1
|
Gu Y, Yang R, Chen J, Fan Y, Xie W, Wu H, Ding J. Design and Synthesis of an Azo Reductase Responsive Flavonol-Indomethacin Hybrid Used for the Diagnosis and Treatment of Colitis. Molecules 2024; 29:4244. [PMID: 39275092 PMCID: PMC11397019 DOI: 10.3390/molecules29174244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Human intestinal bacteria are the primary producers of azo reductase, and the content of azo reductase is closely associated with various intestinal diseases, including ulcerative colitis (UC). The rapid detection of changes in azo reductase levels is crucial for diagnosing and promptly intervening in UC. In this study, a therapeutic agent, FAI, specifically targeting UC, was designed and synthesized. This agent was developed by linking the anti-inflammatory drug indomethacin to flavonols with antioxidant activity via an azo bond (off-on). Breakage of the azo bond breaks results in the release of both fluorophores and drugs, achieving targeted tracing and integrated treatment effects. In vivo and in vitro fluorescence imaging experiments were used to demonstrate the potential of FAI in the diagnosis of UC, together with synergistic therapeutic effects through the release of both fluorophores and anti-inflammatory agents. Therefore, this diagnostic agent shows promise as a potential tool for diagnosing and treating UC.
Collapse
Affiliation(s)
- Yaqin Gu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Rui Yang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jine Chen
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Yu Fan
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Wenna Xie
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Hongyan Wu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jinfeng Ding
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
2
|
Bhuniya S, Vrettos EI. Hypoxia-Activated Theragnostic Prodrugs (HATPs): Current State and Future Perspectives. Pharmaceutics 2024; 16:557. [PMID: 38675218 PMCID: PMC11054426 DOI: 10.3390/pharmaceutics16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is a significant feature of solid tumors and frequently poses a challenge to the effectiveness of tumor-targeted chemotherapeutics, thereby limiting their anticancer activity. Hypoxia-activated prodrugs represent a class of bio-reductive agents that can be selectively activated in hypoxic compartments to unleash the toxic warhead and thus, eliminate malignant tumor cells. However, their applicability can be further elevated by installing fluorescent modalities to yield hypoxia-activated theragnostic prodrugs (HATPs), which can be utilized for the simultaneous visualization and treatment of hypoxic tumor cells. The scope of this review is to summarize noteworthy advances in recent HATPs, highlight the challenges and opportunities for their further development, and discuss their potency to serve as personalized medicines in the future.
Collapse
Affiliation(s)
- Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India;
| | - Eirinaios I. Vrettos
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Synoradzki KJ, Paduszyńska N, Solnik M, Toro MD, Bilmin K, Bylina E, Rutkowski P, Yousef YA, Bucolo C, Zweifel SA, Reibaldi M, Fiedorowicz M, Czarnecka AM. From Molecular Biology to Novel Immunotherapies and Nanomedicine in Uveal Melanoma. Curr Oncol 2024; 31:778-800. [PMID: 38392052 PMCID: PMC10887618 DOI: 10.3390/curroncol31020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 02/24/2024] Open
Abstract
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp-a T cell-redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint inhibitory T cell engagers and natural killer cells. Current trials cover tumor-infiltrating lymphocytes (TIL), vaccination with IKKb-matured dendritic cells, or autologous dendritic cells loaded with autologous tumor RNA. Another potential approach to treat UM could be based on T cell receptor engineering rather than antibody modification. Immune-mobilizing monoclonal T cell receptors (TCR) against cancer, called ImmTAC TM molecules, represent such an approach. Moreover, nanomedicine, especially miRNA approaches, are promising for future trials. Finally, theranostic radiopharmaceuticals enabling diagnosis and therapy with the same molecule bring hope to this research.
Collapse
Affiliation(s)
- Kamil J. Synoradzki
- Environmental Laboratory of Pharmacological and Toxicological Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
| | - Natalia Paduszyńska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Malgorzata Solnik
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 1 Chmielna Str., 20-079 Lublin, Poland;
- Eye Clinic, Public Health Department, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Krzysztof Bilmin
- Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland;
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Yacoub A. Yousef
- Department of Surgery (Ophthalmology), King Hussein Cancer Centre, Amman 11941, Jordan;
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Sandrine Anne Zweifel
- Department of Ophthalmology, University Hospital Zurich, 8091 Zurich, Switzerland;
- Faculty of Human Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, Citta della Salute e della Scienza, Turin University, 10122 Turin, Italy;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Ge L, Tang Y, Wang C, Chen J, Mao H, Jiang X. A light-activatable theranostic combination for ratiometric hypoxia imaging and oxygen-deprived drug activity enhancement. Nat Commun 2024; 15:153. [PMID: 38167737 PMCID: PMC10762052 DOI: 10.1038/s41467-023-44429-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
While performing oxygen-related tumour treatments such as chemotherapy and photodynamic therapy, real-time monitoring hypoxia of tumour is of great value and significance. Here, we design a theranostic combination for light-activated ratiometric hypoxia imaging, hypoxia modulating and prodrug activation. This combination consisted of an oxygen-sensitive near-infrared-emitting ratiometric phosphorescence probe and a hypoxia-activated prodrug-loaded covalent organic framework. In this combination, the probe plays two roles, including quantitative monitoring of oxygen concentration by ratiometric imaging and consuming the oxygen of tumour under light excitation by photodynamic therapy. Meanwhile, the enhanced hypoxia microenvironment of tumour can raise the cytotoxicity of prodrug loaded in covalent organic framework, resulting in boosting antitumour therapeutic effects in vivo. This theranostic combination can precisely provide therapeutic regime and screen hypoxia-activated prodrugs based on real-time tumour hypoxia level, offering a strategy to develop hypoxia mediated tumour theranostics with hypoxia targeted prodrugs.
Collapse
Affiliation(s)
- Lei Ge
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yikai Tang
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chongzhi Wang
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jian Chen
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Xiqun Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
5
|
Liu L, Zhang Y, Li X, Deng J. Microenvironment of pancreatic inflammation: calling for nanotechnology for diagnosis and treatment. J Nanobiotechnology 2023; 21:443. [PMID: 37996911 PMCID: PMC10666376 DOI: 10.1186/s12951-023-02200-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Acute pancreatitis (AP) is a common and life-threatening digestive disorder. However, its diagnosis and treatment are still impeded by our limited understanding of its etiology, pathogenesis, and clinical manifestations, as well as by the available detection methods. Fortunately, the progress of microenvironment-targeted nanoplatforms has shown their remarkable potential to change the status quo. The pancreatic inflammatory microenvironment is typically characterized by low pH, abundant reactive oxygen species (ROS) and enzymes, overproduction of inflammatory cells, and hypoxia, which exacerbate the pathological development of AP but also provide potential targeting sites for nanoagents to achieve early diagnosis and treatment. This review elaborates the various potential targets of the inflammatory microenvironment of AP and summarizes in detail the prospects for the development and application of functional nanomaterials for specific targets. Additionally, it presents the challenges and future trends to develop multifunctional targeted nanomaterials for the early diagnosis and effective treatment of AP, providing a valuable reference for future research.
Collapse
Affiliation(s)
- Lu Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Yiqing Zhang
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospita, PLA Medical College, 28 Fu Xing Road, Beijing, 100853, China
| | - Xinghui Li
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
| | - Jun Deng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
- Institute of Burn Research Southwest Hospital State Key Lab of Trauma Burn and Combined Injury Chongqing Key Laboratory for Disease Proteomics Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
7
|
Li D, Ren T, Ge Y, Wang X, Sun G, Zhang N, Zhao L, Zhong R. A multi-functional hypoxia/esterase dual stimulus responsive and hyaluronic acid-based nanomicelle for targeting delivery of chloroethylnitrosouea. J Nanobiotechnology 2023; 21:291. [PMID: 37612719 PMCID: PMC10464291 DOI: 10.1186/s12951-023-02062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Yunxuan Ge
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
8
|
Li D, Wang X, Han K, Sun Y, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Hypoxia and CD44 receptors dual-targeted nano-micelles with AGT-inhibitory activity for the targeting delivery of carmustine. Int J Biol Macromol 2023; 246:125657. [PMID: 37399878 DOI: 10.1016/j.ijbiomac.2023.125657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Carmustine (BCNU) is a typical chemotherapy used for treatment of cerebroma and other solid tumors, which exerts antitumor effect by inducing DNA damage at O6 position of guanine. However, the clinical application of BCNU was extremely limited due to the drug resistance mainly mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability. To overcome these limitations, we developed a hypoxia-responsive nanomicelle with AGT inhibitory activity, which was successfully loaded with BCNU. In this nano-system, hyaluronic acid (HA) acts as an active tumor-targeting ligand to bind the overexpressing CD44 receptors on the surface of tumor cells. An azo bond selectively breaks in hypoxic tumor microenvironment to release O6-benzylguanine (BG) as AGT inhibitor and BCNU as DNA alkylating agent. The obtained HA-AZO-BG NPs with shell core structure had an average particle size of 176.98 ± 11.19 nm and exhibited good stability. Meanwhile, HA-AZO-BG NPs possessed a hypoxia-responsive drug release profile. After immobilizing BCNU into HA-AZO-BG NPs, the obtained HA-AZO-BG/BCNU NPs exhibited obvious hypoxia-selectivity and superior cytotoxicity in T98G, A549, MCF-7 and SMMC-7721 cells with IC50 at 189.0, 183.2, 90.1 and 100.1 μm, respectively, under hypoxic condition. Near-infrared imaging in HeLa tumor xenograft models showed that HA-AZO-BG/DiR NPs could effectively accumulate in tumor site at 4 h of post-injection, suggesting its good tumor-targetability. In addition, in vivo anti-tumor efficacy and toxicity evaluation indicated that HA-AZO-BG/BCNU NPs was more effective and less harmful compared to the other groups. After treatment, the tumor weight of HA-AZO-BG/BCNU NPs group was 58.46 % and 63.33 % of the control group and BCNU group, respectively. Overall, HA-AZO-BG/BCNU NPs was expected to be a promising candidate for targeted delivery of BCNU and elimination of chemoresistance.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Kaishuo Han
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Yaqian Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Wang Q, Serda M, Li Q, Sun T. Recent Advancements on Self-Immolative System Based on Dynamic Covalent Bonds for Delivering Heterogeneous Payloads. Adv Healthc Mater 2023; 12:e2300138. [PMID: 36943096 DOI: 10.1002/adhm.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/10/2023] [Indexed: 03/23/2023]
Abstract
The precisely spatial-temporal delivery of heterogeneous payloads from a single system with the same pulse is in great demand in realizing versatile and synergistic functions. Very few molecular architectures can satisfy the strict requirements of dual-release translated from single triggers, while the self-immolative systems based on dynamic covalent bonds represent the "state-of-art" of ultimate solution strategy. Embedding heterogeneous payloads symmetrically onto the self-immolative backbone with dynamic covalent bonds as the trigger, can respond to the quasi-bio-orthogonal hallmarks which are higher at the disease's microenvironment to simultaneously yield the heterogeneous payloads (drug A/drug B or drug/reporter). In this review, the modular design principles are concentrated to illustrate the rules in tailoring useful structures, then the rational applications are enumerated on the aspects of drug codelivery and visualized drug-delivery. This review, hopefully, can give the general readers a comprehensive understanding of the self-immolative systems based on dynamic covalent bonds for delivering heterogeneous payloads.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, P. R. China
- Key Laboratory of Smart Drug Delivery Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland
| | - Quan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Boyanghu Road, Tianjin, 301617, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, 368 Youyidadao Avenue, Wuhan, 430062, P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| |
Collapse
|
10
|
Kommidi SSR, Smith BD. Supramolecular Complexation of Azobenzene Dyes by Cucurbit[7]uril. J Org Chem 2023; 88:8431-8440. [PMID: 37256736 PMCID: PMC10843849 DOI: 10.1021/acs.joc.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This report describes cucurbit[7]uril (CB7) complexation of azobenzene dyes that have a 4-(N,N'-dimethylamino) or 4-amino substituent. Absorption and NMR data show that CB7 encapsulates the protonated form of the azobenzene and that the complexed dye exists as its azonium tautomer with a trans azo conformation and substantial quinoid resonance character. Because CB7 complexation stabilizes the dye conjugate acid, there is an upward shift in its pKa, and in one specific case, the pKa of the protonated azobenzene is increased from 3.09 to 4.47. Molecular modeling indicates that the CB7/azobenzene complex is stabilized by three major noncovalent factors: (i) ion-dipole interactions between the partially cationic 4-(N,N'-dimethylamino) or 4-amino group on the encapsulated protonated azobenzene and the electronegative carbonyl oxygens on CB7, (ii) inclusion of the upper aryl ring of the azobenzene within the hydrophobic CB7 cavity, and (iii) a hydrogen bond between the proton on the azo nitrogen and CB7 carbonyls. CB7 complexation enhances azobenzene stability and increases azobenzene hydrophilicity; thus, it is a promising way to improve azobenzene performance as a pigment or prodrug. In addition, the striking yellow/pink color change that accompanies CB7 complexation can be exploited to create azobenzene dye displacement assays with naked eye detection.
Collapse
Affiliation(s)
- Sai Shradha Reddy Kommidi
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
11
|
Zhang R, Hao L, Chen P, Zhang G, Liu N. Multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy. Bioorg Chem 2023; 137:106576. [PMID: 37182421 DOI: 10.1016/j.bioorg.2023.106576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Although great progress has been achieved in cancer diagnosis and treatment, novel therapies are still urgently needed to increase the efficacy and reduce the side effects of conventional therapies. Personalized medicine involves administering patients drugs that are specific to the characteristics of their tumors, and has significantly reduced side effects and increased overall survival rates. Multifunctional theranostic drugs are designed to combine diagnostic and therapeutic functions into a single molecule, which reduces the number of drugs administered to patients and increases patient compliance, and have shown great potential in propelling personalized medicine. This review focuses on multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy, with a particular emphasis placed on highlighting design strategies and application in vitro or in vivo. The challenges and future perspectives of multifunctional small molecules are also discussed.
Collapse
Affiliation(s)
- Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 528051, China
| | - Pengwei Chen
- Hainan Key Laboratory for ReseCarch and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Gang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Han HH, Wang HM, Jangili P, Li M, Wu L, Zang Y, Sedgwick AC, Li J, He XP, James TD, Kim JS. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem Soc Rev 2023; 52:879-920. [PMID: 36637396 DOI: 10.1039/d2cs00673a] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Yi Zang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Lingang laboratory, Shanghai 201203, China
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jia Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
13
|
Jeon SI, Kim HJ, Lee JH, Ahn CH. Development of a Hypoxia-Sensitive Material Producing Fluorescence and Ultrasound Signals. Macromol Res 2022. [DOI: 10.1007/s13233-022-0100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Rong X, Liu C, Li X, Zhu H, Wang K, Zhu B. Recent advances in chemotherapy-based organic small molecule theranostic reagents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Lactose azocalixarene drug delivery system for the treatment of multidrug-resistant pseudomonas aeruginosa infected diabetic ulcer. Nat Commun 2022; 13:6279. [PMID: 36270992 PMCID: PMC9586954 DOI: 10.1038/s41467-022-33920-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic wound is one of the most intractable chronic wounds that is prone to bacterial infection. Hypoxia is an important feature in its microenvironment. However, it is challenging for antimicrobial therapy to directly apply the existing hypoxia-responsive drug delivery systems due to the active targeting deficiency and the biofilm obstacle. Herein, we customizes a hypoxia-responsive carrier, lactose-modified azocalix[4]arene (LacAC4A) with the ability to actively target and inhibit biofilm. By loading ciprofloxacin (Cip), the resultant supramolecular nanoformulation Cip@LacAC4A demonstrates enhanced antibacterial efficacy resulting from both the increased drug accumulation and the controlled release at the site of infection. When applied on diabetic wounds together with multidrug-resistant Pseudomonas aeruginosa infection in vivo, Cip@LacAC4A induces definitely less inflammatory infiltration than free Cip, which translates into high wound healing performance. Importantly, such design principle provides a direction for developing antimicrobial drug delivery systems.
Collapse
|
16
|
Kommidi SSR, Smith BD. Cucurbit[7]uril Complexation of Near-Infrared Fluorescent Azobenzene-Cyanine Conjugates. Molecules 2022; 27:5440. [PMID: 36080213 PMCID: PMC9457616 DOI: 10.3390/molecules27175440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/21/2023] Open
Abstract
Two new azobenzene heptamethine cyanine conjugates exist as dispersed monomeric molecules in methanol solution and exhibit near-infrared (NIR) cyanine absorption and fluorescence. Both conjugates form non-emissive cyanine H-aggregates in water, but the addition of cucurbit[7]uril (CB7) induces dye deaggregation and a large increase in cyanine NIR fluorescence emission intensity. CB7 encapsulates the protonated azonium tautomer of the 4-(N,N-dimethylamino)azobenzene component of each azobenzene-cyanine conjugate and produces a distinctive new absorption band at 534 nm. The complex is quite hydrophilic, which suggests that CB7 can be used as a supramolecular additive to solubilize this new family of NIR azobenzene-cyanine conjugates for future biomedical applications. Since many azobenzene compounds are themselves potential drug candidates or theranostic agents, it should be possible to formulate many of them as CB7 inclusion complexes with improved solubility, stability, and pharmaceutical profile.
Collapse
Affiliation(s)
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Wei P, Wang Q, Yi T. From fluorescent probes to the theranostics platform. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Qing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
18
|
Wang W, Cai J, Wong NK, Hong M, Deng J, Jin L, Ran Y, Zhang Y, Zhou Y, Guan BO. Visualizing nitroreductase activity in living cells and tissues under hypoxia and hepatic inflammation. Analyst 2022; 147:1449-1456. [PMID: 35266458 DOI: 10.1039/d1an01724a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Detecting nitroreductase (NTR) activity in hypoxic cells and tissues in situ represents an important step toward accurate delineation of hypoxic disease loci. However, it remains challenging to develop fluorescent probes with the necessary attributes of selectivity, sensitivity, precise targeting and aqueous solubility. Herein, two kinds of fluorescent probes (NNP and cRGD-NNP) built on a 2-nitroimidazole sensing platform were synthesized for the detection of NTR activity in cell and in vivo models of hypoxia. In the presence of NADH, NNP displayed high selectivity for NTR, a strong fluorescence enhancement (108 fold), and a low detection limit (3.6 ng mL-1). Benefiting from the hydrophilic structure and tumor-targeting properties of the cRGD cyclopeptide group, the probe cRGD-NNP efficiently detected NTR activity in MCF cancer cells under hypoxia. In addition, the liposome-encapsulated probe was successfully applied to visualize NTR during liver inflammation in mice.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Jiexuan Cai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Meijing Hong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Jianbin Deng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Yi Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaqi Zhou
- Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| |
Collapse
|
19
|
Sarkar D, Chowdhury M, Das PK. Naphthalimide-Based Azo-Functionalized Supramolecular Vesicle in Hypoxia-Responsive Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3480-3492. [PMID: 35261245 DOI: 10.1021/acs.langmuir.1c03334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular materials that respond to external triggers are being extensively utilized in developing spatiotemporal control in biomedical applications ranging from drug delivery to diagnostics. The present article describes the development of self-assembled vesicles in 1:9 (v/v), tetrahydrofuran (THF)-water by naphthalimide-based azo moiety containing amphiphile (NI-Azo) where azo moiety would act as the stimuli-responsive junction. The self-assembly of NI-Azo took place through H-type of aggregation. Microscopic and spectroscopic analyses confirmed the formation of supramolecular vesicles with a dimension of 200-250 nm. Azo (-N═N-) moiety is known to get reduced to amine derivatives in the presence of the azoreductase enzyme, which is overexpressed in the hypoxic microenvironment. The absorbance intensity of this characteristic azo (-N═N-) moiety of NI-Azo (1:9 (v/v), THF-water) at 458 nm got diminished in the presence of both extracellular and intracellular bacterial azoreductase extracted from Escherichia coli bacteria. The same observation was noted in the presence of sodium dithionite (mimic of azoreductase), indicating that azoreductase/sodium dithionite induced azo bond cleavage of NI-Azo, which was confirmed by matrix-assisted laser desorption ionization time-of-flight spectrometric data of the corresponding aromatic amine fragments. The anticancer drug, curcumin, was encapsulated inside NI-Azo vesicles that successfully killed B16F10 cells (cancer cells) in CoCl2-induced hypoxic environment owing to the azoreductase-responsive release of drug. The cancer cell killing efficiency by curcumin-loaded NI-Azo vesicles in the hypoxic condition was 2.15-fold higher than that of the normoxic environment and 2.4-fold higher compared to that of native curcumin in the hypoxic condition. Notably, cancer cell killing efficiency of curcumin-loaded NI-Azo vesicles was 4.5- and 1.9-fold higher than that of noncancerous NIH3T3 cells in normoxic and hypoxic environments, respectively. Cell killing was found to be primarily through the early apoptotic pathway.
Collapse
Affiliation(s)
- Deblina Sarkar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
20
|
Yang Y, Zhang Y, Wang R, Rong X, Liu T, Xia X, Fan J, Sun W, Peng X. A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Lu Y, Xu J, Jia Z, Kong S, Qiao Y, Li L, Wu Q, Zhou Y. A near-infrared multifunctional fluorescent probe for hypoxia monitoring and tumor-targeted therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Yang Y, Chen F, Xu N, Yao Q, Wang R, Xie X, Zhang F, He Y, Shao D, Dong WF, Fan J, Sun W, Peng X. Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials 2022; 281:121368. [DOI: 10.1016/j.biomaterials.2022.121368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022]
|
23
|
li X, Huo F, Zhang Y, Cheng F, Yin C. Enzyme-activated Prodrugs and Their Release Mechanisms for Treatment of Cancer. J Mater Chem B 2022; 10:5504-5519. [DOI: 10.1039/d2tb00922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-activated prodrugs have received a lot of attention in recent years. These prodrugs have low toxicity to cells before they are activated, and when they interact with specific enzymes, they...
Collapse
|
24
|
Fu L, Huang Y, Hou J, Sun M, Wang L, Wang X, Chen L. A Raman/fluorescence dual-modal imaging guided synergistic photothermal and photodynamic therapy nanoplatform for precision cancer theranostics. J Mater Chem B 2022; 10:8432-8442. [DOI: 10.1039/d2tb01696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanoplatform that integrates hypoxia-responsive fluorescent probe function as well as imaging and therapeutic functions is developed.
Collapse
Affiliation(s)
- Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Junjun Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingzhao Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxiao Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
25
|
Le TN, Lin CJ, Shen YC, Lin KY, Lee CK, Huang CC, Rao NV. Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:8325-8332. [PMID: 35005953 DOI: 10.1021/acsabm.1c00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) is conjugated with BHQ3 moiety with azo bonds to prepare hypoxia-responsive polymer conjugate. Because of the amphiphilic nature, the polymer conjugate self-assembles to HA-BHQ3 nanoparticles (NPs). The anticancer drug doxorubicin (DOX) is loaded into the NPs. In the physiological environment, DOX is released slowly. In contrast, under hypoxic conditions, the azo bond in BHQ3 is cleaved, thus significantly enhancing the DOX release rate. For instance, after 24 h, 25% of DOX is released under normal conditions, while 74% of DOX is released under hypoxic conditions. In vitro cytotoxicity demonstrates higher toxicity in the hypoxic conditions. DOX@HA-BHQ3 NPs exhibit greater toxicity levels against 4T1 cells in hypoxic conditions. The fluorescent microscope images confirm the oxygen-dependent intracellular DOX release from the NPs. The in vivo biodistribution results suggest the tumor targetability of HA-BHQ3 NPs in 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yen Chen Shen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Kuan-Yu Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - N Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| |
Collapse
|
26
|
Suárez-Cruz A, Molina-Pinilla I, Hakkou K, Rangel-Núñez C, Bueno-Martínez M. Novel poly(azoamide triazole)s containing twin azobenzene units in the backbone. Synthesis, characterization, and in vitro degradation studies. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Wang J, Liu J, Yang Z. Recent advances in peptide-based nanomaterials for targeting hypoxia. NANOSCALE ADVANCES 2021; 3:6027-6039. [PMID: 36133944 PMCID: PMC9418673 DOI: 10.1039/d1na00637a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/16/2023]
Abstract
Hypoxia is a prominent feature of many severe diseases such as malignant tumors, ischemic strokes, and rheumatoid arthritis. The lack of oxygen has a paramount impact on angiogenesis, invasion, metastasis, and chemotherapy resistance. The potential of hypoxia as a therapeutic target has been increasingly recognized over the last decade. In order to treat these disease states, peptides have been extensively investigated due to their advantages in safety, target specificity, and tumor penetrability. Peptides can overcome difficulties such as low drug/energy delivery efficiency, hypoxia-induced drug resistance, and tumor nonspecificity. There are three main strategies for targeting hypoxia through peptide-based nanomaterials: (i) using peptide ligands to target cellular environments unique to hypoxic conditions, such as cell surface receptors that are upregulated in cells under hypoxic conditions, (ii) utilizing peptide linkers sensitive to the hypoxic microenvironment that can be cleaved to release therapeutic or diagnostic payloads, and (iii) a combination of the above where targeting peptides will localize the system to a hypoxic environment for it to be selectively cleaved to release its payload, forming a dual-targeting system. This review focuses on recent developments in the design and construction of novel peptide-based hypoxia-targeting nanomaterials, followed by their mechanisms and potential applications in diagnosis and treatment of hypoxic diseases. In addition, we address challenges and prospects of how peptide-based hypoxia-targeting nanomaterials can achieve a wider range of clinical applications.
Collapse
Affiliation(s)
- Jun Wang
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| | - Jing Liu
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| | - Zhongxing Yang
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| |
Collapse
|
28
|
Maiti M, Yoon SA, Cha Y, Athul KK, Bhuniya S, Lee MH. Cell-specific activation of gemcitabine by endogenous H 2S stimulation and tracking through simultaneous fluorescence turn-on. Chem Commun (Camb) 2021; 57:9614-9617. [PMID: 34486009 DOI: 10.1039/d1cc00118c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The endogenous H2S-driven theranostic H2S-Gem has been invented. The theranostic prodrug H2S-Gem is selectively activated in cancer cells, releasing active gemcitabine with a simultaneous fluorescence turn-on. H2S-Gem selectively inhibited cancer cell growth compared to the mother chemotherapeutic gemcitabine. Overall, it is a unique protocol for tracking and transporting chemotherapeutic agents to tumor areas without the guidance of tumor-directive ligands.
Collapse
Affiliation(s)
- Mrinmoy Maiti
- Department of Science, School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | - Shin A Yoon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| | - Yujin Cha
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| | - K K Athul
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Salt Lake, Kolkata, 700091, India.
| | - Sankarprasad Bhuniya
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Salt Lake, Kolkata, 700091, India.
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
29
|
Pewklang T, Wet-osot S, Wangngae S, Ngivprom U, Chansaenpak K, Duangkamol C, Lai RY, Noisa P, Sukwattanasinitt M, Kamkaew A. Flavylium-Based Hypoxia-Responsive Probe for Cancer Cell Imaging. Molecules 2021; 26:4938. [PMID: 34443527 PMCID: PMC8400153 DOI: 10.3390/molecules26164938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
A hypoxia-responsive probe based on a flavylium dye containing an azo group (AZO-Flav) was synthesized to detect hypoxic conditions via a reductase-catalyzed reaction in cancer cells. In in vitro enzymatic investigation, the azo group of AZO-Flav was reduced by a reductase in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) followed by fragmentation to generate a fluorescent molecule, Flav-NH2. The response of AZO-Flav to the reductase was as fast as 2 min with a limit of detection (LOD) of 0.4 μM. Moreover, AZO-Flav displayed high enzyme specificity even in the presence of high concentrations of biological interferences, such as reducing agents and biothiols. Therefore, AZO-Flav was tested to detect hypoxic and normoxic environments in cancer cells (HepG2). Compared to the normal condition, the fluorescence intensity in hypoxic conditions increased about 10-fold after 15 min. Prolonged incubation showed a 26-fold higher fluorescent intensity after 60 min. In addition, the fluorescence signal under hypoxia can be suppressed by an electron transport process inhibitor, diphenyliodonium chloride (DPIC), suggesting that reductases take part in the azo group reduction of AZO-Flav in a hypoxic environment. Therefore, this probe showed great potential application toward in vivo hypoxia detection.
Collapse
Affiliation(s)
- Thitima Pewklang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.P.); (S.W.-o.); (S.W.); (U.N.); (C.D.)
| | - Sirawit Wet-osot
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.P.); (S.W.-o.); (S.W.); (U.N.); (C.D.)
| | - Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.P.); (S.W.-o.); (S.W.); (U.N.); (C.D.)
| | - Utumporn Ngivprom
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.P.); (S.W.-o.); (S.W.); (U.N.); (C.D.)
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Chuthamat Duangkamol
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.P.); (S.W.-o.); (S.W.); (U.N.); (C.D.)
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.P.); (S.W.-o.); (S.W.); (U.N.); (C.D.)
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, Institute of Agricultural Technology, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Mongkol Sukwattanasinitt
- Thailand Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (T.P.); (S.W.-o.); (S.W.); (U.N.); (C.D.)
| |
Collapse
|
30
|
Zhao YQ, Biswas S, Chen Q, Jia M, Zhou Y, Bhuniya S. Direct Readout Hypoxia Tumor Suppression In Vivo through NIR-Theranostic Activation. ACS APPLIED BIO MATERIALS 2021; 4:5686-5694. [PMID: 35006742 DOI: 10.1021/acsabm.1c00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Urgency in finding a suitable therapy in tumor hypoxia strives to develop hypoxia-targeted activatable theranostic. A strategic theranostic prodrug (Azo-M) has been synthesized. Its azo-linker scission under the hypoxia condition has released an near-infrared (NIR)-reporter to determine the extent of chemotherapeutic (melphalan analogue) activation. Under an artificial hypoxia condition, a large shift from 520 to 590 nm in UV absorption was observed in Azo-M. Alongside, the emission maxima had appeared at 625 nm under the said condition. The Azo-M post-incubated HeLa cells have shown upregulation of various apoptotic factors under oxygen deprivation (3%) condition. Azo-M has shown antiproliferative activity under hypoxia conditions in various cancer cells. An ex-vivo biodistribution study indicated that theranostic Azo-M only activated in tumor tissue and to some extent in the liver. The therapeutic activity study in vivo indicated that Azo-M effectively reduced the tumor size and volume (about 2-fold) without the change of bodyweight of mice. The theranostic Azo-M can be a cornerstone to suppress tumor hypoxia and tracking its extent of suppression.
Collapse
Affiliation(s)
- Yu-Qiang Zhao
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shayeri Biswas
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India
| | - Qiuling Chen
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Mingxuan Jia
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ying Zhou
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India
| |
Collapse
|
31
|
Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021; 191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Oxidoreductases are diverse class of enzymes engaged in modulating the redox homeostasis and cellular signaling cascades. Abnormal expression of oxidoreductases including thioredoxin reductase, azoreductase, cytochrome oxidoreductase, tyrosinase and monoamine oxidase leads to the initiation of numerous disorders. Thus, enzymes are the promising biomarkers of the diseased cells and their accurate detection has utmost significance for clinical diagnosis. The detection method must be extremely selective, sensitive easy to use, long self-life, mass manufacturable and disposable. Fluorescence assay approach has been developed potential substitute to conventional techniques used in enzyme's quantification. The fluorescent probes possess excellent stability, high spatiotemporal ratio and reproducibility represent applications in real sample analysis. Therefore, the enzymatic transformations have been monitored by small activatable organic fluorescent probes. These probes are generally integrated with enzyme's substrate/inhibitors to improve their binding affinity toward the enzyme's catalytic site. As the recognition unit bio catalyzed, the signaling unit produces the readout signals and provides novel insights to understand the biochemical reactions for diagnosis and development of point of care devices. Several structural modifications are required in fluorogenic scaffolds to tune the selectivity for a particular enzyme. Hence, the fluorescent probes with their structural features and enzymatic reaction mechanism of oxidoreductase are the key points discussed in this review. The basic strategies to detect each enzyme are discussed. The selectivity, sensitivity and real-time applications are critically compared. The kinetic parameters and futuristic opportunities are present, which would be enormous benefits for chemists and biologists to understand the facts to design and develop unique fluorophore molecules for clinical applications.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
32
|
Liu C, Yang S, Qiao Y, Zhao Y, Wang W, Jia M, He Y, Zhou Y, Duan L. Effects of the molluscicide candidate PPU06 on alkaline phosphatase in the golden apple snails determined using a near-infrared fluorescent probe. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Li H, Yao Q, Pu Z, Chung J, Ge H, Shi C, Xu N, Xu F, Sun W, Du J, Fan J, Wang J, Yoon J, Peng X. Hypoxia-activatable nano-prodrug for fluorescently tracking drug release in mice. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9880-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Cheng MHY, Mo Y, Zheng G. Nano versus Molecular: Optical Imaging Approaches to Detect and Monitor Tumor Hypoxia. Adv Healthc Mater 2021; 10:e2001549. [PMID: 33241672 DOI: 10.1002/adhm.202001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia is a ubiquitous feature of solid tumors, which plays a key role in tumor angiogenesis and resistance development. Conventional hypoxia detection methods lack continuous functional detection and are generally less suitable for dynamic hypoxia measurement. Optical sensors hereby provide a unique opportunity to noninvasively image hypoxia with high spatiotemporal resolution and enable real-time detection. Therefore, these approaches can provide a valuable tool for personalized treatment planning against this hallmark of aggressive cancers. Many small optical molecular probes can enable analyte triggered response and their photophysical properties can also be fine-tuned through structural modification. On the other hand, optical nanoprobes can acquire unique intrinsic optical properties through nanoconfinement as well as enable simultaneous multimodal imaging and drug delivery. Furthermore, nanoprobes provide biological advantages such as improving bioavailability and systemic delivery of the sensor to enhance bioavailability. This review provides a comprehensive overview of the physical, chemical, and biological analytes for cancer hypoxia detection and focuses on discussing the latest nano- and molecular developments in various optical imaging approaches (fluorescence, phosphorescence, and photoacoustic) in vivo. Finally, this review concludes with a perspective toward the potentials of these optical imaging approaches in hypoxia detection and the challenges with molecular and nanotechnology design strategies.
Collapse
Affiliation(s)
- Miffy Hok Yan Cheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
35
|
Lang W, Yuan C, Zhu L, Du S, Qian L, Ge J, Yao SQ. Recent advances in construction of small molecule-based fluorophore-drug conjugates. J Pharm Anal 2020; 10:434-443. [PMID: 33133727 PMCID: PMC7591808 DOI: 10.1016/j.jpha.2020.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
As a powerful tool to advance drug discovery, molecular imaging may provide new insights into the process of drug effect and therapy at cellular and molecular levels. When compared with other detection methods, fluorescence-based strategies are highly attractive and can be used to illuminate pathways of drugs' transport, with multi-color capacity, high specificity and good sensitivity. The conjugates of fluorescent molecules and therapeutic agents create exciting avenues for real-time monitoring of drug delivery and distribution, both in vitro and in vivo. In this short review, we discuss recent developments of small molecule-based fluorophore-drug conjugates, including non-cleavable and cleavable ones, that are capable of visualizing drug delivery.
Collapse
Affiliation(s)
- Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Chaonan Yuan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
36
|
Azo-inserted responsive hybrid liposomes for hypoxia-specific drug delivery. Acta Biomater 2020; 115:343-357. [PMID: 32771598 DOI: 10.1016/j.actbio.2020.07.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive drug delivery systems using endogenous stimuli from tumor microenvironments such as acidic pH, over-expressed enzyme, and high redox potential as triggers have shown tremendous promise in cancer therapy. However, their clinical application is severely limited because of tumor heterogeneity. Hypoxia, a physiological feature observed in almost all solid tumors and even in nodules with very small size, has currently emerged as a more general but efficient stimulus to trigger release. Herein, we developed hypoxia-responsive hybrid liposomes (HR-HLPs), composed of azo-inserted organokoxysilane-based lipid analogue as a responsive component and commercial phospholipid for reducing the rigidity of liposomal membrane caused by azo, for drug delivery targeting tumor hypoxia. HR-HLPs had the advantages of high structural stability to avoid premature drug leakage when circulating in the blood and high sensitivity in responding to hypoxia once reaching tumor sites. HR-HLPs exhibit deep tumor penetration capability, enabling effective delivery to hypoxic regions distant from tumor vessels. Moreover, HR-HLPs could selectively release their payload, co-localizing with over-expressed hypoxia inducible factor 1α (HIF-1α) in vitro and in vivo. As a result, HR-HLPs showed improved therapeutic outcome accompanied by reduced adverse effects. The results highlighted the potential application of azo-inserted responsive hybrid liposomes for hypoxia-targeted drug delivery. STATEMENT OF SIGNIFICANCE.
Collapse
|
37
|
Li Y, Jeon J, Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Lett 2020; 490:31-43. [DOI: 10.1016/j.canlet.2020.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
|
38
|
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020; 12:E1397. [PMID: 32580366 PMCID: PMC7362228 DOI: 10.3390/polym12061397] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Particle Physics Department Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
39
|
Zhao XB, Ha W, Gao K, Shi YP. Precisely Traceable Drug Delivery of Azoreductase-Responsive Prodrug for Colon Targeting via Multimodal Imaging. Anal Chem 2020; 92:9039-9047. [PMID: 32501673 DOI: 10.1021/acs.analchem.0c01220] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the development of an azoreductase-responsive prodrug AP-N═N-Cy in which the precursor compound AP, a readily available podophyllotoxin derivative, is linked with a NIR fluorophore (Cy) via a multifunctional azobenzene group. This type of azo-based prodrug can serve as not only an azoreductase-responsive NIR probe to real-time tracking of the drug delivery process but also a delivery platform for an anticancer compound (AdP). We have shown that cleavage of the multifunctional azobenzene group in AP-N═N-Cy only occurred in the presence of azoreductase, which specifically secretes in the colon, resulting in direct release of AdP through an in situ modification of a phenylamino group on the precursor AP. Moreover, introduction of the azobenzene group endows the prodrug with an unique fluorescence "off-on" property and served as a switch to "turn on" the fluorescence of Cy as consequence of a self-elimination reaction with breakage of an azo bond. Such a prodrug can be administered orally and exhibit high stability and low toxicity before arriving at the colon. In view of the synchronism of drug release and the fluorescence turn-on process, the fluorescence imaging method was utilized to precisely trace drug delivery in vitro, ex vivo, and in vivo. Distinguishingly, the biodistribution of AdP and Cy in various tissues was further precisely mapped at the molecular level using imaging mass spectrometry. To the best of our knowledge, this is the first time that the in vivo real-time precise tracking of the colon-specific drug release and biodistribution was reported via a multimodal imaging method.
Collapse
Affiliation(s)
- Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Kun Gao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| |
Collapse
|
40
|
Zhou M, Xie Y, Xu S, Xin J, Wang J, Han T, Ting R, Zhang J, An F. Hypoxia-activated nanomedicines for effective cancer therapy. Eur J Med Chem 2020; 195:112274. [PMID: 32259703 DOI: 10.1016/j.ejmech.2020.112274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022]
Abstract
Hypoxia, a common characteristic in solid tumors, is found in phenotypically aggressive cancers that display resistance to typical cancer interventions. Due to its important role in tumor progression, tumor hypoxia has been considered as a primary target for cancer diagnosis and treatment. An advantage of hypoxia-activated nanomedicines is that they are inactive in normoxic cells. In hypoxic tumor tissues and cells, these nanomedicines undergo reduction by activated enzymes (usually through 1 or 2 electron oxidoreductases) to produce cytotoxic substances. In this review, we will focus on approaches to design nanomedicines that take advantage of tumor hypoxia. These approaches include: i) inhibitors of hypoxia-associated signaling pathways; ii) prodrugs activated by hypoxia; iii) nanocarriers responsive to hypoxia, and iv) bacteria mediated hypoxia targeting therapy. These strategies have guided and will continue to guide nanoparticle design in the near future. These strategies have the potential to overcome tumor heterogeneity to improve the efficiency of radiotherapy, chemotherapy and diagnosis.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Yuqi Xie
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Shujun Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China
| | - Tao Han
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University, Chengdu, 611130, PR China
| | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY, 10065, USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
41
|
Xu Z, Pan C, Yuan W. Light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable micelles for synergistic photodynamic therapy and chemotherapy. Biomater Sci 2020; 8:3348-3358. [DOI: 10.1039/d0bm00328j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The micelles self-assembled from POEGMA-b-PCL-Azo-PCL-b-POEGMA present light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable properties for synergistic photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Zhangting Xu
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Chang Pan
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Weizhong Yuan
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| |
Collapse
|
42
|
Wang J, Zhang B, Sun J, Wang Y, Wang H. Nanomedicine-Enabled Modulation of Tumor Hypoxic Microenvironment for Enhanced Cancer Therapy. ADVANCED THERAPEUTICS 2020; 3:1900083. [PMID: 34277929 PMCID: PMC8281934 DOI: 10.1002/adtp.201900083] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 01/21/2023]
Abstract
Hypoxia is a common condition of solid tumors that is mainly caused by enhanced tumor proliferative activity and dysfunctional vasculature. In the treatment of hypoxic human solid tumors, many conventional therapeutic approaches (e.g., oxygen-dependent photodynamic therapy, anticancer drug-based chemotherapy or X-ray induced radiotherapy) become considerably less effective or ineffective. In recent years, various strategies have been explored to deliver or generate oxygen inside solid tumors to overcome tumorous hypoxia and show promising evidence to improve the antitumor efficiency. In this review, the extrinsic regulation of tumor hypoxia via nanomaterial delivery is discussed followed by a summary of the mechanisms through which the modulated tumor hypoxic microenvironment improves therapeutic efficacy. The review concludes with future perspectives, to specifically address the translation of nanomaterial-based therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
43
|
Koo S, Bobba KN, Cho MY, Park HS, Won M, Velusamy N, Hong KS, Bhuniya S, Kim JS. Molecular Theranostic Agent with Programmed Activation for Hypoxic Tumors. ACS APPLIED BIO MATERIALS 2019; 2:4648-4655. [DOI: 10.1021/acsabm.9b00722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kondapa Naidu Bobba
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Nithya Velusamy
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
44
|
Huang J, Wu Y, Zeng F, Wu S. An Activatable Near-Infrared Chromophore for Multispectral Optoacoustic Imaging of Tumor Hypoxia and for Tumor Inhibition. Theranostics 2019; 9:7313-7324. [PMID: 31695770 PMCID: PMC6831286 DOI: 10.7150/thno.36755] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a key hallmark of solid tumors and tumor hypoxia usually contributes to cancer progression, therapeutic resistance and poor outcome. Accurately detecting and imaging tumor hypoxia with high spatial resolution would be conducive to formulating optimized treatment plan and thus achieving better patient outcome. Methods: Tumor hypoxia can cleave the azo linker and release a NIR fluorophore (NR-NH2) and release the active drug as well. NR-NH2 shows a strong absorption band at around 680 nm and a strong fluorescence band at 710 nm, allowing for both multispectral optoacoustic tomography imaging (MSOT) and fluorescent imaging of tumor hypoxia in a tumor-bearing mouse model. Results: Liposome encapsulated with the activatable chromophore (NR-azo) for detecting/imaging tumor hypoxia and for tumor inhibition was demonstrated. For this chromophore, a xanthene-based NIR fluorophore acts as the optoacoustic and fluorescent reporter, an azo linker serves as the hypoxia-responsive moiety and a nitrogen mustard as the therapeutic drug. NR-azo shows an absorption at around 575 nm but exhibits negligible fluorescence due to the existence of the strong electron-withdrawing azo linker. Conclusion: We demonstrated an optoacoustic and fluorescent system for not only imaging tumor hypoxia in vivo but also achieving tumor inhibition.
Collapse
Affiliation(s)
| | | | - Fang Zeng
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
45
|
Kumar R, Sharma A, Singh H, Suating P, Kim HS, Sunwoo K, Shim I, Gibb BC, Kim JS. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem Rev 2019; 119:9657-9721. [DOI: 10.1021/acs.chemrev.8b00605] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hardev Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Paolo Suating
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyoung Sunwoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Inseob Shim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
46
|
Azodyes as markers for tumor hypoxia imaging and therapy: An up-to-date review. Chem Biol Interact 2019; 307:91-104. [DOI: 10.1016/j.cbi.2019.04.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022]
|
47
|
Pethe AM, Yadav KS. Polymers, responsiveness and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:395-405. [PMID: 30688110 DOI: 10.1080/21691401.2018.1559176] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A single outcome in a biological procedure at the time of cancer therapy is due to multiple changes happening simultaneously. Hence to mimic such complex biological processes, an understanding of stimuli responsiveness is needed to sense specific changes and respond in a predictable manner. Such responses due to polymers may take place either simultaneously at the site or in a sequential manner from preparation to transporting pathways to cellular compartments. The present review comprehends the stimuli-responsive polymers and multi-responsiveness with respect to cancer therapy. It focuses on the exploitation of different stimuli like temperature, pH and enzymes responsiveness in a multi-stimuli setting. Nanogels and micelles being two of the most commonly used responsive polymeric carriers have also been discussed. The role of multiple stimuli delivery system is significant due to multiple changes happening in the near surroundings of cancer cells. These responsive materials are able to mimic some biological processes and recognize at the molecular level itself to manipulate development of custom-designed molecules for targeting cancer cells.
Collapse
Affiliation(s)
- Anil M Pethe
- a Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University) , Mumbai , Maharashtra , India
| | - Khushwant S Yadav
- a Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University) , Mumbai , Maharashtra , India
| |
Collapse
|
48
|
Zhang Y, Chang J, Huang F, Yang L, Ren C, Ma L, Zhang W, Dong H, Liu J, Liu J. Acid-Triggered in Situ Aggregation of Gold Nanoparticles for Multimodal Tumor Imaging and Photothermal Therapy. ACS Biomater Sci Eng 2019; 5:1589-1601. [PMID: 33405632 DOI: 10.1021/acsbiomaterials.8b01623] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photothermal agents with high photothermal transfer efficiencies in the near-infrared (NIR) region are important for enhanced photothermal therapy (PTT) of tumors. Herein, we developed a strategy for the acid-triggered in situ aggregation of a system based on peptide-conjugated gold nanoparticles (GNPs). In an acidic environment, the GNPs formed large aggregates in solution, in cell lysates, and in tumor tissues, as observed by transmission electron microscopy (TEM). As a consequence of the aggregation, their UV-vis absorbance in the NIR region was greatly increased, and laser irradiation of the GNPs resulted in a dramatic increase in the temperatures of solutions and tumors that contained the GNP system. When exposed to NIR irradiation, the aggregates formed by the GNP system under acidic conditions were capable of producing a sufficient level of hyperthermia to destroy cancer cells both in vitro and in vivo. Interestingly, the GNP aggregates showed enhanced properties in multiple imaging modalities, including computed tomography (CT), photoacoustic (PA), and photothermal (PT) imaging. Thus, we have developed a novel probe for enhanced multimodal tumor imaging. These findings prove that a strategy involving the acid-triggered in situ aggregation of a GNP system can increase the photothermal transfer efficiency for low to high energy conversion, thus boosting the therapeutic specificity and antitumor efficacy of PTT and facilitating multimodal imaging.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Jinglin Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Lin Ma
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, PR China
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Baidi Road 238, Nankai District, Tianjin 300192, PR China
| |
Collapse
|
49
|
Bobba KN, Saranya G, Sujai PT, Joseph MM, Velusamy N, Podder A, Maiti KK, Bhuniya S. Endogenous H2S-Assisted Cancer-Cell-Specific Activation of Theranostics with Emission Readout. ACS APPLIED BIO MATERIALS 2019; 2:1322-1330. [DOI: 10.1021/acsabm.9b00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kondapa Naidu Bobba
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 64112, India
| | - Giridharan Saranya
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
| | - Palasseri T. Sujai
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
| | - Manu M. Joseph
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
| | - Nithya Velusamy
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 64112, India
| | - Arup Podder
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 64112, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
- Academy of Scientific and Innovative Research, AcSIR, CSIR-NIIST, Thiruvananthapuram, 695019 Kerala, India
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 64112, India
- Department of Chemical Engineering & Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| |
Collapse
|
50
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|