1
|
Zheng Y, Luo S, Xu M, He Q, Xie J, Wu J, Huang Y. Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation. Acta Pharm Sin B 2024; 14:3876-3900. [PMID: 39309496 PMCID: PMC11413706 DOI: 10.1016/j.apsb.2024.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the promising prospects of nanoparticles in oral drug delivery, the process of oral administration involves a complex transportation pathway that includes cellular uptake, intracellular trafficking, and exocytosis by intestinal epithelial cells, which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects. Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells, including surface properties such as ligand modification, surface charge, hydrophilicity/hydrophobicity, intestinal protein corona formation, as well as holistic properties like particle size, shape, and rigidity. Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems. Therefore, this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles, elucidating the underlying principles governing their impact on transepithelial transport. The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.
Collapse
Affiliation(s)
- Yaxian Zheng
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shiqin Luo
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Min Xu
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin He
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiang Xie
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiawei Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
3
|
Yamada K, Ristroph KD, Kaneko Y, Lu HD, Prud'homme RK, Sato H, Onoue S. Pharmacokinetic control of orally dosed cyclosporine A with mucosal drug delivery system. Biopharm Drug Dispos 2024; 45:117-126. [PMID: 38646776 DOI: 10.1002/bdd.2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to control the oral absorption of cyclosporine A (CsA) with the use of a mucosal drug delivery system (mDDS). Mucopenetrating nanocarriers (MP/NCs) and mucoadhesive nanocarriers (MA/NCs) were prepared by flash nanoprecipitation employing polystyrene-block-poly(ethylene glycol) and polystyrene-block-poly(N,N-dimethyl aminoethyl methacrylate), respectively. Their particle distribution in the rat gastrointestinal tract were visualized by fluorescent imaging. Plasma concentrations were monitored after oral administration of CsA-loaded MP/NCs (MP/CsA) and MA/NCs (MA/CsA) to rats. MP/NCs and MA/NCs had a particle size below 200 nm and ζ-potentials of 4 and 40 mV, respectively. The results from in vitro experiments demonstrated mucopenetration of MP/NCs and mucoadhesion of MA/NCs. Confocal laser scanning microscopic images showed diffusion of MP/NCs in the gastrointestinal mucus towards epithelial cells and localization of MA/NCs on the surface of the gastrointestinal mucus layer. In a pH 6.8 solution, rapid and sustained release of CsA were observed for MP/CsA and MA/CsA, respectively. After oral dosing (10 mg-CsA/kg) to rats, amorphous CsA powder exhibited a time to maximum plasma concentration (Tmax) of 3.4 h, maximum plasma concentration (Cmax) of 0.12 μg/mL, and bioavailability of 0.7%. Compared with amorphous CsA powder, MP/CsA shortened Tmax by 1.1 to 2.3 h and increased the bioavailability by 43-fold to 30.1%, while MA/CsA prolonged Tmax by 3.4 to 6.8 h with Cmax and bioavailability of 0.65 μg/mL and 11.7%, respectively. These pharmacokinetic behaviors would be explained by their diffusion and release properties modulated by polymeric surface modification. The mDDS approach is a promising strategy for the pharmacokinetic control of orally administered CsA.
Collapse
Affiliation(s)
- Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kurt D Ristroph
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
| | - Yuuki Kaneko
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hoang D Lu
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
| | - Robert K Prud'homme
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, New Jersey, USA
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
4
|
Han R, He H, Lu Y, Lu H, Shen S, Wu W. Oral targeted drug delivery to post-gastrointestinal sites. J Control Release 2024; 370:256-276. [PMID: 38679163 DOI: 10.1016/j.jconrel.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
As an essential branch of targeted drug delivery, oral targeted delivery is attracting growing attention in recent years. In addition to site-specific delivery for the treatment of locoregional diseases in the gastrointestinal tract (GIT), oral targeted delivery to remote sites beyond the GIT emerges as a cutting-edge research topic. This review aims to provide an overview of the fundamental concepts and most recent advances in this field. Owing to the physiological barriers existing in the GIT, carrier systems should be transported across the enteric epithelia to target remote sites. Recently, pioneer investigations have validated the transport of intact micro- or nanocarriers across gastrointestinal barriers and subsequently to various distal organs and tissues. The microfold (M) cell pathway is the leading mechanism underlying the oral absorption of particulates, but the contribution of the transcellular and paracellular pathways should not be neglected either. In addition to well-acknowledged physicochemical and biological factors, the formation of a protein corona may also influence the biological fate of carrier systems. Although in an early stage of conceptualization, oral targeted delivery to remote diseases has demonstrated promising potential for the treatment of inflammation, tumors, and diseases inflicting the lymphatic and mononuclear phagocytosis systems.
Collapse
Affiliation(s)
- Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Huiping Lu
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
5
|
Yamada K, Hirata A, Sato H, Onoue S. Nanocarriers with long-term retention in the respiratory system for prolonged drug exposure. Pharm Dev Technol 2024; 29:477-481. [PMID: 38656248 DOI: 10.1080/10837450.2024.2346292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
This study was the first attempt to visualize pulmonary retention of nanocarriers (NCs) with the use of the P2 probe, a new water-initiated aggregation-caused fluorescent-quenching (ACQ) dye, for the development of NCs with long-lasting retention in the respiratory system (RS). Flash nanoprecipitation was used to fabricate mucopenetrating NCs (MP/NCs) and mucoadhesive NCs (MA/NCs). Both NCs were labeled with the P2 probe, and their distribution and retention in RS were visualized after intratracheal administration to rats. MP/NCs and MA/NCs had a mean diameter below 200 nm and ζ-potential of 0 and 48 mV, respectively. MA/NCs showed three times stronger interactions with mucin than MP/NCs, resulting in significantly lower diffusiveness in mucus. The P2 probe exhibited an ACQ effect with negligible rekindling in simulated lung fluid, and the spectroscopic data suggested applicability to reliable imaging of insufflated NCs. In confocal laser scanning microscopic and in vivo imaging system images of the rat RS, MA/NCs were locally deposited in the respiratory tract and transported toward the pharynx by mucocilliary clearance (MCC). In contrast, MP/NCs diffused in the respiratory mucus were less subject to the influence of MCC. Based on the results from the bioimaging study using the P2 probe, MP/NCs could offer enhanced pulmonary retention of drugs compared with MA/NCs.
Collapse
Affiliation(s)
- Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akishi Hirata
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
6
|
Xu M, Qi Y, Liu G, Song Y, Jiang X, Du B. Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance. ACS NANO 2023; 17:20825-20849. [PMID: 37921488 DOI: 10.1021/acsnano.3c05853] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the in vivo transport of nanoparticles provides guidelines for designing nanomedicines with higher efficacy and fewer side effects. Among many factors, the size of nanoparticles plays a key role in controlling their in vivo transport behaviors due to the existence of various physiological size thresholds within the body and size-dependent nano-bio interactions. Encouraged by the evolving discoveries of nanoparticle-size-dependent biological effects, we believe that it is necessary to systematically summarize the size-scaling laws of nanoparticle transport in vivo. In this review, we summarized the size effect of nanoparticles on their in vivo transport along their journey in the body: begin with the administration of nanoparticles via different delivery routes, followed by the targeting of nanoparticles to intended tissues including tumors and other organs, and eventually clearance of nanoparticles through the liver or kidneys. We outlined the tools for investigating the in vivo transport of nanoparticles as well. Finally, we discussed how we may leverage the size-dependent transport to tackle some of the key challenges in nanomedicine translation and also raised important size-related questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Gaoshuo Liu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuanqing Song
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| |
Collapse
|
7
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
8
|
Taheri A, Bremmell KE, Joyce P, Prestidge CA. Battle of the milky way: Lymphatic targeted drug delivery for pathogen eradication. J Control Release 2023; 363:507-524. [PMID: 37797891 DOI: 10.1016/j.jconrel.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Many viruses, bacteria, and parasites rely on the lymphatic system for survival, replication, and dissemination. While conventional anti-infectives can combat infection-causing agents in the bloodstream, they do not reach the lymphatic system to eradicate the pathogens harboured there. This can result in ineffective drug exposure and reduce treatment effectiveness. By developing effective lymphatic delivery strategies for antiviral, antibacterial, and antiparasitic drugs, their systemic pharmacokinetics may be improved, as would their ability to reach their target pathogens within the lymphatics, thereby improving clinical outcomes in a variety of acute and chronic infections with lymphatic involvement (e.g., acquired immunodeficiency syndrome, tuberculosis, and filariasis). Here, we discuss approaches to targeting anti-infective drugs to the intestinal and dermal lymphatics, aiming to eliminate pathogen reservoirs and interfere with their survival and reproduction inside the lymphatic system. These include optimized lipophilic prodrugs and drug delivery systems that promote lymphatic transport after oral and dermal drug intake. For intestinal lymphatic delivery via the chylomicron pathway, molecules should have logP values >5 and long-chain triglyceride solubilities >50 mg/g, and for dermal lymphatic delivery via interstitial lymphatic drainage, nanoparticle formulations with particle size between 10 and 100 nm are generally preferred. Insight from this review may promote new and improved therapeutic solutions for pathogen eradication and combating infective diseases, as lymphatic system involvement in pathogen dissemination and drug resistance has been neglected compared to other pathways leading to treatment failure.
Collapse
Affiliation(s)
- Ali Taheri
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
9
|
Kim KS, Na K, Bae YH. Nanoparticle oral absorption and its clinical translational potential. J Control Release 2023; 360:149-162. [PMID: 37348679 DOI: 10.1016/j.jconrel.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Oral administration of pharmaceuticals is the most preferred route of administration for patients, but it is challenging to effectively deliver active ingredients (APIs) that i) have extremely high or low solubility in intestinal fluids, ii) are large in size, iii) are subject to digestive and/or metabolic enzymes present in the gastrointestinal tract (GIT), brush border, and liver, and iv) are P-glycoprotein substrates. Over the past decades, efforts to increase the oral bioavailability of APIs have led to the development of nanoparticles (NPs) with non-specific uptake pathways (M cells, mucosal, and tight junctions) and target-specific uptake pathways (FcRn, vitamin B12, and bile acids). However, voluminous findings from preclinical models of different species rarely meet practical standards when translated to humans, and API concentrations in NPs are not within the adequate therapeutic window. Various NP oral delivery approaches studied so far show varying bioavailability impacted by a range of factors, such as species, GIT physiology, age, and disease state. This may cause difficulty in obtaining similar oral delivery efficacy when research results in animal models are translated into humans. This review describes the selection of parameters to be considered for translational potential when designing and developing oral NPs.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - You Han Bae
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Xia Q, Shen J, Ding H, Liu S, Li F, Li F, Feng N. Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy. Expert Opin Drug Deliv 2023; 20:1467-1488. [PMID: 37814582 DOI: 10.1080/17425247.2023.2268512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Intravenous nanocrystals (INCs) have shown intrinsic advantages in antitumor applications, particularly their properties of high drug loading, low toxicity, and controllable size. Therefore, it has a very bright application prospect as a drug delivery system. AREAS COVERED The ideal formulation design principles, fabrication, solidification, in vivo fate of INCs, the applications in drug delivery system (DDS) and the novel applications are covered in this review. EXPERT OPINION It is vital to select a suitable formulation and fabrication method to produce a stable and sterile INCs. Besides, the type of stabilizers and physical characteristics can also influence the in vivo fate of INCs, which is worthy of further studying. Based on wide researches about applications of INCs in cancer, biomimetic INCs are concerned increasingly for its favorable compatibility. The output of these studies suggested that INCs-based drug delivery could be a novel strategy for addressing the delivery of the drug that faces solubility, bioavailability, and toxicity problems.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyi Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fengqian Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Sheng Y, Yu Q, Huang Y, Zhu Q, Chen Z, Wu W, Yi T, Lu Y. Pickering Emulsions Enhance Oral Bioavailability of Curcumin Nanocrystals: The Effect of Oil Types. Pharmaceutics 2023; 15:pharmaceutics15051341. [PMID: 37242583 DOI: 10.3390/pharmaceutics15051341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Nanocrystals (NCs) have the potential to enhance the oral bioavailability of Class IV drugs in the Biopharmaceutical Classification System (BCS) due to the absorption of the intact crystals. The performance is compromised by the dissolution of NCs. Drug NCs have recently been adopted as solid emulsifiers to prepare nanocrystal self-stabilized Pickering emulsions (NCSSPEs). They are advantageous in high drug loading and low side effects due to the specific drug loading mode and the absence of chemical surfactants. More importantly, NCSSPEs may further enhance the oral bioavailability of drug NCs by impeding their dissolution. This is especially true for BCS IV drugs. In this study, curcumin (CUR), a typical BCS IV drug, was adopted to prepare CUR-NCs stabilized Pickering emulsions using either indigestible (isopropyl palmitate, IPP) or digestible (soybean oil, SO) oils, i.e., IPP-PEs and SO-PEs. The optimized formulations were spheric with CUR-NCs adsorbed on the water/oil interface. The CUR concentration in the formulation reached 20 mg/mL, which was far beyond the solubility of CUR in IPP (158.06 ± 3.44 μg/g) or SO (124.19 ± 2.40 μg/g). Moreover, the Pickering emulsions enhanced the oral bioavailability of CUR-NCs, being 172.85% for IPP-PEs and 152.07% for SO-PEs. The digestibility of the oil phase affected the amounts of CUR-NCs that remained intact in lipolysis and, thus, the oral bioavailability. In conclusion, converting NCs into Pickering emulsions provides a novel strategy to enhance the oral bioavailability of CUR and BCS IV drugs.
Collapse
Affiliation(s)
- Yuze Sheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qin Yu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yanping Huang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
12
|
Zhang X, Xu X, Wang X, Lin Y, Zheng Y, Xu W, Liu J, Xu W. Hepatoma-targeting and reactive oxygen species-responsive chitosan-based polymeric micelles for delivery of celastrol. Carbohydr Polym 2023; 303:120439. [PMID: 36657834 DOI: 10.1016/j.carbpol.2022.120439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
A glycyrrhetinic acid-modified carboxymethyl chitosan-thioketal-rhein (GCTR) conjugate was designed and synthesized for the in vivo delivery of celastrol (Cela). Cela was encapsulated into polymeric micelles (PMs) formed by GCTR conjugates self-assembly in water to form Cela/GCTR PMs with high drug loading capacity and small particle size. Cela/GCTR PMs had a sustained-release characteristic in the blood environment and a rapid-release feature in the tumor microenvironment. Cela/GCTR PMs had a significant proliferation inhibitory effect on HepG2 and BEL-7402 cells, but a negligible impact on L-02 cells at low concentrations. Cela/GCTR PMs possessed reactive oxygen species (ROS)-responsive properties in vitro and in cells, could improve the bioavailability of Cela, and exert remarkable hepatoma-targeting properties. Cela/GCTR PMs could also effectively inhibit tumor growth with no apparent damage to different organs. In summary, GCTR PMs with good ROS-responsive and hepatoma-targeting properties are expected to be possible delivery carriers for hydrophobic antineoplastic drugs for hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Xue Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xueya Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaoying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yajuan Lin
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yaling Zheng
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jian Liu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
13
|
Yang D, Feng Y, Yao X, Zhao B, Li D, Liu N, Fang Y, Midgley A, Liu D, Katsuyoshi N. Recent advances in bioactive nanocrystal-stabilized Pickering emulsions: Fabrication, characterization, and biological assessment. Compr Rev Food Sci Food Saf 2023; 22:946-970. [PMID: 36546411 DOI: 10.1111/1541-4337.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Numerous literatures have shown the advantages of Pickering emulsion (PE) for the delivery of bioactive ingredients in the fields of food, medicine, and cosmetics, among others. On this basis, the multi-loading mode of bioactives (internal phase encapsulation and/or loading at the interface) in small molecular bioactives nanocrystal-stabilized PE (BNC-PE) enables them higher loading efficiencies, controlled release, and synergistic or superimposed effects. Therefore, BNC-PE offers an efficacious delivery system. In this review, we briefly summarize BNC-PE fabrication and characterization, with a focus on the processes of possible evolution and absorption of differentially applied BNC-PE when interacting with the body. In addition, methods of monitoring changes and absorption of BNC-PE in vivo, from the nanomaterial perspective, are also introduced. The purpose of this review is to provide an accessible and comprehensive methodology for the characterization and evaluation of BNC-PE after formulation and preparation, especially in relation to biological assessment and detailed mechanisms throughout the absorption process of BNC-PE in vivo.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Baofu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Dan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, China
| | - Dechun Liu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nishinari Katsuyoshi
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
14
|
Hang L, Shen C, Xue Y, Wu W, Shen B, Yuan H. Exploring the translocation behaviours in vivo of herpetrione amorphous nanoparticles via oral delivery. J Drug Target 2023; 31:278-285. [PMID: 36322516 DOI: 10.1080/1061186x.2022.2141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanotechnology has been a primary strategy to enhance oral bioavailability of poorly water soluble drugs. However, the limited information in vivo fate of impedes the development of nanoparticles via the oral delivery, especially the amorphous nanoparticles with high energy states are rarely reported. This study is to track the translocation of oral herpetrione amorphous nanoparticles (HPE-ANPs). We prepare amorphous particles (ANPs) of various sizes (200 nm and 450 nm), which are embedded with an aggregation-caused quenching (ACQ) dyes for tracking the intact nanoparticles. Nanoparticles remain in the gastrointestinal tract (GIT) for 8 h following oral administration, suggesting that most ANPs was mainly degraded or absorbed in the small intestine. Ex vivo imaging shows that the fluorescent signals are observed in the GIT and liver but not in other organs, which attributed to low absorption of integral nanoparticles. Besides, HPE-ANPs may be directly interact with GIT epithelia, and ileum provides better absorption than the jejunum. Cellular studies prove that integral HPE-ANPs can be taken up by enterocyte, while it penetrates cell monolayers only small amounts. In conclusion, we speculate that the drug in the form of integral nanoparticles and small molecules may be co-absorbed to improve bioavailability in vivo.
Collapse
Affiliation(s)
- Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Chengying Shen
- The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Yuye Xue
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of T CM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China.,Key Laboratory of Modern Preparation of T CM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
Effects of length and type of the alkyl chain on the micellization behavior of mixed systems of HS15 with fatty acids. Food Chem 2022; 397:133830. [DOI: 10.1016/j.foodchem.2022.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
|
16
|
Lv Y, Wu W, Corpstein CD, Li T, Lu Y. Biological and Intracellular Fates of Drug Nanocrystals through Different Delivery Routes: Recent Development Enabled by Bioimaging and PK Modeling. Adv Drug Deliv Rev 2022; 188:114466. [PMID: 35905948 DOI: 10.1016/j.addr.2022.114466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Nanocrystals have contributed to exciting improvements in the delivery of poorly water-soluble drugs. The biological and intracellular fates of nanocrystals are currently under debate. Due to the remarkable commercial success in enhancing oral bioavailability, nanocrystals have originally been regarded as a simple formulation approach to enhance dissolution. However, the latest findings from novel bioimaging tools lead to an expanded view. Intact nanocrystals may offer long-term durability in the body and offer drug delivery capabilities like those of other nano-carriers. This review renews the understanding of the biological fates of nanocrystals administered via oral, intravenous, and parenteral (e.g., dermal, ocular, and pulmonary) routes. The intracellular pathways and dissolution kinetics of nanocrystals are explored. Additionally, the future trends for in vitro and in vivo quantification of nanocrystals, as well as factors impacting the biological and intracellular fates of nanocrystals are discussed. In conclusion, nanocrystals present a promising and underexplored therapeutic opportunity with immense potential.
Collapse
Affiliation(s)
- Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
17
|
The Study of Cyclosporin A Nanocrystals Uptake and Transport across an Intestinal Epithelial Cell Model. Polymers (Basel) 2022; 14:polym14101975. [PMID: 35631858 PMCID: PMC9147483 DOI: 10.3390/polym14101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclosporin A nanocrystals (CsA-NCs) interaction with Caco-2 cells were investigated in this study, including cellular uptake and transport across Caco-2 cell monolayers. CsA-NCs of 165 nm, 240 nm and 450 nm were formulated. The dissolution of CsA-NCs was investigated by paddle method. The effect of size, concentration and incubation time on cellular uptake and dissolution kinetics of CsA-NCs in cells were studied. Uptake mechanisms were also evaluated using endocytotic inhibitors and low temperature (4 °C). The cell monolayers were incubated with each diameter CsA-NCs to evaluate the effect of size on the permeation characteristics of CsA across the intestinal mucosa. The results of dissolution study showed that 165 nm CsA-NC had the highest dissolution rate followed by 240 CsA-NC and finally 450 nm CsA-NC. The saturation of cell uptake of CsA-NCs was observed with the increase of incubation concentration and time. 240 nm and 450 nm CsA-NCs had the lowest and highest uptake efficiency at different time and drug concentration, respectively. The uptake of all three-sized CsA-NCs declined significantly in some different degree after the pre-treatment with different endocytosis inhibitors. 165 nm CsA-NC showed a highest transport capacity across monolayers at the same concentration and time. The results suggest that the size of CsA-NCs can not only affect the efficiency of cellular uptake, but also the type of endocytosis. Decreasing particle size of CsA-NCs can improve transport capacity of CsA through cell monolayer.
Collapse
|
18
|
Fan W, Peng H, Yu Z, Wang L, He H, Ma Y, Qi J, Lu Y, Wu W. The long-circulating effect of pegylated nanoparticles revisited via simultaneous monitoring of both the drug payloads and nanocarriers. Acta Pharm Sin B 2022; 12:2479-2493. [PMID: 35646531 PMCID: PMC9136618 DOI: 10.1016/j.apsb.2021.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The long-circulating effect is revisited by simultaneous monitoring of the drug payloads and nanocarriers following intravenous administration of doxorubicin (DOX)-loaded methoxy polyethylene glycol-polycaprolactone (mPEG-PCL) nanoparticles. Comparison of the kinetic profiles of both DOX and nanocarriers verifies the long-circulating effect, though of limited degree, as a result of pegylation. The nanocarrier profiles display fast clearance from the blood despite dense PEG decoration; DOX is cleared faster than the nanocarriers. The nanocarriers circulate longer than DOX in the blood, suggesting possible leakage of DOX from the nanocarriers. Hepatic accumulation is the highest among all organs and tissues investigated, which however is reversely proportionate to blood circulation time. Pegylation and reduction in particle size prove to extend circulation of drug nanocarriers in the blood with simultaneous decrease in uptake by various organs of the mononuclear phagocytic system. It is concluded that the long-circulating effect of mPEG-PCL nanoparticles is reconfirmed by monitoring of either DOX or the nanocarriers, but the faster clearance of DOX suggests possible leakage of a fraction of the payloads. The findings of this study are of potential translational significance in design of nanocarriers towards optimization of both therapeutic and toxic effects.
Collapse
|
19
|
Si Y, Grazon C, Clavier G, Audibert JF, Sclavi B, Méallet-Renault R. FRET-mediated quenching of BODIPY fluorescent nanoparticles by methylene blue and its application to bacterial imaging. Photochem Photobiol Sci 2022; 21:1249-1255. [PMID: 35428949 DOI: 10.1007/s43630-022-00215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
High resolution and a good signal to noise ratio are a requirement in cell imaging. However, after labelling with fluorescent entities, and after several washing steps, there is often an unwanted fluorescent background that reduces the images resolution. For this purpose, we developed an approach to remove the signal from extra-cellular fluorescent nanoparticles (FNPs) during bacteria imaging, without the need for any washing steps. Our idea is to use methylene blue to quench > 90% of the emission of BODIPY-based fluorescent polymer nanoparticle by a FRET process. This "Hide-and-Seek Game" approach offers a novel strategy to apply fluorescence quenching in bioimaging to improve image accuracy.
Collapse
Affiliation(s)
- Yang Si
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,LBPA, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,Epigenetic Chemical Biology, CNRS UMR3523, Institut Pasteur, 28 Rue du Dr Roux, 75015, Paris, France
| | - Chloé Grazon
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400, Talence, France
| | - Gilles Clavier
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | | | - Bianca Sclavi
- LBPA, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France. .,LCQB, CNRS UMR 7238, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| | - Rachel Méallet-Renault
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France. .,ISMO, Université Paris-Saclay, CNRS, 91405, Orsay, France.
| |
Collapse
|
20
|
Sun W, Gao J, Fan R, Zhang T, Tian Y, Wang Z, Zhang H, Zheng A. The Effect of Particle Size on the Absorption of Cyclosporin A Nanosuspensions. Int J Nanomedicine 2022; 17:1741-1755. [PMID: 35469173 PMCID: PMC9034871 DOI: 10.2147/ijn.s357541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Cyclosporin A (CsA) is a hydrophobic drug widely used as an immunosuppressant and anti-rejection drug in solid organ transplantation. On the market, there are two oral CsA formulations available containing polyoxyethylene castor oil, which can cause serious allergic reactions and nephrotoxicity. In order to eliminate polyoxyethylene castor oil, CsA was formulated into a nanosuspension. This study aimed to design an oral cyclosporin A nanosuspensions (CsA-NSs) and investigate the effect of particle size on absorption of CsA-NSs. Methods CsA-NSs were prepared using a wet bead milling method. Particle size, morphology and crystallinity state of CsA-NSs were characterized. The in vitro dissolution, the intestinal absorption properties and pharmacokinetic study of CsA-NSs were investigated. Results CsA-NSs with sizes of 280 nm, 522 nm and 2967 nm were prepared. The shape of CsA-NSs with smaller size was similar to that of spheres. The crystallinity of CsA in nanocrystals was reduced. The dissolution rate of CsA-NSs (280 nm) was greater than that of CsA-NSs (522 nm) and CsA-NSs (2967 nm). CsA-NSs (280 nm) showed higher absorption rate constants (Kα) and effective permeability coefficients (Peff) of different intestinal segments compared with that of CsA-NSs (522 nm) and CsA-NSs (2967 nm). AUC0-48h of 280 nm CsA-NSs was about 1.12-fold of that of 522 nm CsA-NSs, and about 1.51-fold of that of 2967 nm CsA-NSs. In particular, the particle size of CsA-NSs was nanoscale, and their bioavailability was bioequivalent with marked self-microemulsion (Sandimmun Neoral®). Conclusion It is feasible to prepare CsA-NSs. The dissolution rate, gastrointestinal transport properties and the oral absorption of CsA-NSs were promoted by reducing size. Considering the cost, efficiency and energy consumption, there should be an optimal particle size range in industrial production.
Collapse
Affiliation(s)
- Wenjun Sun
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jing Gao
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ranran Fan
- Bengbu Medical College, Bengbu, People’s Republic of China
| | - Ting Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yang Tian
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Zengming Wang
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Hui Zhang
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Hui Zhang; Aiping Zheng, Department of Pharmaceutics, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, People’s Republic of China, Tel +86 10 66931694, Email ;
| | - Aiping Zheng
- Department of Pharmaceutics, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Zheng X, Fang Z, Huang W, Qi J, Dong X, Zhao W, Wu W, Lu Y. Ionic co-aggregates (ICAs) based oral drug delivery: Solubilization and permeability improvement. Acta Pharm Sin B 2022; 12:3972-3985. [PMID: 36213530 PMCID: PMC9532535 DOI: 10.1016/j.apsb.2022.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Due to the overwhelming percentage of poorly water-soluble drugs, pharmaceutical industry is in urgent need of efficient approaches for solubilization and permeability improvement. Salts consisting of lipophilic fatty acid anions and hydrophilic choline cations are found to be surface active and able to form ionic co-aggregates (ICAs) in water. Choline oleate-based ICAs significantly enhance oral absorption of paclitaxel (PTX) as compared with cremophor EL-based micelles (MCs). Aggregation-caused quenching probes enable tracking of intact ICAs in in vivo transport and cellular interaction. Prolonged intestinal retention of ICAs than MCs implies stronger solubilizing capability in vivo. Ex vivo imaging of major organs and intestinal tracts suggests transepithelial transport of intact ICAs. Cellular studies support the enhanced absorption of PTX and transmembrane transport of intact ICAs. In conclusion, ICAs, consisting of lipophilic ions and hydrophilic counter-ions, are of great potential in delivery of poorly water-soluble drugs by enhancing solubility and permeability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wu
- Corresponding author. Tel.: +86 21 51980084.
| | - Yi Lu
- Corresponding author. Tel.: +86 21 51980084.
| |
Collapse
|
22
|
Insight into the in vivo fate of intravenous herpetrione amorphous nanosuspensions by aggregation-caused quenching probes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Metal phenolic network-stabilized nanocrystals of andrographolide to alleviate macrophage-mediated inflammation in-vitro. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Hang L, Hu F, Shen C, Shen B, Zhu W, Yuan H. Development of herpetrione nanosuspensions stabilized by glycyrrhizin for enhancing bioavailability and synergistic hepatoprotective effect. Drug Dev Ind Pharm 2022; 47:1664-1673. [PMID: 35188016 DOI: 10.1080/03639045.2022.2045304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objective of this study was to develop novel herpetrione (HPE) nanosuspensions stabilized by glycyrrhizin (HPE NSs/GL) for enhancing bioavailability and hepatoprotective effect of HPE. HPE NSs/GL were prepared by wet media milling method and then systemically evaluated by particle size analysis, scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), dissolution test, pharmacokinetics, and hepatoprotective effect. HPE-NSs stabilized by poloxamer 407 (HPE NSs/P407) were also prepared and used as a reference for comparison. HPE NSs/GL and HPE-NSs/P407 with similar particle sizes around 450 nm and PDI less than 0.2 were successfully prepared and both of them appeared to be spherical under SEM. The XRPD results demonstrated that HPE in both HPE NSs/GL and HPE NSs/P407 was presented in the amorphous state and the addition of GL or P407 and the milling process didn't alter the physical state of HPE. The dissolution and pharmacokinetic studies demonstrated that HPE NSs/GL exhibited significant enhancement in drug dissolution (72.44% within 24 h) and AUC0-t (24.91 ± 3.3 mg/L·h) as compared to HPE coarse suspensions (HPE CS, 34.19% & 13.07 ± 1.02 mg/L·h), but was similar with those of HPE NSs/P407 (80.06% & 26.75 ± 4.06 mg/L•h). Moreover, HPE NSs/GL exhibited significantly better hepatoprotective effect as compared to HPE CS and HPE NSs/P407 as indicated by the lowering of the elevated serum ALT and AST levels and the improvement of the hepatic morphology and architecture, which might be attributed to the improved bioavailability of HPE, and synergistic hepatoprotective effect of GL via alleviating inflammation evidenced by the significant decreased hepatic levels of inflammatory cytokines IL-1β, IL-6 and TNF-α. It could be concluded that GL might be an effective stabilizer for preparing HPE NSs, and HPE NSs/GL is a potential formulation strategy for improving oral bioavailability and hepatoprotective effect of HPE.
Collapse
Affiliation(s)
- Lingyu Hang
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Fei Hu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Chengying Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Baode Shen
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| | - Weifeng Zhu
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hailong Yuan
- Key Lab of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Air Force Medical Center, PLA, Beijing, China
| |
Collapse
|
25
|
Liu P, Gao C, Chen H, Vong CT, Wu X, Tang X, Wang S, Wang Y. Receptor-mediated targeted drug delivery systems for treatment of inflammatory bowel disease: Opportunities and emerging strategies. Acta Pharm Sin B 2021; 11:2798-2818. [PMID: 34589398 PMCID: PMC8463263 DOI: 10.1016/j.apsb.2020.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ADR, adverse drug reaction
- AIE, aggregation-induced emission
- Active target
- BSA, bovine serum albumin
- CAM, cell adhesion molecule
- CD, Crohn's disease
- CRD, cysteine-rich domain
- CS, chondroitin sulfate
- CT, computed tomography
- CTLD, c-type lectin-like domain
- Cell adhesion molecule
- Crohn's disease
- DCs, dendritic cells
- DSS, dextran sulfate sodium salt
- Drug delivery
- EGF, epidermal growth factor
- EPR, enhanced permeability and retention
- FNII, fibronectin type II domain
- FR, folate receptor
- FRET, fluorescence resonance energy transfer
- GIT, gastrointestinal tract
- HA, hyaluronic acid
- HUVEC, human umbilical vein endothelial cells
- IBD, inflammatory bowel disease
- ICAM, intercellular adhesion molecule
- Inflammatory bowel disease
- LMWC, low molecular weight chitosan
- LPS, lipopolysaccharide
- MAP4K4, mitogen-activated protein kinase kinase kinase kinase 4
- MGL, macrophage galactose lectin
- MPO, myeloperoxidase
- MPS, mononuclear phagocyte system
- MR, mannose receptor
- MRI, magnetic resonance imaging
- PAMAM, poly(amidoamine)
- PEI, polyethylenimine
- PSGL-1, P-selectin glycoprotein ligand-1
- PepT1, peptide transporter 1
- QDs, quantum dots
- RES, reticuloendothelial system
- Receptor-mediated target
- Targeted therapy
- TfR, transferrin receptor
- UC, ulcerative colitis
- Ulcerative colitis
- VCAM, vascular cell adhesion molecule
Collapse
|
26
|
Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021; 11:2449-2468. [PMID: 34522594 PMCID: PMC8424224 DOI: 10.1016/j.apsb.2020.12.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport-the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
Collapse
Key Words
- ACQ, aggregation-caused quenching
- ASRT, apical sodium-dependent bile acid transporter
- AUC, area under curve
- BCS, biopharmaceutics classification system
- CM, chylomicron
- Chylomicron
- DC, dendritic cell
- DDT, dichlorodiphenyltrichloroethane
- DTX, docetaxel
- Drug absorption
- Drug carriers
- Drug delivery
- FA, fatty acid
- FAE, follicle-associated epithelia
- FRET, Föster resonance energy transfer
- GIT, gastrointestinal tract
- HBsAg, hepatitis B surface antigen
- HIV, human immunodeficiency virus
- LDL, low-density lipoprotein
- LDV, Leu-Asp-Val
- LDVp, LDV peptidomimetic
- Lymphatic transport
- M cell, microfold cells
- MG, monoglyceride
- MPA, mycophenolic acid
- MPS, mononuclear phagocyte system
- Microfold cell
- Nanoparticles
- OA, oleate
- Oral
- PCL, polycaprolactone
- PEG-PLA, polyethylene glycol-poly(lactic acid)
- PEI, polyethyleneimine
- PLGA, poly(lactic-co-glycolic acid)
- PVA, poly(vinyl alcohol)
- RGD, Arg-Gly-Asp
- RGDp, RGD peptidomimetic
- SEDDS, self-emulsifying drug delivery system
- SLN, solid lipid nanoparticles
- SNEDDS, self-nanoemulsifying drug delivery system
- TEM, transmission electron microscopy
- TG, triglyceride
- TPGS, D-α-tocopherol polyethylene glycol 1000 succinate
- TU, testosterone undecanoate
- WGA, wheat germ agglutinin
- YCW, yeast cell wall
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
27
|
Zoya I, He H, Wang L, Qi J, Lu Y, Wu W. The intragastrointestinal fate of paclitaxel-loaded micelles: Implications on oral drug delivery. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Yang Y, Lv Y, Shen C, Shi T, He H, Qi J, Dong X, Zhao W, Lu Y, Wu W. In vivo dissolution of poorly water-soluble drugs: Proof of concept based on fluorescence bioimaging. Acta Pharm Sin B 2021; 11:1056-1068. [PMID: 33996417 PMCID: PMC8105772 DOI: 10.1016/j.apsb.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023] Open
Abstract
In vitro‒in vivo correlation (IVIVC) of solid dosage forms should be established basically between in vitro and in vivo dissolution of active pharmaceutical ingredients. Nevertheless, in vivo dissolution profiles have never been accurately portrayed. The current practice of IVIVC has to resort to in vivo absorption fractions (Fa). In this proof-of-concept study, in vivo dissolution of a model poorly water-soluble drug fenofibrate (FNB) was investigated by fluorescence bioimaging. FNB crystals were first labeled by near-infrared fluorophores with aggregation-caused quenching properties. The dyes illuminated FNB crystals but quenched immediately and absolutely once been released into aqueous media, enabling accurate monitoring of residual drug crystals. The linearity established between fluorescence and crystal concentration justified reliable quantification of FNB crystals. In vitro dissolution was first measured following pharmacopoeia monograph protocols with well-documented IVIVC. The synchronicity between fluorescence and in vitro dissolution of FNB supported using fluorescence as a measure for determination of dissolution. In vitro dissolution correlated well with in vivo dissolution, acquired by either live or ex vivo imaging. The newly established IVIVC was further validated by correlating both in vitro and in vivo dissolution with Fa obtained from pharmacokinetic data.
Collapse
|
29
|
Xia F, Chen Z, Zhu Q, Qi J, Dong X, Zhao W, Wu W, Lu Y. Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS via oral route. Acta Pharm Sin B 2021; 11:1010-1020. [PMID: 33996413 PMCID: PMC8105768 DOI: 10.1016/j.apsb.2021.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Self-microemulsifying drug delivery systems (SMEDDSs) have recently returned to the limelight of academia and industry due to their enormous potential in oral delivery of biomacromolecules. However, information on gastrointestinal lipolysis and trans-epithelial transport of SMEDDS is rare. Aggregation-caused quenching (ACQ) fluorescent probes are utilized to visualize the in vivo behaviors of SMEDDSs, because the released probes during lipolysis are quenched upon contacting water. Two SMEDDSs composed of medium chain triglyceride and different ratios of Tween-80 and PEG-400 are set as models, meanwhile Neoral® was used as a control. The SMEDDS droplets reside in the digestive tract for as long as 24 h and obey first order kinetic law of lipolysis. The increased chain length of the triglyceride decreases the lipolysis of the SMEDDSs. Ex vivo imaging of main tissues and histological examination confirm the trans-epithelial transportation of the SMEDDS droplets. Approximately 2%-4% of the given SMEDDSs are transported via the lymph route following epithelial uptake, while liver is the main termination. Caco-2 cell lines confirm the cellular uptake and trans-epithelial transport. In conclusion, a fraction of SMEDDSs can survive the lipolysis in the gastrointestinal tract, permeate across the epithelia, translocate via the lymph, and accumulate mainly in the liver.
Collapse
Affiliation(s)
- Fei Xia
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaochun Dong
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weili Zhao
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
30
|
Zhang J, Corpstein CD, Li T. Intracellular uptake of nanocrystals: Probing with aggregation-induced emission of fluorescence and kinetic modeling. Acta Pharm Sin B 2021; 11:1021-1029. [PMID: 33996414 PMCID: PMC8105771 DOI: 10.1016/j.apsb.2020.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023] Open
Abstract
Nanocrystal formulations have been explored to deliver poorly water-soluble drug molecules. Despite various studies of nanocrystal formulation and delivery, much more understanding needs to be gained into absorption mechanisms and kinetics of drug nanocrystals at various levels, ranging from cells to tissues and to the whole body. In this study, nanocrystals of tetrakis (4-hydroxyphenyl) ethylene (THPE) with an aggregation-induced emission (AIE) property was used as a model to explore intracellular absorption mechanism and dissolution kinetics of nanocrystals. Cellular uptake studies were conducted with KB cells and characterized by confocal microscopy, flow cytometry, and quantitative analyses. The results suggested that THPE nanocrystals could be taken up by KB cells directly, as well as in the form of dissolved molecules. The cellular uptake was found to be concentration- and time-dependent. In addition, the intracellular THPE also could be exocytosed from cells in forms of dissolved molecules and nanocrystals. Kinetic modeling was conducted to further understand the cellular mechanism of THPE nanocrystals based on first-order ordinary differential equations (ODEs). By fitting the kinetic model against experimental measurements, it was found that the initial nanocrystal concentration had a great influence on the dynamic process of dissolution, cellular uptake, and exocytosis of THPE nanocrystals. As the nanocrystal concentration increased in the culture media, dissolution of endocytosed nanocrystals became enhanced, subsequently driving the efflux of THPE molecules from cells. Nanocrystals of Tetrakis(4-hydroxyphenyl) ethylene (THPE), an aggregation-induced emission (AIE) probe was used as a model. THPE nanocrystals could be taken up in forms of dissolved molecules and nanocrystals. The dynamic process of dissolution, cellular uptake, and exocytosis of THPE nanocrystals was concentration-dependent. Exocytosis of intracellular THPE-NCs bore different kinetics and/or mechanisms compared with endocytosis.
Collapse
Affiliation(s)
- Jifen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Clairissa D. Corpstein
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author.
| |
Collapse
|
31
|
Shen B, Shen C, Zhu W, Yuan H. The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin. Acta Pharm Sin B 2021; 11:978-988. [PMID: 33996410 PMCID: PMC8105875 DOI: 10.1016/j.apsb.2021.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
In this study, self-discriminating hybrid nanocrystals was utilized to explore the biological fate of quercetin hybrid nanocrystals (QT-HNCs) with diameter around 280 nm (QT-HNCs-280) and 550 nm (QT-HNCs-550) following oral and intravenous administration and the contribution of integral nanocrystals to oral bioavailability enhancement of QT was estimated by comparing the absolute exposure of integral QT-HNCs and total QT in the liver. Results showed that QT-HNCs could reside in vivo as intact nanocrystals for as long as 48 h following oral and intravenous administration. A higher accumulation of integral QT-HNCs in liver and lung was observed for both oral and intravenous administration of QT-HNCs. The particle size affects the absorption and biodistribution of integral QT-HNCs and total QT. As compared to QT-HNCs-550, QT-HNCs-280 with smaller particle size is more easily absorbed, but dissolves faster in vivo, leading to higher distribution of QT (146.90 vs. 117.91 h·μg/mL) but lower accumulation of integral nanocrystals (6.8 2e10 vs. 15.27e10 h·[p/s]/[µW/cm²]) in liver following oral administration. Due to its slower dissolution and enhanced recognition by RES, QT-HNCs-550 with larger diameter shows higher liver distribution for both of QT (1015.80 h·μg/mL) and integral nanocrystals (259.63e10 h·[p/s]/[µW/cm²]) than those of QT-HNCs-280 (673.82 & 77.66e10 h·[p/s]/[µW/cm²]) following intravenous administration. The absolute exposure of integral QT-HNCs in liver following oral administration of QT-HNCs are 8.78% for QT-HNCs-280 and 5.88% for QT-HNCs-550, while the absolute exposure of total QT for QT-HNCs-280 and QT-HNCs-550 are 21.80% and 11.61%, respectively. Owing to imprecise quantification method, a surprisingly high contribution of integral QT-HNCs to oral bioavailability enhancement of QT (40.27% for QT-HNCs-280 and 50.65% for QT-HNCs-550) was obtained. These results revealed significant difference in absorption and biodistrbution between integral nanocrystals and overall drugs following oral and intravenous administration of QT-HNCs, and provided a meaningful reference for the contribution of integral nanocrystals to overall bioavailability enhancement.
Collapse
Affiliation(s)
- Baode Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
- Key Lab of Modern Preparation of Traditional Chinese Medicine (TCM), Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
| | - Chengying Shen
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
| | - Weifeng Zhu
- Key Lab of Modern Preparation of Traditional Chinese Medicine (TCM), Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing 100142, China
| |
Collapse
|
32
|
He H, Wang L, Ma Y, Yang Y, Lv Y, Zhang Z, Qi J, Dong X, Zhao W, Lu Y, Wu W. The biological fate of orally administered mPEG-PDLLA polymeric micelles. J Control Release 2020; 327:725-736. [DOI: 10.1016/j.jconrel.2020.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/09/2023]
|
33
|
Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020; 284:102261. [PMID: 32942181 DOI: 10.1016/j.cis.2020.102261] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
As one of the most promising and effective delivery systems for targeted controlled-release drugs, nanocarriers (NCs) have been widely studied. Although the development of nanoparticle preparations is very prosperous, the safety and effectiveness of NCs are not guaranteed and cannot be precisely controlled due to the unclear processes of absorption, distribution, metabolism, and excretion (ADME), as well as the drug release mechanism of NCs in the body. Thus, the approval of NCs for clinical use is extremely rare. This paper reviews the research progress and challenges of using NCs in vivo based on a review of several hundred closely related publications. First, the ADME of NCs under different administration routes is summarized; second, the influences of the physical, chemical, and biosensitive properties, as well as targeted modifications of NCs on their disposal process, are systematically analyzed; third, the tracer technology related to the in vivo study of NCs is elaborated; and finally, the challenges and perspectives of nanoparticle research in vivo are introduced. This review may help readers to understand the current research progress and challenges of nanoparticles in vivo, as well as of tracing technology in nanoparticle research, to help researchers to design safer and more efficient NCs. Furthermore, this review may aid researchers in choosing or exploring more suitable tracing technologies to further advance the development of nanotechnology.
Collapse
|
34
|
Tai Z, Huang Y, Zhu Q, Wu W, Yi T, Chen Z, Lu Y. Utility of Pickering emulsions in improved oral drug delivery. Drug Discov Today 2020; 25:S1359-6446(20)30370-6. [PMID: 32949702 DOI: 10.1016/j.drudis.2020.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Pickering emulsions are surfactant-free emulsions stabilized by solid particles. Their unique structure endows them with good stability, excellent biocompatibility, and environmental friendliness. Pickering emulsions have displayed great potential in oral drug delivery. Several-fold increases in the oral bioavailability or bioaccessibility of poorly soluble drugs, such as curcumin, silybin, puerarin, and rutin, were achieved by using Pickering emulsions, whereas controlled release was found for indomethacin and caffeine. The shell of the interfacial particle stabilizers provides enhanced gastrointestinal stability to the cargos in the oil core. Here, we also discuss general considerations concerning particle stabilizers and design strategies to control lipid digestion.
Collapse
Affiliation(s)
- Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yanping Huang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Tao Yi
- School of Health Sciences and Sports, Macao Polytechnic Institute, 00853, Macao
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China.
| |
Collapse
|
35
|
Shi T, Lv Y, Huang W, Fang Z, Qi J, Chen Z, Zhao W, Wu W, Lu Y. Enhanced transdermal delivery of curcumin nanosuspensions: A mechanistic study based on co-localization of particle and drug signals. Int J Pharm 2020; 588:119737. [PMID: 32758595 DOI: 10.1016/j.ijpharm.2020.119737] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Nanosuspensions have received much attention in enhanced transdermal delivery. However, the corresponding mechanisms have not been clarified. In particular, whether nanosuspensions can directly penetrate across the stratum corneum (SC) and what is the transdermal route for the enhanced penetration. Therefore, curcumin (CUR) was adopted in this study as a model drug, while an aggregation-caused quenching (ACQ) probe was physically embedded in CUR nanosuspensions, i.e., the CUR hybrid nanosuspensions (CUR-HNSs), for bioimaging. The ACQ properties enable identification of intact CUR-HNSs. The co-localization of particle and CUR signals was exploited to outline the translocation profiles of intact nanosuspensions as well as the cargoes. Three sizes of CUR-HNSs are prepared, which are spherical and amorphous. CUR is poor in transdermal transport even in propylene glycol solution, which was enhanced by nanosuspensions. Although 400 nm CUR-HNSs present higher steady state flux than 140 nm and 730 nm ones, the cumulative amount of permeated CUR is yet less than 2% of the applied dose at 12 h. Co-localization of CUR and ACQ probe signals indicates that CUR-HNSs can infiltrate into the SC layer and accumulate in the hair follicles. The intact CUR-HNSs cannot enter into the skin. On the contrary, CUR molecules diffuse into the whole skin tissues following dissolution of CUR-HNSs in the SC and the hair follicles. In conclusion, nanosuspensions are advantageous for transdermal delivery of poorly permeable drugs by filtrate into the SC and accumulate in hair follicles.
Collapse
Affiliation(s)
- Tingting Shi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weizi Huang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhezheng Fang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | - Weili Zhao
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
36
|
Fan W, Yu Z, Peng H, He H, Lu Y, Qi J, Dong X, Zhao W, Wu W. Effect of particle size on the pharmacokinetics and biodistribution of parenteral nanoemulsions. Int J Pharm 2020; 586:119551. [DOI: 10.1016/j.ijpharm.2020.119551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
|
37
|
Zhang S, Cui D, Xu J, Wang J, Wei Q, Xiong S. Bile acid transporter mediated STC/Soluplus self-assembled hybrid nanoparticles for enhancing the oral drug bioavailability. Int J Pharm 2020; 579:119120. [PMID: 32035254 DOI: 10.1016/j.ijpharm.2020.119120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
The nano-particulate system for oral delivery faces a big challenge across the gastrointestinal bio-barriers. The aim was to explore the potential applications of bile acid transporter mediated the self-assembled hybrid nanoparticles (SHNPs) of sodium taurocholate (STC) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) for augmenting the oral delivery of poorly water-soluble drugs. Felodipine (FLDP) was chosen as a model drug. The self-assembly of STC with Soluplus to load FLDP and the microstructure of the SHNPs were confirmed using molecular simulation, STC determination by high performance liquid chromatography (HPLC) and transmission electron microscope. Results showed that STC was integrated with Soluplus on the surface of nanoparticles by hydrophobic interactions. The permeability of FLDP loaded STC/Soluplus SHNPs was STC dependent in the ileum, which was inhibited by the higher concentrations of STC and the inhibitor of apical sodium-dependent bile acid transporter (ASBT). STC/Soluplus (1:9) SHNPs significantly improved the drug loading of FLDP, achieved the highest permeability of FLDP and realized 1.6-fold of the area under the curve (AUC) of Soluplus self-assembled nanoparticles (SNPs). A water-quenching fluorescent probe P4 was loaded into the STC/Soluplus SHNPs, which verified that the SHNPs were transferred intactly across the ileum. In conclusion, STC/Soluplus SHNPs via ASBT are a potential strategy for enhancing the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Shujuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Dongmei Cui
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Jiawei Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Jiandong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Qi Wei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China
| | - Subin Xiong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, PR China; Shanghai Anbison Laboratory Co., Ltd., 889 Yishan Road, Shanghai 200233, PR China.
| |
Collapse
|
38
|
Yin Y, Deng H, Wu K, He B, Dai W, Zhang H, Fu J, Le Y, Wang X, Zhang Q. A multiaspect study on transcytosis mechanism of sorafenib nanogranules engineered by high-gravity antisolvent precipitation. J Control Release 2020; 323:600-612. [PMID: 32278828 DOI: 10.1016/j.jconrel.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Nanotechniques show significant merits in terms of improving the oral bioavailability of poorly water-soluble drugs. However, the mechanisms behind are not clear yet. For instance, what is the contribution of free drug released during nanogranule transcytosis, as well as the impact of drug transporter and chylomicron? To address these issues, sorafenib nanogranules (SFN-NGs) were prepared as model by the high-gravity antisolvent precipitation method which approaches to practical mass production. Then, a multiaspect study on the transcytosis mechanism of SFN-NGs was conducted in Caco-2 cells and rats, including paracellular transport, endocytosis, intracellular trafficking, transmembrane pathway, as well as the involvement of transporter and chylomicron. Pharmacokinetics in rats demonstrated an obvious superiority of SFN-NGs in oral absorption and lymphatic transfer over SFN crude drugs. Different from free SFN, SFN-NGs could be internalized in cells in early stage by caveolin/lipid raft or clathrin induced endocytosis, and transported intactly through the polarized cell monolayers. While in late stage, transporter-mediated transport of free SFN began to play a vital role on the transmembrane of SFN-NGs. No paracellular transport of SFN-NGs was found, and the trafficking of SFN-NGs was affected by the pathway of ER-Golgi complexes. Surprisedly, the intracellular free SFN was the main source of transmembrane for SFN-NGs, which was entrapped into chylomicrons and then secreted into the extracellular space. Generally, the findings in current study may shed light on the absorption mechanism of oral nanoformulations.
Collapse
Affiliation(s)
- Yajie Yin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kai Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jijun Fu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
39
|
Abstract
Nanocrystals are used as a drug-delivery platform for poorly water-soluble drugs and have had commercial success in oral drug delivery. We assert that the future of this technique is with cancer treatment and in the development of parenteral preparations. Advances in techniques for uniform and high-quality nanocrystals as well as deciphering the in vivo fate of nanocrystals are critical. The bottom-up technique allows for better control of particle properties, while the hybrid nanocrystal technique provides a novel approach to explore the in vivo fate of nanocrystals. Breakthroughs in these two techniques to further the development of nanocrystals are also discussed.
Collapse
|
40
|
Cheng M, Yuan F, Liu J, Liu W, Feng J, Jin Y, Tu L. Fabrication of Fine Puerarin Nanocrystals by Box-Behnken Design to Enhance Intestinal Absorption. AAPS PharmSciTech 2020; 21:90. [PMID: 32060654 DOI: 10.1208/s12249-019-1616-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Puerarin is widely used as a therapeutic agent to cardiovascular diseases in clinics in China through intravenous administration, which could elicit adverse drug reactions caused by cosolvents, hindering its application in clinics. Therefore, the development of oral dosage is urgently needed. In our previous studies, we proved that the bioavailability of puerarin increased as particle sizes of nanocrystals decreased; however, we have not optimized the best process parameters for nanocrystals. In this study, we aim to fabricate fine nanocrystals (with smallest particle size) by Box-Behnken design and study the intestinal permeability of puerarin and its nanocrystals via employing everted gut sac model and in situ perfusion model. The results showed that the Box-Behnken design could be used to optimize the producing parameters of puerarin nanocrystals, and the particle sizes of fine nanocrystals were about 20 nm. Results of everted gut sacs showed that the polyvinylpyrrolidone (PVP) and verapamil had no influence on the absorption of puerarin and nanocrystals, and the nanocrystals could increase the Papp of puerarin for 2.2-, 2.9-, and 2.9-folds, respectively, in duodenum, jejunum, and ileum. Enhanced Ka and Peff were observed on the nanocrystal group, compared with puerarin, and PVP and verapamil had no influence on the absorption of nanocrystals, while the absorption of puerarin was influenced by P-gp efflux. Combining the results mentioned above, we can conclude that the Box-Behnken design benefits the optimization for preparation of nanocrystals, and the nanocrystals could enhance the intestinal absorption of puerarin by enhanced permeability and inhibited P-gp efflux.
Collapse
|
41
|
How can aggregation-caused quenching based bioimaging of drug nanocarriers be improved? Ther Deliv 2020; 11:809-812. [DOI: 10.4155/tde-2019-0082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Evaluation of intestinal permeation enhancement with carboxymethyl chitosan-rhein polymeric micelles for oral delivery of paclitaxel. Int J Pharm 2019; 573:118840. [PMID: 31715358 DOI: 10.1016/j.ijpharm.2019.118840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022]
Abstract
Polymeric micelles (PMs) are currently under investigation as potential nanocarriers for oral administration of paclitaxel (PTX). Previously, we developed amphiphilic carboxymethyl chitosan-rhein (CR) conjugate for oral delivery of PTX. PTX-loaded CR PMs exhibited a homogeneous and small size (<200 nm) with a drug loading capacity (DL) of 35.46 ± 1.07%. However, The absorption parameters of PTX using CR PMs have not been studied before. Here, we evaluated the intestinal permeation of CR PMs by in situ intestinal absorption experiments. PTX-loaded CR PMs enhanced the absorption of PTX in the intestine without causing significant intestinal villi injury. Compared to the P-glycoprotein (P-gp) inhibition of verapamil, the transport mechanism of CR PMs across intestinal epithelial cells may bypass P-gp efflux. Caco-2 cell uptake assays also confirmed that CR PMs can be taken up into the enterocyte as whole and independent of P-gp. Local biodistribution evaluation showed that fluorescence-labeled CR PMs were absorbed into the intestinal villi. In vivo bioimaging of tumor-bearing mice verified a significant portion of CR PMs were intactly absorbed through the intestine, then distributed and accumulated at the tumor site. For their significant intestinal permeation enhancement, CR PMs might be considered as promising oral delivery carriers for PTX and other water-insoluble drugs.
Collapse
|
43
|
Tu L, Cheng M, Sun Y, Fang Y, Liu J, Liu W, Feng J, Jin Y. Fabrication of ultra-small nanocrystals by formation of hydrogen bonds: In vitro and in vivo evaluation. Int J Pharm 2019; 573:118730. [PMID: 31705972 DOI: 10.1016/j.ijpharm.2019.118730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Poor water solubility and low bioavailability hinder the clinical application of about 70% of newly synthesized compounds. Nanocrystal technology has become a preferred way to improve bioavailability by improving solubility. However, it remains challenging to produce nanocrystals with ultra-small particle sizes to further enhance the extent of bioavailability. Herein, we constructed ultra-small puerarin nanocrystals (Pue-NCs) (20-40 nm) via formation of hydrogen bond during HPH. We confirmed the formation of hydrogen bonds by 1H NMR and FTIR, and observed the distribution of polymer chains by SEM and TEM. The absorption mechanisms were studied in Caco-2 cell monolayers, and the results showed that the major transport mechanism for puerarin was passive diffusion, meanwhile, for Pue-NCs, the passive transport and micropinocytosis-mediated endocytosis coexisted. The absolute bioavailability of Pue-NCs was 35.28%, which was 11.54 folds compared to that of puerarin. Therapeutic equivalence was demonstrated between Pue-NCs and puerarin injection at 50 mg/kg and 15 mg/kg, respectively, in isoproterenol-induced myocardial ischemia model. This study provides a novel strategy for preparing ultra-small nanocrystals by HPH to increase bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Meng Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Jiali Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Wan Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
44
|
Yu Z, Fan W, Wang L, Qi J, Lu Y, Wu W. Effect of Surface Charges on Oral Absorption of Intact Solid Lipid Nanoparticles. Mol Pharm 2019; 16:5013-5024. [PMID: 31638827 DOI: 10.1021/acs.molpharmaceut.9b00861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface charge is a crucial factor that determines the in vivo behaviors of drug nanocarriers following administration via different routes. However, there is still a lack of comprehensive knowledge of how surface charges affect the in vivo behaviors of particles, especially for oral delivery. In this study, solid lipid nanoparticles (SLNs), as model drug nanocarriers, are modified to bear either anionic, cationic, or net neutral surface charges. The effect of surface charges on oral absorption of intact SLNs was investigated by tracking the in vivo transport of the particles. The fluorescent bioimaging strategy exploits the aggregation-caused quenching property to discriminate the particles. Both in vitro and in vivo lipolysis studies confirm slowed-down lipolysis by anionic charges in comparison with both unmodified and net neutral SLNs but accelerated degradation by cationic charges. The scanning of ex vivo tissues and organs reveals limited absorption of unmodified SLNs into the circulation. Nevertheless, all three types of surface charge modifications are able to enhance the oral absorption of intact SLNs with the fastest and highest absorption observed for net neutral SLNs, possibly owing to promoted mucus penetration. Anionic SLNs, though repulsed by the mucus layer, show the second highest absorption owing to enhanced lymphatic transport. The efficacy of cationic charge modification is less significant due to entrapment and retention in mucus layers as well as increased lability to lipolysis. In conclusion, surface charges may serve as initiators to guide the in vivo behaviors and enhance the oral absorption of intact SLNs.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wufa Fan
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Luting Wang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
45
|
Yu Z, Fan W, Wang L, He H, Lv Y, Qi J, Lu Y, Wu W. Slowing down lipolysis significantly enhances the oral absorption of intact solid lipid nanoparticles. Biomater Sci 2019; 7:4273-4282. [PMID: 31407729 DOI: 10.1039/c9bm00873j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Only a limited amount of orally administered lipid nanoparticles are absorbed as intact particles due to lipolysis by lipases in the gastrointestinal tract. It is hypothesized that by counteracting lipolysis, more particles will survive gastrointestinal digestion and be absorbed as intact particles. In this study, incorporation of a lipase inhibitor orlistat (OLST), as well as polyethylene glycol (PEG) coating, is employed to slow down the lipolysis using solid lipid nanoparticles (SLNs) as model particles. To explore the in vivo behaviors of the particles, near-infrared fluorescent probes with absolute aggregation-caused quenching (ACQ) properties are used to label and track the unmodified, PEG-coated and OLST-loaded SLNs. The in vitro lipolysis study indicates very fast first-order degradation of unmodified SLNs and significantly decreased degradation of OLST-SLNs. Live imaging reveals the same trend of slowed-down lipolysis in vivo which correlates well with the in vitro lipolysis. The scanning of ex vivo gastrointestinal segments confirms the considerably prolonged residence time of OLST-SLNs, mirroring the significantly decreased lipolysis rate. The observation of fluorescence in the blood, though very weak, and in the liver speaks of the oral absorption of intact SLNs. The substantially higher hepatic levels of OLST-SLNs than unmodified SLNs should be attributed to the significantly enhanced survival rate because both particles exhibit similar cellular recognition as well as similar physicochemical properties except for the survival rate. Similarly, slowing down lipolysis also contributes to the significantly enhanced cumulative lymphatic transport of OLST-SLNs (7.56% vs. 1.27% for the unmodified SLNs). The PEG coating slows down the lipolysis rate as well but not to the degree as done by OLST. As a result, the gastrointestinal residence time of PEG-SLNs has been moderately prolonged and the hepatic levels moderately increased. The weakened cellular recognition of PEG-SLNs implies that the enhanced oral absorption is solely ascribed to the slowed-down lipolysis and enhanced mucus penetration. In conclusion, the oral absorption of intact SLNs can be significantly enhanced by slowing down lipolysis, especially by OLST, showing potential as carriers for the oral delivery of labile biomacromolecules.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Wufa Fan
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Luting Wang
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China. and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| |
Collapse
|
46
|
Guo M, Song H, Li K, Ma M, Liu Y, Fu Q, He Z. A new approach to developing diagnostics and therapeutics: Aggregation-induced emission-based fluorescence turn-on. Med Res Rev 2019; 40:27-53. [PMID: 31070260 DOI: 10.1002/med.21595] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/21/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Fluorescence imaging is a promising visualization tool and possesses the advantages of in situ response and facile operation; thus, it is widely exploited for bioassays. However, traditional fluorophores suffer from concentration limits because they are always quenched when they aggregate, which impedes applications, especially for trace analysis and real-time monitoring. Recently, novel molecules with aggregation-induced emission (AIE) characteristics were developed to solve the problems encountered when using traditional organic dyes, because these new molecules exhibit weak or even no fluorescence when they are in free movement states but emit intensely upon the restriction of intramolecular motions. Inspired by the excellent performances of AIE molecules, a substantial number of AIE-based probes have been designed, synthesized, and applied to various fields to fulfill diverse detection tasks. According to numerous experiments, AIE probes are more practical than traditional fluorescent probes, especially when used in bioassays. To bridge bioimaging and materials engineering, this review provides a comprehensive understanding of the development of AIE bioprobes. It begins with a summary of mechanisms of the AIE phenomenon. Then, the strategies to realize accurate detection using AIE probes are discussed. In addition, typical examples of AIE-active materials applied in diagnosis, treatment, and nanocarrier tracking are presented. In addition, some challenges are put forward to inspire more ideas in the promising field of AIE-active materials.
Collapse
Affiliation(s)
- Meichen Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hang Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Minchao Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
47
|
Qi J, Hu X, Dong X, Lu Y, Lu H, Zhao W, Wu W. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev 2019; 143:206-225. [PMID: 31158405 DOI: 10.1016/j.addr.2019.05.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 01/12/2023]
Abstract
One of the current challenges in the monitoring of drug nanocarriers lies in the difficulties in discriminating the carrier-bound signals from the bulk signals of probes. Environment-responsive probes that enable signal switching are making steps towards a solution to this problem. Aggregation-caused quenching (ACQ), a phenomenon generally regarded as unfavorable in bioimaging, has turned out to be a promising characteristic for achieving environment-responsiveness and eliminating free-probe interference. So-called ACQ probes emit fluorescence when dispersed molecularly within the carrier matrix but quench immediately and absolutely once they are released into the ambient aqueous environment upon the degradation of the nanocarriers. Therefore, the fluorescence observed represents integral nanocarriers. Based on this rationale, the in vivo fates of various nanocarriers have been explored using live imaging equipment, with very interesting findings revealing the role of the particles. The current applications are however restricted to nanocarriers with highly hydrophobic matrices (lipid or polyester nanoparticles) or with a hydrophobic core-hydrophilic shell structure (micelles). The ACQ-based bioimaging strategy is emerging as a promising tool to achieve more accurate bioimaging of drug nanocarriers. This review article provides an overview of the ACQ phenomenon and the rationale for and examples of applications, as well as the limitations of the ACQ-based strategy, with a focus on improving the accuracy of bioimaging of nanoparticles.
Collapse
|
48
|
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019; 143:177-205. [PMID: 31201837 DOI: 10.1016/j.addr.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Extensive studies on nanomedicines have been conducted for drug delivery and disease diagnosis (especially for cancer therapy). However, the intracellular and in vivo biofate of nanomedicines, which is significantly associated with their clinical therapeutic effect, is poorly understood at present. This is because of the technical challenges to quantify the disassembly and behaviour of nanomedicines. As a fluorescence- and distance-based approach, the Förster Resonance Energy Transfer (FRET) technique is very successful to study the interaction of nanomedicines with biological systems. In this review, principles on how to select a FRET pair and construct FRET-based nanomedicines have been described first, followed by their application to study structural integrity, biodistribution, disassembly kinetics, and elimination of nanomedicines at intracellular and in vivo levels, especially with drug nanocarriers including polymeric micelles, polymeric nanoparticles, and lipid-based nanoparticles. FRET is a powerful tool to reveal changes and interaction of nanoparticles after delivery, which will be very useful to guide future developments of nanomedicine.
Collapse
Affiliation(s)
- Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
49
|
Lu Y, Lv Y, Li T. Hybrid drug nanocrystals. Adv Drug Deliv Rev 2019; 143:115-133. [PMID: 31254558 DOI: 10.1016/j.addr.2019.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Nanocrystals show promise to deliver poorly water-soluble drugs to yield systemic exposure. However, our knowledge regarding the in vivo fate of nanocrystals is in its infancy, as nanocrystallization is simply viewed as an approach to enhance the dissolution of drug crystals. The dying crystal phenomenon inspired the development of hybrid nanocrystals by physically embedding fluorophores into the crystal lattice. This approach achieved concurrent therapy and bioimaging and is well-established to study pharmacokinetics and nanocrystal dissolution in vivo. Nanocrystals also offer the advantage of long-term durability in the body for interacting with biological tissues and cells. This review introduces the hybrid nanocrystal technique, including the theoretical concepts, preparation, and applications. We also discuss the latest development in self-discriminative hybrid nanocrystals utilizing environment-responsive probes. This review will stimulate further development and application of nanocrystal-based drug delivery systems for theranostic strategies.
Collapse
Affiliation(s)
- Yi Lu
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
50
|
Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int J Pharm 2019; 562:187-202. [PMID: 30851386 DOI: 10.1016/j.ijpharm.2019.02.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
The drug nanocrystals (NCs) with unique physicochemical properties are now considered as a promising drug delivery system for poorly water-soluble drugs. So far >20 formulations of NCs have been approved in the market. In this review, we summarized recent advances of NCs with emphasis on their therapeutic applications based on administration route and disease states. At the end, we present a brief description of the future perspectives of NCs and their potential role as a promising drug delivery system. As a strategy for solubilization and bioavailability enhancement, the NCs have gained significant success. Besides this, the function of NCs is still far from developed. The emerging NC-based drug delivery approach would widen the applications of NCs in drug delivery and bio-medical field. Their in vitro and in vivo fate is extremely unclear; and the development of hybrid NCs with environment-sensitive fluorophores may assist to extend the scope of bio-imaging and provide better insight to their intracellular uptake kinetics, in vitro and in vivo.
Collapse
Affiliation(s)
- Imran Shair Mohammad
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Wei He
- Shanghai Dermatology Hospital, Shanghai 200443, PR China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|