cationic nanoparticles used for T-cell induction, especially in the context of therapeutic cancer vaccination. We discuss different cationic nanoparticulate vaccines, molecular mechanisms of adjuvanticity and biodistribution profiles upon administration via different routes. Finally, we discuss the perspectives of cationic nanoparticulate vaccines for improving immunotherapy of cancer.
Collapse
|
8
|
Polymorphisms in Toll-like receptors 1, 2, 5, and 10 are associated with predisposition to Helicobacter pylori infection. Eur J Gastroenterol Hepatol 2020; 32:1141-1146. [PMID: 32541244 DOI: 10.1097/meg.0000000000001797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Toll-like receptors (TLRs) are significant receptors to the innate immune system which symbolizes a family of pattern recognition receptors. We aimed to investigate associations between rs4833095 polymorphism of TLR1, rs3804099 polymorphism of TLR2, rs5744174 polymorphism of TLR5, and rs10004195 polymorphism of TLR10 in dyspeptic individuals with Helicobacter pylori infection. METHODS Genomic DNA was isolated and genotyping of rs4833095 polymorphism in TLR1, rs3804099 polymorphism in TLR2, rs5744174 polymorphism in TLR5, and rs10004195 polymorphism in TLR10 were investigated in 400 individuals (205 in dyspeptic individuals with H. pylori-positive subjects and 195 dyspeptic individuals with H. pylori-negative subjects) by real-time PCR. Statistical analysis was performed by Pearson's Chi-square test. RESULTS According to our study; rs4833095 polymorphism in TLR1 C allele, rs3804099 polymorphism in TLR2 C allele, rs5744174 polymorphism in TLR5 C allele, and rs10004195 polymorphism in TLR10 A allele increased the risk of H. pylori infection [odds ratio (OR), 2.01; 95% confidence interval (CI), 1.39-3.16; OR, 1.78; 95% CI, 1.19-2.6; OR, 1.87; 95% CI, 1.25-2.78; OR, 2.66; 95% CI, 1.72-4.099, respectively]. CONCLUSION This is the first study that investigates TLRs in H. pylori infection in Turkey. Our findings may support the hypothesis that polymorphisms in certain TLRs may cause a genetic predisposition to H. pylori-related gastric problems.
Collapse
|
9
|
Pizzuto M, Lonez C, Baroja-Mazo A, Martínez-Banaclocha H, Tourlomousis P, Gangloff M, Pelegrin P, Ruysschaert JM, Gay NJ, Bryant CE. Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4. Cell Mol Life Sci 2019; 76:3667-3678. [PMID: 31062071 PMCID: PMC6697720 DOI: 10.1007/s00018-019-03113-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Cardiolipins (CLs) are tetra-acylated diphosphatidylglycerols found in bacteria, yeast, plants, and animals. In healthy mammals, CLs are unsaturated, whereas saturated CLs are found in blood cells from Barth syndrome patients and in some Gram-positive bacteria. Here, we show that unsaturated but not saturated CLs block LPS-induced NF-κB activation, TNF-α and IP-10 secretion in human and murine macrophages, as well as LPS-induced TNF-α and IL-1β release in human blood mononuclear cells. Using HEK293 cells transfected with Toll-like receptor 4 (TLR4) and its co-receptor Myeloid Differentiation 2 (MD2), we demonstrate that unsaturated CLs compete with LPS for binding TLR4/MD2 preventing its activation, whereas saturated CLs are TLR4/MD2 agonists. As a consequence, saturated CLs induce a pro-inflammatory response in macrophages characterized by TNF-α and IP-10 secretion, and activate the alternative NLRP3 inflammasome pathway in human blood-derived monocytes. Thus, we identify that double bonds discriminate between anti- and pro-inflammatory properties of tetra-acylated molecules, providing a rationale for the development of TLR4 activators and inhibitors for use as vaccine adjuvants or in the treatment of TLR4-related diseases.
Collapse
Affiliation(s)
- Malvina Pizzuto
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Blvd du Triomphe Access 2, 1050, Brussels, Belgium.
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK.
- Molecular Inflammation Group, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120, Murcia, Spain.
| | - Caroline Lonez
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Blvd du Triomphe Access 2, 1050, Brussels, Belgium
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120, Murcia, Spain
| | - Helios Martínez-Banaclocha
- Molecular Inflammation Group, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120, Murcia, Spain
| | - Panagiotis Tourlomousis
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia IMIB-Arrixaca, Clinical University Hospital Virgen de la Arrixaca, Carretera Buenavista s/n, 30120, Murcia, Spain
| | - Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Blvd du Triomphe Access 2, 1050, Brussels, Belgium
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge, CB3 0ES, UK
| |
Collapse
|
10
|
Gandhapudi SK, Ward M, Bush JPC, Bedu-Addo F, Conn G, Woodward JG. Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response. THE JOURNAL OF IMMUNOLOGY 2019; 202:3524-3536. [PMID: 31053626 DOI: 10.4049/jimmunol.1801634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
Certain types of cationic lipids have shown promise in cancer immunotherapy, but their mechanism of action is poorly understood. In this study, we describe the properties of an immunotherapeutic consisting of the pure cationic lipid enantiomer R-1,2-dioleoyl-3-trimethyl-ammonium-propane (R-DOTAP) formulated with modified viral or self-peptide Ags. R-DOTAP formulations with peptide Ags stimulate strong cross-presentation and potent CD8 T cell responses associated with a high frequency of polyfunctional CD8 T cells. In a human papillomavirus tumor model system, a single s.c. injection of tumor-bearing mice with R-DOTAP plus human papillomavirus Ags induces complete regression of large tumors associated with an influx of Ag-specific CD8 T cells and a reduction of the ratio of regulatory/Ag-specific CD8 T cells. R-DOTAP also synergizes with an anti-PD1 checkpoint inhibitor, resulting in a significant inhibition of B16 melanoma tumor growth. We found that R-DOTAP stimulates type I IFN production by dendritic cells in vivo and in vitro. s.c. injection of R-DOTAP results in an IFN-dependent increase in draining lymph node size and a concomitant increase in CD69 expression. Using knockout mice, we show that type I IFN is required for the induction of CD8 T cell activity following administration of R-DOTAP plus Ag. This response requires Myd88 but not TRIF or STING. We also show that R-DOTAP stimulates both TLR7 and 9. Collectively, these studies reveal that R-DOTAP stimulates endosomal TLRs, resulting in a Myd88-dependent production of type I IFN. When administered with Ag, this results in potent Ag-specific CD8 T cell responses and antitumor activity.
Collapse
Affiliation(s)
- Siva K Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536; and
| | - Martin Ward
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536; and
| | - John Peyton C Bush
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536; and
| | | | - Greg Conn
- PDS Biotechnology Corporation, Princeton, NJ 08540
| | - Jerold G Woodward
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY 40536; and
| |
Collapse
|
11
|
Herrera MG, Pizzuto M, Lonez C, Rott K, Hütten A, Sewald N, Ruysschaert JM, Dodero VI. Large supramolecular structures of 33-mer gliadin peptide activate toll-like receptors in macrophages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1417-1427. [DOI: 10.1016/j.nano.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
|