1
|
Nadim N, Khan AA, Khan S, Parveen R, Ali J. A narrative review on potential applications of spanlastics for nose-to-brain delivery of therapeutically active agents. Adv Colloid Interface Sci 2025; 335:103341. [PMID: 39566150 DOI: 10.1016/j.cis.2024.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/28/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Spanlastics, which are commonly referred to as elastic niosomes, presents a modified advancement in the area of colloidal system based drug delivery carriers. They are different from niosomes, which are non-ionic surfactant vesicles in having an edge activator. Initially, they were described as ocular drug delivery systems in 2011 by Kakkar and Kaur. Spanlastics have discovered a wide range of applications via different routes of administration. The purpose of this article is to provide information about spanlastics, a newly developed drug delivery system for the management of diseases pertaining to the Central Nervous System (CNS) via intranasal route. The article begins with the details on spanlastics and their composition, their benefits over traditional niosomes, and the mechanism underlying their enhanced absorption. Their applications through various routes of administration in a variety of diseases for a variety of drugs have been discussed. Furthermore, the article explains the nose to brain delivery channels and the advantages that this route offers over conventional delivery routes. Finally, the article discusses the studies encompassing the drug candidates that have been formulated as intranasal spanlastics for the management of different diseased conditions along with the future prospects of this emerging drug delivery system.
Collapse
Affiliation(s)
- Noorain Nadim
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ayub Ahmad Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2024:10.1007/s13346-024-01756-x. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
3
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Zhang H, Li S, Ma X. Transforming Healthcare with Nanomedicine: A SWOT Analysis of Drug Delivery Innovation. Drug Des Devel Ther 2024; 18:3499-3521. [PMID: 39132625 PMCID: PMC11314449 DOI: 10.2147/dddt.s470210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Nanomedicine represents a transformative approach in biomedical applications. This study aims to delineate the application of nanomedicine in the biomedical field through the strengths, weaknesses, opportunities, and threats (SWOT) analysis to evaluate its efficacy and potential in clinical applications. Methods The SWOT analysis framework was employed to systematically review and assess the internal strengths and weaknesses, along with external opportunities and threats of nanomedicine. This method provides a balanced consideration of the potential benefits and challenges. Results Findings from the SWOT analysis indicate that nanomedicine presents significant potential in drug delivery, diagnostic imaging, and tissue engineering. Nonetheless, it faces substantial hurdles such as safety issues, environmental concerns, and high development costs. Critical areas for development were identified, particularly concerning its therapeutic potential and the uncertainties surrounding long-term effects. Conclusion Nanomedicine holds substantial promise in driving medical innovation. However, successful clinical translation requires addressing safety, cost, and regulatory challenges. Interdisciplinary collaboration and comprehensive strategic planning are crucial for the safe and effective application of nanomedicine.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Suping Li
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xingming Ma
- School of Health Management, Xihua University, Chengdu, 610039, People’s Republic of China
| |
Collapse
|
5
|
Rajan PB, Koilpillai J, Narayanasamy D. Advancing Ocular Medication Delivery with Nano-Engineered Solutions: A Comprehensive Review of Innovations, Obstacles, and Clinical Impact. Cureus 2024; 16:e66476. [PMID: 39247042 PMCID: PMC11381103 DOI: 10.7759/cureus.66476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Recent advancements in ocular drug delivery have led to the introduction of a range of nanotechnology-based systems, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, inorganic nanoparticles, niosomes, liposomes, nanosuspensions, dendrimers, nanoemulsions, and microemulsions. These systems enhance drug retention, penetration, bioavailability, and targeted delivery, promising prolonged drug release, and improved patient compliance. However, their interactions with biological systems pose potential toxicity risks, necessitating a careful evaluation of nanoparticle size, shape, surface charge, and coating. Traditional ocular drug delivery methods, like topical applications and injections, face challenges due to anatomical and physiological barriers, leading to frequent dosing and systemic toxicity risks. Nanocarriers offer solutions by improving drug permeation and targeted delivery, yet translating these innovations from research to clinical practice involves overcoming hurdles related to manufacturing scale-up, quality control, regulatory approval, and cost-effectiveness. The quality by design (QbD) framework provides a systematic approach to optimize nanocarrier formulation and process design, ensuring safety and efficacy. Assessing the safety of nanocarriers through in vivo and in vitro studies is crucial for their clinical application. This review explores the use of various nanomedicines in ocular drug delivery, highlighting the current state of ocular medication delivery and considering critical aspects such as scaling up and clinical applications.
Collapse
|
6
|
Rathee A, Solanki P, Emad NA, Zai I, Ahmad S, Alam S, Alqahtani AS, Noman OM, Kohli K, Sultana Y. Posaconazole-hemp seed oil loaded nanomicelles for invasive fungal disease. Sci Rep 2024; 14:16588. [PMID: 39025925 PMCID: PMC11258229 DOI: 10.1038/s41598-024-66074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.
Collapse
Affiliation(s)
- Anjali Rathee
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Pavitra Solanki
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Iqra Zai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Saeem Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Shadab Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, New Delhi, India.
| |
Collapse
|
7
|
Salah A, Mohammed El-Laban N, Mafiz Alam S, Shahidul Islam M, Abdalla Hussein M, Roshdy T. Optimization of Naringenin-loaded nanoparticles for targeting of Vanin-1, iNOS, and MCP-1 signaling pathway in HFD-induced obesity. Int J Pharm 2024; 654:123967. [PMID: 38438083 DOI: 10.1016/j.ijpharm.2024.123967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Naringenin, a natural dihydrochalcone flavonoid, exhibits diverse pharmacological properties. This study investigates the hypolipidemic effects of Nar-NPs on obese mice. The characteristics of Nar-NPs, including morphology, particle size, zeta potential, UV-vis, and FT-IR spectra, were examined. The anti-obesity properties of Nar-NPs were evaluated in obese rats, considering LD50, 1/20 LD50, and 1/50 LD50 for treatment preparation. Results indicated that synthesized Nar-NPs were uniform, spherical, and well-dispersed, with a size of 130.06 ± 1.98 nm and with a zeta potential of -25.6 ± 0.8 mV. Nar-NPs exhibited enhancement in the cumulative release of naringenin (56.87 ± 2.45 %) as compared to pure naringenin suspension 87.83 ± 1.84 % in 24 h of the study. The LD50 of Nar-NPs was determined as 412.5 mg/kg.b.w. HFD induced elevated glycemic, oxidative stress, and inflammatory biomarkers while reducing HDL-C, GSH, and superoxide dismutase (SOD) levels. Administration of Nar-NPs significantly mitigated body weight, glucose, insulin, leptin, TC, TG, SREBP1c, pAMPK, PPAR-α, as well as vanin-1, MCP-1, and iNOS mRNA gene expression. Histological investigations supported the biochemical and PCR findings. In a nutshell, the study suggests that the Nar-NPs could serve as a promising and viable pharmacological strategy for the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Nada Mohammed El-Laban
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Seikh Mafiz Alam
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohammed Abdalla Hussein
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| |
Collapse
|
8
|
Karimi M, Abrishami M, Farzadnia M, Kamali H, Malaekeh-Nikouei B. In-situ forming biodegradable implants for sustained Fluocinolone acetonide release to the posterior eye: In-vitro and in-vivo investigations in rabbits. Int J Pharm 2024; 654:123973. [PMID: 38458402 DOI: 10.1016/j.ijpharm.2024.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Delivering medication to the posterior segment of the eye presents a significant challenge. Intravitreal injection has emerged as the preferred method for drug delivery to this area. However, current injectable non-biodegradable implants for fluocinolone acetonide (FA) require surgical removal after prolonged drug release, potentially affecting patient compliance. This study aimed to develop an in-situ forming biodegradable implant (ISFBI) optimal formulation containing PLGA504H and PLGA756S (50:50 w/w%) with the additive NMP solvent. The goal was to achieve slow and controlled release of FA over a two-month period with lower burst release, following a single intravitreal injection. Through morphology, rheology, stability and in-vitro release evaluations, the optimal formulation demonstrated low viscosity (0.12-1.25 Pa. s) and sustained release of FA at a rate of 0.36 µg/day from the third day up to two months. Furthermore, histopathology and in-vivo studies were conducted after intravitreal injection of the optimal formulation in rabbits' eye. Pharmacokinetic analysis demonstrated mean residence time (MRT) of 20.02 ± 0.6 days, half-life (t1/2) of 18.80 ± 0.4 days, and clearance (Cl) of 0.29 ± 0.03 ml/h for FA in the vitreous humor, indicating sustained and slow absorption of FA by the targeted retinal tissue from vitrea over the two-month period and eliminating through the anterior section of the eye, as revealed by its presence in the aqueous humor. Additionally, FA exhibited no detection in the blood and no evidence of systemic side effects or damage on the retinal layer and other organs. Based on these findings, it can be concluded that in-situ forming injectable biodegradable PLGA implants can show promise as a long-acting and controlled-release system for intraocular drug delivery.
Collapse
Affiliation(s)
- Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Abrishami
- Department of Ophthalmology, Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Farzadnia
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Alamir M, Hussein MA, Aboud HM, Khedr MH, Zanaty MI. Optimization of Phloretin-loaded Nanospanlastics for Targeting of FAS/SREBP1c/AMPK/ OB-Rb Signaling Pathway in HFD-induced Obesity. Curr Pharm Biotechnol 2024; 26:92-107. [PMID: 38698746 DOI: 10.2174/0113892010278684240105115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 05/05/2024]
Abstract
OBJECTIVES Obese patients are at increased risk for CVD, which is the main cause of premature death and has been a major cause of disability and ill health in recent years. PTN, a natural dihydrochalcone flavonoid, has a variety of pharmacological characteristics. This article aimed to prepare PTN-NSLs to evaluate their anti-obesity activity. METHODS Morphology, Particle size, zeta potential, UV-vis, entrapment efficiency, FT-IR spectra, and an in vitro release study of PTN-NSLs were described. PTN-NSLs were also tested for their anti-obesity properties in obese rats. The LD50 of PTN-NSLs was calculated, as was the 1/20 LD50 prepared for the treatment of obese rats. Also, the level of glycemic, oxidative stress and inflammatory biomarkers were estimated in the obese rat's model. RESULTS The synthesized PTN-NSLs were uniform, spherically shaped, and well dispersed with no aggregation noted, with a size range of 114.06 ± 8.35 nm. The measured zeta potential value of PTN-NSLs was -32.50.8 mv. Also, the UV spectra of PTN and PTN-NSLs have strong absorption at 225 and 285 nm. Also, the LD50 of PTN-NSLs was found to be 2750 mg/kg.b.w. Moreover, administrating obese rats with PTN-NSLs resulted in improved glycemic features as well as GSH, SOD, GPx, GR, IL10, TBARs, and IL-6 levels, as well as attenuated FAS, SREBP1c, AMPK, ACO, CPT1, and OB-Rb gene expression. CONCLUSION Administration of PTN-NSLs significantly attenuated the levels of glycemic, oxidative stress, and inflammatory biomarkers. The biochemical and PCR findings are aided by histological investigations. Also, the present findings imply that PTN-NSLs might be a promising pharmacological tool for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Mohamed Alamir
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, Sixth of October City, Egypt
| | - Mohamed A Hussein
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Giza, Egypt
| | - Heba M Aboud
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed H Khedr
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed I Zanaty
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Bustos-Salgado P, Domínguez-Villegas V, Andrade-Carrera B, Mallandrich M, Calpena A, Domènech O, Martínez-Ruiz S, Badía J, Baldomà L, Gómez de Aranda I, Blasi J, Garduño-Ramírez ML. PLGA Nanoparticles Containing Natural Flavanones for Ocular Inflammation. Pharmaceutics 2023; 15:2752. [PMID: 38140093 PMCID: PMC10748021 DOI: 10.3390/pharmaceutics15122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Flavanones are natural compounds that display anti-inflammatory activity. The aim of this work was to prepare PLGA nanoparticles (NPs) containing natural flavanones I ((2S)-5,7-dihydroxy-6-methyl-8-(3-methyl-2-buten-1-il)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one) and II (2S)-5,7-dihydroxy-2-(4'-methoxyphenyl)-6-methyl-8-(3-methyl-2-buten-1-yl)-2,3-dihydro-4H-1-Benzopyran-4-one) (NP I and NP II, respectively) so as to evaluate their potential for topical anti-inflammatory ocular therapy. An in silico study was carried out using the Molinspiration® and PASS Online web platforms before evaluating the in vitro release study and the ex vivo porcine cornea and sclera permeation. The HPLC analytical method was also established and validated. Finally, the in vitro anti-inflammatory efficacy of NPs was studied in the HCE-2 model. The flavanones I and II could be released following a kinetic hyperbolic model. Neither of the two NPs was able to permeate through the tissues. NP I and NP II were found to be respectful of any changes in the tissues' morphology, as evidenced by histological studies. In HCE-2 cells, NP I and NP II were not cytotoxic at concentrations up to 25 µM. NP I showed higher anti-inflammatory activity than NP II, being able to significantly reduce IL-8 production in LPS-treated HCE-2 cells. In summary, ocular treatment with NP I and NP II could be used as a promising therapy for the inhibition of ocular inflammation.
Collapse
Affiliation(s)
- Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Valeri Domínguez-Villegas
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| | - Berenice Andrade-Carrera
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Calle Iztaccihuatl S/N, Col. Los Volcanes, Cuernavaca 62350, Morelos, Mexico
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ana Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Oscar Domènech
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 29-31, 08028 Barcelona, Spain; (P.B.-S.); (B.A.-C.); (A.C.); (O.D.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sergio Martínez-Ruiz
- Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (J.B.); (L.B.)
| | - Josefa Badía
- Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (J.B.); (L.B.)
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
- Research Institute Sant Joan De Déu (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (J.B.); (L.B.)
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
- Research Institute Sant Joan De Déu (IR-SJD), 08950 Barcelona, Spain
| | - Inmaculada Gómez de Aranda
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Bellvitge Campus, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Spain; (I.G.d.A.); (J.B.)
| | - Juan Blasi
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Bellvitge Campus, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Spain; (I.G.d.A.); (J.B.)
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| |
Collapse
|
12
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
13
|
Chapa González C, Martínez Saráoz JV, Roacho Pérez JA, Olivas Armendáriz I. Lipid nanoparticles for gene therapy in ocular diseases. Daru 2023; 31:75-82. [PMID: 36790734 PMCID: PMC10238339 DOI: 10.1007/s40199-023-00455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVES Lipid nanoparticles, as a nucleic acid delivery system, have been used as an alternative to treat ocular diseases, since they can cross the ocular barrier and efficiently transfecting nucleic acids to various cells of the eye. The size influences the transfection of genes, biological distribution, diffusion, and cellular uptake. It is therefore important to establish a relationship between size, formulation, and encapsulation percentage. EVIDENCE ACQUISITION In this review, we used a search strategy to compare studies of nanomedicine systems aimed at eye diseases where the size of the nanoparticles and the efficiency of encapsulation of genetic material are reported based on the criteria of Preferred Reporting Items for Systematic Reviews (PRISMA ScR 2020 guidelines). RESULTS Out of the initial 5932, 169 studies met the inclusion criteria and were included to form the basis of the analysis. Nanoparticles reported are composed mainly of PEG-modified lipids, cholesterol, and cationic lipids, that in combination with messenger or interference RNA, allow the formulation of a nanoparticle with an encapsulation efficiency greater than 95%. The diseases treated mainly focus on conditions related to the retina and cornea. Certain characteristics of nanoparticles increase encapsulation efficiency, such as the size of the nanoparticle and the charge of the outer layer of the nanoparticle. CONCLUSION It is still unknown what characteristics lipid nanoparticles should have to successfully treat human eye illnesses. The in vitro and in vivo investigations covered in this review, however, present encouraging results. To improve encapsulation effectiveness and disease gene silencing, nanoparticle formulation is essential. The most stable nanoparticles are those made mostly of cationic lipids, PEG lipids, and cholesterol, which also effectively encapsulate RNA. The encapsulation efficiency is not only influenced by size, but also by other factors such as methods of preparation.
Collapse
Affiliation(s)
- Christian Chapa González
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico.
| | - Jessica Victoria Martínez Saráoz
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
- Centro de Investigación en Materiales Avanzados, 66600, Apodaca, Nuevo León, Mexico
| | - Jorge Alberto Roacho Pérez
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina de la Universidad Autónoma de Nuevo León, 64460, Monterrey, Nuevo León, Mexico
| | - Imelda Olivas Armendáriz
- Departamento de Física y Matemáticas de la Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chih, Mexico
| |
Collapse
|
14
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
15
|
Han Y, Huang S. Nanomedicine is more than a supporting role in rheumatoid arthritis therapy. J Control Release 2023; 356:142-161. [PMID: 36863691 DOI: 10.1016/j.jconrel.2023.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Rheumatoid arthritis(RA) is an autoimmune disorder that affects the joints. Various medications successfully alleviate the symptoms of RA in clinical. Still, few therapy strategies can cure RA, especially when joint destruction begins, and there is currently no effective bone-protective treatment to reverse the articular damage. Furthermore, the RA medications now used in clinical practice accompany various adverse side effects. Nanotechnology can improve the pharmacokinetics of traditional anti-RA drugs and therapeutic precision through targeting modification. Although the clinical application of nanomedicines for RA is in its infancy, preclinical research is rising. Current anti-RA nano-drug studies mainly focus on the following: drug delivery systems, nanomedicines with anti-inflammatory and anti-arthritic properties, biomimetic design with better biocompatibility and therapeutic features, and nanoparticle-dominated energy conversion therapies. These therapies have shown promising therapeutic benefits in animal models, indicating that nanomedicines are a potential solution to the current bottleneck in RA treatment. This review will summarize the present state of anti-RA nano-drug research.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shilei Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Ferreira MD, Duarte J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promising Nanocarriers for Increased Bioavailability and Therapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15020678. [PMID: 36840000 PMCID: PMC9959474 DOI: 10.3390/pharmaceutics15020678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Orally administered antipsychotic drugs are the first-line treatment for psychotic disorders, such as schizophrenia and bipolar disorder. Nevertheless, adverse drug reactions jeopardize clinical outcomes, resulting in patient non-compliance. The design formulation strategies for enhancing brain drug delivery has been a major challenge, mainly due to the restrictive properties of the blood-brain barrier. However, recent pharmacokinetic and pharmacodynamic in vivo assays confirmed the advantage of the intranasal route when compared to oral and intravenous administration, as it allows direct nose-to-brain drug transport via neuronal pathways, reducing systemic side effects and maximizing therapeutic outcomes. In addition, the incorporation of antipsychotic drugs into nanosystems such as polymeric nanoparticles, polymeric mixed micelles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, nanoemulgels, nanosuspensions, niosomes and spanlastics, has proven to be quite promising. The developed nanosystems, having a small and homogeneous particle size (ideal for nose-to-brain delivery), high encapsulation efficiency and good stability, resulted in improved brain bioavailability and therapeutic-like effects in animal models. Hence, although it is essential to continue research in this field, the intranasal delivery of nanosystems for the treatment of schizophrenia, bipolar disorder and other related disorders has proven to be quite promising, opening a path for future therapies with higher efficacy.
Collapse
Affiliation(s)
- Maria Daniela Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Duarte
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.C.P.-S.); or (P.C.P.)
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (A.C.P.-S.); or (P.C.P.)
| |
Collapse
|
17
|
Ahmed S, Amin MM, Sayed S. Ocular Drug Delivery: a Comprehensive Review. AAPS PharmSciTech 2023; 24:66. [PMID: 36788150 DOI: 10.1208/s12249-023-02516-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
18
|
Vikash B, Shashi, Pandey NK, Kumar B, Wadhwa S, Goutam U, Alam A, Al-Otaibi F, Chaubey P, Mustafa G, Gupta G, Dua K, Singh SK. Formulation and evaluation of ocular self-nanoemulsifying drug delivery system of brimonidine tartrate. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Development Of Amoxicillin Trihydrate-Loaded Lyotropic Liquid Crystal Nanoparticles For Skin Infection. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Zhang C, Yin Y, Zhao J, Li Y, Wang Y, Zhang Z, Niu L, Zheng Y. An Update on Novel Ocular Nanosystems with Possible Benefits in the Treatment of Corneal Neovascularization. Int J Nanomedicine 2022; 17:4911-4931. [PMID: 36267540 PMCID: PMC9578304 DOI: 10.2147/ijn.s375570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Corneal neovascularization (CNV) is an ocular pathological change that results from an imbalance between angiogenic factors and antiangiogenic factors as a result of various ocular insults, including infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation. Current clinical strategies for the treatment of CNV include pharmacological treatment and surgical intervention. Despite some degree of success, the current treatment strategies are restricted by limited efficacy, adverse effects, and a short duration of action. Recently, gene-based antiangiogenic therapy has become an emerging strategy that has attracted considerable interest. However, potential complications with the use of viral vectors, such as potential genotoxicity resulting from long-term expression and nonspecific targeting, cannot be ignored. The use of ocular nanosystems (ONS) based on nanotechnology has emerged as a great advantage in ocular disease treatment during the last two decades. The potential functions of ONS range from nanocarriers, which deliver drugs and genes to target sites in the eye, to therapeutic agents themselves. Various preclinical studies conducted to date have demonstrated promising results of the use of ONS in the treatment of CNV. In this review, we provide an overview of CNV and its current therapeutic strategies and summarize the properties and applications of various ONS related to the treatment of CNV reported to date. Our goal is to provide a comprehensive review of these considerable advances in ONS in the field of CNV therapy over the past two decades to fill the gaps in previous related reports. Finally, we discuss existing challenges and future perspectives of the use of ONS in CNV therapy, with the goal of providing a theoretical contribution to facilitate future practical growth in the area.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuanping Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lingzhi Niu
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China,Correspondence: Yajuan Zheng, Email
| |
Collapse
|
21
|
Phyto-Therapeutic and Nanomedicinal Approaches: A New Hope for Management of Alzheimer's Disease. Int J Pharm 2022; 627:122213. [PMID: 36179926 DOI: 10.1016/j.ijpharm.2022.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
|
22
|
Sustained ocular delivery of desmopressin acetate via thermoreversible in situ gel formulation: preparation and in vitro/in vivo evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
The Use of Polymer Blends in the Treatment of Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071431. [PMID: 35890326 PMCID: PMC9322751 DOI: 10.3390/pharmaceutics14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The eye is an organ with limited drug access due to its anatomical and physiological barriers, and the usual forms of ocular administration are limited in terms of drug penetration, residence time, and bioavailability, as well as low patient compliance. Hence, therapeutic innovations in new drug delivery systems (DDS) have been widely explored since they show numerous advantages over conventional methods, besides delivering the content to the eye without interfering with its normal functioning. Polymers are usually used in DDS and many of them are applicable to ophthalmic use, especially biodegradable ones. Even so, it can be a hard task to find a singular polymer with all the desirable properties to deliver the best performance, and combining two or more polymers in a blend has proven to be more convenient, efficient, and cost-effective. This review was carried out to assess the use of polymer blends as DDS. The search conducted in the databases of Pubmed and Scopus for specific terms revealed that although the physical combination of polymers is largely applied, the term polymer blend still has low compliance.
Collapse
|
25
|
Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Ansari MD, Saifi Z, Pandit J, Khan I, Solanki P, Sultana Y, Aqil M. Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery. AAPS PharmSciTech 2022; 23:112. [PMID: 35411425 DOI: 10.1208/s12249-022-02217-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology-based drug delivery system has played a very crucial role in overpowering the tasks allied with the conventional dosage form. Spanlastics, an elastic nanovesicle with an ability to carry wide range of drug molecules, make it a potential drug delivery carrier. Spanlastics have extended rising curiosity for diverse sort of route of administration. They can squeeze themselves through the skin pore due to elastic and deformable nature which makes them favorable for transdermal delivery. Spanlastics consist of non-ionic surfactant or blend of surfactants. Many researchers proved that spanlastics have been significantly augment therapeutic efficacy, enhanced drug bioavailability, and reduced drug toxicity. This review summarizes various vesicular systems, composition and structure of spanlastics, advantages of spanlastics over other drug delivery systems, and mechanism of drug penetration through skin. It also gives a brief on different types of drug encapsulated in spanlastics vesicles for the treatment of various diseases.
Collapse
|
27
|
Almoshari Y. Development, Therapeutic Evaluation and Theranostic Applications of Cubosomes on Cancers: An Updated Review. Pharmaceutics 2022; 14:pharmaceutics14030600. [PMID: 35335975 PMCID: PMC8954425 DOI: 10.3390/pharmaceutics14030600] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a group of disorders characterized by aberrant gene function and alterations in gene expression patterns. In 2020, it was anticipated that 19 million new cancer cases would be diagnosed globally, with around 10 million cancer deaths. Late diagnosis and interventions are the leading causes of cancer-related mortality. In addition, the absence of comprehensive cancer therapy adds to the burden. Many lyotropic non-lamellar liquid-crystalline-nanoparticle-mediated formulations have been developed in the last few decades, with promising results in drug delivery, therapeutics, and diagnostics. Cubosomes are nano-structured liquid-crystalline particles made of specific amphiphilic lipids in particular proportions. Their ability to encapsulate lipophilic, hydrophilic, and amphiphilic molecules within their structure makes them one of a kind. They are biocompatible, versatile drug carriers that can deliver medications through various routes of administration. Many preclinical studies on the use of cubosomes in cancer treatment and theranostic applications have been conducted. However, before cubosomes may be employed in clinical practice, significant technical advances must be accomplished. This review summarizes the development of cubosomes and their multifunctional role in cancer treatment based on the most recent reports.
Collapse
Affiliation(s)
- Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
28
|
Sha X, Chan L, Fan X, Guo P, Chen T, Liu L, Zhong J. Thermosensitive Tri-Block Polymer Nanoparticle-Hydrogel Composites as Payloads of Natamycin for Antifungal Therapy Against Fusarium Solani. Int J Nanomedicine 2022; 17:1463-1478. [PMID: 35378880 PMCID: PMC8976233 DOI: 10.2147/ijn.s332127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Fusarium Solani is the principal pathogen associated with fungal keratitis. As a sensitive drug to F. Solani, natamycin (NAT) was limited by the poor penetration and low bioavailability in clinical application. The aim of this study was to develop a new type of tri-block polymer nanoparticle-gel complex (Gel@PLGA-PEI-PEG@NAT) for delivering NAT and evaluate its physicochemical properties, antifungal activity, safety, penetrability, adhesion, and efficacy in treating fungal keratitis. Methods PLGA-PEI-PEG@NAT was prepared and characterized with a nano-particle size analyzer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The minimum inhibitory concentration (MIC), cytotoxicity, penetrability of NAT (Natacyn® 5% ophthalmic suspension; Alcon) and PLGA-PEI-PEG@NAT with different concentrations were assessed. The eye surface retention time, ocular irritation, and curative effect of the NAT ophthalmic suspension and Gel@PLGA-PEI-PEG@NAT on a rabbit fungal keratitis model were evaluated. Results PLGA-PEI-PEG@NAT had a particle size of 150 nm, a positive surface charge, and a sustained-release effect. The MIC for F. Solani was 2 μg/mL. A cytotoxicity test and ocular irritation test showed that PLGA-PEI-PEG@NAT and Gel@PLGA-PEI-PEG@NAT had good biocompatibility and no obvious irritation for rabbit corneas. Penetration experiments confirmed that PLGA-PEI-PEG@NAT can successfully enter corneal epithelial cells and through the cornea to enter the anterior chamber. Compared with NAT ophthalmic suspension, Gel@PLGA-PEI-PEG@NAT had stronger cornea permeation at the same concentration. The therapeutic effect and precorneal retention ability of the NAT ophthalmic suspension and Gel@PLGA-PEI-PEG@NAT on the fungal keratitis rabbit model were compared. Gel@PLGA-PEI-PEG@NAT achieved a better therapeutic effect at a lower drug concentration, and its eye surface retention time was significantly longer than that of the NAT ophthalmic suspension. Conclusion Gel@PLGA-PEI-PEG@NAT was shown to be a safe and effective nanodrug delivery system for NAT. It has great potential to improve the cure rate of fungal keratitis, reduce the administration frequency during the treatment process, and improve patient compliance.
Collapse
Affiliation(s)
- Xiaoyuan Sha
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
| | - Leung Chan
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
| | - Xiaoyi Fan
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tianfeng Chen
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Correspondence: Lian Liu; Tianfeng Chen, Department of Ophthalmology, The First Affiliated Hospital of Jinan University; Department of Chemistry, Jinan University, 601 Huangpu Road, Guangzhou, 510632, People’s Republic of China, Email ;
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Department of Ophthalmology, The Sixth Affiliated Hospital, Jinan University, Dongguan, People’s Republic of China
| |
Collapse
|
29
|
Landucci E, Bonomolo F, De Stefani C, Mazzantini C, Pellegrini-Giampietro DE, Bilia AR, Bergonzi MC. Preparation of Liposomal Formulations for Ocular Delivery of Thymoquinone: In Vitro Evaluation in HCEC-2 e HConEC Cells. Pharmaceutics 2021; 13:pharmaceutics13122093. [PMID: 34959374 PMCID: PMC8704629 DOI: 10.3390/pharmaceutics13122093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/28/2022] Open
Abstract
Thymoquinone (TQ) is the main constituent of Nigella sativa L. essential oil. In vitro studies have shown its protective effect against H2O2-induced oxidative stress in human retinal pigment epithelium cells, and in vivo experiments have demonstrated its effect in decreasing corneal neovascularization and reducing the inflammation in an experimental dry eye model in mice. Its therapeutic use is limited by poor bioavailability, low solubility, and scarce permeability. In this study, two liposomal formulations have been developed, both of which consist of phosphatidylcholine and Plurol Oleique, a liquid lipid, and one of which is coated with 0.1% w/v hyaluronic acid (HA) to increase both TQ solubility and its ocular therapeutic potential. Each formulation has a size <200 nm and an EE% around 70%, determined by scattering techniques and the HPLC-DAD analytical method, respectively, and they result in a 2-fold increase in TQ solubility. HA-coated liposomes are stable over 2 months at +4 °C, and coated and uncoated liposomes present a gradual and prolonged release of TQ. Two cell lines, human corneal epithelial cells (HCEC-2) and human conjunctival epithelial cells (HConEC) were used to investigate the safety of the liposomal formulations. Uptake studies were also performed using fluorescent liposomes. Both liposomes and, in particular, HA-coated liposomes reduce the TQ toxicity observed at high doses in both HCEC-2 and HConEC cells, and both formulations increase the absorption at the cellular level and especially at the nucleus level, with a more pronounced effect for HA-coated liposomes.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.M.); (D.E.P.-G.)
| | - Francesca Bonomolo
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.B.); (C.D.S.); (A.R.B.)
| | - Chiara De Stefani
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.B.); (C.D.S.); (A.R.B.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.M.); (D.E.P.-G.)
| | - Domenico Edoardo Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.M.); (D.E.P.-G.)
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.B.); (C.D.S.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.B.); (C.D.S.); (A.R.B.)
- Correspondence: ; Tel.: +30-055-4573678
| |
Collapse
|
30
|
Recent Advances in Photodynamic Therapy against Fungal Keratitis. Pharmaceutics 2021; 13:pharmaceutics13122011. [PMID: 34959293 PMCID: PMC8709008 DOI: 10.3390/pharmaceutics13122011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Fungal keratitis is a serious clinical infection on the cornea caused by fungi and is one of the leading causes of blindness in Asian countries. The treatment options are currently limited to a few antifungal agents. With the increasing incidence of drug-resistant infections, many patients fail to respond to antibiotics. Riboflavin-mediated corneal crosslinking (similar to photodynamic therapy (PDT)) for corneal ectasia was approved in the US in the early 2000s. Current evidence suggests that PDT could have the potential to inhibit fungal biofilm formation and overcome drug resistance by using riboflavin and rose bengal as photosensitizers. However, only a few clinical trials have been initiated in anti-fungal keratitis PDT treatment. Moreover, the removal of the corneal epithelium and repeated application of riboflavin and rose bengal are required to improve drug penetration before and during PDT. Thus, an improvement in trans-corneal drug delivery is mandatory for a successful and efficient treatment. In this article, we review the studies published to date using PDT against fungal keratitis and aim to enhance the understanding and awareness of this research area. The potential of modifying photosensitizers using nanotechnology to improve the efficacy of PDT on fungal keratitis is also briefly reviewed.
Collapse
|
31
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
32
|
Wang L, Pan H, Gu D, Sun H, Chen K, Tan G, Pan W. A Novel Carbon Dots/Thermo-Sensitive In Situ Gel for a Composite Ocular Drug Delivery System: Characterization, Ex-Vivo Imaging, and In Vivo Evaluation. Int J Mol Sci 2021; 22:ijms22189934. [PMID: 34576093 PMCID: PMC8464813 DOI: 10.3390/ijms22189934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022] Open
Abstract
We developed a potential composite ocular drug delivery system for the topical administration of diclofenac sodium (DS). The novel carbon dot CDC-HP was synthesized by the pyrolysis of hyaluronic acid and carboxymethyl chitosan through a one-step hydrothermal method and then embedded in a thermosensitive in situ gel of poloxamer 407 and poloxamer 188 through swelling loading. The physicochemical characteristics of these carbon dots were investigated. The results of the in vitro release test showed that this composite ocular drug delivery system (DS-CDC-HP-Gel) exhibited sustained release for 12 h. The study of the ex vivo fluorescence distribution in ocular tissues showed that it could be used for bioimaging and tracing in ocular tissues and prolong precorneal retention. Elimination profiles in tears corresponded to the study of ex vivo fluorescence imaging. The area under the curve of DS in the aqueous humor in the DS-CDC-HP-Gel group was 3.45-fold that in the DS eye drops group, indicating a longer precorneal retention time. DS-CDC-HP with a positive charge and combined with a thermosensitive in situ gel might strengthen adherence to the corneal surface and prolong the ocular surface retention time to improve the bioavailability. This composite ocular delivery system possesses potential applications in ocular imaging and drug delivery.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, China;
| | - Donghao Gu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Haowei Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Kai Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Guoxin Tan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (L.W.); (D.G.); (H.S.); (K.C.); (G.T.)
- Correspondence: or
| |
Collapse
|
33
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Silva MD, Paris JL, Gama FM, Silva BFB, Sillankorva S. Sustained Release of a Streptococcus pneumoniae Endolysin from Liposomes for Potential Otitis Media Treatment. ACS Infect Dis 2021; 7:2127-2137. [PMID: 34167300 DOI: 10.1021/acsinfecdis.1c00108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Local delivery of antimicrobials for otitis media treatment would maximize therapeutic efficacy while minimizing side effects. However, drug transport across the tympanic membrane in the absence of a delivery system is challenging. In this study, the MSlys endolysin was encapsulated in deformable liposomes for a targeted treatment of S. pneumoniae, one of the most important causative agents of otitis media. MSlys was successfully encapsulated in liposomes composed of l-alpha-lecithin and sodium cholate (5:1) or l-alpha-lecithin and PEG2000 PE (10:1), with encapsulation efficiencies of about 35%. The PEGylated and sodium cholate liposomes showed, respectively, mean hydrodynamic diameters of 85 and 115 nm and polydispersity indices of 0.32 and 0.42, both being stable after storage at 4 °C for at least one year. Both liposomal formulations showed a sustained release of MSlys over 7 days. Cytotoxicity studies against fibroblast and keratinocyte cell lines revealed the biocompatible nature of both MSlys and MSlys-loaded liposomes. Additionally, the encapsulated MSlys showed prompt antipneumococcal activity against planktonic and biofilm S. pneumoniae, thus holding great potential for transtympanic treatment against S. pneumoniae otitis media.
Collapse
Affiliation(s)
- Maria Daniela Silva
- CEB−Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Juan L. Paris
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | | | - Bruno F. B. Silva
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
35
|
Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS. In vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv Transl Res 2021; 12:1355-1375. [PMID: 34382178 PMCID: PMC9061687 DOI: 10.1007/s13346-021-01043-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
The delivery of drugs to the posterior segment of the eye remains a tremendously difficult task. Prolonged treatment in conventional intravitreal therapy requires injections that are administered frequently due to the rapid clearance of the drug molecules. As an alternative, intraocular implants can offer drug release for long-term therapy. However, one of the several challenges in developing intraocular implants is selecting an appropriate in vitro dissolution testing model. In order to determine the efficacy of ocular implants in drug release, multiple in vitro test models were emerging. While these in vitro models may be used to analyse drug release profiles, the findings may not predict in vivo retinal drug exposure as this is influenced by metabolic and physiological factors. This review considers various types of in vitro test methods used to test drug release of ocular implants. Importantly, it discusses the challenges and factors that must be considered in the development and testing of the implants in an in vitro setup.
Collapse
Affiliation(s)
- Muhammad Faris Adrianto
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Febri Annuryanti
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland
| | - Ravi Sheshala
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300, Bandar Puncak Alam, Kuala Selangor, Malaysia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
36
|
Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent Advances in the Excipients Used for Modified Ocular Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4290. [PMID: 34361483 PMCID: PMC8347600 DOI: 10.3390/ma14154290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022]
Abstract
In ocular drug delivery, maintaining an efficient concentration of the drug in the target area for a sufficient period of time is a challenging task. There is a pressing need for the development of effective strategies for drug delivery to the eye using recent advances in material sciences and novel approaches to drug delivery. This review summarizes the important aspects of ocular drug delivery and the factors affecting drug absorption in the eye including encapsulating excipients (chitosan, hyaluronic acid, poloxamer, PLGA, PVCL-PVA-PEG, cetalkonium chloride, and gelatin) for modified drug delivery.
Collapse
Affiliation(s)
- Melitini Koutsoviti
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece;
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| |
Collapse
|
37
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
38
|
Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264:118006. [DOI: 10.1016/j.carbpol.2021.118006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
|
39
|
Navarro-Partida J, Castro-Castaneda CR, Santa Cruz-Pavlovich FJ, Aceves-Franco LA, Guy TO, Santos A. Lipid-Based Nanocarriers as Topical Drug Delivery Systems for Intraocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13050678. [PMID: 34065059 PMCID: PMC8151015 DOI: 10.3390/pharmaceutics13050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Effective drug delivery to intraocular tissues remains a great challenge due to complex anatomical and physiological barriers that selectively limit the entry of drugs into the eye. To overcome these challenges, frequent topical application and regular intravitreal injections are currently used to achieve the desired drug concentrations into the eye. However, the repetitive installation or recurrent injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery have demonstrated promising results for topical ophthalmic nanotherapies in the treatment of intraocular diseases. Studies have revealed that nanocarriers enhance the intraocular half-life and bioavailability of several therapies including proteins, peptides and genetic material. Amongst the array of nanoparticles available nowadays, lipid-based nanosystems have shown an increased efficiency and feasibility in topical formulations, making them an important target for constant and thorough research in both preclinical and clinical practice. In this review, we will cover the promising lipid-based nanocarriers used in topical ophthalmic formulations for intraocular drug delivery.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Carlos Rodrigo Castro-Castaneda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Tomer Ori Guy
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
- Correspondence: ; Tel.: +52-(33)-36-69-30-00 (ext. 2540)
| |
Collapse
|
40
|
Anup N, Chavan T, Chavan S, Polaka S, Kalyane D, Abed SN, Venugopala KN, Kalia K, Tekade RK. Reinforced electrospun nanofiber composites for drug delivery applications. J Biomed Mater Res A 2021; 109:2036-2064. [PMID: 33834610 DOI: 10.1002/jbm.a.37187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023]
Abstract
Electrospun technology becomes a valuable means of fabricating functional polymeric nanofibers with distinctive morphological properties for drug delivery applications. Nanofibers are prepared from the polymer solution, which allows the direct incorporation of therapeutics such as small drug molecules, genes, and proteins by merely mixing them into the polymeric solution. Due to their biocompatibility, adhesiveness, sterility, and efficiency in delivering diverse cargoes, electrospun nanofibers have gained much attention. This review discusses the capabilities of the electrospun nanofibers in delivering different therapeutics like small molecules, genes, and proteins to their desired target site for treating various ailments. The potential of nanofibers in administering through multiple administration routes and the associated challenges has also been expounded along with a cross-talk about the commercial products of nanofibers for biomedical applications.
Collapse
Affiliation(s)
- Neelima Anup
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, India
| | - Tejas Chavan
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, India
| | - Shruti Chavan
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, India
| | - Suryanarayana Polaka
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, India
| | - Dnyaneshwar Kalyane
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, India
| | - Sara Nidal Abed
- School of Science, Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Departments of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Kiran Kalia
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, India
| | - Rakesh K Tekade
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, India
| |
Collapse
|
41
|
Vaneev AN, Kost OA, Eremeev NL, Beznos OV, Alova AV, Gorelkin PV, Erofeev AS, Chesnokova NB, Kabanov AV, Klyachko NL. Superoxide Dismutase 1 Nanoparticles (Nano-SOD1) as a Potential Drug for the Treatment of Inflammatory Eye Diseases. Biomedicines 2021; 9:396. [PMID: 33917028 PMCID: PMC8067682 DOI: 10.3390/biomedicines9040396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory eye diseases remain the most common clinical problem in ophthalmology. The secondary processes associated with inflammation, such as overproduction of reactive oxygen species (ROS) and exhaustion of the endogenous antioxidant system, frequently lead to tissue degeneration, vision blurring, and even blindness. Antioxidant enzymes, such as copper-zinc superoxide dismutase (SOD1), could serve as potent scavengers of ROS. However, their delivery into the eye compartments represents a major challenge due to the limited ocular penetration. This work presents a new therapeutic modality specifically formulated for the eye on the basis of multilayer polyion complex nanoparticles of SOD1 (Nano-SOD1), which is characterized by appropriate storage stability and pronounced therapeutic effect without side reactions such as eye irritation; acute, chronic, and reproductive toxicity; allergenicity; immunogenicity; mutagenicity even at high doses. The ability of Nano-SOD1 to reduce inflammatory processes in the eye was examined in vivo in rabbits with a model immunogenic uveitis-the inflammation of the inner vascular tract of the eye. It was shown during preclinical studies that topical instillations of Nano-SOD1 were much more effective compared to the free enzyme in decreasing uveitis manifestations. In particular, we noted statistically significant differences in such inflammatory signs in the eye as corneal and conjunctival edema, iris hyperemia, and fibrin clots. Moreover, Nano-SOD1 penetrates into interior eye structures more effectively than SOD itself and retains enzyme activity in the eye for a much longer period of time, decreasing inflammation and restoring antioxidant activity in the eye. Thus, the presented Nano-SOD1 can be considered as a potentially useful therapeutic agent for the treatment of ocular inflammatory disorders.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Olga A. Kost
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
| | - Nikolay L. Eremeev
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
| | - Olga V. Beznos
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (O.V.B.); (N.B.C.)
| | - Anna V. Alova
- School of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Peter V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Alexander S. Erofeev
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia;
| | - Natalia B. Chesnokova
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (O.V.B.); (N.B.C.)
| | - Alexander V. Kabanov
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalia L. Klyachko
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.N.V.); (O.A.K.); (N.L.E.); (A.S.E.); (A.V.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| |
Collapse
|
42
|
González-Fernández FM, Bianchera A, Gasco P, Nicoli S, Pescina S. Lipid-Based Nanocarriers for Ophthalmic Administration: Towards Experimental Design Implementation. Pharmaceutics 2021; 13:447. [PMID: 33810399 PMCID: PMC8067198 DOI: 10.3390/pharmaceutics13040447] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Nanotherapeutics based on biocompatible lipid matrices allow for enhanced solubility of poorly soluble compounds in the treatment of ophthalmic diseases, overcoming the anatomical and physiological barriers present in the eye, which, despite the ease of access, remains strongly protected. Micro-/nanoemulsions, solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) combine liquid and/or solid lipids with surfactants, improving drug stability and ocular bioavailability. Current research and development approaches based on try-and-error methodologies are unable to easily fine-tune nanoparticle populations in order to overcome the numerous constraints of ocular administration routes, which is believed to hamper easy approval from regulatory agencies for these systems. The predictable quality and specifications of the product can be achieved through quality-by-design (QbD) implementation in both research and industrial environments, in contrast to the current quality-by-testing (QbT) framework. Mathematical modelling of the expected final nanoparticle characteristics by variation of operator-controllable variables of the process can be achieved through adequate statistical design-of-experiments (DoE) application. This multivariate approach allows for optimisation of drug delivery platforms, reducing research costs and time, while maximising the understanding of the production process. This review aims to highlight the latest efforts in implementing the design of experiments to produce optimised lipid-based nanocarriers intended for ophthalmic administration. A useful background and an overview of the different possible approaches are presented, serving as a starting point to introduce the design of experiments in current nanoparticle research.
Collapse
Affiliation(s)
- Felipe M. González-Fernández
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy;
| | - Annalisa Bianchera
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| | - Paolo Gasco
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy;
| | - Sara Nicoli
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| | - Silvia Pescina
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 27/a, 43124 Parma, Italy; (A.B.); (S.N.)
| |
Collapse
|
43
|
Mahran A, Ismail S, Allam AA. Development of Triamcinolone Acetonide-Loaded Microemulsion as a Prospective Ophthalmic Delivery System for Treatment of Uveitis: In Vitro and In Vivo Evaluation. Pharmaceutics 2021; 13:444. [PMID: 33805986 PMCID: PMC8064451 DOI: 10.3390/pharmaceutics13040444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
Treatment of uveitis (i.e., inflammation of the uvea) is challenging due to lack of convenient ophthalmic dosage forms. This work is aimed to determine the efficiency of triamcinolone acetonide (TA)-loaded microemulsion as an ophthalmic delivery system for the treatment of uveitis. Water titration method was used to construct different pseudo-ternary phase diagrams. Twelve microemulsion formulations were prepared using oleic acid, Cremophor EL, and propylene glycol. Among all tested formulations, Formulation F3, composed of oil: surfactant-co-surfactant (1:1): water (15:35:50% w/w, respectively), was found to be stable and showed acceptable pH, viscosity, conductivity, droplet size (211 ± 1.4 nm), and zeta potential (-25 ± 1.7 mV) and almost complete in vitro drug release within 24 h. The in vivo performance of the optimized formulation was evaluated in experimentally uveitis-induced rabbit model and compared with a commercial TA suspension (i.e., Kenacort®-A) either topically or by subconjunctival injection. Ocular inflammation was evaluated by clinical examination, white blood cell count, protein content measurement, and histopathological examination. The developed TA-loaded microemulsion showed superior therapeutic efficiency in the treatment of uveitis with high patient compliance compared to commercial suspension. Hence, it could be considered as a potential ocular treatment option in controlling of uveitis.
Collapse
Affiliation(s)
- Alaa Mahran
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.M.); (S.I.)
| | - Sayed Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.M.); (S.I.)
| | - Ayat A. Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.M.); (S.I.)
- Department of Pharmaceutics, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 71515, Egypt
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
44
|
Balasso A, Subrizi A, Salmaso S, Mastrotto F, Garofalo M, Tang M, Chen M, Xu H, Urtti A, Caliceti P. Screening of chemical linkers for development of pullulan bioconjugates for intravitreal ocular applications. Eur J Pharm Sci 2021; 161:105785. [PMID: 33667663 DOI: 10.1016/j.ejps.2021.105785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The treatment of posterior segment disorders of the eye requires therapeutic strategies to achieve drug effects over prolonged times. Innovative colloidal delivery systems can be designed to deliver drugs to the retina and prolong their intravitreal permanence. In order to exploit pullulan (Pull) as polymeric drug carrier for intravitreal drug delivery, derivatives of hydrophobic model molecule rhodamine B (RhB) were conjugated to the pullulan backbone through linkers with different stability, namely ether (Et), hydrazone (Hy) or ester (Es) bond to obtain Pull-Et-RhB, Pull-Hy-RhB and Pull-Es-RhB, respectively. Dynamic light scattering and transmission electron microscopy analyses showed that the polymer conjugates self-assembled into 20-25 nm particles. Pull-Et-RhB was fairly stable at all tested pH values. At the vitreal pH of 7.4, 50% of RhB was released from Pull-Hy-RhB and Pull-Es-RhB in 11 and 6 days, respectively. At endosomal pH (5.5), 50% of RhB was released from Pull-Hy-RhB and Pull-Es-RhB in 4 and 1 days, respectively. Multiple particle tracking analyses in ex vivo porcine eye model showed that the diffusivity of the bioconjugates in the vitreous was about 103 times lower than in water. Flow cytometry and confocal microscopy analyses showed that bioconjugates are remarkably taken up by the retinal RPE cells. In vivo studies showed that after intravitreal injection to mice, the bioconjugates localize in the ganglion cell layer and in the inner and outer plexiform layers. Pull-Hy-RhB particles were detected also inside the retinal blood vessels. These results demonstrate that pullulan with tailored linkers for drug conjugation is a promising vehicle for long-acting intravitreal injectables that are capable to permeate to the retina.
Collapse
Affiliation(s)
- Anna Balasso
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, 35131 Padova, Italy
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Stefano Salmaso
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, 35131 Padova, Italy
| | - Francesca Mastrotto
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, 35131 Padova, Italy
| | - Mariangela Garofalo
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, 35131 Padova, Italy
| | - Miao Tang
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, POB 56, 00014 University of Helsinki, Finland; Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Embankment, 199034 St. Petersburg, Russian Federation.
| | - Paolo Caliceti
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
45
|
Bessone CDV, Akhlaghi SP, Tártara LI, Quinteros DA, Loh W, Allemandi DA. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur J Pharm Sci 2021; 160:105748. [PMID: 33567324 DOI: 10.1016/j.ejps.2021.105748] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma is a degenerative optic neuropathy characterized by increased intraocular pressure that if untreated can result in blindness. Ophthalmological drug therapy is a challenge of great clinical importance due to the diversity of ocular biological barriers which commonly causes limited or no effectiveness for drugs delivered through the eye. In this work, we proposed the development of nanosized cubic liquid crystals (cubosomes) as a new drug carrier system for latanoprost, an anti-glaucoma drug. Latanoprost-loaded phytantriol cubosomes (CubLnp) were prepared using a top-down method. Latanoprost concentration in the formulations ranged from 0.00125% to 0.02% w/v. All cubosomes displayed an average size around 200 nm, a low polydispersity index of 0.1 and zeta potential values around -25 mV, with an encapsulation efficiency of about 90%. Structural studies revealed that cubosomes displayed a double-diamond surface, Pn3m cubic-phase structure, and was not affected by drug loading. Calorimetric studies revealed a fast and exothermic interaction between latanoprost and cubosomes. According to in vitro essays, latanoprost release from cubosomes was slow in time, evidencing a sustained release profile. Based on this behavior, the in vivo hypotensive intraocular effect was evaluated by means of the subconjunctival administration of CubLnp in normotensive rabbits. We obtained promising results in comparison with a marketed latanoprost formulation (0.005% w/v).
Collapse
Affiliation(s)
- Carolina Del Valle Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Seyedeh Parinaz Akhlaghi
- Institute of Chemistry, University of Campinas (UNICAMP), PO Box 6154, 13083-970 Campinas-SP, Brazil
| | - Luis Ignacio Tártara
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniela Alejandra Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), PO Box 6154, 13083-970 Campinas-SP, Brazil
| | - Daniel Alberto Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
46
|
To investigate fit-to-purpose nanocarrier for non-invasive drug delivery to posterior segment of eye. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Nanomedicines accessible in the market for clinical interventions. J Control Release 2021; 330:372-397. [DOI: 10.1016/j.jconrel.2020.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
|
48
|
Aboali FA, Habib DA, Elbedaiwy HM, Farid RM. Curcumin-loaded proniosomal gel as a biofreindly alternative for treatment of ocular inflammation: In-vitro and in-vivo assessment. Int J Pharm 2020; 589:119835. [PMID: 32890654 DOI: 10.1016/j.ijpharm.2020.119835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
Ocular inflammation is a natural defensive phenomenon, but, it results in discomfort in the eye; as well as makes the eye vulnerable to other diseases. The aim of this work is to investigate that Curcumin (CUR) could be an effective safer biofreindly alternative for treatment of ocular inflammation. Complete in-vitro characterization of proniosomal gel loading-CUR using different surfactants was studied. A comparative in-vivo evaluation of selected formulation to a marketed corticosteroid drops in induced-eye inflammation model in rabbits was assessed. The selected formulation (FCr 300) composed of Cremophore RH surfactant, lecithin and cholesterol (9:9:1) loading CUR (1.2% w/w). The formulation showed mean PS(212.0 ± 0.1)nm, PDI (0.3 ± 0.1) , ZP(-5.1 ± 0.2)mV and % EE (96.0 ± 0.1). TEM showed multilamellar circular shaped niosomes with smooth surface. SEM showed ruptured vesicles for the lyophilized formula. Selected proniosomal gel showed enhanced permeability 3.22-fold and 1.76-fold higher than CUR dispersion and its lyophilized form respectively. Both proniosomal gel (FCr300) and corticosteroid drops reduced the induced inflammatory signs effectively by 40% on day-one and complete recovery on day-four. This anti-inflammatory result was confirmed by histopathological analysis after treatment. Assessment of cumulative IOP as a predicted side effect verified the goal of this work. In conclusion, the use of CUR as a natural biofreindly alternative to the current chemical conventional ocular anti-inflammatory treatment protocols is comparable as an anti-inflammatory drug with much less side effects.
Collapse
Affiliation(s)
| | - Doaa A Habib
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
49
|
Kapadia R, Parikh K, Jain M, Sawant K. Topical instillation of triamcinolone acetonide-loaded emulsomes for posterior ocular delivery: statistical optimization and in vitro-in vivo studies. Drug Deliv Transl Res 2020; 11:984-999. [PMID: 32567039 DOI: 10.1007/s13346-020-00810-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of the present investigation was to formulate and characterize a novel lipid-based carrier-emulsomes loaded with triamcinolone acetonide (TA)/Nile red (NR) for non-invasive delivery to the posterior segment of the eye upon topical application. To optimize and delineate the effect of independent variables on dependent variables, Box-Behnken design (BBD) was adopted. The optimized batch was characterized for size, zeta potential, surface morphology by transmission electron microscopy, drug-excipient interaction by differential scanning calorimetry, osmolarity, pH, ex vivo transcorneal permeation, and stability studies. A short-term exposure (STE) test was performed on Statens Seruminstitut Rabbit Corneal (SIRC) cell lines to evaluate the in vitro ocular irritation. Precorneal retention study was performed in rabbit eyes. Confocal microscopy was used for ocular distribution studies in mice eye by preparing dye (Nile red)-loaded formulations. The surface response and contour plots along with ANOVA results demonstrated an interaction between the factors. The optimized batch had particle size of 131.17 ± 3.17 nm and entrapment efficiency of 71.56 ± 4.19%. TEM image showed unimodal, nano-sized emulsomes. TA-loaded emulsomes exhibited higher transcorneal permeation as compared to drug solution. In vitro irritation studies confirmed the safety of excipients for ophthalmic use. Fluorescence microscopic images obtained after ocular distribution studies showed strong fluorescence in inner and outer plexiform layers of the retina in comparison to dye solution confirming the delivery of dye to the posterior segment of mice eye after topical ocular instillation. Graphical abstract.
Collapse
Affiliation(s)
- Rakhee Kapadia
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, 390 001, India
| | - Kinjal Parikh
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, 390 001, India
| | - Mahendra Jain
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, 390 001, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, 390 001, India.
| |
Collapse
|
50
|
Mazet R, Yaméogo JBG, Wouessidjewe D, Choisnard L, Gèze A. Recent Advances in the Design of Topical Ophthalmic Delivery Systems in the Treatment of Ocular Surface Inflammation and Their Biopharmaceutical Evaluation. Pharmaceutics 2020; 12:pharmaceutics12060570. [PMID: 32575411 PMCID: PMC7356360 DOI: 10.3390/pharmaceutics12060570] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular inflammation is one of the most common symptom of eye disorders and diseases. The therapeutic management of this inflammation must be rapid and effective in order to avoid deleterious effects for the eye and the vision. Steroidal (SAID) and non-steroidal (NSAID) anti-inflammatory drugs and immunosuppressive agents have been shown to be effective in treating inflammation of the ocular surface of the eye by topical administration. However, it is well established that the anatomical and physiological ocular barriers are limiting factors for drug penetration. In addition, such drugs are generally characterized by a very low aqueous solubility, resulting in low bioavailability as only 1% to 5% of the applied drug permeates the cornea. The present review gives an updated insight on the conventional formulations used in the treatment of ocular inflammation, i.e., ointments, eye drops, solutions, suspensions, gels, and emulsions, based on the commercial products available on the US, European, and French markets. Additionally, sophisticated formulations and innovative ocular drug delivery systems will be discussed. Promising results are presented with micro- and nanoparticulated systems, or combined strategies with polymers and colloidal systems, which offer a synergy in bioavailability and sustained release. Finally, different tools allowing the physical characterization of all these delivery systems, as well as in vitro, ex vivo, and in vivo evaluations, will be considered with regards to the safety, the tolerance, and the efficiency of the drug products.
Collapse
Affiliation(s)
- Roseline Mazet
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Grenoble University Hospital, 38043 Grenoble, France
| | | | - Denis Wouessidjewe
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Luc Choisnard
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Annabelle Gèze
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Correspondence: ; Tel.: +33-476-63-53-01
| |
Collapse
|